Overview

16.3: The Fundamental Theorem for Line
 Integrals

Julia Jackson

Department of Mathematics
The University of Oklahoma

Fall 2021

In the previous section, we learned how to evaluate line integrals of vector fields over curves C :

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}
$$

In this section, we will show that if $\vec{F}(\vec{x})$ is a gradient field ∇f (i.e. if $\vec{F}(\vec{x})$ is conservative), then there is a very efficient way to evaluate the integral above. We will then turn our attention to figuring out how to determine if $\vec{F}(\vec{x})$ is conservative.

Table of Contents

The Fundamental Theorem

Conservative Vector Field Detection

Exercises

The Fundamental Theorem

Recall that a vector field $\vec{F}(\vec{x})$ is called conservative if $\vec{F}(\vec{x})=\nabla f$ for some real-valued function f, i.e., if $\vec{F}(\vec{x})$ is a gradient field. We call f a potential function of $\vec{F}(\vec{x})$.

Theorem (The Fundamental Theorem for Line Integrals): Let C be a smooth curve (or a concatenation of a finite number of smooth curves) in \mathbb{R}^{2} with initial point (a, b) and terminal point (s, t). Let $\vec{F}(x, y)$ be a conservative vector field with potential function $f(x, y)$ which is continuous on C. Then:

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=\int_{C} \nabla f \cdot \mathrm{~d} \vec{r}=f(s, t)-f(a, b)
$$

An analogous result holds for vector fields on \mathbb{R}^{3}.

Why "Fundamental Theorem"?

Example

Let $\vec{F}(x, y)=\langle 2 x, 1\rangle$. Note that $f(x, y)=x^{2}+y-2$ is a potential function for $\vec{F}(x, y)$, as $\nabla f(x, y)=\langle 2 x, 1\rangle$. Let C_{1} be the top half of the circle $x^{2}+y^{2}=1$, traced counterclockwise; let C_{2} be the bottom half of the same circle, traced clockwise; and let C_{3} be the straight-line path between the initial and terminal points of these semicircles. Evaluate $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$, for $C=C_{1}, C_{2}$, and C_{3}, respectively.

Note that each of the paths above begins at $(1,0)$ and ends at $(-1,0)$.
Therefore, by the theorem on the previous slide, we have:

$$
\begin{aligned}
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r} & =\int_{C} \nabla f \cdot \mathrm{~d} \vec{r} \\
& =f(-1,0)-f(1,0)=(1+0-2)-(1+0-2)=0
\end{aligned}
$$

regardless of which path we choose for C.

The Converse

In the previous example, we saw an instance of the following result:
Theorem: Let (a, b) and (r, s) be two points in \mathbb{R}^{2}. If $\vec{F}(x, y)$ is a continuous, conservative vector field on \mathbb{R}^{2}, then $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ is independent of the path C chosen between (a, b) and (r, s). An analogous result holds for vector fields on \mathbb{R}^{3}.

We summarize this by saying that line integrals of conservative vector fields are independent of path.

In fact, it turns out that line integrals of a vector field $\vec{F}(\vec{x})$ are independent of path only if $\vec{F}(\vec{x})$ is conservative.

Thus, conservative vector fields are quite special! So... how can we tell if a vector field is conservative? That is the question we set about answering next.

Table of Contents

The Fundamental Theorem

Conservative Vector Field Detection

Exercises

Toward a Test

Suppose that $\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ is conservative, i.e. we actually do have a real-valued function $f(x, y)$ such that:

$$
f_{x}(x, y)=P(x, y) \quad f_{y}(x, y)=Q(x, y)
$$

Recall that Clairaut's theorem tells us that:

$$
P_{y}(x, y)=f_{x y}(x, y)=f_{y x}(x, y)=Q_{x}(x, y)
$$

Is $\vec{F}(\vec{x})$ Conservative?

How can we decide if a vector field is conservative?

Well, the most direct way is to see if we can find a real-valued function f such that $\vec{F}(\vec{x})=\nabla f$. But this is not very efficient. After all, if, for example, $\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ is conservative, then takes time to find a function $f(x, y)$ with $f_{x}(x, y)=P(x, y)$ and $f_{y}(x, y)=Q(x, y)$.
But if $\vec{F}(\vec{x})$ isn't conservative, then we need to show that such an $f(x, y)$ cannot exist, and it's not immediately obvious how to go about doing so. After all, it could certainly be that such an $f(x, y)$ does exist, but we're just not very good at finding it.

