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Overview

In the previous section, we learned how to evaluate line integrals of vector
fields over curves C : ∫

C

#—

F · d #—r

In this section, we will show that if
#—

F ( #—x ) is a gradient field ∇f (i.e. if
#—

F ( #—x ) is conservative), then there is a very efficient way to evaluate the
integral above. We will then turn our attention to figuring out how to
determine if

#—

F ( #—x ) is conservative.
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The Fundamental Theorem

Recall that a vector field
#—

F ( #—x ) is called conservative if
#—

F ( #—x ) = ∇f for

some real-valued function f , i.e., if
#—

F ( #—x ) is a gradient field. We call f a

potential function of
#—

F ( #—x ).

Theorem (The Fundamental Theorem for Line Integrals): Let C be a
smooth curve (or a concatenation of a finite number of smooth curves) in

R2 with initial point (a, b) and terminal point (s, t). Let
#—

F (x , y) be a
conservative vector field with potential function f (x , y) which is
continuous on C . Then:∫

C

#—

F · d #—r =

∫
C

∇f · d #—r = f (s, t)− f (a, b)

An analogous result holds for vector fields on R3.



Why “Fundamental Theorem”?

This is called the fundamental theorem because it looks very much like
the Fundamental Theorem of Calculus: we evaluate

∫
C
∇f · d #—r by

evaluating something like an antiderivative of ∇f at the endpoints of the
curve C .

Example

Let
#—

F (x , y) = 〈2x , 1〉. Note that f (x , y) = x2 + y − 2 is a potential

function for
#—

F (x , y), as ∇f (x , y) = 〈2x , 1〉. Let C1 be the top half of the
circle x2 + y2 = 1, traced counterclockwise; let C2 be the bottom half of
the same circle, traced clockwise; and let C3 be the straight-line path
between the initial and terminal points of these semicircles. Evaluate∫
C

#—

F · d #—r , for C = C1, C2, and C3, respectively.

Note that each of the paths above begins at (1, 0) and ends at (−1, 0).
Therefore, by the theorem on the previous slide, we have:∫

C

#—

F · d #—r =

∫
C

∇f · d #—r

= f (−1, 0)− f (1, 0) = (1 + 0− 2)− (1 + 0− 2) = 0

regardless of which path we choose for C .

Key Observation

In the previous example, we saw an instance of the following result:

Theorem: Let (a, b) and (r , s) be two points in R2. If
#—

F (x , y) is a

continuous, conservative vector field on R2, then
∫
C

#—

F · d #—r is
independent of the path C chosen between (a, b) and (r , s). An
analogous result holds for vector fields on R3.

We summarize this by saying that line integrals of conservative vector
fields are independent of path.

The Converse

In fact, it turns out that line integrals of a vector field
#—

F ( #—x ) are

independent of path only if
#—

F ( #—x ) is conservative.

Thus, conservative vector fields are quite special! So... how can we tell if
a vector field is conservative? That is the question we set about
answering next.
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Is
#—

F ( #—x ) Conservative?

How can we decide if a vector field is conservative?

Well, the most direct way is to see if we can find a real-valued function f
such that

#—

F ( #—x ) = ∇f . But this is not very efficient. After all, if, for

example,
#—

F (x , y) =
〈
P(x , y),Q(x , y)

〉
is conservative, then takes time to

find a function f (x , y) with fx(x , y) = P(x , y) and fy (x , y) = Q(x , y).

But if
#—

F ( #—x ) isn’t conservative, then we need to show that such an
f (x , y) cannot exist, and it’s not immediately obvious how to go about
doing so. After all, it could certainly be that such an f (x , y) does exist,
but we’re just not very good at finding it.

It would be nice if there were a quicker, more sensitive test that could tell
us immediately if a vector field is conservative. And there is! For now, we
will develop a test for vector fields on R2.

Toward a Test

Suppose that
#—

F (x , y) =
〈
P(x , y),Q(x , y)

〉
is conservative, i.e. we

actually do have a real-valued function f (x , y) such that:

fx(x , y) = P(x , y) fy (x , y) = Q(x , y)

Recall that Clairaut’s theorem tells us that:

Py (x , y) = fxy (x , y) = fyx(x , y) = Qx(x , y)

A Result

Therefore, we have the following theorem:

Theorem: If
#—

F (x , y) =
〈
P(x , y),Q(x , y)

〉
is conservative, then

Py (x , y) = Qx(x , y)

A handy corollary to this result is that if Py (x , y) 6= Qx(x , y) then
#—

F (x , y) cannot be conservative! This gives us a nice test that tells us
when a vector field is not conservative.



Example

Show that the vector field
#—

F (x , y) = 〈x − y , x − 2〉 is not conservative.

Let P(x , y) = x − y and Q(x , y) = x − 2. Then:

Py (x , y) = −1 and Qx(x , y) = 1

Since these are not equal,
#—

F (x , y) is not conservative.

The Converse

We now have a way to show that a vector field is not conservative.
That’s nice, but how can we show that a vector field is conservative?

Well, it turns out that the converse of the theorem above is true (with
some technical conditions we might discuss later). In other words, if
#—

F (x , y) =
〈
P(x , y),Q(x , y)

〉
has

Py (x , y) = Qx(x , y)

then
#—

F (x , y) is conservative.

Therefore, we in fact have a single test that tells us if a vector field is or
is not conservative.

