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Abstract. Krakowski and Regev found a basis of polynomial identities satis-
fied by the Grassmann algebra over a field of characteristic 0 and described the
exact structure of these relations in terms of the symmetric group. Using this,
they found an upper bound for the the codimension sequence of the T -ideal of
polynomial identities of the Grassmann algebra. Working with certain matrices,
they found the same lower bound, thus determining the codimension sequence
exactly. In this paper, we compute the codimension sequence of the Grassmann
algebra directly from these matrices, thus obtaining a proof of the codimension
result of Krakowski and Regev using only combinatorics and linear algebra. We
also obtain a corollary from our proof.

Introduction

The Grassmann algebra is an extremely important algebraic structure that arises
in linear algebra and geometry. It has applications in many areas of mathematics
as well as theoretical physics, and provides methods of understanding many topics
in geometry, algebra, and analysis. The notion of Grassmann algebra is a natural
generalization of that of commutative ring, and therefore the Grassmann algebra
is sometimes called a “supercommutative algebra.” The Grassmann algebra is the
main tool in the study of superalgebras (Z2-graded algebras). It was also used by
Kemer to obtain important results in PI theory.

Let V be a vector space with basis {e1, e2, . . .}. Then the Grassmann algebra E
of V has a basis consisting of 1 and all monomials ei1ei2 . . . eik (i1 < i2 < . . . < ik),
with multiplication induced by eiej = −ejei. One may think of the Grassmann
algebra as the space of all differential forms on V together with the usual wedge
product (i.e., the direct sum over all natural numbers k of the space of differential
k-forms on V ).

Let K(X) be the free associative algebra generated over the field K of character-
istic 0 by the set {x1, x2, . . .} (i.e., the algebra of polynomials in the noncommuting
variables x1, x2, . . .). A polynomial f ∈ K(X) is called a polynomial identity for an
algebra A if f vanishes whenever evaluated on A. For example, if A is commutative,
then f(x1, x2) = [x1, x2] = x1x2 − x2x1 is a polynomial identity for A. An ideal
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of K(X) is called a T -ideal if it is invariant under all endomorphisms of K(X), or,
equivalently, if it is the ideal of polynomial identities for some algebra A. One of the
results in [4] states that the ideal of polynomial identities of the Grassmann algebra
is generated as a T -ideal by the polynomial [[x1, x2], x3].

An important numerical invariant of a T -ideal I is its codimension sequence
{cn(I)}. Let Pn be the K-vector space of all multilinear polynomials of degree
n in the variables x1, . . . xn. Then dim(Pn) = n! When the space Pn is acted on
by the symmetric group by permutation of variables, Pn ∩ I is a submodule and
Pn/(Pn ∩ I) a quotient module. The codimension sequence of I is then defined by

cn(I) = dim(Pn/(Pn ∩ I)).

For further details about these constructions, we refer the reader to [1].
Let I be the T -ideal of polynomial identities of the Grassmann algebra, and let

{cn(I)} be its codimension sequence. Krakowski and Regev used their above result
to obtain the upper bound cn(I) ≤ 2n−1. By finding lower bounds for the ranks
of specific matrices, they were also able to prove that cn(I) ≥ 2n−1, thus showing
that cn(I) = 2n−1. We introduce these matrices used by Krakowski and Regev and
compute their ranks, thus determining the codimension sequence of the Grassmann
algebra without using the above result about polynomial identities.

1. Preliminaries

Let Sn be the symmetric group on the set {1, 2, . . . , n}. The image of a permuta-
tion σ ∈ Sn is the ordered set (σ(1), σ(2), . . . , σ(n)). For σ, τ ∈ Sn, τ ◦ σ means the
permutation given by first applying σ and then applying τ . We will use the notation

(i1, . . . , in) to denote the permutation

(
1 . . . n
i1 . . . in

)
, i.e., we write only the image

of the elements under the permutation. For any permutation σ, define s(σ) to be
the sign of σ: 1 if σ is an even permutation and −1 if σ is an odd permutation.
One simple way to compute the sign of a permutation is to count the number of
inversions, i.e., pairs that appear out of order, with a smaller number after a larger
number. If σ has p inversions then s(σ) = (−1)p. In the permutation (3, 2, 5, 1, 4),
there are five inversions:

(3, 2), (3, 1), (2, 1), (5, 1), (5, 4).

