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Overview

Up to this point in the chapter, we have only discussed double integrals,
i.e. the integrals of two-variable functions f (x , y). These allow us to find
the signed volume in R3 of the solid between a surface z = f (x , y) and a
region R in the xy -plane. We learned to evaluate such integrals using the
technique of iterated integrals.

In the next three sections we turn our attention to triple integrals, i.e.
integrals of functions of three variables f (x , y , z). There’s no simple
graphical interpretation for such integrals, but the core concept translates
perfectly well and has useful applications.

With some effort, one could define the integral of a function of
arbitrarily-many variables, but in general this is a very complicated
proposition. I invite you to consider why this is the case as we proceed.
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The Setup

Suppose that we have a function f (x , y , z) of three variables which is
continuous on a rectangular box B. We may formally extend the method
of integration we learned for one- and two-variable functions to
integrating f over B in the expected way: First split B into sub-boxes
Bijk , and choose a sample point (x∗ijk , y

∗
ijk , z

∗
ijk) in each sub-box:



The Setup, cont.

Now, let ∆V be the volume of each sub-box Bijk . Evaluate f at each
sample point and multiply each result by ∆V . Add up the products to
form a Riemann sum:

l∑
i=1

m∑
j=1

n∑
k=1

f (x∗ijk , y
∗
ijk , z

∗
ijk)∆V

This approximates the four-dimensional signed “volume” between the
“graph” of f and the region B, which we call the triple integral of f over
B. To find the actual volume, we take a limit, as usual:∫∫∫

B

f (x , y , z) dV = lim
l,m,n→∞

l∑
i=1

m∑
j=1

n∑
k=1

f (x∗ijk , y
∗
ijk , z

∗
ijk)∆V

The Graphical Interpretation

Intuitively, the triple integral gives the volume of the four-dimensional
solid between the rectangular box B and the graph of f . But note that
we can draw neither the solid nor the graph of a function w = f (x , y , z),
as both would require a four-dimensional drawing.

So, I’ll say this one last time: there is no nice graphical interpretation for
the triple integral of a three-variable function f (x , y , z). We have merely
imitated the argument for lower-dimensional integrals to devise this new
concept.

However, that does not mean that such integrals are not useful, nor does
it mean that we cannot calculate them.

A Physical Interpretation

Indeed, here’s one application of the triple integral of a three-variable
function:

Suppose that the function f (x , y , z) above is a density function of the
box B. Then the triple integral∫∫∫

B

f (x , y , z) dV

gives the mass of B; I’ll leave it to you to run through the argument we
used to build the triple integral to see why this is so.

Your text also contains other applications, and I encourage you to take a
look at these. For the most part, we will talk about the abstract
mathematical process of evaluating these integrals more than how they
are used in practice — the latter will vary, depending on your field of
study.

Calculation

We certainly wouldn’t want to evaluate
∫∫∫

B
f (x , y , z) dV using the limit

definition from above; one would hope there is an easier way. And there
is! We can calculate the triple integral as an iterated integral:

Theorem (Fubini): If f is continuous on the rectangular box
B = [a, b]× [c , d ]× [r , s], then we may calculate

∫∫∫
B
f (x , y , z) dV as

an iterated integral:∫∫∫
B

f (x , y , z) dV =

∫ s

r

∫ d

c

∫ b

a

f (x , y , z) dx dy dz

Furthermore, any of the six possible orders of integration will yield the
same result.



Example

Evaluate

I1 =

∫∫∫
B

xyz2 dV

where B is the rectangular box B = [0, 1]× [−1, 2]× [0, 3].

By Fubini’s theorem we may express I1 as an iterated integral in six
distinct ways, and we are free to choose an order of integration that suits
this problem. Since the integrand itself presents no obvious order of
integration to try, we are free to set up whatever order of integration we
like. Here’s the order I’ve chosen: I would rank the bounds on variables
from friendliest to least friendly this way: x , then z , then y . Therefore,
this is the order I will choose to integrate in.

Example, cont.

We have:

I1 =

∫ 2

−1

∫ 3

0

∫ 1

0

xyz2 dx dz dy

=

∫ 2

−1

∫ 3

0

(
x2

2
yz2

)∣∣∣∣∣∣
x=1

x=0

dz dy

=

∫ 2

−1

∫ 3

0

1

2
yz2 dz dy

=

∫ 2

−1

9

2
y dy

=
9

4
y2

∣∣∣∣2
−1

=
27

4
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Type 1 Regions

Of course, there’s no reason that we should restrict ourselves to
integrating over boxes. There are lots of other bounded solids E in R3

that we could integrate over. We will investigate some of these now.

The first we will encounter are type 1 regions. E is said to be of type 1
if it lies above and/or below a region D in the xy -plane and between two
continuous functions of x and y . That is, if we may describe E as follows:

E =
{

(x , y , z)|(x , y) ∈ D, u1(x , y) ≤ z ≤ u2(x , y)
}



Type 1 Regions, cont.

Two examples:

Integrating Over a Type 1 Region

If E is a type one region as above, then we may evaluate∫∫∫
E
f (x , y , z) dV as follows:∫∫∫

E

f (x , y , z) dV =

∫∫
D

[∫ u2(x,y)

u1(x,y)

f (x , y , z) dz

]
dA

Where D is the base region in the xy -plane beneath E (i.e. the projection
of E onto the xy -plane).

After setting this step up, we set up the double integral over D exactly as
we learned previously.

Example

Evaluate I2 =
∫∫∫

E
z dV where E is the tetrahedron bounded by the four

planes x = 0, y = 0, z = 0, and x + y + z = 1.

We begin by drawing E :

Example, cont.

