SUPPLEMENTAL EXERCISES FOR CH. 15, §7 AND §8

1. Exercises

- (1) Calculate the volume of the solid E in \mathbb{R}^3 that lies: to the left of the plane y = 0; below the cone $z = \sqrt{x^2 + y^2}$; above the cone $z = -\sqrt{x^2 + y^2}$; and inside the sphere $x^2 + y^2 + z^2 = 9$.
- (2) Calculate the volume of the solid E in \mathbb{R}^3 that lies: to the right of the plane y = 0; behind the plane y = x; in front of the plane y = -x; above the plane z = -2; below the plane z = 1 x; and inside the cylinder $x^2 + y^2 = 1$.
- (3) Evaluate

$$\iiint_E y^2 \,\mathrm{d}V$$

where E is the solid in \mathbb{R}^3 that lies: inside the sphere $x^2 + y^2 + z^2 = 4$; outside the sphere $x^2 + y^2 + z^2 = 1$; above the cone $z = \sqrt{x^2 + y^2}$; and in front of the plane y = -x.

(4) Evaluate

$$\iiint_E y e^{x^2 + y^2 + z^2} \, \mathrm{d}V$$

where E is the solid in \mathbb{R}^3 that lies: above the cone $z = \sqrt{x^2 + y^2}$; below the cone $z = \sqrt{3x^2 + 3y^2}$; inside the sphere $x^2 + y^2 + z^2 = 4$; behind the plane x = 0; and to the right of the plane y = 0.

Date: Fall 2021.

2. Solutions

(1)
$$9\pi\sqrt{2}$$

(2) $\frac{3\pi}{4}$
(3) $\int_{0}^{\pi/4} \int_{-\pi/4}^{3\pi/4} \int_{1}^{2} \rho^{4} \sin^{3}(\phi) \sin^{2}(\theta) \, d\rho \, d\theta \, d\phi = \frac{31\pi}{120}(8 - 5\sqrt{2})$
(4) $\int_{\pi/6}^{\pi/4} \int_{\pi/2}^{\pi} \int_{0}^{2} e^{\rho^{2}} \rho^{3} \sin^{2}(\phi) \sin(\theta) \, d\rho \, d\theta \, d\phi = \frac{1}{48}(1 + 3e^{4})(-6 + 2\sqrt{2})$

 $3\sqrt{3} + \pi$). Note: the integration step is particularly involved here.