Thus s((3, 2, 5, 1, 4)) = (−1)5 = −1.
Given a subset Ω ⊆ {1, 2, . . . , n}, we define σΩ to be the permutation of Ω induced

by this ordering of {1, 2, . . . , n}. In other words, σΩ is σ with elements not in Ω
deleted. For example,

(3, 2, 5, 1, 4){2,4,5} = (2, 5, 4).

Now let σ = (i1, . . . , im−1, im, im+1, . . . , in). Embedding Sn into Sn+1, we define

(σ, n+ 1) = (i1, . . . , in, n+ 1) ∈ Sn+1.

We also define

σ − im = (i1, . . . , im−1, im+1, . . . , in) ∈ SΩ,
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where Ω = {1, . . . , n}\{im}, thus projecting from Sn to SΩ. In our notation, σ − k
is σ with k deleted.

Definition 1. For n ∈ N, let Hn be a 2n × n! matrix with rows enumerated by
the subsets of {1, . . . , n} and columns enumerated by the elements of Sn, where the
entry in the Ωth row and the σth column is s(σΩ).

It is shown in Lemma 2.1 of [4] that if {cn(I)} is the codimension sequence of the
T -ideal of polynomial identities of the Grassmann algebra, then cn(I) = rank(Hn).
Thus, in order to compute this codimension sequence {cn(I)}, we are interested in
finding the rank of Hn. The object of this paper is to prove the following:

Theorem. The rank of Hn is 2n−1.

There are many matrices which satisfy the definition of Hn, since there are many
ways to associate the subsets of {1, 2, . . . , n} with the rows of a 2n × n! matrix
and many ways to associate the elements of Sn with the columns of a 2n × n!
matrix. However, we are only interested in computing the rank of these matrices,
something which is independent of the way we associate subsets and elements with
rows and columns. Nevertheless, it is useful to fix certain specific associations when
attempting to compute this rank.

We will denote the matrix resulting from a specific such association by H
(n)
n . The

ordering of the rows and columns of H
(n)
n is built inductively from the ordering of

the rows and columns of H
(n−1)
n−1 . We order the rows of H

(n)
n by enumerating the

first 2n−1 rows by the same subsets in the same order as for the rows of H
(n−1)
n−1 and

enumerating the last 2n−1 rows with these same subsets in the same order with the
element n added.

The columns are ordered inductively as well, such that the ith section of (n− 1)!
permutations (i.e., those labeling the (i−1)(n−1)!+1th through i(n−1)!th columns)

in H
(n)
n has n in the (n− i+ 1)th position, and the other n− 1 elements ordered as

in the (n− 1)! columns of H
(n−1)
n−1 . For example, the permutations of four elements

are ordered as follows:

(1, 2, 3, 4), (2, 1, 3, 4), (1, 3, 2, 4), (2, 3, 1, 4), (3, 1, 2, 4), (3, 2, 1, 4),

(1, 2, 4, 3), (2, 1, 4, 3), (1, 3, 4, 2), (2, 3, 4, 1), (3, 1, 4, 2), (3, 2, 4, 1),

(1, 4, 2, 3), (2, 4, 1, 3), (1, 4, 3, 2), (2, 4, 3, 1), (3, 4, 1, 2), (3, 4, 2, 1),

(4, 1, 2, 3), (4, 2, 1, 3), (4, 1, 3, 2), (4, 2, 3, 1), (4, 3, 1, 2), (4, 3, 2, 1).

Example. We compute H
(2)
2 and H

(3)
3 :

H
(2)
2 =



(1
,2

)

(2
,1

)

∅ 1 1
{1} 1 1
{2} 1 1
{1, 2} 1 −1


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H
(3)
3 =


(1
,2
,3

)

(2
,1
,3

)

(1
,3
,2

)

(2
,3
,1

)

(3
,1
,2

)

(3
,2
,1

)

∅ 1 1 1 1 1 1
{1} 1 1 1 1 1 1
{2} 1 1 1 1 1 1
{1, 2} 1 −1 1 −1 1 −1
{3} 1 1 1 1 1 1
{1, 3} 1 1 1 −1 −1 −1
{2, 3} 1 1 −1 1 −1 −1
{1, 2, 3} 1 −1 −1 1 1 −1


Definition 2. We define Gn to be a submatrix of Hn that consists only of those
columns enumerated by even permutations.

Note that Gn consists of exactly those columns of Hn with a 1 in the row row
corresponding to {1, . . . , n}.

2. Some Lemmas

H
(n)
n has a particular structure, which we explore in the following two lemmas.

