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Overview

Due to our work over the previous two sections, at this point we could
theoretically evaluate the double integral of any continuous two-variable
function over any subset D of its domain in the xy -plane.

However, some subsets of the domain of a two-variable function are
particularly tricky to work with using only the tools we’ve developed so
far. In this section, we will examine how to calculate double integrals
over regions that are most easily described using polar coordinates.
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The Setup

Consider the following subets of the xy -plane:

Suppose that we have a two-variable function f (x , y) which is continuous
on these regions, and we wish to evaluate the double integral of f (x , y)
on either. Let’s try setting up such a double integral as an iterated
integral using the techniques we’ve developed up to this point [give this a
try before reading on!].



Region 1

The first region on the previous slide, which we will henceforth refer to as
R1 (my apologies for the conflict with the labelling on the previous slide;
those images were pulled directly from your text) can be thought of as
either of type I or type II, though this may not be obvious at first. If we
solve the equation of the bounday for y , we get:

y = ±
√

1− x2

Recall that the positive square root is an equation of the top half of the
circle, while the negative square root is an equation of the bottom half of
the circle. Therefore, we may describe R as:

R1 =
{

(x , y) | − 1 ≤ x ≤ 1, −
√

1− x2 ≤ y ≤
√

1− x2
}

Region 1, cont.

Therefore, with this description in mind, we have:∫∫
R1

f (x , y) dA =

∫ 1

−1

∫ √1−x2

−
√
1−x2

f (x , y) dy dx

Now, imagine that f (x , y) were a particularly nice function; perhaps a
polynomial. Imagine computing a partial antiderivative of this f (x , y)...
and plugging in those square root endpoints. This could be an absolute
nightmare! And R1 is a comparatively simple shape: a disk!

Region 2

The second region above, which we will call R2 from here on out, is even
worse. It isn’t strictly of type I or type II, but it can be broken into a
minimum of three separate pieces that are each of type I, or into a
minimum of three separate pieces that are each of type II. We leave the
following description of R2 as a union of three type I pieces which only
overlap on their boundaries as an exercise:

R2 =
{

(x , y) | − 2 ≤ x ≤ −1, 0 ≤ y ≤
√

4− x2
}

∪
{

(x , y) | − 1 ≤ x ≤ 1,
√

1− x2 ≤ y ≤
√

4− x2
}

∪
{

(x , y) | 1 ≤ x ≤ 2, 0 ≤ y ≤
√

4− x2
}

Region 2, cont.

Therefore, by our work in the previous section, we see that:∫∫
R2

f (x , y) dA =

∫ −1
−2

∫ √4−x2

0

f (x , y) dy dx

+

∫ 1

−1

∫ √4−x2

√
1−x2

f (x , y) dy dx

+

∫ 2

1

∫ √4−x2

0

f (x , y) dy dx



We Can Do Better

In short, integrating over each of these regions is a pain (and potentially
even worse than that); we have nasty square roots to work with in both
cases, and multiple regions to integrate over in the second case. But
these are such simple regions! Something about this seems... wrong. It
would be quite nice if there were a simpler way to proceed.

And there is! The key is that each region is nicely described using polar
coordinates.

Polar Coordinates

Recall that every point P in R2 may be described in terms of its distance
from the origin, r , and the signed angle that a line segment from the
origin to P makes with the positive x-axis, θ:

r and θ make up the polar coordinates of the point P, whereas x and y
are the rectangular or Cartesian coordinates of P. Recall also that we
may convert between rectangular and polar coordinates using:

x2 + y2 = r2, x = r cos(θ), y = r sin(θ)

Describing the Regions

Both of the regions mentioned at the outset of this section are
straightforward to describe using polar coordinates. Indeed, the first is:

R1 =
{

(r , θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π
}

and the second is:

R2 =
{

(r , θ) | 1 ≤ r ≤ 2, 0 ≤ θ ≤ π
}

This looks much cleaner, indeed. But will it make integrating any
friendlier? To find out, let’s see how we can take advantage of this to
compute integrals.

