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Abstract. This paper has two parts, on Baumslag–Solitar groups and on general
G–trees.

In the first part we establish bounds for stable commutator length (scl) in
Baumslag–Solitar groups. For a certain class of elements, we further show that
scl is computable and takes rational values. We also determine exactly which of
these elements admit extremal surfaces.

In the second part we establish a universal lower bound of 1/12 for scl of
suitable elements of any group acting on a tree. This is achieved by constructing
efficient quasimorphisms. Calculations in the group BS(2, 3) show that this is
the best possible universal bound, thus answering a question of Calegari and
Fujiwara. We also establish scl bounds for acylindrical tree actions.

Returning to Baumslag–Solitar groups, we show that their scl spectra have a
uniform gap: no element has scl in the interval (0, 1/12).

1. Introduction

Stable commutator length has been the subject of a significant amount of recent
work, especially by Danny Calegari and his collaborators. See [6] for an introduction
to stable commutator length and a desciption of much of this work. A major break-
through in this area was Calegari’s algorithm [7] for computing stable commutator
length in free groups. This algorithm can also be used to compute stable commuta-
tor length in certain classes of groups that are built from free groups in simple ways.
However, there are few other instances in which stable commutator length can be
computed explicitly, with the exception of certain elements and classes of groups for
which it is known to vanish.

Other work involves studying the spectrum of values taken by stable commutator
length on a given group. In certain cases, this spectrum has been shown to have
a gap, i.e. there is a range of values that are the stable commutator length of no
element of the group. For example, results of this type have been shown for free
groups [11], for word-hyperbolic groups [9], and recently for mapping class groups [2].
Such results have often involved constructing quasimorphisms with certain proper-
ties, thus relying on a dual interpretation of stable commutator length in terms of
quasimorphisms.

The primary goal of this paper is to understand stable commutator length in
Baumslag–Solitar groups. We obtain both quantitative and qualitative results. On
the way to establishing the gap theorem below, we digress in Section 6 to construct
efficient quasimorphisms in the completely general setting of groups acting on trees,
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and derive some consequences. These results may be of independent interest to some
readers.

Stable commutator length in Baumslag–Solitar groups. We use the pre-
sentation 〈 a, t | tamt−1 = a` 〉 for the Baumslag–Solitar group BS(m, `), and we
generally assume that m 6= `. Then, stable commutator length is defined exactly on
the elements of t–exponent zero. We build on the approach taken in [4] and attempt
to encode the computation of stable commutator length as the output of a linear
programming problem. This approach used the notions of the turn graph and turn
circuits to encode the geometric data of an admissible surface.

In the present setting, encoding this geometric data requires the use of a weighted
turn graph instead, to account for winding numbers not present in the case of free
groups. Even so, there is further winding data, and the natural encoding leads
to an infinite-dimensional linear programming problem. By restricting to words of
alternating t–shape, we are able to reduce to a finite-dimensional problem.

Theorem 1.1 (Theorem 5.2 and Corollary 5.3). Suppose g ∈ BS(m, `), m 6= `, has
alternating t–shape. Then there is a finite-dimensional, rational linear programming
problem whose solution yields the stable commutator length of g. In particular, scl(g)
is computable and is a rational number.

More generally, the linear programming problem constructed in the proof of The-
orem 1.1 is defined for any element g of t–exponent zero, and its solution provides
a lower bound for scl(g) (see Theorem 4.3). What is difficult is to convert the so-
lution into an admissible surface to obtain a matching upper bound; the encoding
procedure from surfaces to vectors loses information, and not every vector can be
realized by a surface.

In some cases the solution to the linear programming problem in Theorem 1.1
can be expressed in a closed formula. We show in Proposition 5.5 that if m - i and
` - j then

scl
(
tait−1aj

)
=

1

2

(
1− gcd(i,m)

|m|
− gcd(j, `)

|`|

)
. (1)

Next we characterize the elements of alternating t–shape for which there is a
surface, known as an extremal surface, that realizes the infimum in the definition
of stable commutator length. Such surfaces are important in applications of stable
commutator length to problems in topology. It turns out that many elements have
extremal surfaces, and many do not.

Theorem 5.7. Let g =
∏r
k=1 ta

ikt−1ajk ∈ BS(m, `), m 6= `. There is an extremal
surface for g if and only if

`

r∑
k=1

ik = −m
r∑

k=1

jk.

This allows us to find many examples of elements with rational stable commutator
length for which no extremal surface exists. Previous examples of this phenomenon
were found in free products of abelian groups of higher rank (see [8]).
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Our last main result for Baumslag–Solitar groups is more qualitative in nature
and concerns the scl spectrum.

Theorem 7.8 (Gap theorem). For every element g ∈ BS(m, `), either scl(g) = 0
or scl(g) > 1/12.

Thus, similar to hyperbolic groups, the spectrum has a gap above zero. This
theorem is proved in Section 7, and it depends heavily on results in Section 6 to be
discussed shortly. Nevertheless, these latter results do not apply to every element
of BS(m, `) (namely, those that are not well-aligned). To study stable commutator
length of these left-over elements, we take advantage of special properties of the
Bass–Serre trees for these groups. It is interesting to note that, in contrast with
Theorem 6.11 below, it is the failure of acylindricity of these trees that is used in
establishing the scl gap.

Stable commutator length in groups acting on trees. In order to prove the
gap theorem we turn to the dual viewpoint of quasimorphisms on groups. Accord-
ing to Bavard Duality [1], a lower bound for scl(g) can be obtained by finding a
homogeneous quasimorphism f on G with f(g) = 1 and of small defect. Indeed, if
the defect of f is D then scl(g) > 1/2D.

Many authors have constructed quasimorphisms on groups in settings involving
negative curvature. For the most part these constructions are variants and gener-
alizations of the Brooks counting quasimorphisms on free groups [18, 5, 15]. These
settings include hyperbolic groups [12], groups acting on Gromov-hyperbolic spaces
[13, 9], amalgamated free products and HNN extensions [14], and mapping class
groups [3, 2].

One such result is Theorem D of [9], due to Calegari and Fujiwara. They showed
that for any amalgamated product G = A∗CB and any appropriately chosen hyper-
bolic element g ∈ G, there is a homogeneous quasimorphism f on G with f(g) = 1
and of defect at most 312. This bound is of interest since it is universal, independent
of the group.

In Theorem 6.6 we construct efficient quasimorphisms, of defect at most 6, for any
group acting on a tree. These are similar to the “small” counting quasimorphisms
introduced by Epstein–Fujiwara [12], except that they are specifically tailored to the
geometry of tree actions. Moreover, by working directly with the homogenization
of the counting quasimorphism, we obtain a further improvement in the defect.

Using the calculation (1) in the group BS(2, 3) (or alternatively, a different calcu-
lation in PSL(2,Z)) we determine that 6 is the smallest possible defect that can be
achieved in this generality, thus answering Question 8.4 of [9]. Expressed in terms
of stable commutator length, the result can be stated as follows.

Theorem 6.9. Suppose G acts on a simplicial tree T . If g ∈ G is well-aligned then
scl(g) > 1/12.

The same result holds for groups acting on R–trees as well (Remark 6.7). Again,
the bound of 1/12 is the best possible. The condition of being well-aligned is neces-
sary, and agrees with the double coset condition in [9] in the case of the Bass–Serre
tree of an amalgam.
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Not every hyperbolic element is well-aligned. Indeed, there are examples of 3–
manifold groups that split as amalgams containing hyperbolic elements with very
small stable commutator length; see [9]. If we consider trees that are acylindri-
cal (see Section 6) then we can obtain an additional lower bound that applies to
all hyperbolic elements. This bound is almost universal, depending only on the
acylindricity constant. Alternatively, there is a genuinely uniform bound if one con-
siders only elements of translation length greater than or equal to the acylindricity
constant.

Theorem 6.11. Suppose G acts K–acylindrically on a tree T and let N be the
smallest integer greater than or equal to K

2 + 1.

(i) If g ∈ G is hyperbolic then either scl(g) = 0 or scl(g) > 1/12N .
(ii) If g ∈ G is hyperbolic and |g| > K then either scl(g) = 0 or scl(g) > 1/24.

In both cases, scl(g) = 0 if and only if g is conjugate to g−1.

Acknowledgments. Matt Clay is partially supported by NSF grant DMS-1006898.
Max Forester is partially supported by NSF grant DMS-1105765.

2. Preliminaries

Stable commutator length. Stable commutator length may be defined as follows,
according to Proposition 2.10 of [6].

Definition 2.1. Let G = π1(X) and suppose γ : S1 → X represents the conjugacy
class of g ∈ G. The stable commutator length of g is given by

scl(g) = inf
S

−χ(S)

2n(S)
, (2)

where S ranges over all singular surfaces S → X such that

• S is oriented and compact with ∂S 6= ∅
• S has no S2 or D2 components
• the restriction ∂S → X factors through γ; that is, there is a commutative

diagram:
∂S −−−−→ Sy y
S1 γ−−−−→ X

• the total degree, n(S), of the map ∂S → S1 (considered as a map of oriented
1–manifolds) is non-zero.

A surface S satisfying the conditions above is called an admissible surface. If,
in addition, each component of ∂S maps to S1 with positive degree, we call S a
positive admissible surface. It is shown in Proposition 2.13 of [6] that the infimum
in the definition of scl may be taken over positive admissible surfaces. Such surfaces
(admissible or positive admissible) exist if and only if gk ∈ [G,G] for some nonzero
integer k. If this does not occur then by convention scl(g) =∞ (the infimum of the
empty set).
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A surface S → X is said to be extremal if it realizes the infimum in (2). Notice
that if this occurs, then scl(g) is a rational number.

In order to bound scl from above, one needs to construct an admissible surface

realizing a given value of −χ(S)
2n(S) . Sometimes a procedure for building a surface cannot

be completed, leaving a surface with portions missing. The following result can be
used in this situation.

Lemma 2.2. Let S be a compact oriented surface with no S2 or D2 components,
and whose boundary is expressed as two non-empty families of curves ∂1S and
∂2S. Suppose S → X is a map taking the components of ∂1S to group elements
a1, . . . , ak ∈ π1(X) and all components of ∂2S to powers of the single element
g ∈ π1(X), with total degree n 6= 0. Then there is an inequality

scl(g) 6
−χ(S)

2n
+

1

n

(∑
i

scl(ai)
)
.

More generally, if one has defined scl for chains, the sum on the right hand side
may be replaced by scl(

∑
i ai), which may be finite even when the original sum was

not.

