




















YIXI LIU




Brain Teasers

If two people in this group met each other, you and the pair (3 people) met each other. If
no pair among these people met each other, then these people (> 3 people) did not meet
each other. In either sub-case, the conclusion holds.

Case 2: Suppose at least 3 people have not met you before.

If two people in this group did not meet each other, you and the pair (3 people) did not
meet each other. If all pairs among these people knew each other, then these people (;:::3
people) met each other. Again, in either sub-case, the conclusion holds.

Ants on a square

There are 51 ants on a square with side length of 1. If you have a glass with a radius of
117, can you put your glass at a position on the square to guarantee that the glass
encompasses at least 3 ants?'!

Solu'io~: To guarantee that the glass encompasses at least 3 ants, we can separate the
square mto 25 smaller areas. Applying the generalized Pigeon Hole Principle we can
show that at least one of the areas must have at least 3 ants. So we only need' to make
sure that. the glass is large enough to Cover any of the 25 smaller areas. Simply separate
the .area Into 5 x 5 smaller squares with side length of 1/5 each will do since a circle with
radius of 1/7 can cover a square'? with side length 115.

Counterfeit coins II

There are 5 bags with ~00 c~ins in each bag. A coin can weigh 9 grams, 10 grams or II
~r::s~~n~~~~a~ contain, cOl.n~of equal weight, but we do not know what type of coins
ti g d . au have a digital scale (the kind that tells the exact weight). How many
trues 0 you need to use the scale to d t ' hi 13

e ermine w Ich type of coin each bag contains?
Solution: If the answer for 5 ba s is b .
the problem-1 b WIg not 0 vlQus,.let's start with the simplest version of
2 bags Ho ag.. e °dny need to take one com to weigh it. Now we can move on to

. w many cams a we need to tak f b ' ,
types of bag 1 and ba 2? C '. e rom ag 2 In order to determine the com
will need three coins

g
fr~m ~nsli~nng tha~ there are three possible types for bag I, we

change the number/weight forat~re~ ~wo cOIn_Swon't do. For nota~ion simplicity, let's
ypes to I, 0 and I (by removing the mean 10), If

11H·
12 m~:Separate the square into 25 smaller areas' h
A circle with radius r can cover a square ith "d' en at least one area has 3 ants in it.
"H' S . ..WI 51 e length t r: dmt: tart with a simpl" problem Wh t 'f up 0 ....2 r an Ji » 1.414.

d . alyouhavetwb f"you nee from each bag to find the ty f . . . 0 ags 0 coins Instead of 5 how many coins do
b 'Th h pea Comsmeltherb 'Wh' .. ' .'num ers: en ow about three bags? ago at IS the rmrumurn difference In com
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we only use 2 coins from bag 2, the final sum for I coin from bag 1 and 2 coins from
bag 2 ranges from -3 to 3 (7 pigeon holes). At the same time we have 9 (3x3) possible
combinations for the weights of coins in bag 1 and bag 2 (9 pigeons). So at least two
combinations will yield the same final sum (9)7, so at least two pigeons need to share
one hole), and we can not distinguish them. If we use 3 coins from bag 2, then. the sum
ranges from -4 to 4, which is possible to cover all 9 combinations. The following table
exactly shows that all possible combinations yield different sums:

Sum t coin, bag 1

N I~-I 0 1

"•CO -I -4 -3 -2,;;
c

1'0 0 -I 0
U
~ 1 2 3 4

eland C2 represent the weights of coins from bag 1 and 2 respectively.

Then how about 3 bags? We are going to have 33 = 27 possible combinations. Surely an
indicator ranging from -13 to 13 will cover it and we will need 9 coins from bag 3. The
possible combinations are shown in the following table:

Sum C2 -I C2=O C2 1

I~-t 0 1 -I 0 1 -I 0 1~
"ee -9 -8 -7 -6 -5CO -I -13 -12 -II -10
,;;
c

-2 -I 0 1 2 3 4'0 0 -4 -3
U
~

1 5 6 7 8 9 10 II 12 13

3 res ectivei .C1, C2, and C3 represent the weights of coins from bag!, 2, and p y

Following this logic, it is easy to see that we will need 27.coins from bag 4 and 81 coins
from bag 5. So the answer is to take 1, 3, 9.' 27 and 81 corns ~rom bags 1,.2,3, 4, ~n~ 5,
respectively, to determine which type of cams each bag contams using a single weighing.

2.7 Modular Arithmetic
The modulo operation----<lenoted as x%y or x mod y-finds th~ remainder of divisio~ of
number x by another number y. For simpicility, we only consider the case where! Is.a
positive integer. For example, 5%3 = 2. An intuitive property of modulo operation IS
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that if XI%Y=X2%Y, then (XI-X2)%y=O. From this property we can also show that

x%y, (x+l)%Y, "', and (x+y-I)%y are all different numbers.

the rest of 99 prisoners and calculates s%3. If the remainder is 0, he announces red; if
the remainder is I, green; 2, blue. He has 1/3 chance of living, but all the rest of the
prisoners can determine his own score (color) from the remainder. Let's consider a
prisoner i among 99 prisoners (excluding the first prisoner). He can calculate the total
score (x) of all other 98 prisoners. Since (x+0)%3, (x+I)%3, and (x+2)%3 are all

different, so from the remainder that the first prisoner gives (for the 99 prisoners
including i), he can determine his own score (color). For example, if prisoner l sees that
there are 32 red, 29 green and 37 blue in those 98 prisoners (excluding the first and
himself). The total score of those 98 prisoners is 103. If the first prisoner announces that
the remainder is 2 (green), then prisoner i knows his own color is green (1) since
onlyI04%3~2 among 103, 104 and 105.

