Continuity

Are the following functions continuous at a ?

1. $f(x)=\left\{\begin{array}{ll}1-x^{2} & x<1 \\ \frac{1}{x} & x \geq 1\end{array}, \quad a=1\right.$
2. $\begin{cases}\cos x & x<0 \\ 0 & x=0, \quad a=0 \\ 1-x^{2} & x>0\end{cases}$

Where are the following discontinuous?

1. $\begin{cases}x+2 & x<0 \\ 2 x^{2} & 0 \leq x \leq 1 \\ 2-x & x>1\end{cases}$
2. $\begin{cases}x+1 & x \leq 1 \\ \frac{1}{x} & 1<x<3 \\ \sqrt{x-3} & x \geq 3\end{cases}$

Intermediate Value Theorem

Show the following have a root in the given interval.

1. $\sqrt[3]{x}=1-x,(0,1)$
2. $\sin x=x^{2}-x,(1,2)$

Review

Find the following limits:

1. $\lim _{x \rightarrow 0} \cos (x+\sin x)$
2. $\lim _{x \rightarrow 4^{+}} \frac{4-x}{|4-x|}$
3. $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}$
4. $\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{s-16}$
5. $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}$
6. $\lim _{h \rightarrow 0} \frac{(h-1)^{3}+1}{h}$
7. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{3}-8}$
8. $\lim _{x \rightarrow 0}\left(\frac{1}{x-1}+\frac{1}{x^{2}-3 x+2}\right)$

Prove that $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right)=0$.

Use the Intermediate Value Theorem to show that there is a root of the equation in the given interval.

1. $x^{5}-x^{3}+3 x-5=0,(1,2)$
2. $2 \sin x=3-2 x,(0,1)$