Lemma 1. H
(n)
n is of the form

H
(n−1)
n−1

. . .
H

(n−1)
n−1

H
(n−1)
n−1

H
(n−2)
n−2 A1 . . .

An−2

−H
(n−2)
n−2


,

where the Ai are, at the moment, undetermined 2n−1 × n(n− 2)! matrices.

Proof. The first 2n−1 rows of H
(n)
n are enumerated by all subsets of {1, . . . , n− 1}.

Also, by construction, the ith block of (n − 1)! columns in H
(n)
n consists of all

permutations of {1, . . . , n} with n in the (n − i + 1)th position. Thus, the top half

of the ith block of (n − 1)! columns is H
(n−1)
n−1 , so the top half of H

(n)
n consists of n

copies of H
(n−1)
n−1 .

In the bottom half of H
(n)
n , the first block of (n − 1)! columns consists of all

permutations of {1, . . . , n − 1} with n in the last position. Since n is the largest
element of {1, . . . , n}, mapping it to itself does not create any additional inversions.
This means that for all σ ∈ Sn−1, s(σ) = s(σ, n). Thus, the lower-left submatrix of

H
(n)
n is the same as the upper-left submatrix.
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Next consider the section of the matrix enumerated by the subsets containing n
but not n−1 and all permutations of the form (σ, n, n−1) for σ ∈ Sn−2. Since these
subsets do not contain n−1, we may ignore n−1 in these permutations, and since n is
then the largest element and in the last position of these permutations, it may also be
ignored. This block is therefore equivalent to a matrix with rows enumerated by all
subsets of {1, . . . , n−2} and columns enumerated by permutations of {1, . . . , n−2},
which is precisely H

(n−2)
n−2 .

The submatrix below this, i.e., the one defined by the same columns but with
subsets containing both n and n−1, is the same except that n−1 is added to every
subset. In each of these permutations, n − 1 is inverted with exactly one element,
namely n, so adding n − 1 to the subsets creates exactly one additional inversion,

which switches the sign of each entry. Thus, this block is −H(n−2)
n−2 . We have shown

that in the bottom half of H
(n)
n , the first (n− 1)! columns are an H

(n−1)
n−1 block and

the next (n− 2)! columns are a block of H
(n−2)
n−2 and −H(n−2)

n−2 . This leaves

n!− (n− 1)!− (n− 2)! = (n− 1)(n− 1)!− (n− 2)!

= ((n− 1)2 − 1)(n− 2)!

= (n2 − 2n)(n− 2)!

= (n− 2)(n(n− 2)!)

columns remaining in the bottom half, which are filled by n − 2 matrices of size
2n−1 × n(n− 2)!. �

The rows of Ai are enumerated by all subsets of {1, . . . , n} which contain n.

We may view the columns of H
(n)
n as n sections of permutations each with n − 1

subsections, such that the ith subsection of the jth section consists of all (n − 2)!
permutations σ with n−1 in the (n− i)th position of σ−n and n in the (n−j+1)th

position of σ. For example, the second subsection of the second section of the

columns of H
(4)
4 consists of all permutations σ of {1, 2, 3, 4} such that 3 is in the

second position of σ − 4 and 4 is in the third position of σ. In this case, there are
two such permutations: (1, 3, 4, 2) and (2, 3, 4, 1).

In this way we see that the first (n−2)! columns of Ai are the (i+1)th subsection
of the (i+ 1)th section. Therefore in the first (n−2)! columns of Ai, n−1 and n are
next to each other in the (n− i− 1)th position and (n− i)th position, respectively.

As an example, the reader may view the ordered list of permutations of {1, 2, 3, 4},
given earlier as 4 sections each with 3 subsections, and see that each subsection has
(4 − 2)! = 2 permutations. Consider the second subsection of the second section,
which is the first two columns of A1, and note that they are indeed the only two
permutations for which 3 is in the (4 − 1 − 1)th or second position and 4 is in the
(4− 1)th or third position.
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By the preceding lemma, we may let Bi be undetermined 2n−2× (n−2)! matrices

such that H
(n−1)
n−1 is of the form

Hn−1 =

 H
(n−2)
n−2 H

(n−2)
n−2 . . . H

(n−2)
n−2

H
(n−2)
n−2 B1 . . . Bn−2

 .

Lemma 2. In terms of these Bi, the structure of Ai is

Ai =

 Bi ∗
H

(n−2)
n−2

 .