Theoretically, a similar strategy can be extended to any number of colors. Surely that
requires all prisoners to have exceptional memory and calculation capability.

Prisoner problem

One hundre.d prisoners are given the chance to be set free tomorrow. They are all told
hat each wII~be given a red or blue hat to wear. Each . ner can see everyone else's
at but not hIS own. The hat colors are assigned randomly an nee the hats are placed
on top of eac~ priso~er's head they cannot communicate with one other in any form, or
else t~ey are ImmedIatel~ executed. The prisoners will be called out' n random order and

hi
t~ehPnsonerhcalledout will guess the color of his hat. Each prisoner eclares the color of
s at so t at everyone else can hear it If .h he i '. I . a pnsoner guesses correctly the color of his
at, e IS set free Immediately; otherwise he is executed.

They are given the night to come ith. . . up WI a strategy among themselves to save as many
pnsoners as POSSIble What IS the b t t hcan they guarantee to's ?14 es s rategy t ey can adopt and how many prisonersave.

Division by 9
Given an arbitrary integer, come up with a rule to decide whether it is divisible by 9 and
prove it.Solution: At least 99 prisoners can be saved.

The key lies in the first prisoner wh
be red if the number of red hats he a ca? see everyone.else's hat. He declares his hat to
He will have a 1/2 chance f h . sees ISodd. Otherwise he declares his hat to be blue.
his Own hat color combin~ng :~m~gue~sed correctly. Everyone else is able to deduce
among 99 prisoners (excludi e h 0; edge whether the number of red hats is odd
(excluding the first and hims:~ F e irst) and the color of the other 98 prisoners
the other 99 prisoners A prison' or example, if the number of red hats is odd among
th h . er weanng a red hat will .e ot er 98 prisoners (excludi th fi 1 see even number of red hats III
red hat. mg e irst and himself) and deduce that he is wearing a

Th~ two-color case is easy, isn't it? What if .
white? What is the best strategy the there are 3 possible hat colors: red, blue, and
guarantee to save?IS y can adopt and how many prisoners can they

Solution: The a~swer is still that at least 99" .
that. the first prisoner now only has 113 pnsoners wl~1be saved. The difference IS

sconng system: red===Ogreen«] d bl _chance of survival. Let's use the following
, , an ue-2. The first prisoner counts the total score for

;;"-:-H::-' --------
tnt: The first prisoner can h

odd number of c see t e number of red and blu h
IS H' t: Th ounts and the other has even numb feats of all other 99 prisoners. One color has

mt: at a number is odd sim I er 0 counts.
x%3 instead p y means x%2 = 1. Here we h. ave 3 colors, so you may want to consider

Solution: Hopefully you still remember the rules from your high school math class. Add
up all the digits of the integer. If the sum is divisible by 9, then the integer is divisible by
9; otherwise the integer is not divisible by 9. But how do we prove it?

Let's express the original integer as a == a" 10" + Q,,_IIO"-I+ ... + QIIOI+ Qo' Basically we

state that if a" +Q,,_I+···+a
l

+ao =9x (x is a integer), then the Q is divisible by 9 as

well. The proof is straightforward:

For any a=a"IO"+Q,,_110"-1+"'+QII0
1+Qo' let b=a-(Q,,+a"_I+'''+QI+ao)' We

have b~a,.(10"-I)+a"_,(10"-'-I)+···+a,(lO'-I)~a-9x, which is divisible by 9

since all (10k -1), k = 1,·· ',n are divisible by 9. Because both band 9x are divisible by 9,
a = b + 9x must be divisible by 9 as well.

(Similarly you can also show that a = (-I)" a" + (-Ir-l Q,,_I+ ... + (-IYal + ao = lIx is the

necessary and sufficient condition for a to be divisible by 11.)
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Chameleon colors
A remote island has three types of chameleons with the following population: 13 red
chameleons, 15 green chameleons and 17 blue chameleons. Each time two chameleons
with different colors meet, they would change their color to the third color. For example,
if a green chameleon meets a red chameleon, they both change their color to blue. Is it
ever possible for all chameleons to become the same color? Why or why not?16

Solution: It is not possible for all chameleons to become the same color. There are
several approaches to proving this conclusion. Here we discuss two of them.

Approach 1. Since the numbers 13, 15 and 17 are "large" numbers, we can simplify the
problem to 0, 2 and 4 for three colors. (To see this, you need to realize that if
combination (m+I,n+l,p+l) can be converted to the same color, combination
(m,n,p) can be converted to the same color as well.) Can a combination (0,2,4) be
converted to a combination (O,0,6)? The answer is NO, as shown in Figure 2.3:

(0,2,4). • (I, 2,30
~(O, 1,5)~

Figure 2.3 chameleon color combination transitions from (0,2,4)

Actually combination (1,2,3) is equivalent to combination (0,1,2), which can only be
converted to another (0, I, 2) but will never reach (0,0,3),

AIPIPhroachh2. A different, and more fundamental approach is to realize that in order for
ate c ameleons to become th I ' :

he same co or, at certain intermediate stage two colors
must ave the same number T thi . . '
must h th bi . 0 see IS, Just imagme the stage before a final stage. It

as e com inatton (1,I,x). For chameleons of two different colors to have the
same number their module f'" b13 3' 0 .}must e the same as well. We start with 15::::3x,
= y+l, and 17=3z+2 cham I h'II b . e eon, w en two chameleons of different colors meet,

we WI ave three possible scenarios:

16 H'
mt: consider the numbers in module of3.
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{

(3x + 2,3y,3z + I) = (3x',3y'+ 1,3z'+ 2), one y meets one z

(3x, 3y + 1,3z + 2) => (3(x -I) + 2,3(y + 1),3z + I) = (3x ',3y '+ I, 3z'+ 2), onex meets one z
(3(x -1) + 2,3 y, 3(z + I)+ I) = (3x',3 y'+ I,3z '+ 2), onex meets one y

So the pattern is preserved and we will never get two colors to have the same module of
3. In other words, we cannot make two colors have the same number. As a result, the
chameleons cannot become the same color. Essentially, the relative change of any pair of
colors after two chameleons meet is either 0 or 3. In order for all the chameleons to
become one color, at least one pair's difference must be a multiple or 3.