Proof. We first show how to construct a cover of S that unwraps the curves in
∂1S to give a collection of curves each of which is trivial in H1(X). Let b be
the number of boundary components of S. Let ci be the order of the conjugacy
class of ai in the abelianization of π1(X). If the conjugacy class of some ai has
infinite order in the abelianization of π1(X), then scl(ai) = ∞ and the lemma is
tautological. Therefore we assume each ci is finite. Let M = lcm(c1, . . . , ck), and

consider the prime factorization M = pd11 · · · p
dq
q . We construct a tower of covers

Sq → Sq−1 → · · · → S1 → S0 = S as follows. For all i, the boundary ∂Si will
be partitioned into two families of curves ∂1Si and ∂2Si, where the induced map
Si → X takes the curves in ∂1Si to powers of the elements a1, . . . , ak and the curves
in ∂2Si to powers of the element g. For all i, ∂1Si will consist of exactly k curves
and ∂2Si will consist of at least b− k curves.

Suppose Si−1 has been constructed. Since b − k > 1, there is some integer ei
satisfying k 6 ei 6 b such that ei − 1 is relatively prime to pi, and hence to
pqii . Therefore Lemma 1.12 of [6] shows that, for any ei boundary components of

Si−1, there is a pdii –sheeted covering Si → Si−1 that unwraps these ei boundary
components. We choose these ei boundary components to be the k curves in ∂1Si−1

and any ei − k curves in ∂2Si−1. Then ∂Si is also partitioned into two collections
of curves: those in the preimage of ∂1Si−1 are said to be in ∂1Si, and those in the
preimage of ∂2Si−1 are said to be in ∂2Si. By construction, ∂1Si consists of exactly
k curves and ∂2Si consists of at least b− k curves.

Iterating this procedure, we obtain a surface Sq that is a degree M cover of S.
The induced map Sq → X takes the curves in ∂1Sq to aM1 , . . . , aMk and the curves

in ∂2Sq to powers of g with total degree nM . Note that, for each i, aMi is trivial in
the abelianization of π1(X).
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Fix ε > 0. For all N relatively prime to k − 1, we can construct a further cover
Sq,N → Sq such that the curves in ∂Sq,N are again partitioned into classes ∂1Sq,N
and ∂2Sq,N , where the curves in ∂1Sq,N map to aMN

1 , . . . , aMN
k in X. Choose N

sufficiently large that, for all i, the element aMN
i bounds an admissible surface

S′i that approximates scl
(
aMN
i

)
to within ε/k. Since scl

(
aMN
i

)
= MN scl(ai), we

can also regard S′i as an admissible surface for ai that approximates scl(ai) within
ε/kMN . More precisely,

−χ(S′i)

2MN
6 scl(ai) +

ε

kMN

for each i. Now join the surfaces S′i along their boundaries to the corresponding
curves in ∂1Sq,N . We thus obtain an admissible surface S′′ for g, with n(S′′) = nMN .
We have

−χ(S′′)

2n(S′′)
=
−χ(Sq,N ) +

∑
i−χ(S′i)

2nMN

=
−MNχ(S) +

∑
i−χ(S′i)

2nMN

6
−χ(S)

2n
+

1

n

∑
i

(
scl(ai) +

ε

kNM

)
=
−χ(S)

2n
+

1

n

(∑
i

scl(ai)
)

+
ε

nMN
.

Hence scl(g) 6 −χ(S)
2n + 1

n

(∑
i scl(ai)

)
. �

Baumslag–Solitar groups. Before discussing Baumslag–Solitar groups per se, we
make a general observation:

Lemma 2.3. In any group G, if t and a are elements satisfying the Baumslag–
Solitar relation tamt−1 = a` with m 6= ` then scl(a) = 0.

Proof. For any space X with fundamental group G there is a singular annulus S →
X, whose oriented boundary components represent am and a−` respectively (since
am and a` are conjugate in G). This surface can be made admissible with χ(S) = 0
and n(S) = m− ` 6= 0, so scl(a) = 0. �

The Baumslag–Solitar group BS(m, `) is defined by the presentation

〈 a, t | tamt−1 = a` 〉. (3)

The corresponding presentation 2–complex will be denoted Xm,`, or simply X, in
this paper. One thinks of X as being constructed by attaching both ends of an
annulus to a circle, by covering maps of degrees m and ` respectively; see Section 3.

Clearly, BS(1, 1) is Z × Z and BS(1,−1) is the Klein bottle group. The cases
BS(m,±m) are also of special interest. By constructing a suitable covering space
of X, one finds that this group contains a subgroup of index 2m isomorphic to
F2m−1×Z. In particular, stable commutator length can be computed in BS(m,±m)
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and is always rational, using the rationality theorem for free groups [7] and results
from [6] (such as Proposition 2.80) on subgroups of finite index.

In this paper we will study stable commutator length in BS(m, `) under the
standing assumption that m 6= `.

Remark 2.4. The abelianization of BS(m, `) is Z × Z|m−`| with generators t and
a respectively. Since we are assuming that m 6= `, an element of BS(m, `) has finite
order in the abelianization if and only if it has t–exponent zero. Thus scl is finite
on exactly these elements.

Definition 2.5. Given a word w in the letters a±1 and t±1 we denote by |w|t the
t–length of w. That is, |w|t is the number of occurrences of t and t−1 in w.

Given an element g ∈ BS(m, `) we denote by |g|t the t–length of the conjugacy
class of g. That is, |g|t is the minimum value of |w|t over all words w that represent
a conjugate of g.

Remark 2.6. Any element g ∈ BS(m, `) has a conjugate that can be expressed as

w = tε1ak1tε2 · · · tεnakn , (4)

where:

• εi ∈ {1,−1} for i = 1, . . . , n,
• m - ki if εi = 1 and εi+1 = −1,
• ` - ki if εi = −1 and εi+1 = 1, and
• |g|t = |w|t = n.

The subscripts in the second and third bullet are read modulo n. We refer to such
a representative word of the conjugacy class of g as cyclically reduced.

Up to cyclic permutation, the cyclically reduced word representing a conjugacy
class is not unique. Two other modifications to the word (4) can be made, resulting
in cyclically reduced words representing the same element:

aitaj ↔ ai−`taj+m and ait−1aj ↔ ai+mt−1aj−`.

Collins’ Lemma [10, 17] characterizes precisely when two cyclically reduced words
represent the same conjugacy class. It implies easily that modulo the two moves
above and cyclic permutation, the expression (4) is unique.

3. Surfaces in Xm,`

Transversality. Transversality will be used to convert a singular admissible surface
S → X into a more combinatorial object. We will follow the approach from [4],
which treated the case of surfaces mapping into graphs.

Recall that X = Xm,` is the presentation 2–complex for the presentation (3). We
can build X in the following way. Let A be the annulus S1 × [−1, 1], and let C be
a space homeomorphic to the circle. Fix orientations of S1 and C and attach the
boundary circles S1×{±1} to C via covering maps of degrees m and ` respectively,
to form X. Note that the natural map φ : A→ X is surjective, and maps the interior
of A homeomorphically onto X −C. Thus we have an identification of X −C with
S1 × (−1, 1).
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The space X is also a cell complex with C as a subcomplex. The 1–skeleton of
X may be taken to be C (having one 0–cell and one 1–cell, labeled a) along with
an additional 1–cell labeled t, which is a fiber in A whose endpoints are attached to
the 0–cell of C.

Let C ′ = S1 × {0} ⊂ X − C. This is a codimension-one submanifold. For any
compact surface S and continuous map f : S → X, we may perturb f by a small
homotopy to make it transverse to C ′. Then, f−1(C ′) is a properly embedded
codimension-one submanifold N ⊂ S. By a further homotopy, we can arrange that
N has an embedded I–bundle neighborhood N × [−1, 1] ⊂ S (with N = N × {0})
such that f−1(X − C) = N × (−1, 1) and

f |N×(−1,1) : N × (−1, 1)→ S1 × (−1, 1)

is a map of the form f0 × id.
Let Nb ⊂ N be the union of the components that are intervals (rather than

circles). Let Sb ⊂ S be the subset Nb × [−1, 1], each component of which is a band
I × [−1, 1] with (I × [−1, 1]) ∩ ∂S = ∂I × [−1, 1].

By a further homotopy of f in a neighborhood of ∂S, and using transversality for
the map S−(N×(−1, 1))→ C, we can arrange that in addition to the structure given
so far, there is a collar neighborhood S∂ ⊂ S on which f has a simple description.
This map takes S∂ into the 1–skeleton of X by a retraction onto ∂S followed by the
restriction ∂S → X. Each annulus component of S∂ decomposes into squares that
retract into ∂S and then map to X by the characteristic maps of 1–cells. These
squares are labeled a– or t–squares depending on the 1–cell. The t–squares are
exactly the components of S∂ ∩ Sb. See Figure 1.

×m × `C

C ′

Figure 1. An admissible surface after the transversality procedure.
The gray regions map into C.

Finally, we define S0 = S∂ ∪ Sb and S1 = S − int(S0). Observe that f maps ∂S1

into C.
The boundary ∂S0 decomposes into two subsets: ∂S, called the outer boundary,

and components in the interior of S, called the inner boundary, denoted ∂−S0. Note
that ∂−S0 = S0 ∩ S1 = ∂S1. In particular, components of the inner boundary map
by f to loops in X representing conjugacy classes of powers of a.
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Remark 3.1. Call a loop f : S1 → X regular if S1 can be decomposed into vertices
and edges such that the restriction of f to each edge factors through the charac-
teristic map of a 1–cell of X. Note that a regular map is completely described (up
to reparametrization) by a cyclic word in the generators a±1, t±1 representing the
conjugacy class of f in π1(X).

If a singular surface S → X has the property that its restriction to each boundary
component is regular, then the transversality procedure described above can be
performed rel boundary, so that the cyclic orderings of oriented a– and t–squares in
S∂ agree with the cyclic boundary words one started with.

Recall that scl(g) is the infimum of −χ(S)
2n(S) over all positive admissible surfaces.

We will show how to compute scl(g) using the decomposition described above.
Choose a cyclically reduced word w representing the conjugacy class of g. For any

positive admissible surface S, each boundary component maps by a loop representing
a positive power of g in π1(X). Modify f by a homotopy to arrange that its boundary
maps are regular, with corresponding cyclic words equal to positive powers of w.
Then perform the transversality procedure given above, keeping the boundary map
fixed (cf. Remark 3.1). At this point, the subsurfaces S0, S1 are defined. The

boundary is labeled by wn(S), possibly spread over more than one component.
Note that χ(S) = χ(S0) + χ(S1) since S0 and S1 meet along circles. Also,

χ(S0) =
−n(S) |g|t

2
,

as this is exactly the number of bands in Sb, each band connecting two instances of
t±1 in wn(S). Let χ+(S1) denote the number of disk components in S1. We have

χ(S) =
−n(S) |g|t

2
+ χ(S1) 6

−n(S) |g|t
2

+ χ+(S1),

and therefore
−χ(S)

2n(S)
>
|g|t
4
− χ+(S1)

2n(S)
.

From this, we conclude that

scl(g) >
|g|t
4

+ inf
S

−χ+(S1)

2n(S)
, (5)

where the infimum is taken over all positive admissible surfaces. In fact, the reverse
of inequality (5) holds as well:

Lemma 3.2. There is an equality

scl(g) =
|g|t
4

+ inf
S

−χ+(S1)

2n(S)
.