Proof. The top half of the first (n − 2)! columns of Ai has rows enumerated by all
2n−2 subsets that contain n but do not contain n − 1 and columns enumerated by
all permutations of {1, . . . , n} with n−1 and n next to each other in the (n− i−1)th

position and (n− i)th position. So if we delete n− 1 from these permutations, they
simply become all permutations of {1, . . . , n−2, n} such that n is in the (n− i−1)th

position. The subsets are all subsets of {1, . . . , n− 2, n} containing n. In this set, n
acts the same as n−1 does in the set {1, . . . , n−1} with respect to the sign function,
and therefore this block is identical to Bi, which consists of all subsets containing
n− 1 and all permutations with n− 1 in the (n− i− 1)th position.

Finally, the bottom half of the first (n − 2)! columns of Ai is enumerated by all
subsets containing both n−1 and n and the same permutations as above. Recalling
that n−1 and n are adjacent and not inverted in these permutations, we see that they
are both involved in the same number of inversions for any permutation restricted
to any subset in this block. Indeed, they are the second largest and largest elements
in any subset, so if the permutation is (. . . , n− 1, n, i1, i2, . . . , im), then n− 1 and n
are each in exactly m inversions. Thus, for all permutations σ and subsets Ω in the
block in question, we have

s(((σΩ)− (n− 1))− n) = s(σΩ)(−1)2m = s(σΩ).

In particular, if we simply delete n− 1 and n from all subsets and permutations in
this block, we will not change any entries. This leaves rows that are enumerated by
all subsets of {1, . . . , n − 2} and columns that are enumerated by all permutations

of {1, . . . , n− 2}, which is exactly H
(n−2)
n−2 . �

There are some other orderings of the rows and columns that are useful. We
introduce these orderings and use them in the final lemma dealing with the structure
of Hn.

Definition 3. Let k ∈ {1, . . . , n}. Let H
(k)
n denote Hn with rows and columns of

ordered by the same inductive procedure as was used to construct H
(n)
n , but with

elements considered in the order [1, . . . , k̂, . . . , n, k] instead of the usual order.



CODIMENSION SEQUENCE OF THE GRASSMANN ALGEBRA 7

Example.

H
(1)
2 =



(2
,1

)

(1
,2

)

∅ 1 1
{2} 1 1
{1} 1 1
{2, 1} −1 1


Lemma 3. The top half of H

(k)
n consists of n copies of H

(n−1)
n−1 . In particular the

rank of the top half of H
(k)
n is equal to the rank of Hn−1.

Proof. None of the subsets corresponding to the top half of H
(k)
n contain k, so we may

delete k from all permutations when computing this submatrix. Blocks of (n − 1)!
columns then run through all permutations of the set Ω = {1, . . . , k−1, k+1, . . . , n},
while the rows are all of the subsets of Ω. The resulting matrices are exactly H

(n−1)
n−1 ,

calculated using Ω instead of {1, . . . , n−1}. The last statement of the lemma follows
since rank([M |M | · · · |M ]) = rank(M) for any matrix M where [M |M | · · · |M ] is
some number of copies of M put together in one matrix. �

When k = n, this lemma simply restates part of Lemma 1, and notes that this

implies that the submatrix consisting of the top 2n−1 rows of H
(n)
n has the same rank

as Hn−1. For other values of k, this lemma implies that the submatrix consisting
of the rows of Hn corresponding to subsets not containing k also has rank equal to

the rank of Hn−1. In H
(n)
n , the rows corresponding to subsets not containing k are

the first 2k−1 rows of every block of 2k rows.

Example. In H3, when k = 2, this lemma implies that the columns of the first

2k−1 = 2 rows of each section of 2k = 4 rows of H
(3)
3 can be rearranged to give three

copies of H
(2)
2 . When k = 1, we obtain that rows 1, 3, 5, and 7 of H

(3)
3 together as

a submatrix can also be rearranged to give three copies of H
(2)
2 .

Definition 4. Let σ = (i1, . . . , in). Define dσ : {1, . . . , n} → {−1,+1} by dσ(k) =

(−1)σ(k)−k = (−1)|σ(k)−k|. Thus, dσ determines whether an element is displaced an
even or odd number of places by the permutation σ.

Definition 5. Define the permutation (σ − k)(k) to be σ − k with k put back in its
ordinary position. For example,

((1, 3, 2, 5, 4)− 3)(3)) = (1, 2, 3, 5, 4).

