1. Exercises

(1) Calculate the volume of the solid E in \mathbb{R}^{3} that lies: to the left of the plane $y=0$; below the cone $z=\sqrt{x^{2}+y^{2}}$; above the cone $z=-\sqrt{x^{2}+y^{2}}$; and inside the sphere $x^{2}+y^{2}+z^{2}=9$.
(2) Calculate the volume of the solid E in \mathbb{R}^{3} that lies: to the right of the plane $y=0$; behind the plane $y=x$; in front of the plane $y=-x$; above the plane $z=-2$; below the plane $z=1-x$; and inside the cylinder $x^{2}+y^{2}=1$.
(3) Evaluate

$$
\iiint_{E} y^{2} \mathrm{~d} V
$$

where E is the solid in \mathbb{R}^{3} that lies: inside the sphere $x^{2}+y^{2}+$ $z^{2}=4$; outside the sphere $x^{2}+y^{2}+z^{2}=1$; above the cone $z=\sqrt{x^{2}+y^{2}}$; and in front of the plane $y=-x$.
(4) Evaluate

$$
\iiint_{E} y e^{x^{2}+y^{2}+z^{2}} \mathrm{~d} V
$$

where E is the solid in \mathbb{R}^{3} that lies: above the cone $z=$ $\sqrt{x^{2}+y^{2}}$; below the cone $z=\sqrt{3 x^{2}+3 y^{2}}$; inside the sphere $x^{2}+y^{2}+z^{2}=4$; behind the plane $x=0$; and to the right of the plane $y=0$.

[^0]
2. Solutions

(1) $9 \pi \sqrt{2}$
(2) $\frac{3 \pi}{4}$
(3) $\int_{0}^{\pi / 4} \int_{-\pi / 4}^{3 \pi / 4} \int_{1}^{2} \rho^{4} \sin ^{3}(\phi) \sin ^{2}(\theta) \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} \phi=\frac{31 \pi}{120}(8-5 \sqrt{2})$
(4) $\int_{\pi / 6}^{\pi / 4} \int_{\pi / 2}^{\pi} \int_{0}^{2} e^{\rho^{2}} \rho^{3} \sin ^{2}(\phi) \sin (\theta) \mathrm{d} \rho \mathrm{d} \theta \mathrm{d} \phi=\frac{1}{48}\left(1+3 e^{4}\right)(-6+$ $3 \sqrt{3}+\pi)$. Note: the integration step is particularly involved here.

[^0]: Date: Fall 2021.