Proof. Given an admissible surface S → X decomposed as above, let S′ be the union
of S0 and the disk components of S1. Recall that the components of ∂S′ in ∂−S0
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map to loops in X representing conjugacy classes of powers of a. Thus Lemma 2.2
and Lemma 2.3 imply

scl(g) 6
−χ(S′)

2n(S)
+

1

n(S)

∑
scl(api) =

−χ(S′)

2n(S)
.

Since

−χ(S′)

2n(S)
=
−χ(S0)

2n(S)
− χ+(S1)

2n(S)
=
|g|t
4
− χ+(S1)

2n(S)

and S was arbitrary, the reverse of inequality (5) holds, as desired. �

Lemma 3.3. If S is an extremal surface for g, then S1 consists only of disks and
annuli.

Proof. Let S2 be the union of the components of S1 that have nonnegative Euler
characteristic, and let S3 be the union of the components of S1 that have negative
Euler characteristic. Then S2 consists only of disks and annuli and χ(S2) = χ+(S1).
If S is extremal, we must have

scl(g) =
−χ(S)

2n(S)
=
|g|t
4
− χ(S2)

2n(S)
− χ(S3)

2n(S)
=
|g|t
4
− χ+(S1)

2n(S)
− χ(S3)

2n(S)
.

Comparing with Lemma 3.2, this means χ(S3) > 0, meaning that S3 must be empty.
Thus S1 consists only of disks and annuli. �

The weighted turn graph. As in [4], we use a graph to keep track of the combi-
natorics of the inner boundary ∂−S0.

Consider a cyclically reduced word w as in (4). A turn in w is a subword of
the form ak between two occurrences of t±1 considered as a cyclic word. The turns
are indexed by the numbers i = 1, . . . , n; the ith turn is labeled by the subword
tεiakitεi+1 . A turn labeled takt−1 is of type m; a turn labeled t−1akt is of type `; all
other turns are of mixed type.

The weighted turn graph Γ(w) is a directed graph with integer weights assigned to
each vertex. The vertices correspond to the turns of w and the weight associated to
the ith turn is ki. There is a directed edge from turn i to turn j whenever −εi = εj+1.
In other words, if the label of a turn begins with t±1, then there is a directed edge
from this turn to every other turn whose label ends with t∓1. The vertices of Γ(w)
are partitioned into four subsets where the presence of a directed edge between two
vertices depends only on which subsets the vertices lie in. Figure 2 shows the turn
graph in schematic form.

The edges of the turn graph come in dual pairs: if e ∈ Γ(w) is an edge from turn
i to turn j, then one verifies easily that there is also an edge ē from turn j + 1 to
turn i− 1, and moreover ¯̄e = e.

A directed circuit in Γ(w) is of type m or type ` if every vertex it visits corresponds
to a turn of type m or of type `, respectively. Otherwise, the circuit is of mixed type.
The weight ω(γ) of a directed circuit γ is the sum of the weights of the vertices it
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t · t−1 t−1 · t

t−1 · t−1

t · t

Figure 2. A schematic picture of the turn graph Γ(w).

visits (counted with multiplicity). Given a directed circuit γ, define

µ(γ) =

 m if γ is of type m
` if γ is of type `
gcd(m, `) otherwise.

A directed circuit γ is a potential disk if ω(γ) ≡ 0 mod µ(γ).

Turn circuits. Let S → X be a positive admissible surface whose boundary map
is regular and labeled by wn(S). Decomposing S as S0 ∪ S1, each inner boundary
component of S0 can be described as follows. Traversing the curve in the positively
oriented direction, one alternately follows the boundary arcs (or sides) of bands in
Sb and visits turns of w along S∂ ; such a visit consists in traversing the inner edges
of some a–squares before proceeding up along another side of a band (cf. Figure 1).
If the side of the band leads from turn i to turn j, then (tεi)−1 = tεj and therefore
there is an edge in Γ(w) from turn i to turn j. In this way, ∂−S0 gives rise to a
finite collection (possibly with repetitions) of directed circuits in Γ(w), called the
turn circuits for S0.

Since ∂S is labeled by wn(S), there are n(S) occurrences of each turn on ∂S. The
turn circuits do not contain the information of which particular instances of turns
are joined bands, nor do they record how many times the band corresponding to a
given edge in the circuit wraps around the annulus X − C.

Remark 3.4. Given two cyclically reduced words w,w′ representing the same con-
jugacy class in BS(m, `), there is an isomorphism Γ(w) → Γ(w′) of the underlying
directed graph structure that respects vertex type and edge duality but not neces-
sarily the vertex weights. However, a directed circuit is a potential disk with one
sets of weights if and only if it is a potential disk with the other set. The difference
in weights of a type m vertex is a multiple of m, the difference in weights of a type
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` vertex is a multiple of `, and the difference in weights of mixed type vertex is a
multiple of gcd(m, `). See Remark 2.6.

In what follows, only the property of being a potential disk is used and therefore
this ambiguity in the weighed turn graph associated to a conjugacy class is not an
issue.

Lemma 3.5. Suppose γ is a turn circuit for S0 that corresponds to an inner bound-
ary component in ∂−S0 that bounds a disk in S1. Then γ is a potential disk.

Proof. For any band in Sb, the core arc (a component of Nb) maps to C ′ as a loop
of some degree d. The two sides then map to C as loops of degrees dm and d`
respectively.

If ι is the side of a band that leads from a turn labeled takt∗ to a turn labeled
t∗ak

′
t−1 then the map ι→ C has degree a multiple of m. Likewise if ι leads from a

turn labeled t−1akt∗ to a turn labeled t∗ak
′
t then ι maps to C with degree a multiple

of `.
Therefore the total degree of an inner boundary component corresponding to a

turn circuit γ is ω(γ)+dm+d′` for some integers d, d′. If γ is of type m then d′ = 0.
Likewise, if γ is of type ` then d = 0.

If the boundary component actually bounds a disk in S1 then this total degree is
0. Hence ω(γ) ≡ 0 mod µ(γ) and therefore γ is a potential disk. �

4. Linear optimization

We would like to convert the optimization problem in Lemma 3.2 to a problem of
optimizing a certain linear functional on a vector space whose coordinates correspond
to possible potential disks, subject to certain linear constraints. Here the functional
would count the number of potential disks, and the constraints would arise from the
pairing of edges in the turn graph. The objective would then be to compute stable
commutator length using classical linear programming.

The main difficulty in such an approach is arranging that the optimization takes
place over a finite dimensional object. In this section, we show how to convert an
admissible surface to a vector in a finite dimensional vector space in such a way
that the number of disk components of S1 is less than the value of an appropriate
linear functional. We thus obtain computable, rational lower bounds for the sta-
ble commutator length of elements of Baumslag–Solitar groups (Theorem 4.3). In
Section 5, we will show that these bounds are sharp for a certain class of elements.

We construct the finite dimensional vector space as follows. Let w be a conjugate
of g of the form given in Remark 2.6. Let M = max{|m| , |`|}. We consider two sets
of directed circuits in Γ(w):

• X: the set of potential disks that are a sum of not more than M embedded
circuits, and
• Y: the set of all embedded circuits.

Note that both X and Y are finite sets and that they may have some circuits in
common. Enumerate these sets as X = {α1, . . . , αp} and Y = {β1, . . . , βq}. Let
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X be a p–dimensional real vector space with basis {x1, . . . ,xp}, and let Y be a q–
dimensional real vector space with basis {y1, . . . ,yq}. Equip both X and Y with
an inner product that makes the respective bases orthonormal. By Remark 3.4, the
vector spaces X and Y depend only on the conjugacy class in BS(m, `) represented
by w. Abusing notation, we let {x1, . . . ,xp,y1, . . . ,yq} denote the corresponding
orthonormal basis of X⊕ Y. This is the vector space with which we will work.

The linear functional on the vector space X ⊕ Y whose values will be compared
with the number of disk components of S1 is the functional that is the sum of the
coordinates corresponding to X, i.e. the functional that takes in u ∈ X⊕Y and gives
out |u|X :=

∑p
i=1 u · xi. One thinks of this functional as counting the number of

potential disks.
There are additional linear functionals on X⊕Y that count the number of times

turn circuits in a given collection visit a specific vertex or edge. For each vertex
v ∈ Γ(w), define Fv : X⊕Y→ R by letting Fv(xi) be the number of times αi visits
v, letting Fv(yi) be the number of times βi visits v, and extending by linearity. For
each edge e ⊂ Γ(w), define Fe : X⊕Y→ R by letting Fe(xi) be the number of times
αi traverses e, letting Fv(yi) be the number of times βi traverses e, and extending
by linearity.

One thinks of the next lemma as saying that, if a collection of turn circuits
traverses each edge the same number of times as its dual edge, then this collection
of turn circuits visits each vertex the same number of times.

Lemma 4.1. If Fe(u) = Fē(u) for each dual edge pair e, ē of Γ(w), then Fv(u) =
Fv′(u) for any vertices v, v′ ∈ Γ(w).

Proof. For a vertex v ∈ Γ(w), let E+(v) be the set of directed edges that are outgoing
from v and let E−(v) be the set directed edges that are incoming to v. Then

Fv(u) =
∑

e∈E+(v)

Fe(u) =
∑

e∈E−(v)

Fe(u).

First suppose that v corresponds to turn i and v′ corresponds to turn i − 1. Then
edge duality gives a pairing between edges in E+(v) and edges in E−(v′). Since
Fe(u) = Fē(u) for every dual edge pair e, ē, we have that

Fv(u) =
∑

e∈E+(v)

Fe(u) =
∑

e∈E+(v)

Fē(u) =
∑

e∈E−(v′)

Fe(u) = Fv′(u).

Letting i vary, we obtain a similar statement for all pairs of vertices corresponding
to adjacent turns. It follows that Fv(u) = Fv′(u) for any vertices v, v′ ∈ Γ(w). �

Let C ⊂ X⊕Y be the cone of non-negative vectors u such that Fe(u) = Fē(u) for
every dual edge pair e, ē of Γ(w). In light of the lemma, we denote by F : C → R
the function Fv

∣∣
C

for any vertex v ∈ Γ(w).
The following proposition shows how to convert an admissible surface into a vector

u ∈ C in such a way that |u|X is at least the number of disk components of S1.
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Proposition 4.2. Given an admissible surface S → X, there is a vector u ∈ C
such that

|u|X
F (u)

>
χ+(S1)

n(S)
. (6)

Proof. Suppose the surface S has been decomposed as S0 ∪ S1 as described in Sec-
tion 3, and consider the collection of turn circuits for S0. Let γ be one of the turn
circuits in this collection. As a cycle we can decompose γ as a sum of embedded
circuits, i.e. γ = βi1 + · · ·+βik . This decomposition may not be unique, but we only
need its existence.

