Related Rates

1. If a snowball melts so that its surface area decreases at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$, find the rate at which the diameter decreases when the diameter is 10 cm .
2. If two resistors with resistances R_{1} and R_{2} are connected in parallel, as in the figure, then the total resistance R, measured in ohms (Ω), is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

If R_{1} and R_{2} are increasing at rates of $0.3 \Omega / s$ and $0.2 \Omega / s$, respectively, how fast is R changing when $R_{1}=80 \Omega$ and $R_{2}=100 \Omega$?

3. The minute hand on a watch is 8 mm long and the hour hand is 4 mm long. How fast is the distance between the tips changing at one o'clock?
4. When air expands adiabatically (without gaining or losing heat), its pressure P and volume V are related by the equation $P V^{1.4}=C$, where C is a constant. Suppose that a certain instant the volume is $400 \mathrm{~cm}^{3}$ and the pressure is 80 kPa and is decreasing at a rate of $10 \mathrm{kPa} / \mathrm{min}$. At what rate is the volume increasing in this instant?
5. A Ferris wheel with a radius of 10 m is rotating at a rate of one revolution every 2 minutes. How fast is a rider rising when his seat is 16 m above ground level?
6. A particle moves along the curve $y=2 \sin \left(\frac{\pi x}{2}\right)$. As the particle passes through the point $\left(\frac{1}{3}, 1\right)$, its x-coordinate increases at a rate of $\sqrt{10} \mathrm{~cm} / \mathrm{s}$. How fast is the distance from the particle to the origin changing at this instant?

Review

Calculate the following using the definition of the derivative:

1. $y=\frac{1}{2} x-\frac{1}{3}$
2. $y=x^{4}$
3. $y=\frac{1-2 t}{3+t}$
4. $y=\sqrt{3+x}$

Calculate the following derivatives:

1. $f(x)=2^{40}$
2. $f(x)=x^{3}-4 x+6$
3. $y=x^{2}(1-2 x)$
4. $y=x^{\frac{5}{3}}-x^{\frac{2}{3}}$
5. $f(t)=\sqrt{t}-t$
6. $f(x)=\left(\frac{1}{x^{2}}-\frac{3}{x^{4}}\right)\left(x+5 x^{3}\right)$
7. $y=\frac{1+2 x}{3-4 x}$
8. $f(x)=\frac{x^{2}+4 x+3}{\sqrt{x}}$
9. $f(x)=\sin x+\frac{1}{2} \cot x$
10. $f(t)=(3 t-1)^{4}(2 t+3)^{-3}$
11. $y=4 \sec x-\csc x$
12. $f(x)=\left(\frac{x}{x^{3}+1}\right)^{6}$
13. $y=\frac{\cos x}{1-\sin x}$
14. $y=\cos \sqrt{\sin (\tan \pi x)}$

A runner sprints around a circular track of radius 100 m at a constant speed of $7 \mathrm{~m} / \mathrm{s}$. The runner's friend is standing at a distance 200 m from the center of the track. How fast is the distance between the friends changing when the distance between them is 200 m ?

Find the linearization $L(x)$ at a.

1. $f(x)=x^{4}+3 x^{2}, a=-1$.
2. $f(x)=\sqrt{x}, a=4$.

Find the differential of the following functions.

1. $y=u \cos u$.
2. $y=\sqrt{z+\frac{1}{z}}$.

Use linear approximation to estimate the given number.

1. $\frac{1}{4.002}$.
2. $\sqrt{99.8}$.
3. $\sin 1^{\circ}$.

Use differentials to estimate the given number.

1. $\frac{1}{4.002}$.
2. $\sqrt{99.8}$.
3. $\sin 1^{\circ}$.