2.8 Math Induction
Induction is one of the most powerful and commonly-used proof techniques in
mathematics, especially discrete mathematics. Many problems that involve integers can
be solved using induction. The general steps for proof by induction are the following:

• State that the proof uses induction and define an appropriate predicate P(n).

• Prove the base case P(I), or any other smallest number n for the predicate to be true.

• Prove that P(n) implies P(n+l) for every integer n. Alternatively, in a strong
induction argument, you prove that P(l), P(2), "', and P(n) together imply

P(n+I),

In most cases, the real difficulty lies not in the induction step, but to formulate the
problem as an induction problem and come up with the appropriate predicateP(n). The
simplified version of the problem can often help you identify P(n).

Coin split problem
You split 1000 coins into two piles and count the numb~r of coins in each pile. If there
are x coins in pile one and y coins in pile two, you multiple x by y to get -'Y. Then you
split both piles further, repeat the same counting and multiplicat.ion process, and add the
new multiplication results to the original. For example, you split x to XI and e., y to Yl

and jc, then the sum is XY+XIX2 + Y1Y2' The same process is repeated until you only
have piles of I stone each. What is the final sum? (The final 1 's are not included in the
sum.) Prove that you always get the same answer no matter how the piles are divided.
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SoIUfiO~:Le~n ~e the number of the coins and fen) be the final sum. It is unlikely that
a so~ut1onwill Jump to our mind since the number n = 1000 is a large nwnber. If you
ar~n t surefihow to approach th~ problem, it never hurts to begin with the simplest cases
~nI t7 todmd a pattern. ~or this problem, the base case has n = 2. Clearly the only split
IS + a~ t~e fi~al sum IS 1. When n == 3, the first split is 2+ I and we have .:ry = 2 and

~~is2~~~t ~~I:I:Ill.further gi~e an extra mu1tip~ication result 1,so the final sum is 3.
total sun: will bO ~~e; ~he(hmt that when n coms are split into x and n-x coins, the
3 IF' e n -xn-x)+j(x)+j(n-x), 4 coins can be split into 2+2 or
+ , 'Of either case we can apply ( ) j(sum 6. x n-x + x)+ fen-x) and yields the same final

Claim: For n coins, independent of intermediate splits, the final sum is n(n -1) 17

2
So how do we prove it? The answer should b I
have proved the claim for th b e c ear to you: by strong induction. We

ease cases n=234 A he clain = 2 ... N -I . ' ,. ssume t e c aim IS true for
" COins,we need to prove that .t h ld f .

apply the equation fen) _ () lOS or n = N coms as well. Again we
N ~x coins, we have - x n-x + f(x)+ fen-x). IfN coins are split into x coins and

j(N)~x(N-x)+ j(x) + j(N-x)

~x(N -x)+ N(~ -1) + (N -x)(N -x-I) = N(N -I)
2 2

Soindeectitholdsforn~N as well and j(n)_n(n-l) ,
th I' - 2 IS true for any n 2: 2 , Applying
e cone usron to n -1000 h- ,we ave j(n) ~ 1000x999/2,

Chocolate bar problem

A chocolate bar has 6 rows and 8 I' dt id co umn (48 1In IVI ual squares by making a numb s sma I l x l squares). You break it into
~wo.smaller rectangles. For example ~~;:; b~eaks. Each time, break one rectangle into
ar IOta a 6x3 one and a 6x5 one Wh' ~ irst step you can break the 6x8 chocolate
to break the hi' ,at IS the total n b f bcoco ate bar Into 48 s II urn er 0 reaks needed in orderrna squares?

" J(2)~I, JO)-J(2)'2 and J(4)-J(])- '
- 3 should give you h hi

!(n)-",1+2+"'+(n_l)=o n(n-I) enoug hint to realize the pattern is

2
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Solution: Let m be the number of the rows of the chocolate bar and n be the number of
columns. Since there is nothing special for the case m == 6 and n = 8, we should find a
general solution for all m and n. Let's begin with the base case where m = 1 and n::::: 1.
The number of breaks needed is clearly O. For m > 1 and n = 1, the number of breaks is
m -1; similarly for m = 1and n > 1,the number of breaks is n -I. So for any m and n,
if we break the chocolate into m rows first, which takes m -1 breaks, and then break
each row into n small pieces, which takes men -1) breaks, the total number of breaks is
(m-1)+m(n-l)=mn-1. If we breaks it into n columns first and then break each
column into m small pieces, the total number of breaks is also mn -1. But is the total
number of breaks always mn -I for other sequences of breaks? Of course it is. We can
prove it using strong induction.
We have shown the number of breaks is mn -I for base cases m :?-I, n =1 and
m=l, u z l. To prove it for a general mxn case, let's assume the statement is true for
cases where rows < m, columns S n and rows::;;m, columns < n. If the first break is
along a row and it is broken into two smaller pieces m x nl and m x (n - nl), then the

total number of breaks is I+(mxnl-I)+(mx(n-nl)-1)==mn-1. Here we use the

results for rows:$ m, columns < n. Similarly, if it is broken into two pieces 1111 x nand

(m-11l1)xn, the total number of breaks is 1+(m1xn-I)+((m-ml)xn-l)=mn-1. So

the total number of breaks is always mn -1 in order to break the chocolate bar into
mx n small pieces. For the case m = 6 and n = 8, the number of breaks is 47.

