15.5: Surface Area

Julia Jackson

Department of Mathematics
The University of Oklahoma
Fall 2021

Overview

We now have two complementary techniques we can use to evaluate a double integral of a (continuous) two-variable function over a general subset of its domain in the $x y$-plane, so it's probably about time that we come to an application.

You may remember from single-variable calculus that the length of an arc on the graph of a single-variable function can be calculated using an (ordinary) integral. In this section, we use double integrals to solve the analogous problem for two-variable functions: calculating the amount of area of a piece of the graph of a two-variable function (i.e. a surface area) in \mathbb{R}^{3}.

Table of Contents

Surface Area

Exercises

Review: Arc Length

Suppose that we have a single-variable function $f(x)$ which is continuous on the interval $[a, b]$. If we wish to measure the "size" L of the portion of the graph of $f(x)$ that lies above and/or below $[a, b]$ (i.e. the length of the arc on the graph of f on the interval $[a, b]$), we have the very convenient arc length formula:

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Two-Variable Functions

Now consider the analogous question for a two-variable function $f(x, y)$: Suppose that $f(x, y)$ is continuous on the region D in the $x y$-plane, and that we wish to measure the "size" $A(S)$ of the portion S of the graph of $f(x, y)$ that lies above and/or below D. The graph of $f(x, y)$ is, of course, a surface, so what we want is to calculate the area of S. It turns out that this area is given by:

$$
A(S)=\iint_{D} \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} \mathrm{~d} A
$$

Note that this formula, too, is analogous to the formula from the single-variable case.

Example

Find the surface area A of the portion of the surface $z=x^{2}+2 y$ that lies above the region T in the $x y$-plane bounded by the triangle with vertices $(0,0),(1,0)$, and $(1,1)$.

Let's begin by drawing the region T :

Example, cont.

Here is a picture of the portion of the surface $z=x^{2}+2 y$ lying above T, purely for your reference (you don't need to provide such a sketch for a complete solution):

We wish to find the area of this portion of the surface.

Example, cont.

Let $f(x, y)=x^{2}+2 y$. Then the graph of $f(x, y)$ is $z=x^{2}+2 y$, and the surface area formula gives:

$$
\begin{aligned}
A & =\iint_{T} \sqrt{[2 x]^{2}+[2]^{2}+1} \mathrm{~d} A \\
& =\iint_{T} \sqrt{4 x^{2}+5} \mathrm{~d} A \\
& =\int_{0}^{1} \int_{0}^{x} \sqrt{4 x^{2}+5} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{1} x \sqrt{4 x^{2}+5} \mathrm{~d} x
\end{aligned}
$$

Let $u=4 x^{2}+5$ so that $\frac{1}{8} \mathrm{~d} u=x \mathrm{~d} x$, giving:

Example, cont.

$$
\begin{aligned}
A & =\int_{5}^{9} \frac{1}{8} \sqrt{u} \mathrm{~d} u \\
& =\left.\frac{1}{12} u^{3 / 2}\right|_{5} ^{9} \\
& =\frac{1}{12}(27-5 \sqrt{5})
\end{aligned}
$$

Example

Find the area B of the paraboloid $z=x^{2}+y^{2}$ that lies above the disk D in the plane given by $x^{2}+y^{2} \leq 9$.

If we let $f(x, y)=x^{2}+y^{2}$, then notice that the graph of $f(x, y)$ is $z=x^{2}+y^{2}$. Note also that D is described most easily in polar coordinates as:

$$
D=\{(r, \theta) \mid 0 \leq r \leq 3,0 \leq \theta \leq 2 \pi\}
$$

Example, cont.

Therefore, using the surface area formula from a previous slide we have:

$$
\begin{aligned}
B & =\iint_{D} \sqrt{(2 x)^{2}+(2 y)^{2}+1} \mathrm{~d} A \\
& =\iint_{D} \sqrt{4 x^{2}+4 y^{2}+1} \mathrm{~d} A \\
& =\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{1+4 r^{2} \cos ^{2}(\theta)+4 r^{2} \sin ^{2}(\theta)} r \mathrm{~d} r \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{3} r \sqrt{1+4 r^{2}} \mathrm{~d} r \mathrm{~d} \theta \\
& =\frac{\pi}{6}(37 \sqrt{37}-1)
\end{aligned}
$$

where the inner partial integral of this iterated integral may be completed via u-substitution.

Table of Contents

Surface Area

Exercises

Exercises

1. Find the area A_{1} of the part of the plane $z=5 x+3 y+6$ that lies above the rectangle $R_{1}=[1,4] \times[2,6]$.
2. Find the area A_{2} of the part of the plane $6 x+4 y+2 z=1$ that lies inside the cylinder $x^{2}+y^{2}=25$.
3. Find the area A_{3} of the part of the surface $2 x+4 z-y^{2}=5$ that lies above the triangle T_{3} with vertices $(0,0),(0,2)$, and $(4,2)$.

Solutions

1. One possible solution is: $A_{1}=\int_{1}^{4} \int_{2}^{6} \sqrt{35} \mathrm{~d} y \mathrm{~d} x=12 \sqrt{35}$
2. One possible solution is: $A_{2}=\int_{0}^{2 \pi} \int_{0}^{5} r \sqrt{14} \mathrm{~d} r \mathrm{~d} \theta=25 \pi \sqrt{14}$
3. One possible solution is: $A_{3}=\int_{0}^{2} \int_{0}^{2 y} \sqrt{\frac{5}{4}+\frac{1}{4} y^{2}} \mathrm{~d} x \mathrm{~d} y=9-\frac{5^{3 / 2}}{3}$