For each turn circuit γ, we will construct a corresponding vector u(γ), depending
on this decomposition and on whether the corresponding boundary component of
∂−S0 bounds a disk in S1. If the corresponding inner boundary component of ∂−S0

does not bound a disk in S1, we define

u(γ) =
k∑
j=1

yij .

Otherwise, the corresponding inner boundary component of ∂−S0 does bound a disk
in S1, in which case Lemma 3.5 implies that γ is a potential disk. If k 6 M , then
γ ∈ X; say γ = αi. In this case we define u(γ) = xi. Otherwise, if k > M , we
proceed as follows. For each βij , let µ(βij )βij denote the sum of µ(βij ) copies of
βij . Notice that µ(βij )βij is a potential disk that is not the sum of more than M
embedded circuits. Hence µ(βij )βij ∈ X, so µ(βij )βij = αi′j for some i′j ∈ {1, . . . , p}.
In this case we define

u(γ) =
k∑
j=1

1

µ(βij )
xi′j .

The vector we will consider is u =
∑

γ u(γ), where this sum is taken over all γ in

the collection of turn circuits for S0 (with multiplicity). Establishing the following
three claims will complete the proof of the proposition.

(i) u ∈ C,
(ii) F (u) = n(S), and
(iii) |u|X > χ+(S1).

(i): The vector u(γ) was constructed so that Fe(u(γ)) counts the number of times
the turn circuit γ traverses the edge e. Thus Fe(u) records the number of times turn
circuits for S0 traverse e. Every time an edge e is traversed by a turn circuit for S0,
there is a band in Sb one side of which represents e. The other side of this band
represents ē, so therefore we have that Fe(u) = Fē(u) for all edges e. Thus u ∈ C.

(ii): The vector u(γ) was also constructed so that Fv(u(γ)) counts the number
of times the turn circuit γ visits the vertex v. Therefore F (u) records the number
of times turn circuits for S0 visit any given vertex. As each turn occurs once in w,
each vertex must be visited exactly n(S) times. Thus F (u) = n(S).

(iii): Let γ be a turn circuit for S0, and suppose the corresponding inner boundary
component of S0 bounds a disk in S1. Decompose γ as a sum βi1 + · · · + βik of
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embedded circuits as above. If k 6M , then u(γ) = xi for some i ∈ {1, . . . , p}, and
thus |u(γ)|X = 1. Otherwise, we have

|u(γ)|X =
k∑
j=1

1

µ(βij )
>

k∑
j=1

1

M
=

k

M
> 1.

In either case, |u(γ)|X > 1. As |�|X is a linear functional, we thus have that |u|X >
χ+(S1). �

Theorem 4.3. Let g ∈ BS(m, `), m 6= `, be of t–exponent zero. Then there is a
computable, finite sided, rational polyhedron P ⊂ X⊕ Y such that

scl(g) >
|g|t
4
− 1

2
max {|u|X | u is a vertex of P} . (7)

Proof. Let P = F−1(1). If V is the number of vertices of Γ(w), we can extend F

to a linear functional F̃ : X ⊕ Y → R by setting F̃ (u) = 1
V

∑
v Fv(u), where the

sum is taken over all vertices of Γ(w). The linear functional F̃ is positive on all

basis vectors of X ⊕ Y, and hence a level set of F̃ intersects the positive cone in a

compact set. Clearly P = C ∩ F̃−1(1). Thus P is a finite sided, rational, compact
polyhedron.

By Lemma 3.2, Proposition 4.2, and the linearity of |�|X and F , we have that

scl(g) =
|g|t
4

+
1

2
inf
S

−χ+(S1)

n(S)

=
|g|t
4
− 1

2
sup
S

χ+(S1)

n(S)

>
|g|t
4
− 1

2
sup
u∈C

|u|X
F (u)

>
|g|t
4
− 1

2
sup
u∈P
|u|X .

As P is a finite sided, compact polyhedron and |�|X is a linear functional, the supre-
mum is realized at one of the vertices of P . This gives (7). �

Remark 4.4. If u is a vertex of P that maximizes |u|X in P , then u · yi = 0 for
all i ∈ {1, . . . , q}. Indeed, suppose not and let βi ∈ Y be such that u · yi = c > 0.
Then there is some αi′ ∈ X such that µ(βi)βi = αi′ . One then observes that
u′ = u− cyi + c

µ(βi)
xi′ ∈ P and |u′|X > |u|X.

The linear programming problem described in this section has been implemented
using Sage [19] and is available from the first author’s webpage.

5. Elements of alternating t–shape

The bounds given in Theorem 4.3 are not always sharp, as we will point out
in Remark 5.4. However, we show in Theorem 5.2 that these bounds are sharp
for a class of elements that have what we call alternating t–shape. We thus show
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that stable commutator length is computable and rational for such elements. We
also characterize which elements of alternating t–shape admit extremal surfaces
(Theorem 5.7).

Definition 5.1. We say that an element g ∈ BS(m, `) has alternating t–shape if it
has a conjugate of the form given in Remark 2.6 where n is even and εi = (−1)i−1.

In this section, we restrict attention to elements of alternating t–shape and express
this conjugate as

w =
r∏

k=1

taikt−1ajk . (8)

Note that if g has alternating t–shape then it has t–exponent zero. Hence stable
commutator length is finite for elements of alternating t–shape.

Constructing surfaces. Let P be as in the proof of Theorem 4.3, and let

L(g) =
|g|t
4
− 1

2
max {|u|X | u is a vertex of P} .

To show that the lower bound L(g) on stable commutator length is sharp, we would
like to find a surface S that gives the same upper bound on stable commutator
length. Specifically, given a vertex u ∈ P , we want to construct a corresponding
surface S = S0 ∪S1 of the type discussed in Section 3, where ∂S maps to conjugacy
classes of powers of g and ∂S1 maps to conjugacy classes of powers of a. Such a
surface S0 can be built (in fact, many such surfaces can be built); the construction
is given in the proof of Theorem 5.2. The difficulty is arranging S0 so that its inner
boundary components can be efficiently capped off by S1.

If the degree of each inner boundary component of S0 were zero, we could take each
component of S1 to be a disk. In this case, we would have |u|X = χ+(S1) = χ(S1)
and

scl(g) 6
−χ(S)

2n(S)
=
|g|t
4
− χ(S1)

2n(S)
= L(g) 6 scl(g).

This would mean the bound in Theorem 4.3 is sharp and the surface S is extremal.
It may not be the case that all inner boundary components of S0 can be made

to have degree zero. Nevertheless, when g has alternating t–shape, we can control
the number of inner boundary components of S0 that have nonzero degree in such a

way as to show that there are surfaces S for which −χ(S)
2n(S) is arbitrarily close to L(g).

The details are given in the proof of Theorem 5.2. In this way, we establish that
the lower bound given in Theorem 4.3 is sharp for elements of alternating t–shape.

Theorem 5.2. Let g ∈ BS(m, `), m 6= `, have alternating t–shape. Then

scl(g) = L(g).

Proof. We will show that scl(g) < L(g) + ε for all ε > 0. Note that, since g is of
alternating t–shape, all circuits in the turn graph are either of type m or of type
`, not of mixed type. Let u be a vertex of P on which |�|X is maximal. Since P
is a rational polyhedron on which all coordinates are nonnegative, all coordinates
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of u are nonnegative rational numbers. By Remark 4.4, u has nonzero entries only
in coordinates corresponding to X. Let K denote the number of edges in the turn
graph. Let N be an integer such that each coordinate of Nu is a nonnegative integer
and such that N > K/2ε (so that K/2N < ε).

Each coordinate xi of X represents a directed circuit γ in the turn graph. For
each such directed circuit γ of length n, we consider a 2n–gon with alternate sides
labeled by the powers of a corresponding to the vertices of the turn graph through
which γ passes and alternate sides labeled by the intervening edges of the turn graph
traversed by γ. See Figure 3.

aik1

aik2

e1 e2

Figure 3. A sample polygon corresponding to a circuit γ of length 2.

For each i we take Nu·xi copies of the polygon corresponding to xi, thus obtaining
a collection Q1, . . . , Qs of polygons. Since Fe(Nu) = Fē(Nu), there exists a pairing
of the edges of these polygons corresponding to edges of the turn graph such that
each edge labeled by e on a polygon Qi is paired with an edge labeled by ē on a
polygon Qj . Let ∆ be the graph dual to this pairing, i.e. the graph with a vertex for
each polygon Qi and an edge between the vertex corresponding to Qi and the vertex
corresponding to Qj for each edge of Qi that is paired with an edge from Qj . The
graph ∆ may have many components. However, we can adjust the pairings of edges
of polygons to obtain some control over the number of components of ∆. Suppose
Qi1 and Qi2 are polygons where an edge labeled e of Qi1 has been paired with an
edge labeled ē of Qi2 , and suppose Qj1 and Qj2 are polygons in another component
of ∆ where an edge labeled e of Qj1 has been paired with an edge labeled ē of Qj2 .
Then we can modify the pairing of edges to instead pair the edge labeled e of Qi1
with the edge labeled ē of Qj2 and the edge labeled e of Qj1 with the edge labeled
ē of Qi2 . The graph ∆ corresponding to this pairing will have one fewer component
than the graph corresponding to the original pairing. Such a modification can be
done any time there are two components of ∆ on which edges with the same labels
have been paired. Therefore, we can arrange that the number of components of ∆
is no more than K, the number of edges in the turn graph. Note that ∆ is naturally
a bipartite graph, with vertices partitioned into those corresponding to turn circuits
of type m (“type m vertices”) and those corresponding to turn circuits of type `
(“type ` vertices”).

If a vertex v ∈ ∆ corresponds to a turn circuit γ, we define the weight of v to be
ω(v) := ω(γ). If v is a type m vertex we have that m | ω(v), and if v is a type `
vertex we have that ` | ω(v). We wish to assign an integer ω(e) to each edge e ∈ ∆
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such that, whenever v is of type m, we have

ω(v)−m
∑
e3v

ω(e) = 0, (9)

and, whenever v is of type `, we have

ω(v) + `
∑
e3v

ω(e) = 0. (10)

On each connected component of ∆, proceed as follows. For each type m vertex v,
choose a preferred edge ev emanating from v. For each v, set ω(ev) = ω(v)/m, and
let ω(e) = 0 for all other edges e. This makes (9) hold for all vertices of type m.
Now choose a preferred type ` vertex v0. For another type ` vertex v1, let

Ω =
ω(v1)

`
+
∑
e3v1

ω(e).

Choose a path e1, . . . , ek connecting v1 to v0, and modify the weights ω(ei) by
decreasing ω(ei) by Ω whenever i is odd and increasing ω(ei) by Ω whenever i is
even. For all vertices other than v1 and v0, this does not change the quantities in
(9) and (10). Moreover, this causes (10) to now be true for v1. Fixing v0 and letting
v1 vary over all type ` vertices other than v0, we obtain edge weights ω(e) such that
(9) and (10) are true for all vertices on this component of ∆ except for v0. Thus we
obtain edge weights ω(e) such that (9) and (10) are true for all vertices except for
one vertex in each component of ∆.