It would be nice if there were a quicker, more sensitive test that could tell us immediately if a vector field is conservative. And there is! For now, we will develop a test for vector fields on \mathbb{R}^{2}.

A Result

Therefore, we have the following theorem:
Theorem: If $\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ is conservative, then

$$
P_{y}(x, y)=Q_{x}(x, y)
$$

A handy corollary to this result is that if $P_{y}(x, y) \neq Q_{x}(x, y)$ then $\vec{F}(x, y)$ cannot be conservative! This gives us a nice test that tells us when a vector field is not conservative.

Example

Show that the vector field $\vec{F}(x, y)=\langle x-y, x-2\rangle$ is not conservative.
Let $P(x, y)=x-y$ and $Q(x, y)=x-2$. Then:

$$
P_{y}(x, y)=-1 \quad \text { and } \quad Q_{x}(x, y)=1
$$

Since these are not equal, $\vec{F}(x, y)$ is not conservative.

Example

Is the vector field $\vec{G}(x, y)=\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle$ conservative?
Let $P(x, y)=3+2 x y$ and $Q(x, y)=x^{2}-3 y^{2}$. We have:

$$
P_{y}(x, y)=2 x \quad \text { and } \quad Q_{x}(x, y)=2 x
$$

Since these are the same, $\vec{G}(x, y)$ is conservative!

The Converse

We now have a way to show that a vector field is not conservative. That's nice, but how can we show that a vector field is conservative?

Well, it turns out that the converse of the theorem above is true (with some technical conditions we might discuss later). In other words, if $\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ has

$$
P_{y}(x, y)=Q_{x}(x, y)
$$

then $\vec{F}(x, y)$ is conservative.
Therefore, we in fact have a single test that tells us if a vector field is or is not conservative.

Finding a Potential Function

We now have a quick way of determining whether a vector field $\vec{F}(x, y)$ is conservative. Recall that we wanted such a test to help us determine whether the fundamental theorem of line integrals

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=f(s, t)-f(a, b)
$$

applies to $\vec{F}(\vec{x})$
If we wish to evaluate $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ and we have established that $\vec{F}(x, y)$ is conservative, the next thing we need is a potential function $f(x, y)$ for $\vec{F}(x, y)$. How can we find one?

Find a potential function $g(x, y)$ for the conservative vector field $\vec{G}(x, y)=\left\langle 3+2 x y, x^{2}-3 y^{2}\right\rangle$ from the previous example.

We want a function $g(x, y)$ such that $\nabla g(x, y)=\vec{G}(x, y)$, i.e. $g_{x}(x, y)=3+2 x y$ and $g_{y}(x, y)=x^{2}-3 y^{2}$.

First, since $g_{x}(x, y)=3+2 x y$, we have:

$$
g(x, y)=3 x+x^{2} y+f(y)
$$

where $f(y)$ is some function of y (as this is just 0 when we calculate $\left.g_{x}(x, y)\right)$.

What About Vector Fields on \mathbb{R}^{3} ?

We will develop a convenient test for detecting vector fields on \mathbb{R}^{3} later. For now, unfortunately, we don't have one.

Of course, we always have the most basic test: $\vec{F}(x, y, z)$ is conservative if we can find a potential function $f(x, y, z)$ for it. Let's see how to find a potential function of a vector field on \mathbb{R}^{3}.

Example, cont.

Differentiating the $g(x, y)$ we just found with respect to y and comparing to $\vec{G}(x, y)$, we have:

$$
g_{y}(x, y)=x^{2}+f^{\prime}(y)=x^{2}-3 y^{2}
$$

so that $f^{\prime}(y)=-3 y^{2}$, i.e. $f(y)=-y^{3}+K$, for any constant K.
Therefore, a potential function for $\vec{G}(x, y)$ is:

$$
g(x, y)=3 x+x^{2} y+f(y)=3 x+x^{2} y-y^{3}
$$

You may verify this by computing the gradient of $g(x, y)$!