Example

Is the vector field
#—

G (x , y) =
〈
3 + 2xy , x2 − 3y2

〉
conservative?

Let P(x , y) = 3 + 2xy and Q(x , y) = x2 − 3y2. We have:

Py (x , y) = 2x and Qx(x , y) = 2x

Since these are the same,
#—

G (x , y) is conservative!

Finding a Potential Function

We now have a quick way of determining whether a vector field
#—

F (x , y)
is conservative. Recall that we wanted such a test to help us determine
whether the fundamental theorem of line integrals∫

C

#—

F · d #—r = f (s, t)− f (a, b)

applies to
#—

F ( #—x ).

If we wish to evaluate
∫
C

#—

F · d #—r and we have established that
#—

F (x , y) is
conservative, the next thing we need is a potential function f (x , y) for
#—

F (x , y). How can we find one?



Example

Find a potential function g(x , y) for the conservative vector field
#—

G (x , y) =
〈
3 + 2xy , x2 − 3y2

〉
from the previous example.

We want a function g(x , y) such that ∇g(x , y) =
#—

G (x , y), i.e.
gx(x , y) = 3 + 2xy and gy (x , y) = x2 − 3y2.

First, since gx(x , y) = 3 + 2xy , we have:

g(x , y) = 3x + x2y + f (y)

where f (y) is some function of y (as this is just 0 when we calculate
gx(x , y)).

Example, cont.

Differentiating the g(x , y) we just found with respect to y and comparing

to
#—

G (x , y), we have:

gy (x , y) = x2 + f ′(y) = x2 − 3y2

so that f ′(y) = −3y2, i.e. f (y) = −y3 + K , for any constant K .

Therefore, a potential function for
#—

G (x , y) is:

g(x , y) = 3x + x2y + f (y) = 3x + x2y − y3

You may verify this by computing the gradient of g(x , y)!

What About Vector Fields on R3?

We will develop a convenient test for detecting vector fields on R3 later.
For now, unfortunately, we don’t have one.

Of course, we always have the most basic test:
#—

F (x , y , z) is conservative
if we can find a potential function f (x , y , z) for it. Let’s see how to find
a potential function of a vector field on R3.

Example

Assume that
#—

F (x , y , z) =
〈
y2, 2xy + e3z , 3ye3z

〉
is conservative. Find a

potential function f (x , y , z) for
#—

F (x , y , z).

First, we must have:
fx(x , y , z) = y2

Which means that
f (x , y , z) = xy2 + g(y , z)

for some function g(y , z) (as this becomes 0 when we compute
fx(x , y , z)).



Example, cont.

From this and
#—

F (x , y , z), we have:

fy (x , y , z) = 2xy + e3z = 2xy + gy (y , z)

so that
gy (y , z) = e3z

which means that
g(y , z) = ye3z + h(z)

where h(z) is some function of z (as this becomes 0 when we compute
gy (y , z)). Therefore, combining with our work above we have:

f (x , y , z) = xy2 + ye3z + h(z)

Example, cont.

Finally, from this and
#—

F (x , y , z) we have:

fz(x , y , z) = 3ye3z = 3ye3z + h′(z)

so that
h′(z) = 0

which means that
h(z) = K

for any constant K . Thus, a potential function f (x , y , z) for
#—

F (x , y , z) is:

f (x , y , z) = xy2 + g(y , z)

= xy2 + ye3z + h(z) = xy2 + ye3z

(you may verify this by checking that
#—

F (x , y , z) = ∇f (x , y , z)).

Summary

Here are the key results we learned:

1. If
#—

F (x , y) is a conservative vector field on R2, i.e. if
#—

F (x , y) = ∇f (x , y) for some real-valued function f (x , y), then∫
C

#—

F · d #—r = f (s, t)− f (a, b) for any path C starting at (a, b) and
ending at (s, t). An analogous result holds on R3.

2. This result only holds for conservative vector fields, no others.

3. A vector field
#—

F (x , y) =
〈
P(x , y),Q(x , y)

〉
on R2 is conservative if

and only if Py (x , y) = Qx(x , y).
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Exercises

1. Is the vector field
#—

F (x , y) =
〈
y2 − 2x , 2xy

〉
conservative? If so, find

a potential function f (x , y) for
#—

F (x , y).

2. Is the vector field
#—

G (x , y) =
〈
xy + y2, x2 + 2xy

〉
conservative? If

so, find a potential function g(x , y) for
#—

G (x , y).

3. Show that
#—

F (x , y) =
〈
3 + 2xy2, 2x2y

〉
is conservative. Find a

potential function f (x , y) for
#—

F (x , y). Finally, evaluate∫
C

#—

F · d #—r

where C is the arc of the hyperbola y = 1
x from (1, 1) to

(
4, 1

4

)
.

Solutions

1.
#—

F (x , y) is conservative. A potential function for
#—

F (x , y) is
f (x , y) = xy2 − x2.

2.
#—

G (x , y) is not conservative.

3.
#—

F (x , y) is conservative because, for example:

∂

∂y
(3 + 2xy2) = 4xy =

∂

∂x
(2x2y)

A potential function for
#—

F (x , y) is f (x , y) := 3x + x2y2. Finally, by
the Fundamental Theorem for Line Integrals we have:∫

C

#—

F · d #—r = f (4, 1/4)− f (1, 1) = 9
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