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Overview

Over the last two sections, we have been learning to evaluate line
integrals of vector fields: ˆ

C

#—

F · d #—r

In 16.2, we learned to evaluate such integrals by utilizing a
parametrization of the path of integration. Then in 16.3 we learned that
if

#—

F is conservative, the Fundamental Theorem of Line Integrals provides
a useful alternative method for evaluating such integrals.

This raises a question: is there an alternative way to evaluate line
integrals of nonconservative vector fields? It would be nice to such a
method, to grant us flexibility similar to what we had for line integrals of
conservative vector fields.

In this section we introduce Green’s Theorem, a powerful method of
integration that converts line integrals of vector fields on R2 along
piecewise smooth, simple, closed curves into double integrals.
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Simple and Closed Curves

Before we get to the theorem, we need some definitions. A curve C in R2

is said to be closed if its initial and terminal points coincide. The
canonical examples are loops or circles. C is called simple if it does not
intersect itself, except perhaps at its endpoints. Here are some examples
of each:



Orientation

Another definition: we say a simple, closed curve C has positive
orientation if it is drawn counterclockwise, i.e. if its interior D is always
on its left as C is drawn. Otherwise, we say that C has negative
orientation:



One Last Remark

One last thing: Recall that in section 16.2 we saw that if we have a
vector field

#—

F (x , y) =
〈
P(x , y),Q(x , y)

〉
, then:

ˆ
C

#—

F · d #—r =

ˆ
C

P(x , y) dx + Q(x , y) dy

Many of the problems in this section of the text will be stated in the form
on the right, so remember this connection. With this in mind, we state
Green’s Theorem.



Green’s Theorem

Theorem (Green): Let C be a positively-oriented, piecewise-smooth,
simple, closed curve in R2, and let D be its interior. If
#—

F (x , y) =
〈
P(x , y),Q(x , y)

〉
and P(x , y) and Q(x , y) have continuous

partial derivatives on D, then

ˆ
C

#—

F · d #—r =

ˆ
C

P(x , y) dx + Q(x , y) dy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA



Nonconservative Vector Fields

Notice that the statement of Green’s theorem didn’t specify that F (x , y)
must be non-conservative, and yet I stated in the introduction to this
section that, in practice, we typically only use Green’s Theorem when
#—

F (x , y) is a non-conservative vector field. Why is this so?

Well, suppose that C is any closed curve in R2 starting and ending at
(a, b), and that

#—

F (x , y) = ∇f (x , y) is a conservative vector field. Then
by the Fundamental Theorem for Line Integrals:

ˆ
C

#—

F · d #—r = f (a, b)− f (a, b) = 0

There’s no need to call up Green’s Theorem at all, and in fact, Green’s
theorem only makes this problem look far more complicated than it needs
to be.



Example

Evaluate

I1 =

ˆ
C

x4 dx + xy dy

where C is the triangular curve consisting of the line segments from
(0, 0) to (1, 0); from (1, 0) to (0, 1); and from (0, 1) to (0, 0).

Let’s begin by drawing C :



Example, cont.

Now, if we wanted to evaluate I1 using the methods of §16.2, we would
have to parametrize three separate paths and compute three separate line
integrals! But note: C is a positively-oriented, simple, closed curve,
consisting of three smooth pieces. So, Green’s Theorem applies! Letting
P(x , y) = x4 and Q(x , y) = xy , we have:

ˆ
C

x4 dx + xy dy =

¨
D

(
∂Q

∂x
− ∂P

∂y

)
dA

=

¨
D

(y − 0) dA

=

ˆ 1

0

ˆ 1−x

0

y dy dx =
1

6

That was much easier! (By the way, this is also the line integral along C

of
#—

F (x , y) =
〈
x4, xy

〉
.)



Notation

A quick note: if the piecewise-smooth, simple, closed curve C is
described without giving its orientation, we often write

˛
C

#—

F · d #—r =

˛
C

P(x , y) dx + Q(x , y) dy

or ffi
C

#—

F · d #—r =

ffi
C

P(x , y) dx + Q(x , y) dy

to indicate that the positive orientation of C should be used to calculate
the integral.



Flowchart

To summarize the last three sections: to evaluate
´
C

#—

F · d #—r :

1. Is
#—

F (x , y) conservative?

1.1 Yes: Try using the Fundamental Theorem
1.2 No: Continue

2. Do the conditions for Green’s Theorem hold?

2.1 Yes: Try using Green’s theorem
2.2 No: Continue

3. Use the direct methods of §16.2 (parametrize C , etc.).
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Exercises

1. Evaluate

J1 =

˛
C1

(3y − esin(x)) dx +
(

7x +
√

y4 + 1
)

dy

where C1 is the circle x2 + y2 = 9.

2. Evaluate

J2 =

˛
C2

y2 dx + 3xy dy

where C2 is the boundary of the semiannular region D2 in the upper
half-plane between x2 + y2 = 1 and x2 + y2 = 4.

3. Evaluate

J3 =

ˆ
C3

#—

F (x , y) · d #—r

where
#—

F (x , y) =
〈

−y
x2+y2 ,

x
x2+y2

〉
and C3 is the square with vertices

(−1,−1), (1,−1), (1, 1), and (−1, 1), traced counterclockwise.

4. How can you apply Green’s Theorem to negatively-oriented,
piecewise-smooth, simple, closed curves?



Solutions

1. J1 =
´ 2π
0

´ 3
0

4r dr dθ = 36π

2. J2 =
´ π
0

´ 2
1
r2 sin(θ) dr dθ =

14

3

3. J3 =
´
C3

−y
x2+y2 dx + x

x2+y2 dy =
˜

D3
0 dA = 0 , where D3 is the

region enclosed by the square C3.

4. Recall that for line integrals, we have:

ˆ
C

#—

F · d #—r = −
ˆ
−C

#—

F · d #—r

where −C is just C with the opposite orientation. If C is
negatively-oriented, simply apply Green’s Theorem to the integral on
the right.
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