Example

Assume that $\vec{F}(x, y, z)=\left\langle y^{2}, 2 x y+e^{3 z}, 3 y e^{3 z}\right\rangle$ is conservative. Find a potential function $f(x, y, z)$ for $\vec{F}(x, y, z)$.

First, we must have:

$$
f_{x}(x, y, z)=y^{2}
$$

Which means that

$$
f(x, y, z)=x y^{2}+g(y, z)
$$

for some function $g(y, z)$ (as this becomes 0 when we compute
$f_{x}(x, y, z)$).

Example, cont.

From this and $\vec{F}(x, y, z)$, we have:

$$
f_{y}(x, y, z)=2 x y+e^{3 z}=2 x y+g_{y}(y, z)
$$

so that

$$
g_{y}(y, z)=e^{3 z}
$$

which means that

$$
g(y, z)=y e^{3 z}+h(z)
$$

where $h(z)$ is some function of z (as this becomes 0 when we compute $\left.g_{y}(y, z)\right)$. Therefore, combining with our work above we have:

$$
f(x, y, z)=x y^{2}+y e^{3 z}+h(z)
$$

Summary

Here are the key results we learned:

1. If $\vec{F}(x, y)$ is a conservative vector field on \mathbb{R}^{2}, i.e. if $\vec{F}(x, y)=\nabla f(x, y)$ for some real-valued function $f(x, y)$, then $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=f(s, t)-f(a, b)$ for any path C starting at (a, b) and ending at (s, t). An analogous result holds on \mathbb{R}^{3}.
2. This result only holds for conservative vector fields, no others.
3. A vector field $\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ on \mathbb{R}^{2} is conservative if and only if $P_{y}(x, y)=Q_{x}(x, y)$.

Example, cont.

Finally, from this and $\vec{F}(x, y, z)$ we have:

$$
f_{z}(x, y, z)=3 y e^{3 z}=3 y e^{3 z}+h^{\prime}(z)
$$

so that

$$
h^{\prime}(z)=0
$$

which means that

$$
h(z)=K
$$

for any constant K. Thus, a potential function $f(x, y, z)$ for $\vec{F}(x, y, z)$ is:

$$
\begin{aligned}
f(x, y, z) & =x y^{2}+g(y, z) \\
& =x y^{2}+y e^{3 z}+h(z)=x y^{2}+y e^{3 z}
\end{aligned}
$$

(you may verify this by checking that $\vec{F}(x, y, z)=\nabla f(x, y, z)$).

The Fundamental Theorem

Conservative Vector Field Detection

Exercises

Exercises

1. Is the vector field $\vec{F}(x, y)=\left\langle y^{2}-2 x, 2 x y\right\rangle$ conservative? If so, find a potential function $f(x, y)$ for $\vec{F}(x, y)$.
2. Is the vector field $\vec{G}(x, y)=\left\langle x y+y^{2}, x^{2}+2 x y\right\rangle$ conservative? If so, find a potential function $g(x, y)$ for $\vec{G}(x, y)$.
3. Show that $\vec{F}(x, y)=\left\langle 3+2 x y^{2}, 2 x^{2} y\right\rangle$ is conservative. Find a potential function $f(x, y)$ for $\vec{F}(x, y)$. Finally, evaluate

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}
$$

where C is the arc of the hyperbola $y=\frac{1}{x}$ from $(1,1)$ to $\left(4, \frac{1}{4}\right)$.

Solutions

1. $\vec{F}(x, y)$ is conservative. A potential function for $\vec{F}(x, y)$ is $f(x, y)=x y^{2}-x^{2}$.
2. $\vec{G}(x, y)$ is not conservative.
3. $\vec{F}(x, y)$ is conservative because, for example:

$$
\frac{\partial}{\partial y}\left(3+2 x y^{2}\right)=4 x y=\frac{\partial}{\partial x}\left(2 x^{2} y\right)
$$

A potential function for $\vec{F}(x, y)$ is $f(x, y):=3 x+x^{2} y^{2}$. Finally, by the Fundamental Theorem for Line Integrals we have:

$$
\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}=f(4,1 / 4)-f(1,1)=9
$$