We now proceed to build a surface. Rather than building a surface from the
polygons Qi, we use them to build a band surface S0, then attempt to fill various
components of ∂S0 with disks. For each pairing of an edge of Qi with an edge of
Qj , insert a rectangle with sides labeled by t, amω(e), t−1, and a−`ω(e), where ω(e)
is the weight assigned to the corresponding edge of ∆. See Figure 4.

Note that the edges of these rectangles labeled t and t−1, together with the edges
of the polygons labeled by powers of a, form paths that would map to the 1–skeleton
of X. By construction, these paths correspond exactly to powers of w. To each of
these paths, attach an annulus S1 × [0, 1] labeled on both sides by this power of
w. The rectangles and annuli together form S0, shown in Figure 4. Note that each
rectangle maps naturally to the 2–cell of X with degree ω(e). The annuli map to
the 1–skeleton of X, as indicated by the labels, with the map factoring through the
projection S1 × [0, 1]→ S1.

As in Section 3, we refer to the boundary components of S0 that map to a power
of w as outer boundary components and to those corresponding to a polygon Qi as
inner boundary components. Each of the inner boundary components of S0 maps to
a power of a; let d be the number of components of the inner boundary for which this
power is zero. The powers of a on the inner boundary components are exactly the
quantities on the left-hand sides of (9) and (10). The weights ω(e) have been chosen
so that these quantities are zero for all but K components of the inner boundary,
so therefore d > s −K. Fill these d components of the inner boundary with disks,
and call the resulting surface S.
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Qi Qj

ajk−1 t aik

ajk−1 aik

a−`ω(e) amω(e)

t

t−1

Figure 4. Using the polygons Qi to build a band surface S0. The
surface S0 is shaded above.

Each inner boundary component of S maps to a power of a, and Lemma 2.3 says
that scl(a) = 0. Therefore, applying Lemma 2.2, we have that

scl(g) 6
−χ(S)

2n(S)

=
|g|t
4
− d

2N

6
|g|t
4
− s−K

2N

=
|g|t
4
− s

2N
+

K

2N

<
|g|t
4
− 1

2
max {|u|X | u is a vertex of P}+ ε

= L(g) + ε.

Thus scl(g) = L(g), as desired. �

Corollary 5.3. If g ∈ BS(m, `), m 6= `, has alternating t–shape, then scl(g) is
rational.

Proof. Since each vertex u of P has rational coordinates and |u|X is the sum of
certain of these coordinates, we know that L(g) is rational. Therefore it follows
from Theorem 5.2 that scl(g) is rational. �

Remark 5.4. In general one suspects the inequality in Theorem 4.3 is strict. For
example, the function |u|X has a unique maximum on the polyhedron P in The-
orem 4.3 for the element a2t2at−1at−1 ∈ BS(2, 3). When attempting to build a
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surface from this unique optimal vertex u, every component of the dual graph ∆
has a constant proportion of vertices that cannot be filled, regardless of the edge
weights. The details are not interesting nor needed so we omit them.

Therefore, in contrast to Theorem 5.2, where all but at most a constant number
of vertices can be filled, there is no sequence of surfaces associated to u to for which
χ+(S)
n(S) approaches |u|X.

An explicit formula. When |g|t = 2 the turn graph consists of two vertices,
each adjacent to a one-edge loop. In this case the vector space X is essentially
two dimensional and the linear optimization problem can be solved easily by hand,
resulting in a formula for stable commutator length for such elements.

This calculation is interesting for two reasons. First, it is rare that one can derive
a formula for scl in non-trivial cases. Second, the minimal value for scl among
all “well-aligned” elements (see Definition 6.8 and Theorem 6.9) is realized by an
element of this type.

Proposition 5.5. In the group BS(m, `) with m 6= `, if m - i and ` - j then

scl(tait−1aj) =
1

2

(
1− gcd(i,m)

|m|
− gcd(j, `)

|`|

)
.

The divisibility hypotheses simply mean that the word tait−1aj is cyclically re-
duced (cf. Remark 2.6).

Proof. The turn graph for the word tait−1aj is as shown in Figure 5.

ai aj

Figure 5. The turn graph for tait−1aj .

There are two types of potential disks:

(i) Circuits of type m that traverse the left loop of the turn graph p times,
where m | pi.

(ii) Circuits of type ` that traverse the right loop of the turn graph q times,
where ` | qj.

Note that the condition m | pi is equivalent to |m|
gcd(i,m) | p, and the condition ` | qj

is equivalent to |`|
gcd(j,`) | q. Suppose p = k|m|

gcd(i,m) , where p 6 max{|m| , |`|}, for some

positive integer k, and let xik be the corresponding basis vector of X. We claim
that, if k > 1 and u is a vertex of P that maximizes |u|X, then u · xik = 0. Indeed,
suppose not, and consider the vector u′ = u − (u · xik)xik + k(u · xik)xi1 . Then
Fe(u

′) = Fe(u) for all e and F (u′) = F (u) = 1, but∣∣u′∣∣X = |u|X − u · xik + k(u · xik) = |u|X + (k − 1)(u · xik) > |u|X .
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A similar argument applies to coordinates of X corresponding to potential disks of
type `. Thus, if u is a vertex of P that maximizes |u|X, only two coordinates of u

are nonzero, one corresponding to a potential disk of type m where p = |m|
gcd(i,m) and

the other corresponding to a potential disk of type ` where q = |`|
gcd(j,`) .

Let c be the value of the coordinate corresponding to this potential disk of type
m, and let d be the value of the coordinate corresponding to this potential disk of
type `. Then the conditions Fe(u) = Fē(u) and F (u) = 1 become

|m|
gcd(i,m)

c =
|`|

gcd(j, `)
d = 1.

Therefore we have that c = gcd(i,m)
|m| and d = gcd(j,`)

|`| . This means that

scl(tait−1aj) =
|tait−1aj |t

4
− 1

2
max {|u|X | u is a vertex of P}

=
1

2
− 1

2

(
gcd(i,m)

|m|
+

gcd(j, `)

|`|

)
,

as desired. �

Extremal surfaces. We now characterize the elements g ∈ BS(m, `) of alternating
t–shape for which an extremal surface exists.

Lemma 5.6. Suppose S is an admissible surface for some g ∈ BS(m, `), m 6= `,
of alternating t–shape that has been decomposed as described in Section 3. If S is
extremal, then S1 consists only of disks.

Proof. If S is extremal, we know by Lemma 3.3 that S1 consists of only disks and
annuli. Suppose that some component of S1 is an annulus. This means that some
component of the inner boundary of S0 does not bound a disk in S. Using the
construction from the proof of Proposition 4.2, there is a u ∈ P such that |u|X >
χ+(S1) and u · yi > 0 for some i. Remark 4.4 shows how to find u′ ∈ P such that
|u′|X > |u|X, so we have |u′|X > χ+(S1). But then Theorem 5.2 shows that S is not
extremal. Thus S1 cannot have an annular component, meaning it consists only of
disks. �

Theorem 5.7. Let g =
∏r
k=1 ta

ikt−1ajk ∈ BS(m, `), m 6= `. There is an extremal
surface for g if and only if

`
r∑

k=1

ik = −m
r∑

k=1

jk. (11)

Proof. The status of equation (11) does not change under cancellation of tεt−ε pairs
in g, nor under applications of the defining relator in BS(m, `); hence we may assume
without loss of generality that g is cyclically reduced.

First, suppose g has an extremal surface S. Decompose S as described in Sec-
tion 3. By Lemma 5.6, S1 consists only of disks. Let ∆ be the graph that has a
vertex for each component of S1 and an edge for each band of Sb that connects the
vertices corresponding to the two disks it adjoins. There is a weight function on the
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vertices of ∆, where ω(v) is the total degree of a at all vertices of the circuit in the
turn graph corresponding to v. There is also a natural weight function w on the
edges of ∆, where ω(e) is the signed degree of the map from the band corresponding
to e to the 2–cell of X. Since all vertices of ∆ bound disks, we know that whenever
v corresponds to a circuit of type m, we have

ω(v)−m
∑
e3v

ω(e) = 0,

and, whenever v corresponds to a circuit of type `, we have

ω(v) + `
∑
e3v

ω(e) = 0.

Summing over all vertices of type m, we obtain

m
∑
e∈∆

ω(e) =
∑
v∈∆

of type m

ω(v) = n(S)
r∑

k=1

ik. (12)

Summing over all vertices of type `, we obtain

− `
∑
e∈∆

ω(e) =
∑
v∈∆

of type `

ω(v) = n(S)

r∑
k=1

jk. (13)

Multiplying (12) by ` and (13) by −m and combining gives (11).
Conversely, suppose the element g satisfies (11). Let S0 and ∆ be as in the proof

of Theorem 5.2. Restrict to one connected component of S0, and let ∆0 be the
corresponding connected component of ∆. Then (9) holds for all vertices of type
m in ∆0. Let N0 be the power of w corresponding to the image of the map on the
outer boundary of this component of S0. Summing over all vertices of type m in
∆0, we have that

m
∑
e∈∆0

ω(e) =
∑
v∈∆0

of type m

ω(v) = N0

r∑
k=1

ik (14)

also holds. Multiplying (14) by ` and combining with (11) shows that

− `
∑
e∈∆0

ω(e) =
∑
v∈∆0

of type `

ω(v) = N0

r∑
k=1

jk. (15)

Since the procedure in the proof of Theorem 5.2 ensures that (10) holds for all but
one v ∈ ∆0 of type `, (15) implies that (10) in fact holds for all v ∈ ∆0. The same
argument applies to each component of ∆, so hence (9) and (10) hold for all v ∈ ∆.
Thus all inner boundary components of S0 can be filled with disks, meaning the
resulting surface achieves the lower bound on scl(g) given by linear programming.
Hence this surface is extremal. �
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Remark 5.8. Corollary 5.3 and Theorem 5.7 combine to give many examples of
elements for which stable commutator length is rational but for which no extremal
surface exists. Previous examples of this phenomenon were found in free products
of abelian groups of higher rank. See [8].

6. Quasimorphisms on groups acting on trees

We now turn our attention from analyzing scl for a single element in BS(m, `)
to analyzing properties of the scl spectrum scl(BS(m, `)) ⊂ R. Our main theorem
about the spectrum (Theorem 7.8) shows that either scl(g) = 0 or scl(g) > 1/12.
In other words, there is a gap in the spectrum. The proof has two parts. In
this section we will provide a general condition (well-aligned) for an element g in
a group G acting on a tree that implies scl(g) > 1/12 (Theorem 6.9). This is not
quite enough for the Gap Theorem for Baumslag–Solitar groups. In Section 7 we use
the specific structure of BS(m, `) as an HNN extension and show that if a stronger
form of the well-aligned property does not hold, then scl(g) = 0 (Theorem 7.6 and
Proposition 7.7).