Although induction is the standard approach used to solve this problem, there is actually
a simpler solution if you've noticed an important fact: the number of pieces always
increases by 1 with each break since it always breaks one piece into two. In the
beginning, we have a single piece. ln the end, we will have mn pieces. So the number of

breaks must be mn-1.

Race track
Suppose that you are on a one-way circular race track. There are N gas cans randomly
placed on different locations of the track and the total sum of the gas in these cans is
enough for your car to run exactly one circle. Assume that your car has no gas in the gas
tank initially, but you can put your car at any location on the track and you can pick up
the gas cans along the way to fill in your gas tank. Ca~ yo~ alw~~s choose a starting
position on the track so that your car can complete the entire Circle?

18 Hint: Start with N = 1,2 and solve the problem using induction.
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Solution: ~f you get stuck. as to ~ow to ~olve ~he problem, again start with the simplest
ca~es (N -1,2) and c.onslder usmg an induction approach. Without loss of generality,
let s assume that the circle has circumference of 1 For N - I th bl . .. I J. -, e pro em IS tnviat. US!

s~arta~where the gas can is. For N == 2, The problem is still simple. Let's use a figure to
visualize the approach. As shown in Figure 2.4A, the amount of gas in can I and can 2
expressed as the distance the car can travel, are XI and x2 respectively, so Xl + X

2
= I~

The corresponding segments are YI and Y2' so YI +Y2 == 1. Since XI + x2 == I and
YI + Y2 = I, we must have x > y or > ( dI - I x2 - Y2 Xl < YI an X2 < Y2 cannot both be true). If
XI ~ YI ' we can start at gas can 1,which has enough gas to reach gas can 2 and get more
gas from gas can 2 to finish the wh I . I O' '
and pick up gas can I I hoe Cl~Ce. therwise, we will just start at gas can 2

a ong t e way to fimsh the whole circle.

x,

X,
Xi

A Yi
B

Figure2.4 Gas can locationson the cycle d
an segments between gas cans

The argument for N 2 I .== a so gives us the h'
show that if the statement holds for N _ tnt for the induction step. Now we want to
N = n+ I. As shown . F' - n, then the same statement also holds for

III tgure 2.4B we h
Yl+Y2+"'+Y ==1l':orN ' ave XI+X2+"'+x ,=1 and

11+1 11 ==n+l. So there muer avr 11+
has X

j
~ Y

I
, That means h e must exist at least one i, lsi:::; n + I, that

. . w enever the car reache' .
(Forl=n+l It goes to . Li s Xi' It can reach x. With more gas

, 1 == Instead). In other word 1+1

X,+I to one gas can at the . . s, we can actually "combine" .r. and
h POSItionof x. with '
t e gas can i+I). But such binati an amount of gas x·+x (and eliminate

com matron reduce th N I 1+1
S e == n+ I problem to N = n, for
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which the statement holds. So the statement also holds for N == n + 1. Hence we can
always choose a starting position on the track to complete the entire circle for any N.

There is also an alternative approach to this problem that provides a solution to the
starting point. Let's imagine that you have another car with enough gas to finish the
circle. You put that car at the position of a randomly chosen gas can and drive the car for
a full circle. Whenever you reach a gas can (including at the initial position), you
measure the amount of gas in your gas tank before you add the gas from the can to your
gas tank. After you finish the circle, read through your measurement records and find the
lowest measurement. The gas can position corresponding to the lowest measurement
should be your starting position if the car has no gas initially. (It may take some thinking
to fully understand this argument. I'd recommend that you again draw a figure and give
this argument some careful thoughts if you don't find the reasoning obvious.)

2.9 Proof by Contradiction
In a proof by contradiction or indirect proof, you show that if a proposition were false,
then some logical contradiction or absurdity would follow. Thus, the proposition must be
true.

Irrational number

Can you prove that J2 is an irrational number? A rational number is a number that can
be expressed as a ratio of two integers; otherwise it is irrational.

Solution: This is a classical example of proof by contradiction. If J2 is not an irrational
number, it can be expressed as a ratio of two integers m and n. If m and n have any
common factor, we can remove it by dividing both m and n by the common factor. So in
the end, we will have a pair of m and n that have no common factors. (It is called
irreducible fraction.) Since m/ n = J2, we have m2 = 2n2• So m2 must be an even
number and m must be an even number as well. Let's express m as Zx, where x is an
integer, since m is even. Then m2 = 4x2 and we also have n2 = 2x2, which means n
must be even as well. But that both m and n are even contradicts the earlier statement
that m and n have no common factors. So J2 must be an irrational number.

Rainbow hats
Seven prisoners are given the chance to be set free tomorrow. An executioner will put a
hat on each prisoner's head. Each hat can be one of the seven colors of the rainbow and
the hat colors are assigned completely at the executioner's discretion. Every prisoner can
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see the hat colors of the other six prisoners, but not his own. They cannot communicate
with others in any form, or else they are immediately executed. Then each prisoner
writes down his guess of his own hat color. If at least one prisoner correctly guesses the
color of his hat, they all will be set free immediately; otherwise they will be executed.

They are given the night to come up with a strategy. Is there a strategy that they can
guarantee that they will be set free?l9

Solution: This problem is often perceived to be more difficult than the prisoner problem
in the modular arithmetic section. In the previous prisoner problem, the prisoners can
hear others' guesses. So one prisoner's declaration gives all the necessary information
other prisoners need. In this problem, prisoners won't know what others' guesses are. To
solve the problem, it does require an aha moment. The key to the aha moment is given

by the hint. Once you realize that if we code the colors to 0-6, (tx, ) %7 must be
among 0, 1,2, 3, 4, 5 or 6 as well. Then each prisoner i-let's label them as 0.6 as
well-should give a guess gi so that the sum of gi and the rest of 6 prisoners' hat color

codes will give a remainder of i when divided by 7, where g; is a unique number

between a and 6. For example, prisoner a's guess should make (go + LX
k
)%7 == O.

