Limits

Evaluate the following limits:

1. $f(x)= \begin{cases}x+2 & x \leq 6 \\ x^{2}-1 & x>6\end{cases}$
2. $\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}$
3. $\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$
4. $f(x)=\left\{\begin{array}{ll}\sqrt{x-4} & x>4 \\ 8-2 x & x<4\end{array}\right\}$

Limits at Infinity

Evaluate the following limits:

1. $\lim _{x \rightarrow \infty} \frac{4 x^{2}+1}{3 x^{2}+2 x-1}$
2. $\lim _{x \rightarrow \infty} \frac{x^{3}+5 x^{2}}{x^{8}-3 x^{3}+2 x+1}$
3. $\lim _{x \rightarrow-\infty} \frac{x^{2}+1}{2 x-1}$
4. $\lim _{x \rightarrow \infty} \frac{x+3}{\sqrt{9 x^{2}-5 x}}$

Limit Definition

Math Logic Symbols

\forall : For each / For every
\exists : There exists
\Longrightarrow : Implies that / Then / Hence
\ni : Such that

Limit Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

if, for every $\varepsilon>0$, there exists a $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text { then }|f(x)-L|<\varepsilon
$$

Example 1

Let $f(x)=2 x+3$.

1. Graph the function and the point on the line where $\mathrm{x}=2$.

2. We want to prove that $\lim _{x \rightarrow 2} f(x)=7$. If $\varepsilon=1$, what does δ need to be?
3. Find δ for the limit definition. (δ will be in terms of ε)

Example 2

Let $f(x)=\sqrt{2 x}$.

1. Graph the function and the point on the line where $\mathrm{x}=0$.

2. We want to prove that $\lim _{x \rightarrow 0^{+}} f(x)=0$. If $\varepsilon=\frac{1}{2}$, what does δ need to be?
3. Find δ for the limit definition. (δ will be in terms of ε)

Challenge Problems

These are difficult!

1. Draw the graph of the equation $x+|x|=y+|y|$.

2. Evaluate $\lim _{x \rightarrow 0} \frac{|2 x-1|-|2 x+1|}{x}$
3. Evaluate $\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$
4. A fixed point is a function f is a number c in its domain such that $f(x)=c$.
(a) Sketch the graph of a continuous function with domain $[0,1]$ whose range also lies in $[0,1]$. Locate a fixed point of f.

(b) Try to draw the graph of a continuous function with domain $[0,1]$ and range in $[0,1]$ that does not have a fixed point. What is the obstacle?

(c) Use the Intermediate Value Theorem to prove that any continuous function with domain $[0,1]$ and range in $[0,1]$ must have a fixed point.

"I THINK YOU SHOULD BE MORE EXPLICIT HERE \mathbb{N} STEP TWO,"