Integrating in Polar Coordinates

Theorem: Suppose that f (x , y) is continuous on the region

R =
{

(r , θ)|a ≤ r ≤ b, α ≤ θ ≤ β
}

for where a, b, α, and β are all constants with a ≥ 0 and
0 ≤ β − α ≤ 2π. Then∫∫

R

f (x , y) dA =

∫ β

α

∫ b

a

f (r cos(θ), r sin(θ))r dr dθ

Note that since a, b, α, and β are all constants, Fubini’s Theorem applies
here, and the order of integration may be reversed.



Example

Evaluate I =
∫∫

R2
(3x + 4y2) dA where R2 is the region in the upper half

plane bounded by the circles x2 + y2 = 1 and x2 + y2 = 4, as given on
the slide at the start of this section.

We know from above that we may describe R2 as

R2 =
{

(r , θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π
}

Example, cont.

Therefore, we have:

I =

∫ π

0

∫ 2

1

(3r cos(θ) + 4r2 sin2(θ))r dr dθ

=

∫ π

0

∫ 2

1

(3r2 cos(θ) + 4r3 sin2(θ)) dr dθ

=

∫ π

0

(
r3 cos(θ) + r4 sin2(θ)

)∣∣∣∣r=2

r=1

dθ

=

∫ π

0

(
7 cos(θ) + 15 sin2(θ)

)
dθ

=

∫ π

0

(
7 cos(θ) +

15

2
(1− cos(2θ))

)
dθ

=

(
7 sin(θ) +

15θ

2
− 15

4
sin(2θ)

)∣∣∣∣∣
π

0

=
15π

2

An Important Note

Above, we used one of the techniques you learned previously for
integrating powers of sine and cosine functions. As you might imagine,
these techniques will often be crucial to evaluating double integrals in
polar coordinates, so be sure to review these methods as you work on the
exercises for this section.

Is This New Technique Any Better?

I encourage you to try this example again using the description of R2 in
rectangular coordinates that we found earlier, or one that you worked out
for yourself. See which you like better. Our new method isn’t always
more efficient, but for most cases where a region is most easily described
in polar coordinates, it is.



Generalizing the Theorem

Of course, not all regions R can be described quite as nicely as above.
For example, it may be that R is between two angles α and β, but that r
is between two functions h1(θ) and h2(θ), as below:

A More General Result

In this case, we integrate as follows:

Suppose that f (x , y) is continuous on a polar region D of the form:

D =
{

(r , θ)|α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)
}

where α and β are constants. Then:∫∫
D

f (x , y) dA =

∫ β

α

∫ h2(θ)

h1(θ)

f (r cos(θ), r sin(θ))r dr dθ

Since the inner bounds are not constants, Fubini’s Theorem does not
apply here! You must integrate in the order indicated.

Example

Find the (unsigned) volume V of the solid that lies between the surface
z = 1 and the region D in the xy -plane bounded by the curve
x2 + y2 = 2x .

First, notice that V can be computed with a double-integral:

V =

∫∫
D

1 dA

Now, let’s sketch the region D. Completing the square, we have:

x2 + y2 = 2x ⇒ x2 − 2x + y2 = 0

⇒ (x − 1)2 − 1 + y2 = 0

⇒ (x − 1)2 + y2 = 1

Example, cont.

Therefore, D is the region inside the circle of radius 1 centered at (1, 0):



Example,cont.

Now that we know exactly what the region D looks like, we can turn to
setting up

∫∫
D

1 dA as an iterated integral. It is certainly possible to set
up this iterated integral using rectangular coordinates (and I would
encourage you to do so!), but given the shape of D, it would be wiser to
try polar coordinates first.

We begin with the constant bounds on θ.

