Transformations

Vertical Transformations

- $f(x)+c$: Shift up by c.
- $f(x)-c$: Shift down by c.
- $a \cdot f(x)$: Vertical stretch/contraction by a.
- $-f(x)$: Reflection over the x axis.

Horizontal Transformations

- $f(x+c)$: Shift left by c.
- $f(x-c)$: Shift right by c.
- $f(a \cdot x)$: Vertical stretch/contraction by a.
- $f(-x)$: Reflection over the y axis.

Write the formula for the following transformations:

1. $y=\sqrt[4]{x}$ shifted to the right 4 and up 6 .
2. $y=\pi^{x}$ reflected over the x axis, compressed vertically by a factor of 3 , and shifted down 2 and to the right 4.
3. $y=x^{\pi}$ reflected over the y axis, compressed horizontally by a factor of 3 , and shifted to the left 6.
4. $y=\frac{\sqrt{x^{3}-1}}{1+\sqrt[3]{x}}$ stretched horizontally by a factor of 2 and shifted to the left 1 .

Compositions

Break the following into a composition of functions:

1. $\sqrt[3]{1+4 x}$
2. $\sin (\sin (\sin (x)))$
3. $\tan \pi x$
4. $\sqrt{x+\sqrt{x+\sqrt{x}}}$
5. $\sin (\tan 2 x)$
6. $\left[x+\left(x+\sin ^{2} x\right)^{3}\right]^{4}$
7. $\frac{1}{\sqrt[3]{x^{2}+x+1}}$
8. $\cos \sqrt{\sin (\tan \pi x)}$

Trigonometric Functions

Draw the 30-60-90 triangle below:

Evaluate the following:

1. $\sin \left(\frac{\pi}{3}\right)$
2. $\sin \left(\frac{\pi}{6}\right)$
3. $\cos \left(\frac{\pi}{3}\right)$
4. $\cos \left(\frac{\pi}{6}\right)$
5. $\tan \left(\frac{\pi}{3}\right)$
6. $\tan \left(\frac{\pi}{6}\right)$

Draw the 45-45-90 triangle below:

Evaluate the following:

1. $\sin \left(\frac{\pi}{4}\right)$
2. $\cos \left(\frac{\pi}{4}\right)$
3. $\tan \left(\frac{\pi}{4}\right)$

Important Trig Identities

- $-1 \leq \sin x \leq 1$
- $-1 \leq \cos x \leq 1$
- $\tan x=\frac{\sin x}{\cos x}$
- $\sec x=\frac{1}{\cos x}$
- $\cos x=\frac{1}{\sin x}$
- $\cot x=\frac{1}{\tan x}$
- $\sin ^{2} x+\cos ^{2} x=1$
- $1+\tan ^{2} x=\sec ^{2} x$
- $1+\cot ^{2} x=\csc ^{2} x$
- $\sin (-x)=-\sin x$
- $\cos (-x)=\cos x$
- $\sin (2 x)=2 \sin x \cos x$
- $\cos (2 x)=\cos ^{2} x-\sin ^{2} x$

Can you get $1+\tan ^{2} x=\sec ^{2} x$ and $1+\cot ^{2} x=\csc ^{2} x$ from $\sin ^{2} x+\cos ^{2} x=1$?

Can we think of $\sin (-x)=-\sin x$ and $\cos (-x)=\cos x$ in terms of transformations? [Hint: Think of the graph of $\sin x$ and $\cos x$.]

