Transformations

Vertical Transformations

- f(x) + c: Shift up by c.
- f(x) c: Shift down by c.
- $a \cdot f(x)$: Vertical stretch/contraction by a.
- -f(x): Reflection over the x axis.

Horizontal Transformations

- f(x+c): Shift left by c.
- f(x-c): Shift right by c.
- $f(a \cdot x)$: Vertical stretch/contraction by a.
- f(-x): Reflection over the y axis.

Write the formula for the following transformations:

- 1. $y = \sqrt[4]{x}$ shifted to the right 4 and up 6.
- 2. $y = \pi^x$ reflected over the x axis, compressed vertically by a factor of 3, and shifted down 2 and to the right 4.
- 3. $y = x^{\pi}$ reflected over the y axis, compressed horizontally by a factor of 3, and shifted to the left 6.
- 4. $y = \frac{\sqrt{x^3-1}}{1+\sqrt[3]{x}}$ stretched horizontally by a factor of 2 and shifted to the left 1.

Compositions

Break the following into a composition of functions:

1. $\sqrt[3]{1+4x}$ 5. sin(sin(sin(x)))

2.
$$tan\pi x$$
 6. $\sqrt{x + \sqrt{x + \sqrt{x}}}$

3. sin(tan2x)

7. $[x + (x + \sin^2 x)^3]^4$

4. $\frac{1}{\sqrt[3]{x^2+x+1}}$ 8. $\cos\sqrt{\sin(\tan \pi x)}$

Trigonometric Functions

Draw the 30-60-90 triangle below:

Evaluate the following:

- 1. $sin(\frac{\pi}{3})$ 3. $cos(\frac{\pi}{3})$ 5. $tan(\frac{\pi}{3})$
- 2. $sin(\frac{\pi}{6})$ 4. $cos(\frac{\pi}{6})$ 6. $tan(\frac{\pi}{6})$

Draw the 45-45-90 triangle below:

Evaluate the following:

1. $sin(\frac{\pi}{4})$ 2. $cos(\frac{\pi}{4})$ 3. $tan(\frac{\pi}{4})$

Important Trig Identities

- $\bullet \ -1 \leq sinx \leq 1$
- $-1 \le cosx \le 1$
- $tanx = \frac{sinx}{cosx}$
- $secx = \frac{1}{cosx}$
- $cosx = \frac{1}{sinx}$
- $cotx = \frac{1}{tanx}$
- $sin^2x + cos^2x = 1$
- $1 + tan^2x = sec^2x$
- $1 + \cot^2 x = \csc^2 x$
- sin(-x) = -sinx
- cos(-x) = cosx
- sin(2x) = 2sinxcosx
- $cos(2x) = cos^2x sin^2x$

Can you get $1 + tan^2x = sec^2x$ and $1 + cot^2x = csc^2x$ from $sin^2x + cos^2x = 1$?

Can we think of sin(-x) = -sinx and cos(-x) = cosx in terms of transformations? [Hint: Think of the graph of sinx and cosx.]