We want to know the smallest and largest values of θ which correspond
to a point inside of D. I claim that every point inside D has a θ
coordinate between −π2 and π

2 . Indeed, every point in D (except the
origin) is to the right of the y -axis; and on the other hand, there is at
least one point inside of D for every angle between −π2 and π

2 , as we can
see from the figure on the previous slide (We’ll see another way to
confirm this observation momentarily).

Example, cont.

Now for the bounds on r . We do so in much the same way as we did for
type I and type II integrals in the previous section.

Fix an angle θ between −π2 and π
2 , and sketch a ray R that extends from

the origin and makes an angle of θ with the positive x-axis. As we move
out from the origin along R, we see that every point on R which is inside
D has an r -coordinate between 0 and... whatever the r -coordinate of the
point PR , where R intersects the boundary circle of D, is.

How can we find the r -coordinate of this generic PR?

This is where our conversions between rectangular and polar coordinates
come in! Let’s rewrite the equation x2 + y2 = 2x in polar coordinates.

Example, cont.

We have:

x2 + y2 = 2x ⇒ r2 = 2r cos(θ)

⇒ r = 2 cos(θ)

Therefore, the r -coordinate of PR is 2 cos(θ).

Thus, given any θ between −π2 and π
2 , we see that the corresponding

bounds on r are 0 and 2 cos(θ). Therefore, we may describe D as:

D =

{
(r , θ)

∣∣∣∣ −π2 ≤ θ ≤ π

2
, 0 ≤ r ≤ 2 cos(θ)

}

We are now in a position to set up our iterated integral.

Example, cont.

By the way, the equation r = 2 cos(θ) of our boundary circle can also
help us confirm our bounds on θ. Indeed, note that this circle passes
through the origin when θ = −π

2 , and again when θ = π
2 , and nowhere

in-between, confirming our observation above.



Example, cont.

Putting everything together, we have:

V =

∫ π
2

−π
2

∫ 2 cos(θ)

0

1 · r dr dθ

=

∫ π
2

−π
2

2 cos2(θ) dθ

= 2

∫ π
2

−π
2

(
1 + cos(2θ)

2

)
dθ

=

(
θ +

1

2
sin(2θ)

)∣∣∣∣∣
π
2

−π
2

= π
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1. Evaluate
∫∫

R
1 dA where R is the region inside the unit circle in the

xy -plane in two ways: first, using polar coordinates; and second,
using rectangular coordinates [Note that you can also work out this
double integral quickly by thinking of it as the volume of a familiar
solid...].

2. Find the (unsigned) volume VB inside the solid B in R3 bounded by
the plane z = 0 and the paraboloid z = 1− x2 − y2 [Hint: start by
working out the intersection of the two surfaces].

3. Use a double integral to find the area A` enclosed by one loop ` of
the four-leaved rose r = cos(2θ) [Hint: Recall that the area of a
region R is given by

∫∫
R

1 dA].

4. Find the (unsigned) volume V of the solid in R3 that lies under the
paraboloid z = x2 + y2, above the xy -plane, and inside the cylinder
x2 + y2 = 2x .

Solutions

1. In polar coordinates,
∫∫

R
1 dA =

∫ 2π

0

∫ 1

0
r dr dθ = π.

In rectangular coordinates,
∫∫

R
1 dA =

∫ 1

−1
∫√1−x2

−
√
1−x2 dy dx = π where

the outer integral may be computed using the substitution
x = sin(θ). Don’t forget to change your bounds when using a
substitution!
Of course,

∫∫
R

1 dA is also the volume of the circular cylinder of
radius 1 and height 1, which is π.

2. VB =
∫ 2π

0

∫ 1

0
(1− r2)r dr dθ = π

2

3. A` =
∫ π/4
−π/4

∫ cos(2θ)

0
r dr dθ = π

8

4. V =
∫ π/2
−π/2

∫ 2 cos(θ)

0
r3 dr dθ = 3π

2
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