Lemma 4. Let σ ∈ Sn with n odd. Then

s(σ) =
n∑
k=1

(−1)k−1s(σ − k).
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Proof. Letting k = ij , we have

s(σ − k) · dσ(k) = s(1, . . . , ij−1, ij+1, . . . , in)dσ(k)

= s((σ − k)(k))dσ(k).

This step uses the fact that the sign of any permutation on a set is the same as the
sign of a permutation on a larger set that moves the elements of the smaller set in
the same way and leaves the others fixed.

Let ι1 ◦ . . . ◦ ι|σ(k)−k| be the composition of |σ(k) − k| transpositions that move
k from k to σ(k) in σ. That is, each ιi moves k one more place from its natural

position in (σ − k)(k) to its position σ(k) in σ, so that

ι1 ◦ . . . ◦ ι|σ(k)−k| ◦ (σ − k)(k) = σ.

Thus

s(σ) = s(ι1 ◦ . . . ◦ ι|σ(k)−k| ◦ (σ − k)(k))

= s(ι1) · . . . · s(ι|σ(k)−k|) · s((σ − k)(k))

= (−1)|σ(k)−k|s((σ − k)(k))

= dσ(k)s(σ − k),

and therefore we have
n∑
k=1

(−1)k−1s(σ − k) =

n∑
k=1

(−1)k−1dσ(k)s(σ)

=

(
n∑
k=1

(−1)k−1dσ(k)

)
s(σ).

To obtain the desired result, we now need only to show that

n∑
k=1

(−1)k−1dσ(k) = 1

for all permutations of odd length. Let I ∈ Sn be the trivial permutation for odd
n. Clearly dI(k) = (−1)0 = 1 for all k ∈ {1, . . . , n}. Thus

n∑
k=1

(−1)k−1dI(k) =
n∑
k=1

(−1)k−1

= 1− 1 + . . .+ 1

= 1 + 0 + . . .+ 0

= 1.

Now we prove inductively that this relation is true for all permutations on a set
of odd size. We assume it is true for some permutation σ = (i1, . . . , in) and show
that it is therefore also true for τ ◦ σ, where τ is any transposition. Let x and y be
the two elements transposed by τ . Note that dτ◦σ = dσ for all elements except x
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and y, so we need only show that the part of the sum involving x and y stays the
same after applying τ , i.e.,

(1) (−1)x−1dτ◦σ(x) + (−1)y−1dτ◦σ(y) = (−1)x−1dσ(x) + (−1)y−1dσ(y).

Since x and y are switched under τ , they move the same number of places, but in
opposite directions. There are two cases to consider: dτ (x) = dτ (y) is either 1 or
−1.

(I) Suppose x and y both move j places, with j even. Then

dτ◦σ(x) = (−1)jdσ(x) = dσ(x),

and similarly for y. Thus the two terms on the left of (1) are the same as the two
on the right, so the relation holds.

(II) Instead suppose that x and y move j places with j odd. Then both terms
on the left side of (1) change sign, so we must show that these terms initially had
opposite signs so that both sides of (1) are zero. There are two subcases:

(a) If x and y are both odd or both even, say both even, then (−1)x−1 = (−1)y−1.
Thus we must show that dσ(x) = −dσ(y). In I, x and y must have been an even
number of spaces apart since they are both even numbers, but τ moved them an odd
number of places, so that in σ they must be an odd number of places apart. The
only way this can occur is if one of x and y is displaced an odd amount by σ and
the other is displaced an even amount, which means exactly that dσ(x) = −dσ(y),
as desired.

(b) Without loss of generality, say x is odd and y is even. Then (−1)x−1 =
−(−1)y−1, so we need to show that dσ(x) = dσ(y). In I, x and y are an odd number
of places apart, so if they are still an odd distance apart in σ, they must both
have had an odd displacement or both have had an even displacement. This means
dσ(x) = dσ(y), as required. �

Corollary. For n odd, the row of Hn labeled by {1, . . . , n} is a linear combination
of the other rows of Hn.

Proof. By the above lemma, each entry in the last row of H
(n)
n (the row given by the

subset {1, . . . , n}) is equal to the alternating sum of the entries in the same column
in rows labeled by subsets of all but one element. Therefore, the last row is equal
to the row labeled by {2, . . . , n}, minus the row labeled by {1, 3, . . . , n}, . . . , plus
the row labeled by {1, . . . , n− 1}. �

Example. In H3, the row labeled by {1, 2, 3} is equal to the row labeled by {2, 3}
minus the row labeled by {1, 3} plus the row labeled by {1, 2}.

