Fundamental Theorem of Calculus

- Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function.

$$
y=\int_{0}^{x^{4}} \cos ^{2} \theta d \theta
$$

- Find the derivative of the function.

$$
g(x)=\int_{2 x}^{3 x} \frac{u^{2}-1}{u^{2}+1} d u
$$

Net Change Theorem

- Verify by differentiation that the formula is correct.

$$
\int \cos ^{2} x d x=\frac{1}{2} x+\frac{1}{4} \sin 2 x+C
$$

- Evaluate the integral.

$$
\int_{1}^{2}\left(x+\frac{1}{x}\right)^{2} d x
$$

- The velocity function (in meters per second) is given for a particle moving along a line. Find (a) the displacement, (b) the distance traveled by the particle during the given time interval, and (c) the acceleration at 3 seconds.

$$
v(t)=3 t-5,0 \leq t \leq 3
$$

Substitution Rule

- Evaluate the indefinite integral.

1. $\int \sqrt{\cot x} \csc ^{2} x d x$
2. $\int x(2 x+5)^{8} d x$

- If f is continuous and $\int_{0}^{4} f(x) d x=10$, find $\int_{0}^{2} f(2 x) d x$.