,,0
This way, we can guarantee at least one of gi == Xi for i = 0,1,2,3,4,5,6.

We can easily prove this conclusion by contradiction, If e. "x" then (tx,)%7" i
(since ( s, + t;x,)%7" i and e,and X, are both between 0 and 6), But if s, "X, for all

i= 0,1,2,3,4,5, and 6, then (~X)%7" 0 1 2 3 4 5 6 h' h i I I' ibt SoLJ , , , , , , , ,w rc IS c ear y rmpossi e.
':ol

at least one of g must equal t A .
i 0 Xi' S a result, usmg this strategy, they are guaranteedto be set free.

19 H' t L' .
tnt: et s assign the 7 colors of rainbow with cod

(
' ) e 0-6 and Xi be the color code of prisoner i.L>, %7 must be 0, 1,2 3 4 50r6 HowI., , " . many guesses can 7 prisoners make?

Then

32

Chapter 3 Calculus and Linear Algebra

Calculus and linear algebra lay the foundation for many advanced math topics used in
quantitative finance. So be prepared to answer some calculus or linear algeb~a
problems-many of them may be incorporated into more. complex problems-Ill
quantitative interviews. Since most of the tested calculus and linear algebra. knowledge
is easy to grasp, the marginal benefit far outweighs the time'y0u spend br~shll~g up your
knowledge on key subjects. If your memory of calculus or lmear algebra IS a little rusty,
spend some time reviewing your college textbooks!

Needless to say, it is extremely difficult to condense any calculus/linear algebra books
into one chapter. Neither is it my intention to do so. This chapter focuses only o~ so~e
of the core concepts of calculus/linear algebra that are frequently occurrmg m
quantitative interviews. And unless necessary, it does so .~itho~t covering the proof,
details or even caveats of these concepts. If you are not familiar WIth any of the concepts,
please refer to your favorite calculus/linear algebra books for details.

3.1 Limits and Derivatives

Basics of derivatives
Let's begin with some basic definitions and equations used in lim.its ~d derivatives.
Although the notations may be different, you can find these materials III any calculus
textbook.

dy , Lly , f(x+LIx)- I(x)
Derivative: Let y = f(x), then rex) = dx = t':'o LIx = t~ LIx

The product rule: If u == u(x) and v = v(x) and their respective derivatives exist,

d(uv) dv du ( )'_ 'v+uv'-=u-+v-. uv-u
dx dx dx

The quotient rule ~(: )+~-u:)jv', (~)=u'7v'
dy dy du

The chain rule: If y = f(u(x)) and u = u(x) , then dx = du dx

dy" 11-1 dy -6 r 'Vn:t:- aThe generalized power rule: dx = ny dx a

Some useful equations:
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In(ab)=lna+lnb

1im~=1
.. --;0 X

lim(l+x)"=I+!<x foranyk
HO

lim(lnxlx')=O for any r>O
H'

d" "du-e =e-
dx dx

d"a " du-=(a Ina)-
dx dx

d I du u'
-Inu=--=-
dx udx u

d . d
dx smx e cos x, dx cosx = -sinx, ~ tan x e sec- x

What is the derivative of y = InXln .. ?1

Solution: This is a good problem to test .
specifically, the chain rule and th d your knowledge of basic derivative formulas-

e pro uct rule.

Let u=lny=ln(lnx'''')-1 I (I )- nxx n nx . .h . Applying the cham rule and the product rule
we ave '

du = d(lny)
dx dx ~_: = d~X) xln(lnx)+lnxx d(ln(lnx))

dx

To derive d(ln(lnx)) .
dx ' we agam use the chain rule by setting v = Inx :

d{1n(lnx))_d(lnv)dv I I
dx - -=-x-=~

dv dx v x xln x

.i-dy _In(lnx) Inx d
dx - +-==>2_Y(1 ln x'?"

y x xlnx dx --:; n(InX)+I)=~(ln(lnx)+I).

In(ln x) In x
+--,

x xlnx

Maximum and minimum
Derivative ['( ) .

• X IS essentially the slope of the .
the Illstantaneous rate of ch ( . tangent line to the curve y = [(x) and

ange velocity) of . hY Wit respect to x. At point x:::: c, if

'H'tnt: To calculate the derivative 0 .
logs on both side f functIOns with the format _ ,..

s and then take the derivativ . Y - f(x) , It IS common to take natural
e, Since d(lny)/ cit- '" 1/ yx dy/ dx.

34

A Practical Guide To Quantitative Finance Interviews

j'(c) > 0, [(x) is an increasing function at c; if j'(c) < 0, [(x) is a decreasing

function at c.

Local maximum or minimum: suppose that J(x) is differentiable at c and is defined
on an open interval containing c. If J(c) is either a local maximum value or a local
minimum value of [(x), then j'(c) = O.

Second Derivative test: Suppose the secondary derivative of J(x), J"(x), is
continuous near e. If J'(e) = 0 and f"(e) > 0, then J(x) has a local minimum at e; if
j'(e) = 0 and ["(e) < 0, then [(x) has a local maximum at c.