The key to the argument in Theorem 6.9 is the construction of a certain function
f : BS(m, `) → R for each hyperbolic element g ∈ BS(m, `), satisfying certain
properties described below, that provides a lower bound on scl(g).

The material in this section applies to any group G.

Quasimorphisms and stable commutator length. The functions we will con-
struct are homogeneous quasimorphisms.

Definition 6.1. A function f : G → R is called a quasimorphism if there is a
number D such that

|f(gh)− f(g)− f(h)| 6 D (16)

for all g, h ∈ G. The smallest such D is called the defect of f . A quasimorphism f
is homogeneous if f(gn) = nf(g) for all g ∈ G, n ∈ Z.

Bavard Duality [1] provides the link between homogeneous quasimorphisms and
stable commutator length. We only need one direction of this link.

Proposition 6.2 (Bavard Duality, easy direction). Given g ∈ G, suppose there is
a homogeneous quasimorphism f with defect at most D such that f(g) = 1. Then
scl(g) > 1/2D.

Proof. One checks easily using (16) that if gn is a product of m commutators then
|f(gn)| 6 2mD. Hence 1 = |f(g)| 6 2 cl(gn)D/n, and taking the limit as n → ∞
gives the desired result. �

Hence to derive a large lower bound for scl(g) one tries to construct a homogenous
quasimorphism f : G→ R such that f(g) = 1 and with defect as small as possible.
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G–trees. We consider simplicial trees not just as combinatorial objects, but also as
metric spaces with each edge being isometric to an interval of length one. A segment
in a tree T is a subset α ⊂ T that is isometric to a closed segment in R.

Suppose we are given an action of G on a simplicial tree T , always assumed to be
without inversions. Every element g ∈ G has a characteristic subtree Tg, consisting
of those points x ∈ T where the displacement function x 7→ d(x, gx) achieves its
minimum. This minimum is denoted |g|, and called the translation length of g, or
simply the length of g. If the length is zero then Tg is the set of fixed points of g
and we call g elliptic. Otherwise, Tg is a linear subtree on which g acts by a shift of
amplitude |g|. In this case Tg is called the axis of g and g is hyperbolic. Note that
Tg has a natural orientation, given by the direction of the shift by g. A fundamental
domain for g is a segment (of length |g|) contained in the axis, of the form [x, gx].
We specifically allow x to be a point in the interior of an edge.

If k 6= 0 then gk has the same type (elliptic or hyperbolic) as g. If g is hyperbolic
then Tgk = Tg and

∣∣gk∣∣ = |k| |g|. Also,
∣∣hgh−1

∣∣ = |g| for all g, h.

Remark 6.3. There is an easy way to identify the axis of a hyperbolic element
g ∈ G. Namely, if α is an oriented segment or edge in T , then α is on the axis if and
only if α and gα are coherently oriented in T . When this occurs, if x is any point
in α, then the segment [x, gx] is a fundamental domain for g.

Definition 6.4. Let γ be an oriented segment in T . The reverse of γ is the same
segment with the opposite orientation, denoted γ. A copy of γ is a segment of the
form gγ for some g ∈ G.

If g is hyperbolic then the quotient of Tg by the action of 〈g〉 is a circuit of length
|g|. A copy of γ in Tg/〈g〉 is the image of a copy of γ in Tg, provided that |γ| 6 |g|.
(If |γ| > |g| then there are no copies of γ in Tg/〈g〉.) We say that two segments
overlap if their intersection is a non-trivial segment.

Let γ be an oriented segment in T . For an oriented segment α, let cγ(α) be the
maximal number of non-overlapping positively oriented copies of γ in α. Note that
cγ(α) = cγ(α). Also define

fγ(α) = cγ(α)− cγ(α).

If g ∈ G is hyperbolic, let cγ(g) be the maximal number of non-overlapping
positively oriented copies of γ in Tg/〈g〉. If g is elliptic, let cγ(g) = 0. In either case,
define

fγ(g) = cγ(g)− cγ(g) (17)

and

hγ(g) = lim
n→∞

fγ(gn)

n
. (18)

We will see shortly that fγ is a quasimorphism. Therefore, by [6, Lemma 2.21],
the limit defining hγ exists and hγ is a homogeneous quasimorphism.

Lemma 6.5. Let g ∈ G be hyperbolic and suppose that a fundamental domain for g
is expressed as a concatenation of non-overlapping segments α1, . . . , αk, each given
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the same orientation as Tg. Then for any γ there is an estimate∑
i

cγ(αi) 6 cγ(g) 6 k +
∑
i

cγ(αi).

In the situation of the lemma, we will refer to the images in Tg/〈g〉 of the endpoints
of the segments αi as junctures. There are k junctures in Tg/〈g〉.

Proof. Start with maximal collections of non-overlapping copies of γ in the segments
αi. The union of these sets of copies projects to a non-overlapping collection in
Tg/〈g〉, yielding the first inequality. For the second inequality, start with a maximal
collection of non-overlapping copies of γ in Tg/〈g〉. At most k of these copies contain
junctures in their interiors. Each remaining copy lifts to a copy of γ in one of the
segments αi, and no two of these lifts overlap. Hence

∑
i cγ(αi) > cγ(g)− k. �

The main technical result of this section is the following theorem.

Theorem 6.6. Suppose G acts on a simplicial tree T . Let γ be an oriented segment
in T (with endpoints possibly not at vertices). Then the functions fγ and hγ defined
in (17) and (18) are quasimorphisms on G with defect at most 6.

Proof. We will prove the result for hγ directly. Replacing “n” throughout by “1”
yields a proof of the result for fγ .

Fix elements g, h ∈ G. We wish to show that |hγ(gh)− hγ(g)− hγ(h)| 6 6.
There are several cases, corresponding to different configurations of the characteristic
subtrees Tg, Th, and Tgh.

Case I: Tg and Th are disjoint. Let ρ be the segment joining Th to Tg, oriented
from Th and towards Tg. Let ρ′ = gρ (which is a copy of ρ).

If g and h are both hyperbolic, let α and β be fundamental domains for h and
g respectively, as indicated in Figure 6. Note that gh has a fundamental domain

α

β

ρ ρ′

Th

Tg

Tgh

Figure 6. Case I, g and h hyperbolic. Th is green, Tg is purple, Tgh
is black. The red edges are of the form e, he, and ghe.

given by the concatenation α · ρ · β · ρ′, by Remark 6.3. More generally, (gh)n has a
fundamental domain made of n copies each of α, ρ, β, and ρ. Lemma 6.5 yields

n(cγ(α) + cγ(ρ) + cγ(β) + cγ(ρ)) 6 cγ((gh)n)

6 n(cγ(α) + cγ(ρ) + cγ(β) + cγ(ρ)) + 4n (19)

and

n(cγ(α) + cγ(ρ) + cγ(β) + cγ(ρ)) 6 cγ((gh)n)

6 n(cγ(α) + cγ(ρ) + cγ(β) + cγ(ρ)) + 4n. (20)
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Subtracting (20) from (19) yields

n(fγ(α) + fγ(β))− 4n 6 fγ((gh)n) 6 n(fγ(α) + fγ(β)) + 4n. (21)

Since hn and gn have fundamental domains made of n copies of α and β respectively,
Lemma 6.5 also yields, in a similar way,

nfγ(α)− n 6 fγ(hn) 6 nfγ(α) + n (22)

and
nfγ(β)− n 6 fγ(gn) 6 nfγ(β) + n. (23)

Subtracting (22) and (23) from (21) yields

−6n 6 fγ((gh)n)− fγ(gn)− fγ(hn) 6 6n.

Dividing by n and taking a limit, we obtain |hγ(gh)− hγ(g)− hγ(h)| 6 6, as
desired.

Remark. In the argument just given, the fundamental domains for h, g, and
gh respectively were decomposed into one, one, and four segments; hence Th/〈h〉,
Tg/〈g〉, and Tgh/〈gh〉 contained a total of six junctures. These junctures were
the only source of defect, since the individual segments always contributed zero
to |fγ(gh)− fγ(g)− fγ(h)|. Every case below follows the same pattern: the defect
will be bounded above by the total number of junctures appearing in the quotient
circuits. In what follows, we will describe the structure of Th/〈h〉, Tg/〈g〉, and
Tgh/〈gh〉 in each case and leave some of the details of the estimates to the reader.

Returning to Case I, suppose g and h are both elliptic. Then gn and hn are also
elliptic, and (gh)n has a fundamental domain made of n copies of ρ and n copies of
ρ. See Figure 7. Using Lemma 6.5 one obtains

|fγ((gh)n)− fγ(gn)− fγ(hn)| = |fγ((gh)n)| 6 2n,

for a defect of at most 2.

ρ

Th

Tg

Tgh

Figure 7. Case I, g and h elliptic. Th is green, Tg is purple, Tgh is
black. The red edges are of the form e, he, and ghe.

If one of g and h is elliptic, say g, then hn has a fundamental domain given by
n copies of α, and (gh)n has a fundamental domain given by n copies each of α, ρ,
and ρ. The estimate given by Lemma 6.5 becomes

|fγ((gh)n)− fγ(gn)− fγ(hn)| = |fγ((gh)n)− fγ(hn)| 6 4n,

for a defect of at most 4.

Case II: g and h are hyperbolic, with positive overlap. That is, Tg and Th intersect
in a segment, on which Tg and Th induce the same orientation. Let e be an edge
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in Tg ∩ Th, oriented coherently with Tg and Th. Let v be the terminal vertex of
e. Since e ∈ Th, the edges h−1e and e are coherently oriented and α = [h−1v, v]
is a fundamental domain for h. Similarly, e and ge are coherently oriented and
β = [v, gv] is a fundamental domain for g.

Let all the edges of α and β be given orientations from Th and Tg respectively.
Since g and h both move e in the same direction (that is, into the same component
of T − {e}), e separates h−1e from ge. It follows that the edges of α and of β are
all coherently oriented in T . Hence α and β do not overlap, and α · β = [h−1v, gv]
is a fundamental domain for gh.

With a total of four junctures (one for h, one for g, two for gh), the estimate
given by Lemma 6.5 becomes

|fγ((gh)n)− fγ(gn)− fγ(hn)| 6 4n,

for a defect of at most 4.

Case III: g and h are hyperbolic, with negative overlap. That is, Tg and Th
intersect in a segment, on which Tg and Th induce opposite orientations. Let ∆ be
the length (possibly infinite) of Tg ∩ Th. There are several sub-cases, according to
the relative sizes of |g|, |h|, and ∆.

Sub-case III-A: ∆ 6 |g| , |h|, not all three numbers equal. Let ρ be the segment
Th ∩ Tg, oriented coherently with Th. There is a fundamental domain for h of the
form α · ρ, and similarly, a fundamental domain for g of the form ρ · β; see Figure 8.
Then α · β is a fundamental domain for gh. (By assumption, at least one of α, β is
a non-trivial segment, and gh is hyperbolic.)