3. Main Theorem

Definition 6. We say the matrix Hn possesses the property of half-maximal rank

if the first 2n−1 rows of H
(k)
n have rank 2n−2 for all k.

Theorem. The rank of Hn is 2n−1.
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Proof. We prove the theorem by induction. The result is immediately verified for
H1 and H2, and it can also be fairly easily checked for H3.

Let n ∈ N and assume that rank(Hi) = 2i−1 for all i < n. By Lemma 3, the rank

of the first 2n−1 rows of H
(k)
n is equal to the rank of Hn−1. By induction, the rank

of Hn−1 is 2n−2, so Hn possesses the property of half-maximal rank. This means

that the submatrix of H
(n)
n consisting of the first half of the rows has half-maximal

rank, that the submatrix of Hn consisting of the first and third quarters of the

rows together has half-maximal rank, that submatrix of H
(n)
n consisting of the first,

third, fifth, and seventh eighths of the rows together has half-maximal rank, etc. All

operations subsequently performed on H
(n)
n preserve these properties, as the reader

may verify.

By Lemma 1, we know that the top half of H
(n)
n consists of copies of H

(n−1)
n−1 and

that there is another copy of H
(n−1)
n−1 at the left side of the bottom half. Therefore, we

subtract the top half of the rows of H
(n)
n from the bottom half of the rows, canceling

out the H
(n−1)
n−1 in the lower left corner, and obtain some 2n−1 × (n − 1)(n − 1)!

matrix, which we will call Rn, in the lower right of the resulting matrix. We then

cancel all but the leftmost copy of H
(n−1)
n−1 in the top half by subtracting the leftmost

copy from the others. We are left with the following matrix: H
(n−1)
n−1 0

0 Rn

 .

Now we examine the structure of Rn. By Lemma 1, the first (n− 2)! columns of

Rn are obtained by subtracting the first (n− 2)! columns of a copy of H
(n−1)
n−1 from

a 2n−1 × (n − 2)! matrix consisting of a copy of H
(n−2)
n−2 above a copy of −H(n−2)

n−2 .

Hence, using the structure of H
(n−1)
n−1 , we see that the top half of the leftmost (n−2)!

columns of Rn consists of the block H
(n−2)
n−2 − H(n−2)

n−2 = 0 and the bottom half of

these columns consists of the block −2H
(n−2)
n−2 .

As for the rest of Rn, we only need to investigate some parts. Consider the second
block of (n− 2)! columns of Rn, which, again by Lemma 1, is given by subtracting
the second block of (n − 2)! columns of Hn−1 from the first (n − 2)! columns of
A1. By Lemma 2, we have that the top half of this block of (n − 2)! columns is

B1 −H(n−2)
n−2 and the bottom half is H

(n−2)
n−2 −B1.

Each Ai is exactly (n − 2)! columns wider than H
(n−1)
n−1 , and the first 2n−1 rows

of H
(n)
n consist of n copies of H

(n−1)
n−1 . In general the first (n− 2)! columns of Ai are

aligned with the (i+ 1)th block of (n−2)! columns of the (i+ 1)th copy of H
(n−1)
n−1 in

the top half of H
(n)
n . By Lemma 2, the first (n− 2)! columns of Ai consist of a copy

of Bi above a copy of H
(n−2)
n−2 , and the (i + 1)th set of (n − 2)! columns of H

(n−1)
n−1

consists of an H
(n−2)
n−2 matrix above a copy of Bi. Thus, for all i = 1, . . . , n − 2,
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the (n − 2)! columns of Rn beginning with the [(n− 2)! + (i− 1)(n(n− 2)!) + 1]th

column have precisely Bi −H(n−2)
n−2 in the top half and H

(n−2)
n−2 − Bi in the bottom

half.
Reorder the columns of Rn so that these blocks of (n − 2)! columns are next to

each other. Rn−1 is defined in the same way as Rn: the block remaining in the lower

right of H
(n−1)
n−1 after subtracting the top half from the bottom half and cancelling

the extra copies of H
(n−2)
n−2 in the top half. By the definition of Bi, we may write

Rn−1 as n−2 blocks of the form Bi−H(n−2)
n−2 , i = 1, . . . , n−2. Therefore we conclude

that our reordered version of Rn has the following form: 0 Rn−1 ∗
−2H

(n−2)
n−2 −Rn−1

 .

Returning to the current manipulated version of H
(n)
n , we add the third quarter

of rows to the fourth quarter of rows and divide the fourth quarter of rows by
−2. By the above, this will cancel the Rn−1 and the −Rn−1. This leaves us with
[ 0 |Rn−1| * ] in the third quarter of the matrix, with a block of 0 above and
below the Rn−1.

