Implicit Differentiation

1. $16 x^{2}+25 y^{2}=400$
2. $3 x^{2} y+2 x y^{3}=1$
3. $x \sin \left(y^{2}\right)=1$
4. $(x-1) y^{2}=x+1$
5. $\sqrt{x}+\sqrt{y}=1$
6. $\frac{1}{x+1}+\frac{1}{y+1}=1$
7. $x^{2}+x y+y^{2}=9$
8. $x y^{5}+x^{5} y=1$

Find $y^{\prime \prime}$

1. $x y=1$
2. $x^{2}+y^{2}=4$

Project: Where Should A Pilot Start Descent? ${ }^{1}$

An approach path for an aircraft landing is shown in the figure and satisfies the following conditions:
(i) The cruising altitude is h when descent starts at a horizontal distance l from touchdown at the origin.
(ii) The pilot must maintain a constant horizontal speed v throughout descent.
(iii) The absolute value of the vertical acceleration should not exceed a constant k (which is much less than the acceleration due to gravity).

1. Find the cubic polynomial $P(x)=a x^{3}+b x^{2}+c x+d$ that satisfies condition (i) by imposing suitable conditions on $P(x)$ and $P^{\prime}(x)$ at the start of descent and at touchdown.

[^0]2. Use conditions (ii) and (iii) to show that:
$$
\frac{6 h v^{2}}{l^{2}} \leq k
$$
3. Suppose that an airline decides not to allow vertical acceleration of a plane to exceed $k=860 \mathrm{mi} / \mathrm{h}^{2}$. If the cruising altitude of a plane is $35,000 \mathrm{ft}$ and the speed is 300 mi / h, how far away from the airport should the pilot start to decend? Note: You are now able to graph the path of decent.

Challenge Problems

These problems are difficult!

1. Find the values of the constants a and b such that

$$
\lim _{x \rightarrow 0} \frac{\sqrt[3]{a x+b}-2}{x}=\frac{5}{12}
$$

2. Show that

$$
\frac{d}{d x}\left(\frac{\sin ^{2} x}{1+\cot x}+\frac{\cos ^{2} x}{1+\tan x}\right)=-\cos 2 x
$$

3. If f is differentiable at a, where $a>0$, evaulate the following limit in terms of $f^{\prime}(a)$

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{\sqrt{x}-\sqrt{a}}
$$

4. Evaluate $\lim _{x \rightarrow 0} \frac{\sin (3+x)^{2}-\sin 9}{x}$.

1	3						4	
			5		6	9		
			7		1	2	3	
	5	6						
		2	8	6	4	5		
						8	2	
	9	4	6		7			
		8	4		3			
	6						8	2

	1	3	5		6			
	6	2			8			
								1
1				9	5		3	
4				1				6
	2		4	8				5
2								
			7			4	6	
			2		4	7	1	

[^0]: ${ }^{1}$ Calculus, Stewart