α β

ρ

Th

Tg

Tgh

Figure 8. Case III-A. Th is green, Tg is purple, Tgh is black. The
red edges are of the form e, he, and ghe.

The quotient circuits have at most six junctures: two for g, two for h, and two
for gh. Lemma 6.5 leads to an estimate

|fγ((gh)n)− fγ(gn)− fγ(hn)| 6 6n,

for a defect of at most 6.

Sub-case III-B: |g| = |h| 6 ∆. In this case, gh is elliptic. Let α ⊂ Th ∩ Tg be a
fundamental domain for h. Then α is a fundamental domain for g, and gh fixes the
initial endpoint of α. With two junctures in total, we obtain the estimate

|fγ((gh)n)− fγ(gn)− fγ(hn)| = |−fγ(gn)− fγ(hn)| 6 2n,
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for a defect of at most 2.

Sub-case III-C: |h| < |g| ,∆. There is a simplicial fundamental domain α for h
such that if e is the initial edge of α, then α ·he is contained in Th∩Tg. Then, there
is a fundamental domain for g of the form α · β; see Figure 9. By considering the
location of ghe, one finds that β is a fundamental domain for gh. The three circuits
have a total of four junctures, and we obtain

|fγ((gh)n)− fγ(gn)− fγ(hn)| 6 4n,

for a defect of at most 4.

α

β

α

β
e he

ghe e

hegheTh

Tg

Th

Tg

Figure 9. Cases III-C (left) and III-D (right). Th is green, Tg is purple.

Sub-case III-D: |g| < |h| ,∆. Let β be a simplicial fundamental domain for g
such that both β and the edge immediately preceding it along Tg lie within Th ∩Tg.
There is a fundamental domain for h of the form α · β. Let e be the initial edge
of α. Then e, he, and ghe lie on Th as indicated in Figure 9, showing that α is a
fundamental domain for gh. The three circuits have a total of four junctures, and
we obtain

|fγ((gh)n)− fγ(gn)− fγ(hn)| 6 4n,

for a defect of at most 4.

Case IV: g is elliptic, h is hyperbolic, Tg ∩ Th 6= ∅. If Tg ∩ Th contains an edge
e, let α ⊂ Th be the fundamental domain starting with h−1e. Then α is also a
fundamental domain for gh. This leads to an estimate

|fγ((gh)n)− fγ(gn)− fγ(hn)| = |fγ((gh)n)− fγ(hn)| 6 2n,

and a defect of at most 2.
If Tg ∩ Th is a single vertex v, let e ∈ Th be the coherently oriented edge with

initial vertex v, and let α be the fundamental domain [h−1v, v]. If ge 6∈ α then α is
a fundamental domain for gh also, and we obtain a defect of at most 2 as above.

So now assume that ge ∈ α, i.e. that ge separates h−1v from v. Note that h−1e
and ge are not coherently oriented, so the characteristic subtree Tgh will not contain
these edges.

We have that gh(α) ∩ α contains the edge ge. Consider the length of gh(α) ∩ α.
If this length is |α| /2 or greater, then gh fixes the midpoint of α. Then

|fγ((gh)n)− fγ(gn)− fγ(hn)| = |−fγ(hn)| 6 n,

giving a defect of at most 1.
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Otherwise, there is a subsegment β ⊂ α, centered on the midpoint of α, of
maximal size so that β does not overlap ghβ. We can write α as a concatenation
α1 ·β ·α2, where α2 = ghα1. See Figure 10. Now β is a fundamental domain for gh,

α1

α2

ghα2

β

ghβ Th
Tg

Tgh

Figure 10. Case IV. The element gh takes α1 to α2. Left to right,
the red edges are h−1e, ge, and e.

and we have a total of four junctures (three in Th/〈h〉 and one in Tgh/〈gh〉). Thus
we have

|fγ((gh)n)− fγ(gn)− fγ(hn)| = |fγ((gh)n)− fγ(hn)| 6 4n,

and a defect of at most 4.

Case V: h is elliptic, g is hyperbolic, Tg ∩ Th 6= ∅. This case is covered by Case
IV, replacing g and h by h−1 and g−1 respectively.

Case VI: the remaining cases. If g and h are hyperbolic and Tg and Th intersect
in one point, then the configuration closely resembles the first one discussed in Case
I, except that the copies of ρ have been shrunk to have length zero. That is, there
are fundamental domains α and β for h and g respectively, such that α · β is a
fundamental domain for gh. With four junctures, we obtain

|fγ((gh)n)− fγ(gn)− fγ(hn)| 6 4n,

for a defect of at most 4.
Lastly, if g and h have a common fixed point, then

|fγ((gh)n)− fγ(gn)− fγ(hn)| = 0

for all n. �

Remark 6.7. The functions fγ and hγ can be defined in the more general setting of
a group acting on an R–tree. The proof of Theorem 6.6 goes through in this setting,
with only superficial modifications (essentially, removing any mention of edges, and
using small segments instead).

Well-aligned elements. We now consider elements g ∈ G for which we can find
a segment γ ⊂ T such that hγ(g) = 1.

Definition 6.8. Given a G–tree T , a hyperbolic element g ∈ G is well-aligned if
there does not exist an element h ∈ G such that ghgh−1 fixes an edge of Tg. This
property is the G–tree analogue of the double coset condition from [9, Theorem D].

Theorem 6.9. Suppose G acts on a simplicial tree T . If g ∈ G is well-aligned then
scl(g) > 1/12.
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Proof. Let γ = [x, gx] ⊂ Tg be a fundamental domain for g where x is not a vertex
of T . We know that cγ(gn) = n for all n. If cγ(gn) > 0 for some n, then there
is a copy of γ in Tg. That is, there is an element h such that hγ lies in Tg with
the opposite orientation. So h(Tg) = Thgh−1 has negative overlap with Tg along a

segment containing hγ. The element ghgh−1 fixes one of the endpoints of hγ, since
g and hgh−1 shift it in opposite directions inside Tg ∩ Thgh−1 . This endpoint is in

the interior of an edge e ⊂ Tg, and so ghgh−1 fixes e. Hence, if g is well-aligned, we
must have hγ(g) = 1. By Theorem 6.6, hγ is a homogeneous quasimorphism with
defect at most 6, and so Proposition 6.2 implies that scl(g) > 1/12. �

This bound is in fact optimal. Both in HNN extensions and in amalgamated free
products, there are examples of elements g with scl(g) = 1/12 that are well-aligned
with respect to the action on the associated Bass–Serre tree, as we now explain.
This answers Question 8.4 from [9].

Theorem 6.10. Let g = tat−1a ∈ BS(2, 3) and let T be the Bass–Serre tree asso-
ciated to the splitting of BS(2, 3) as an HNN extension 〈a〉∗〈ta2t−1=a3〉. Then g is
well-aligned and scl(g) = 1/12. In particular, the bound in Theorem 6.9 is optimal.

Proof. Denote the vertex of T stabilized by 〈a〉 by v0 and let v1 = tv0. The vertices
along the axis of g are: {gnv0, g

nv1}n∈Z.
If ghgh−1 fixes an edge e ⊂ Tg, then we also see that hgh−1g fixes g−1e ⊂ Tg.

Replacing h by hgk for some k (which does not affect hgh−1), we can arrange that h
fixes a vertex of Tg. By further replacing h by a conjugate gkhg−k, we can arrange
that the vertex fixed by h is either v0 or v1; the elements ghgh−1 and hgh−1g still
fix edges of Tg.

First assume that h fixes v0, and so h = ar for some r ∈ Z. In this case

ghgh−1 = tat−1a1+rtat−1a1−r.

If ghgh−1 is elliptic (which it necessarily is if it fixes an edge), then this expression
cannot be cyclically reduced (Remark 2.6). Hence we find that r ≡ ±1 mod 3. If
r ≡ 1 mod 3, then hgh−1g = a5; if r ≡ −1 mod 3 then ghgh−1 = a5. In either
case, the element does not fix an edge in T , giving a contradiction.

Similarly, if h fixes v1, then we have h = tart−1 for some r ∈ Z, and so

hgh−1g = ta1+rt−1ata1−rt−1a.

Again, this expression cannot be cyclically reduced if hgh−1g is elliptic, and so r ≡ 1
mod 2. Again, we find that hgh−1g = a5, giving a contradiction for the same reason
as above. Therefore g is well-aligned as claimed.

Finally, scl(tat−1a) = 1/12 by Proposition 5.5. �

The bound in Theorem 6.9 is still optimal if one restricts to amalgamated free
products. In the free product Z/2Z ∗Z/3Z ∼= PSL(2,Z), no nontrivial element fixes
an edge of the associated Bass–Serre tree, so every hyperbolic element that is not
conjugate to its inverse is well-aligned. The group PSL(2,Z) has a finite index free
subgroup, and therefore stable commutator length can be computed in this group
by using a relationship between stable commutator length in a group and a finite
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index subgroup from [6] together with Calegari’s algorithm for computing stable
commutator length in free groups [7]. This is described explicitly in [16]. The
element

(
1 0
1 1

)
is an example of an element that has stable commutator length 1/12.

Acylindrical trees. We conclude this section by adding a moderate restriction,
acylindricity, to the tree action. We can then say something about hyperbolic
elements that are not necessarily well-aligned.

Acylindricity has been used previously in the context of counting quasimorphisms
on Gromov-hyperbolic spaces, cf. [9]. For a tree, the definition is particularly simple
to state. A group acts K–acylindrically on a tree if the stabilizer of any segment of
length K is trivial.

Theorem 6.11. Suppose G acts K–acylindrically on a tree T and let N be the
smallest integer greater than or equal to K

2 + 1.

(i) If g ∈ G is hyperbolic then either scl(g) = 0 or scl(g) > 1/12N .
(ii) If g ∈ G is hyperbolic and |g| > K then either scl(g) = 0 or scl(g) > 1/24.

In both cases, scl(g) = 0 if and only if g is conjugate to g−1.

Proof. First note that if |g| = 1 then a fundamental domain for g maps to a single
loop in the quotient graph of T , which implies that g has infinite order in the
abelianization of G, and scl(g) = ∞. (In fact, the same conclusion holds whenever
|g| is odd.) Thus we may assume that |g| > 2.

Observe that if for some h ∈ G, we have
∣∣Tg ∩ Thgh−1

∣∣ > K + |g| where g and

hgh−1 shift in opposite directions, then ghgh−1 fixes a segment of length K and
hence g = hg−1h−1. In particular, scl(g) = 0.

For (i) note that
∣∣gN ∣∣ = N |g| > K

2 |g|+|g| > K+|g|. Taking γ to be a fundamental

domain for gN , if hγ(gN ) < 1 then there is an h as above and g = hg−1h−1,
scl(g) = 0. Otherwise, hγ(gN ) = 1 and scl(g) = 1

N scl(gN ) > 1/12N by Theorem
6.6 and Proposition 6.2.