We now use an argument that will be utilized multiple times to eliminate the ∗ to
the left of the Rn−1 in the matrix [ 0 |Rn−1| * ]. First, we note that this is the
third quarter of a modified Hn which still possesses the property of half-maximal
rank. Therefore the first and third quarters together have half-maximal rank, and
since the first half is simply Hn−1, which possesses the property of half-maximal
rank, the first quarter alone has half-maximal rank, being the first half of Hn−1.
Since the Hn−1 and the [Rn−1| * ] are in different blocks, we conclude that the
third quarter of the matrix also has half-maximal rank, which in this case is equal
to ((2n)/4)/2 = 2n−3.

Consider Rn−1. Since we can reduce H
(n−1)
n−1 to an H

(n−2)
n−2 in the upper right

and an Rn−1 in the lower right with zeros everywhere else, and since we know by
induction that rank(Hn−1) = 2n−2 and rank(Hn−2) = 2n−3, we conclude that

rank(Rn−1) = rank(Hn−1)− rank(Hn−2) = 2n−3.

Thus we have that rank([ 0 |Rn−1| * ]) = rank(Rn−1), and therefore the
columns of [∗] must be linear combinations of the columns of Rn−1.

Using this fact, we cancel the entries to the right of the Rn−1 using the columns
that contain it. Noting that the entries in these columns are zeros above and below
the Rn−1, we are left with the following matrix:

H
(n−1)
n−1 0

0 0 Rn−1 0

H
(n−2)
n−2 0 ∗

 .
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Recalling that to get to this point we subtracted the top half of H
(n)
n from the

bottom half and then added the third quarter to the fourth quarter, we perform

these operations on H
(3)
3 as an example. First we subtract row one from row five,

row two from row six, row three from row seven, and row four from row eight. Then
we add the resulting row five to row seven and row six to row eight, obtaining the
following: 

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 −1 1 −1 1 −1
0 0 0 0 0 0
0 0 0 −2 −2 −2
0 0 −2 0 −2 −2
0 0 −2 0 −2 −2


.

Next we cancel the extra two copies of H
(2)
2 in the top half by subtracting column

one from columns three and five and column two from columns four and six. Finally,

we calculate R2 =

(
0
−2

)
, and note that as proved above, the block directly to the

right of this can be canceled with column operations. We are now left with

1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 −2 0 0
0 0 −2 0 −2 −2
0 0 −2 0 −2 −2


.

Note that this has H
(2)
2 in the upper left, −2H

(1)
1 in the bottom quarter next to a

zero matrix, R2 above and to the right of this with zero below it, and some unknown
matrix in the lower right. In this case, the [∗] matrix in the lower right easily cancels

with −2H
(1)
1 , but in general this does not happen.

Now we perform the same operations on the H
(n−2)
n−2 matrix in the bottom quarter

as we did on H
(n)
n to put it in the form of the matrix above. The bottom quarter of

the matrix now becomes
H

(n−3)
n−3 0 ∗
0 0 Rn−3

H
(n−4)
n−4 0

 .

We repeat the argument used above to cancel the top half and then the third
quarter of the [∗] in the above matrix. The top half of the matrix above is also
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the seventh eighth of the whole H
(n)
n , and we know that the first, third, fifth, and

seventh eighths of the matrix together have half-maximal rank. We also know that
the first and third quarter of the whole matrix have half-maximal rank since Hn−1

possesses the property of half-maximal rank. Thus the fifth and seventh eighths
together have half-maximal rank. The fifth eighth is now simply the top half of

Rn−1. By the structure of H
(n−1)
n−1 after it has been reduced to H

(n−2)
n−2 and Rn−1,

the fact that the first and third quarters of H
(n−1)
n−1 have half-maximal rank, and

the fact that the first quarter of H
(n−1)
n−1 alone has half-maximal rank (since it is

the top half of H
(n−2)
n−2 ), we conclude that the fifth eighth of the entire matrix has

half-maximal rank. Therefore, since the nonzero columns of the seventh eighth of
the matrix do not overlap with those of any of the other sections mentioned (first,
third and fifth eighths), we conclude that the seventh eighth of the matrix alone has
half-maximal rank.

The seventh eighth of the modified H
(n)
n is now [ 0 |H(n−3)

n−3 | ∗ ], and we
know by induction that Hn−3 has half-maximal rank, so we conclude that we can
use column operations to eliminate this [∗] in the seventh eighth.

