Integrals

- Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown.

	$y^{y} \uparrow$							
	1				f			
	1							
	0	1			5			

1. Evaluate $g(0), g(1), g(2), g(3), g(6)$.
2. On what interval is g increasing?
3. Where does g have a maximum value?
4. Sketch a rough graph of g.

- Use the Fundamental Theorem of Calculus to find the derivative of the function.

1. $g(s)=\int_{5}^{s}\left(t-t^{2}\right)^{8} d t$
2. $F(x)=\int_{x}^{\pi} \sqrt{1+\sec t} d t$
3. $h(x)=\int_{2}^{\frac{1}{x}} \sin ^{4} t d t$
4. $y=\int_{0}^{\tan x} \sqrt{t+\sqrt{t}} d t$

- Evaluate the integral.

1. $\int_{1}^{9} \sqrt{x} d x$
2. $\int_{0}^{1}(u+2)(u-3) d u$
3. $\int_{\frac{\pi}{6}}^{\pi} \sin \theta d \theta$
4. $\int_{1}^{2} \frac{v^{5}+3 v^{6}}{v^{4}} d v$

- What is wrong with the equation?

$$
\int_{-2}^{1} x^{-4} d x=\left.\frac{x^{-3}}{-3}\right|_{-2} ^{1}=-\frac{3}{8}
$$

- The sine integral function,

$$
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t
$$

is important in electrical engineering. [The integrand $f(t)=(\sin t) / t$ is not defined when $t=0$, but we know that the limit is 1 when $t \rightarrow 0$. So, we define $f(0)=1$ and this makes f a continuous function everywhere.]

1. At what values of x does this function have local maximum values?
2. Find the coordinates of the first inflection point to the right of the origin.

- Evaluate the limit by first recognizing the sum as a Reimann sum for a function defined on $[0,1]$.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{4}}
$$

- Find the derivative of the function.

$$
h(x)=\int_{\sqrt{x}}^{x^{3}} \cos \left(t^{2}\right) d t
$$

- If f is continuous and g and h are differentiable functions, find a formula for

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t
$$

- Evaluate the integral.

$$
\int_{2}^{5}|x-3| d x
$$