Without calculating the numerical results, can you tell me which number is larger, etr or
J[e ?2

Solution: Let's take natural logs of elf and ffe. On the left side we have Jr Ine , on the

right side we have e ln x. If elf >lle, ell" >1[e ee s-x ln e c- e x ln a c> Ine > lnff.
e 1r

Is it true? That depends on whether J(x)::::: lnx is an increasing or decreasing function
x

. , 1/ .r x x c ln r l-eln x
from e to fl. Taking the derivative of lex), we have J (x):::: 1 ::::: 2 'x: x
which is less than 0 when x> e (In x > I). In fact, J(x) has global maximum when

Ine Ina d e" ex v e for all x>O. So ->-- an e »w,
e 1r

Alternative approach: If you are familiar with the Taylor's series, which we will discuss
• 1 ' 3.. . xx"", xx-x

mSectlOn3.4,youcanapplyTaylor'ssenestoe : e ::::LJ!=I+,+-,+~,+··· So
n=O n. I. 2. 3.

x I h ,1'1 I tt t e If ee > 1+ x, v»>O. Let x = ff e -1, t en e e > 1l e ¢:> e > J[ ee- e > st .

L'Hospilal's rule
Suppose that functions [(x) and g(x) are differentiable at x -+ a and that ~~ g '(a) " O.,
Further suppose that lim [(a) =0 and limg(a)=O or that lim[(a)-+±oo and

x--;o X--;Q X--;U

2 Hint: Again consider taking natural logs on both sides; In a > In b :::::> a > b since In x IS a

monotonously increasing function.
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limg(a) -> too, then lim f(x) = lim f'(x)
Ho HO g(x) .<->ag '(x)

an indeterminate form to a determinate form.

L'Hospital's rule converts the limit from

What is the limit of eX / x
2 as x ----t u), and what is the limit of Xl In x as x ----t O+?