Now, note that E is trapped above and below by the functions
z = 1− x − y and z = 0, respectively. Therefore, from above we have:

I2 =

∫∫
D

[∫ 1−x−y

0

z dz

]
dA

=

∫∫
D

1

2
z2
∣∣∣∣1−x−y
0

dA

=

∫∫
D

1

2
(1− x − y)2 dA

where D is the projection of E onto the xy -plane.



Example, cont.

Next, let’s sketch and parametrize D. We have:

Example, cont.

We can think of this region as either type I or type II. The double integral
above doesn’t point us in one direction or another, so we’ll just think of
it as type 1, as follows:

D =
{

(x , y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x
}

Example, cont.

Thus, we have:

I2 =

∫ 1

0

∫ 1−x

0

1

2
(1− x − y)2 dy dx

=

∫ 1

0

−1

6
(1− x − y)3

∣∣∣∣1−x
0

dx

=

∫ 1

0

1

6
(1− x)3 dx

=
−1

24
(1− x)4

∣∣∣∣1
0

=
1

24

Type 2 Regions

The second type of region we might integrate over is a type 2 region. A
region E is said to be of type 2 if it lies in front of and/or behind a
region D in the yz-plane and between two continuous functions of y and
z . That is, if we may describe E as follows:

E =
{

(x , y , z)|(y , z) ∈ D, u1(y , z) ≤ x ≤ u2(y , z)
}

If E is a type 2 region, we evaluate
∫∫∫

E
f (x , y , z) dV as follows:∫∫∫

E

f (x , y , z) dV =

∫∫
D

[∫ u2(y ,z)

u1(y ,z)

f (x , y , z) dx

]
dA

analogously to how we evaluated integrals over type 1 regions.



A Type 2 Region

Here’s an example of a type 2 region:

Type 3 Regions

The final type of region we might integrate over is a type 3 region. A
region E is said to be of type 3 if it lies to the right and/or left of a
region D in the xz-plane and between two continuous functions of x and
z . That is, if we may describe E as follows:

E =
{

(x , y , z)|(x , z) ∈ D, u1(x , z) ≤ y ≤ u2(x , z)
}

If E is a type 2 region, we evaluate
∫∫∫

E
f (x , y , z) dV as follows:∫∫∫

E

f (x , y , z) dV =

∫∫
D

[∫ u2(x,z)

u1(x,z)

f (x , y , z) dy

]
dA

analogously to how we evaluated integrals over type 1 and 2 regions.

A Type 2 Region

Here’s an example of a type 3 region:

Example

Evaluate I3 =
∫∫∫

E

√
x2 + z2 dV , where E is the region bounded by the

paraboloid y = x2 + z2 and the plane y = 4.

Let us begin by sketching E :



Example, cont.

You could conceive of E as a type 1, type 2, or type 3 region, but I think
it is easiest to think of it as the latter. Indeed, E lies neatly between the
function y = x2 + z2 and the plane y = 4, and its projection onto the
xz-plane is the following:

Example, cont.

Therefore, we have:

I3 =

∫∫
D3

[∫ 4

x2+z2

√
x2 + z2 dy

]
dA

=

∫∫
D3

(4− x2 − z2)
√

x2 + z2 dA

Example, cont.

Now, D3 can be neatly parametrized as a polar region in the xz-plane:

D3 =
{

(r , θ)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2
}

Furthermore, since D3 lies in the xz-plane, we have the polar relations
x2 + z2 = r2, x = r cos(θ), and z = r sin(θ).

Thus:

I3 =

∫∫
D3

(4− x2 − z2)
√

x2 + z2 dA

=

∫ 2π

0

∫ 2

0

(4− r2)
√
r2r dr dθ

=

∫ 2π

0

∫ 2

0

(4r2 − r4) dr dθ =
128π

15

Two Final Facts

Of course, most regions in R3 are not type 1, type 2, or type 3. So, just
as with double integrals, to evaluate

∫∫∫
E
f (x , y , z) dV over such a

region E , we break E into subregions E1,E2, . . . ,En which are each one
of these types, and sum the integrals over these instead:∫∫∫

E

f (x , y , z) dV =

∫∫∫
E1

f (x , y , z) dV + · · ·+
∫∫∫

En

f (x , y , z) dV



Two Final Facts, cont.

We previously stated that the area A(R) of a region R in R2 could be
calculated with a double integral:

A(R) =

∫∫
R

1 dA

Similarly, the volume V (E ) of a region E in R3 may be calculated with a
triple integral:

V (E ) =

∫∫∫
E

1 dV
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Exercises

1. Calculate the volume V1 of the rectangular box
B = [0, 1]× [−1, 2]× [0, 3] in two ways: first, directly using the
formula for the volume of a rectangular box; and, second, as a triple
integral.

2. Calculate the volume V2 of the solid tetrahedron bounded by the
four planes x = 0, y = 0, z = 0, and x + y + z = 1.

3. Evaluate I3 =
∫∫∫

T
x2z dV where T is the tetrahedron bounded by

the planes x + 2y + z = 2, x = 2y , x = 0, and z = 0.

4. Rewrite the iterated integral

I4 =

∫ 1

0

∫ x2

0

∫ y

0

f (x , y , z) dz dy dx

as an iterated integral in a different order, integrating first with
respect to x , then z , then y [Hint: begin by sketching the region E
of integration using the bounds of the iterated integral].

Solutions

1. Either method should yield V1 = 9.

2. One possible solution: V2 =
∫ 1

0

∫ 1−x
0

∫ 1−x−y
0

1 dz dy dx = 1
6

3. One possible solution: I3 =
∫ 1

0

∫ 1−x/2
x/2

∫ 2−2y−x
0

x2z dz dy dx = 1
90

4. I4 =
∫ 1

0

∫ y

0

∫ 1√
y
f (x , y , z) dx dz dy
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