Approximate Integration

- Let $I=\int_{0}^{4} f(x) d x$, where f is the function whose graph is shown.

1. Use the graph to find L_{2}, R_{2}, and M_{2}.
2. Are these underestimates or overestimates of I ?
3. Use the graph to find T_{2}. How does it compare with I ?
4. For any value of n, list the numbers $L_{n}, R_{n}, M_{n}, T_{n}$, and I in increasing order.

- Estimate $\int_{0}^{1} \cos \left(x^{2}\right) d x$, using (a) the Trapezoidal Rule and (b) the Midpoint Rule, each with $n=4$. From a graph of the integrand, decide whether your answers are underestimates or overestimates. What can you conclude about the true value of the integral?
- Show that if f is a polynomial of degree 3 or lower, then Simpson's Rule gives the exact value of $\int_{a}^{b} f(x) d x$.

Techniques of Integration

- $\int_{1}^{2} \frac{(x+1)^{2}}{x} d x$
- $\int e^{x} \cos x d x$

Improper Integrals

- Explain why each of the following integrals is improper.

1. $\int_{1}^{2} \frac{x}{x-1} d x$
2. $\int_{0}^{\infty} \frac{1}{1+x^{3}} d x$
3. $\int_{-\infty}^{\infty} x^{2} e^{-x^{2}} d x$
4. $\int_{0}^{\frac{\pi}{4}} \cot x d x$

- Determine if the following integrals are convergent or divergent. If the integral is convergent, evaluate it.

1. $\int_{-\infty}^{\infty} x e^{-x^{2}} d x$
2. $\int_{-2}^{3} \frac{1}{x^{4}} d x$

- 1. Show that $\int_{-\infty}^{\infty} x d x$ is divergent.

2. Show that $\lim _{t \rightarrow \infty} \int_{-t}^{t} x d x=0$.

This shows that we can't define $\int_{-\infty}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{-t}^{t} f(x) d x$