,
Solution: lim;" is a typical example of L'Hospital's

t~'" x:

~~~ Xl ==00. Applying L'Hcspital's rule, we have

rule SInce lim eX ==00 and

f(x) e' f'( ) ,
lim--== lim-== lim __ x_ ==lirn!...-
x~a g(x) x~"'X2 x~'" g'(x) x~"'2x

The result still has the property that lim f(x) - I' .r - d I' ,
-"-",,, e umev e co an Img(x)==hm2x:::=00,so

I X-a) <-->'" X~

we can app y the L' Hospital's rule again: - a)

I, f(x) I' e' f'(x) , d( ')1Im--== Im-==lim--r e li e dx eX
x_"'g(x) x-."'x2 .<-+:og'(x) -x~2x ==}!!!'d(2x)ldx ==~~2==oo

At first look, L'Hospital' I ds ru e oes not appear to be applicable to lim Xl In x since it's

not in the format of lim f(x) H ,HO', Inx
x-.a g(x)· owever, we can rewrite the original limit as IIm----:?

d Ir b x-4O·x-
an It ecomes obvious that lim x-2 ==co

and !!~o.In x ==-co. So we can now apply
L'Hospital's rule: x-.O· ,~

li~x2Inx=Iimlnx=li d(lnx)ldx , Ilx ,x'
t_O x-+O' X -2 x-->~ d( 2) I dx ==lim ==lim - = 0

X x-->O' -21x' , 2x~O _

3,2 Integration
Basics of integration

Again, let's begin with some basic definitions .
If we can find a fu . and equations used in integration.

, ncuon F(x) with deri ,
onllderivative of f(x) , envatrve f(x), then we call F(x) an

If f(x) = F'(x) r f r
, 1 (x) = 1F'(x)dx = [F(x)]: = F(b)- F(a)
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F(a) ~ Yo => F(x) ~ Yo + r f(t)dl
The generalized power rule in reverse:

k"

f k Uu du ==--+c
k+ 1

(k '* I), where C IS any

constant.

Integration by substitution:

ff(g(x)),g'(x)dx= ff(u)du with u~g(x), du~g'(x)dx

Substitution in definite integrals: r f(g(x))' g '(x)dx ~ f(h
i
f(u)du1, J/i(aj

Integration by parts: JUdv ==uv- JVdu

A, What is the integral ofln(x)?

Solution: This is an example of integration by parts. Let u ==In x and v ==x , we have
d(uv) = vdu + udv ~ (x x IIx)dx+ Inxdx,

:. Ilnxdx==xlnx- Idx==xlnx-x+c, wherecisanyconstant.

B. What is the integral of sec(x) from x ==0 to x = lr /6?

Solution: Clearly this problem is directly related to differentiation/integration of
trigonometric functions. Although there are derivative functions for all basic

trigonometric functions, we only need to remember two of them: ~sinx e cos x,
dx

~cosx:::: -sinx. The rest can be derived using the product rule or the quotient rule. For
dx
example,

dsecx ==d(J/cosx) == sinx e sec r tan x,
dx dx cos" X

~d:c(~s:::ec:cx~+~t:::an~x)= sec x( sec x + tan x) .
dx

37



Calculus and Linear Algebra

Since the (secx+tanx) term occurs in the derivative, we also have

d In I secx+ tan x 1_ secx(secx+ tan x)
~ e sec r

dx (sec x + Ian x)

~ fsecx=lnlsecx+tanx!+c

d f''r/6

an .10 secx ~ In(sec(Jr/6) + lan(Jr /6» - In(sec(O) + tan/O) = In(,f3)

Applications of integration
A. Suppose that two cylinders h . h d' .
centers also intersect. What is ::c wilt ra flUS 1.mtersec! at right angles and their

e vo ume a the intersection?

Solution: This problem is an a licati f i .
applied problems, the most di~ I on o. integration to volume calculation. For these

'. ICU t part IS to correctly [annulate the integration. The
general IntegratIOn function to calculate 3D vol . V f'

ume IS = A(z)dz where A(z) is the
cross-sectional area of the solid cut b I . '"
The key here is to find the right y ~ pane perpendicular to the z-axis at coordinate z.

expression for eros ti I "s-sec rona area A as a functton of z.
Figure 3.1 gives us a clue. If you cut the i .
b' ntersecnon by a horizontal plane, the cut will
e a square WIth side-length ~( 2)' (2)2
calculate the total 1 r - z . Taking advantage of symmetry, we can

vo ume as

2x 1[{2r)2 _{2Z)2}tz =8x[r2z_z3 /3]; = 16/3r3 ~ 16/3"

An alternative app h "". roac reqUIreseven b tt 3 .
IS lllscnbed inside both cylinders . ~ ~r D Imagination. Let's imagine a sphere that
sphere should have a radius of i~ AltIS mscribed inside the intersection as well. The
from the s h "" r i e. I each cut perp di I "" Ip ere IS Inscribed in th en ICU ar to the z-aXIS, the eire e
Acirde = ~ A'<'1l1a/'t" Since it's true for all e Isquare from the intersection as well. So

z va ues, we have
V - 4 (')3:;ploere - 11l 2" = .!L V

4 Intersect,OJ!:::::> V-I 6/3 3
'Ole'sec/IOJ! - r = 1613.
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Figure 3.1 Interaction of two cylinders

B. The snow began to fall some time before noon at a constant rate. The city of
Cambridge sent out a snow plow at noon to clear Massachusetts Avenue from MIT to
Harvard. The plow removed snow at a constant volume per minute. At I pm, it had
moved 2 miles and at 2 pm, 3 miles. When did the snow begin to fall?

Solution: Let's denote noon as time 0 and assume snow began to fall T hours before
noon. The speed at which the plow moves is inversely related to the vertical cross-
sectional area of the snow: v =cjl A(t), where v is the speed of the plow, c1 is a constant
representing the volume of snow that the plow can remove every hour and A(t) is the
cross-sectional area of the snow. If t is defined as the time after noon, we also have
A(t) = c

2
(t + T), where C2 is the rate of cross-sectional area increase per hour (since the

snow falls at a constant rate). So
c, c

v= =
c2(t+T) t+T

cc~-'
c,

Taking thewhere

integration, we have

1 c (I+T)--dt=cJn(l+T)-clnT~cJn -- ~2,
T+t T

l' c (2+T)--dt=cJn(2+T)-clnT~cJn -- =3
T+t T

From these two equations, we get

(I T)' (2 T)'; ~+- =>T'-T+1~0=>T=(J5-1)/2.
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Overall, this question, although fairly straightforward, tests analytical skills, integration
knowledge and algebra knowledge.

""l./Expected value using integration
Integration is used extensively to calculate the unconditional or conditional expected
value of continuous random variables. In Chapter 4, we will demonstrate its value in
probability and statistics. Here we just use one example to show its application:

If X is a standard normal random variable, X - N(O, I), what is E[ X IX > O]?

Solution: Since X - N(O, 1), the probability density function of x is f(x) = .$r e-t12.r2

and we have E[X IX > 0] ~ f xf(x)dx ~ f x ;", e-II'" dx .
Because d(-1/2x2)=-x and JeUdy=eu +c, where c is an arbitrary constant, it is

obvious that we can use Integration by substitution by letting u = -I/2x2• Replace