For (ii) let N = 2 and apply the same reasoning:
∣∣g2
∣∣ = 2 |g| > K+ |g|, and either

scl(g) = 0 or scl(g) = 1
2 scl(g2) > 1/24. �

7. The gap theorem

In this section we consider G–trees of a particular form, for which we can improve
upon the “well-aligned” condition in Theorem 6.9 without any trade-off in the lower
bound of 1/12.

Let G be an HNN extension A ∗C , with stable letter t, such that the edge groups C
and Ct are central in A. Let T be the Bass–Serre tree associated to this HNN exten-
sion. Such a tree has special properties, given below in Lemma 7.1 and Proposition
7.2.

This class of HNN extensions obviously includes the Baumslag–Solitar groups. It
is still true (cf. Remark 2.4) that an element cannot have finite stable commutator
length if its t–exponent is non-zero.
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We use the following notation for a G–tree T : if X ⊂ T is any subset, then GX
denotes the stabilizer of X, which is the subgroup of G consisting of those elements
that fix X pointwise.

Lemma 7.1. Suppose S ⊂ T is a subtree and h ∈ G fixes a vertex v ∈ S. Then
GS = GhS.

Proof. Let e be an edge in S with endpoint v. Then GS ⊂ Ge. Since Ge is central
in Gv, h commutes with GS , and therefore GhS = hGSh

−1 = GS . �

Consider the t–exponent homomorphism φ : G→ Z (sending t to 1 and A to 0).
There is an action of Z on R by integer translations. Letting G act on R via φ,
there is also a G–equivariant map F : T → R. This map is just the natural map
from T to the universal cover of the quotient graph T/G. The action of an element
g on T projects by F to a translation by φ(g) on R. We think of F as a height
function on T . Then, the elements of t–exponent zero act on T by height-preserving
automorphisms.

Proposition 7.2. If S ⊂ T is a subtree and σ ⊂ S is a finite segment such that
F (σ) = F (S) then Gσ = GS.

Proof. First suppose that S is a finite subtree. Let {Si} be the subtrees obtained
as the closures of the components of S − σ. Then GS = Gσ ∩

⋂
iGSi . Fixing i, we

will prove by induction on the number of edges of Si that Gσ ⊂ GSi . It then follows
that Gσ = GS .

The base case is that Si is a single edge e with one vertex v on σ. Since F (Si) ⊂
F (σ), there is an edge e′ on σ with endpoint v and an element h ∈ Gv taking e to
e′. By Lemma 7.1 we have that GSi = Ge′ ⊃ Gσ.

For larger Si, let e ∈ Si be the edge with endpoint v ∈ σ. Again there is an edge
e′ on σ with endpoint v and an element h ∈ Gv taking e to e′. Again, GSi = GhSi

by
Lemma 7.1. But now hSi = e′ ∪S′i where S′i has fewer edges than Si. By induction,
Gσ ⊂ GS′i . Since Gσ ⊂ Ge′ , we now have Gσ ⊂ (Ge′ ∩GS′i) = GSi .

Now consider an arbitrary subtree S. We need to show that Gσ fixes S pointwise.
But every point x in S is in a finite subtree S′ containing σ, andGσ fixes S′ pointwise;
hence Gσ fixes x. �

Now consider a hyperbolic element g with t–exponent zero. The axis Tg has the
property that F (Tg) is a finite interval. To see this, let γ be a fundamental domain,
and note that Tg =

⋃
n g

nγ. The t–exponent condition implies that F (gnγ) = F (γ)
for all n, and hence F (Tg) = F (γ).

Definitions 7.3. We call a vertex v on Tg extremal if F (v) is an endpoint of F (Tg).
A segment σ ⊂ Tg is stable if F (σ) = F (Tg) and σ contains no extremal vertex in
its interior (equivalently, no proper subsegment σ′ satisfies F (σ′) = F (Tg)). Note
that if σ and τ are stable segments, then they do not overlap, unless they are equal.

The natural orientation of Tg defines a linear ordering <g on the stable segments
of Tg. The “larger” end is the attracting end of Tg; that is, σ <g gσ always holds.
We say that σ 6g τ if σ <g τ or σ = τ .
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Remark 7.4. If γ is a fundamental domain for g whose endpoints are extremal, then
every stable segment either does not overlap with γ or is contained in γ. Moreover,
γ contains a copy of every stable segment. (Being a fundamental domain, it overlaps
with a copy of every non-trivial segment in Tg.)

Proposition 7.2 immediately implies:

Corollary 7.5. If σ ⊂ Tg is stable then Gσ = GTg .

The main technical result of this section is:

Theorem 7.6. Let G = A ∗C with stable letter t, and C,Ct central in A. Let g ∈ G
be a hyperbolic element with t–exponent zero. Then either:

(i) there is a fundamental domain γ for g such that hγ(g) = 1, or

(ii) there is an element h such that h(Tg) = T g.

Conclusion (i) implies by Proposition 6.2 and Theorem 6.6 that scl(g) > 1/12.

Proof. Let α ⊂ Tg be a stable segment and let γ be the fundamental domain for g
that starts with α. If hγ(g) < 1 then there is an element h such that hγ lies in Tg
with the opposite orientation and overlaps with α. Note that h fixes a point in γ.
In particular h is elliptic, and hence acts as a height-preserving automorphism of
T . Now hγ is a fundamental domain for g−1 with extremal endpoints, and so hγ
contains α (which is stable for Tg−1 as well as for Tg).

The segment β = h−1α is a stable segment for Tg contained in γ. Clearly α 6g β,
and as the endpoints of α have different heights, α 6= β; therefore α <g β. Note
that hα = β, since h acts as a reflection on the segment γ ∩ hγ. Hence the element
h2 fixes the stable segment α. Therefore, by Proposition 7.2, h2 fixes Tg ∪ h(Tg).
That is, h acts as an involution on this entire subtree of T .

Claim. If there is a stable segment ρ ⊂ Tg∩h(Tg) such that either ρ <g α or β <g ρ,
then conclusion (ii) holds.

Proof of Claim. Since h acts as a reflection on the segment Tg ∩ h(Tg), if ρ ⊂ Tg ∩
h(Tg) and ρ <g α, then hρ ⊂ Tg ∩ h(Tg) and β <g hρ. Thus we only need to verify
the claim in the β <g ρ case.

Let σ be the <g–smallest stable segment in hγ. Observe that σ ⊂ Tg ∩ h(Tg).
The translate gσ is the <g–smallest stable segment in ghγ, which has a common
endpoint with β. Hence gσ 6g τ for any τ satisfying β <g τ . In particular, gσ 6g ρ.
Since β, ρ ⊂ Tg ∩ h(Tg) and β <g gσ 6g ρ, it follows that gσ ⊂ Tg ∩ h(Tg).

Note that h(Tg) = Thgh−1 , and hgh−1 takes gσ to σ. Thus ghgh−1 fixes gσ. Since

this is a stable segment, ghgh−1 must fix all of Tg by Corollary 7.5. This implies
that hgh−1 acts on Tg as a translation, of the same amplitude but opposite direction

as g. Hence Thgh−1 = T g. �

Returning to the proof of Theorem 7.6, assume that the Claim does not apply.
Then α and β are the <g–smallest and <g–largest stable segments in Tg ∩ h(Tg)
respectively. It follows that β is also the <g–largest stable segment in γ; otherwise,
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if β <g ρ and ρ ⊂ γ, then hρ <g α and hρ ⊂ Tg ∩ h(Tg), contradicting that α is
smallest.

Note that h takes stable segments to stable segments, and does not take any
stable segment to itself (since the endpoints have different heights). Hence the
stable segments of γ may be enumerated in order as α = α1, . . . , αn, βn, . . . , β1 = β
where h interchanges αi and βi.

Now let γ′ be the fundamental domain for g starting with βn. Assuming that
conclusion (i) does not hold, we have hγ′(g) < 1, and so there is an elliptic element
k such that kγ′ lies in Tg with the opposite orientation and contains βn.

The configuration of Tg, k(Tg), βn, and kβn is exactly analogous to that of Tg,
h(Tg), α, and β. In particular, the Claim is applicable to this situation. If the Claim
does not apply, then we conclude as above that βn and kβn are the <g–smallest and
<g–largest stable segments in Tg ∩ k(Tg) and that kβn is the <g–largest stable
segment in γ′.

The stable segments in γ′ are, in order: βn, . . . , β1, gα1, . . . , gαn, and the element
k interchanges βi and gαi. Thus

khα = khα1 = kβ1 = gα1 = gα.

Since kh and g agree on the stable segment α, they agree on all of Tg∪h(Tg)∪k(Tg),
by Proposition 7.2. Similarly, h and k both act as involutions on Tg ∪h(Tg)∪k(Tg).
Now

hg−1β = h(kh)−1β = hhkβ = kβ = gα,

which implies that gα ⊂ Tg ∩ h(Tg). However, β <g gα and β is the <g–largest
stable segment in Tg ∩ h(Tg). This contradiction establishes the theorem. �

The next proposition concerns conclusion (ii) in Theorem 7.6. It is a variant of
the observation that if an element is conjugate to its inverse, then it has scl zero.

Proposition 7.7. Suppose G acts on a tree T and scl vanishes on the elliptic
elements of G. If g is hyperbolic and there is an element h such that h(Tg) = T g,
then scl(g) = 0.

Proof. Since h(Tg) = Thgh−1 , the element ghgh−1 fixes Tg pointwise. Similarly,

gnhgnh−1 fixes Tg for every n. Thus there are elliptic elements an such that
gnhgnh−1 = an. This equation can be realized by a surface of genus zero and
three boundary components, labeled by gn, gn, and a−1

n respectively. Lemma 2.2
now implies that

scl(g) 6
1

4n
+

scl(a−1
n )

2n
.

Hence scl(g) 6 1/4n for all n > 0. �

Theorem 7.8 (Gap theorem). For every element g ∈ BS(m, `), either scl(g) = 0
or scl(g) > 1/12.

Proof. Every elliptic element g is conjugate to a power of a, and therefore scl(g) =
0 for elliptic elements by Lemma 2.3. If g is hyperbolic then Theorem 7.6 and
Proposition 7.7 imply that scl(g) = 0 or scl(g) > 1/12. �
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Remark 7.9. If m and ` are both odd, then conclusion (ii) of Theorem 7.6 can
never occur, since the element h would fix a vertex of Tg and exchange two adjacent
edges, yielding an element of order two in Z/mZ or Z/`Z. Therefore, scl(g) > 1/12
for every hyperbolic element g in BS(m, `).

If either m or ` is even, say m = 2k, then for g = takt−1artakt−1as ∈ BS(m, `)
where r + s = ` we have scl(g) = 0. Indeed, taking h = ta−kt−1 one checks that
ghgh−1 = a4` ∈ 〈a`〉 = GTg . Thus h(Tg) = T g and so by Proposition 7.7 we have
scl(g) = 0.
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