By the same (only somewhat longer) argument, the rank of the fifteenth sixteenth
of the matrix, which is now [ 0 |Rn−3| ∗ ] has half-maximal rank, as does Rn−3

alone, so we may cancel this part of the unknown matrix as well.

We have now reduced H
(n)
n to the point where the rank of the first fifteen six-

teenths is known by inductive hypothesis to be

rank(Hn−1) + rank(Rn−1) + rank(Hn−3) + rank(Rn−3)

= 2n−2 + 2n−3 + 2n−4 + 2n−5.

Furthermore, in the last sixteenth, which is [ 0 |Hn−4| ∗ ], we are left with
the same situation that we had in the last quarter. We proceed as above, reducing
the rank of Hn to the sum of ranks of known matrices. In each step, we determine
the rank of the top three quarters of the matrix and leave the bottom quarter to
the next step. This process terminates with either one row or two rows remaining
(the only powers of two not divisible by four). Thus, we have two cases to consider:
when n is even and when n is odd.

(I) Suppose n is even. At each step we reduce the matrix to its bottom quarter,
and eventually are left with the last one row with unknown rank. This row must be
of the form [ 0 |H0| ∗ ], by the nature of our algorithm, and H0 = [1], so the
rank of this last row must be 1. Therefore we have

rank(Hn) = rank(Hn−1) + rank(Rn−1) + rank(Hn−3)

+ . . .+ rank(H1) + rank(R1) + rank(H0)

= 2n−2 + 2n−3 + . . .+ +21 + 20 + 1

= 2n−1,

as required.
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(II) Suppose n is odd. Then we are left with two rows of unknown rank, and

last two rows have the form [ 0 |H(1)
1 | ∗ ]. Now, we know H

(1)
1 =

(
1
1

)
, so

we can subtract the top row from the bottom row, and obtain [ 0 | ∗ ] in the
last row of the matrix. Since all the entries above this ∗ are zeros, we know that if
[∗] 6= 0, the last row must be linearly independent from the others, since we never
canceled other rows with the last row. But, by the corollary to Lemma 4, the last
row of Hn is a linear combination of the other rows for odd n, so we must have that
this ∗ is the zero matrix. Therefore we have

rank(Hn) = rank(Hn−1) + rank(Rn−1) + rank(Hn−3)

+ rank(Rn−3) + . . .+ rank(H2) + rank(R2) + 1

= 2n−2 + 2n−3 + . . .+ 21 + 20 + 1

= 2n−1,

as required. �

Consequently, if {cn(I)} is the codimension sequence of the T -ideal of polynomial
identities of the Grassmann algebra, we conclude by Lemma 2.1 of [4] that cn(I) =
2n−1.

Corollary. For n ≥ 2, rank(Gn) ≤ 2n−1 − 1.

Proof. First note that in the last step of the above theorem, we showed that the
last row is linearly independent from all the others for even n, and the second to
last row is linearly independent from all rows above it for odd n. Consider Gn in
each case. For even n, the last row is now a row of 1s, and therefore cancels with
any row corresponding to a subset of one element or the empty set. In particular,
the last row is now linearly dependent on the others. For odd n, we know by the
corollary to Lemma 4 that the alternating sum of rows enumerated by subsets of all
but one element is equal to the row corresponding to the set {1, . . . , n}. Since Gn
consists of a subset of columns of Hn, it also has the property that if we take this
alternating sum of rows, we obtain the row corresponding to {1, . . . , n}, which is a
row of 1s. This again cancels with the row corresponding to the empty set, so the
row corresponding to {1, . . . , n− 1} is dependent on the rows other than itself and
the row corresponding to {1, . . . , n}.

In either case, the rows of Gn corresponding to {1, . . . , n− 1} and {1, . . . , n} are
linearly dependent on the others, while in Hn exactly one of these two rows is not
dependent on the others. Thus, we have that

rank(Gn) ≤ rank(Hn)− 1 = 2n−1 − 1,

by our main result. �

This bound is in fact sharp, as it is known by other methods that rank(Gn) =
2n−1 − 1 [3, Theorem 2.2]. This theorem is obtained as the consequence of two
lemmas. The first, Lemma 3.1 of [3], gives an upper bound for the rank of Gn, and
uses methods from the theory of group representations. The second, Lemma 4.1 of
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[3], gives a lower bound for the rank of Gn, and uses techniques similar to those in
[4].
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