~lIhl . h e" d dx - he Wit e an x wrt -du, we have

rx Jke~112X\lx =: r -beudu =: - ;;[euJ; =: - AJr(O-I) =:h' where r-r is

determined by x =: ~ ~ j== 0 and x =: OCJ ~ U =: -OCJ •

-- E[X I X >OJ= l/fh' (".
~

3.3 Partial Derivatives and Multiple Integrals

Partial derivative: w= f(x,y)=> af (xo'Yo) = lim f(xo + ill:,Yo)- f(xo,Yo) = J,
ax ik-.,.O tu x

Second order partial derivatives: a'f = ~(af), a' f a af a af
ax' ax ax ax0' = ax (0') ~ a/a)

The general chain rule' Supp th. ose at w== f(xt,x2,···,x ) and that each of variables
Xl' x2, "., xm is a function of the variables 11' f

2
, "., ;~. If all these functions have

continuous first-order partial derivatives, then 8w ::::mv aXt + Ow aX2 + ... + Ow ax'!!. for
each i, I s; i:<; n. at, aXl afi &:2 at, ax", ati

40
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Changing Cartesian integrals into polar integrals: The variables in two-dimension
plane can be mapped into polar coordinates: x =: r cos e, y == r sin e. Tthe integration in a
continuous polar region R is converted to

fff(x,y)dxdy ~ jff(rcosB,rsinB)rdrdB_
n II

Calculate [e-xlI2Jx.
Solution: Hopefully you happen to remember that the probability density function (pdf)

of the standard normal distribution is f(x) == ~ e-x1/2. By definition, we have
..,2"

[f(x)dx~ [Jz;e-""dx=2f Jz;e-"l2dx=l=> fe-"l2dx~J%-

If you've forgotten the pdf of the standard normal distribution or if you are specifically

asked to prove [_J_e-Xl/2m-=I, you will need to use polar integrals to solve the
.J2"

problem:

[ e-x212dx [", e~J'2/2dy == [( e~(Xl+yl)/2dxdy == rre ~(rlcos2B+r2sin20)/2rdrde
~f re-"12rdrdB= - f e-"I'd(-r'/2) rdB
~-[e-"I'IrBr ~2"

Since [e~x2/2dx= [e~y212dy,wehave (e~x212dx=:.J21r:::::> [e-XlI2dx=:J%.

3.4 Important Calculus Methods

Taylor's series
One-dimensional Taylor's series expands function f(x) as the sum of a series using the

derivatives at a point x > xo :

1"( ) f"'(x )
f(x)=f(xo)+ I'(xo)(x-xo)+ Xo (x-xo)'+---+ 1

0 (x-xo)"+---
21 n.
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If Xo =0, J(x) = J(O) +J,(O)x +J"(O) x' +...+ J''''(O) x" +...
2! n!

Tavlor's seri~s are often used to represent functions in power series terms. For example
aylor s senes for three common transcendental functions, e", sin x and cosx a;
xo=Oare '

x~l XX2X3e =L.-==l+-+-+-+ ...
/I"on! I! 2! 3! '

. ~(-I)"X2/1+1 x) x' 7
stn x e L. =x--+ __ x

"00 (2n+ I)' 3! 5! 7T+'"
"(1)/12/1 2 4

cosx eL - x =1-':"'- X x6
"o0 (2n)! 2! +41-61+'"

The Taylor's series can also be expressed has t e Sum of the nth-degree Taylor
polynomial T,,(x) = J(xo) + I'(xo)(x _ x )+ J"(xo) ( )' J'''' (x )

• 0 21 x-xc + ... + 0 (x-xo)" and
aremamder R,,(x): J(x)=I;(x)+R,,(~.~ n!

For some x between x andt/R( ) _ J''''''(x) ~
o '''X_ I 'I......")______ (n+1)! x-xo /.LetMbethemaximumof

IJ'''''' -I '(x) for all i between x d ,,+1
o an x, we get constraint !R" (x)l :$ M x I x - Xo I

(n+ I)!

Solution: The solution to this probl
can be proven using Taylor's seri eLmuses Euler's formula, e" ==cos19+isinB which
,e nes, et's look h 'e ,cos8 and sin 8, Wehave at t e proof Applying Taylor's series to

eiU = I iIJ (i1J)' (i1J)3 ('IJ)'+ +-+ 1 0 IJ' 3I! 2! 31+-;-+ ..·=I+i- ·O 04 .BS

. 4. II 21 '31+-+1-+ ...
IJ' IJ' If . . . 4! 5!

cosB=l __ +
2! 4T-6T+'"

. 83 OS 87sm8=19 __ +_ 8 3
3! 5! -71+''':::}isin8=i __ i~ .Os .B'. }1 +1--1_+ ...

. 3! 5! 7'
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Combining these three series, it is apparent that ei8 ==cos 8 + i sin B.

When f) ==st , the equation becomes eiJr ==cos II + i sin II ==~ 1. When 8 ==II /2, the

equation becomes eiJrl2 =cos(1l/2)+isin(1l/2)==i.3 So Ini==ln(eiJr/2)==ill/2.

Hence, In(ii) ==Hni ==i(i1!/2) ==-J[ /2:::::} ii ==e-JrI2.

B. Prove (l+ .r)" 2':l+nx for all x > -1 and for all integers n~2.

Solution: Let f(x) ==(l+x)" . It is clear that 1 + nx is the first two terms in the Taylor's
series of I(x) with Xo::: O. So we can consider solving this problem using Taylor's

senes.

For Xo ==0 we have (1+ x)" ==1 for vn ~ 2. The first and secondary derivatives of f(x)

are I'(x) = n(1+ x)"-' and I"(x) = n(n -1)(1 + X)"-2. Applying Taylor's series, we have

J(x) = J(xo) + I'(xo)(x - xo) + I"(x) (x - xo)' = J(O) + ('(O)x + I"(x) x'
2! . 2',

= I + nx+ n(n -1)(1 + x)"-' x2

where x:$x:5:0 if x<O and x 2':x 2':0 if x o Il .

Since x>-l and e z z.we have »c-D, (n-l»O,(1+x)"-2 >O,x22':O.

Hence, n(n-I)(1+x)"-'x22:0 and J(x)=(I+x)">I+nx.

If Taylor's series does not jump to your mind, the condition that n is an integer may give
you the hint that you can try the induction method. We can rephrase the problem as: for
every integer n 2':2 , prove (I + x)" 2':1+ nx for x > -I .

The base case: show (I+ x)" 2':1+ nx, vx > -1 when n ==2, which can be easily proven

since (1+x)22':1+2x+x2 2':1+2x, Vx>-l.

The induction step: show that if
statement holds for n :::k + I :
straightforward as well.

(l+ x)" 2': 1+nx, \Ix > ~I when n ==k,
(1+x)"'2:I+(k+l)x,'1x>-1. This

the same

step IS

'CI I h 'fi, . ('''')'.' ,. 1ear y t ey satlS'J equatIOn e '" I '" e = - .
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(I+x)'" =(I+x)'(I+x)

~(I+kx)(I+x)=I+(k+l)x+kx2, '1x>-1
~1+(k+l)x

So the statement holds for all integers n 2:: 2 when x > _I.

Newton's method

Newton'~ met.hod,.also known as the N~wton-Raphson method or the Newton-Fourier
method, IS an iterative process for solving the equation [(x) = O. It begins with an initial

value Xo and applies the iterative step x = x - I(x") t 1 I() (Lif
Il+] Il f'(x,,) 0 so ve x = I XI,X2,'"

converge."

Convergence of Newton's meth d .
is far away from th 0

1
~snot guaranteed, especially when the starting point

e correct so unon For Newt' th d .. ftnecessary that the initi I . . . --. _ on s me 0 to converge, It IS 0 en
~ . bl a pomt .Js sufficiently- close to the root; f(x) must be
I erentIa e around the root When it d - - - --;''---;-

(
2' - oes converge, the convergence rate is quadratic,

hi x -x)w Ichmeans "+1 f <0<1 h
(X,,-X

f
)2 - ,were xf is the solution to !(x)=O.

A. Solve x2 =. 37 to the third digit.

Solution: Let J(x)=x2-37 th ..
, e onginal problem is e . I I· J() 0

Xo =. 6 is a natural initial guess. Applying N ' qurva ent to so vmg x = .
ewton s method, we have

x =x _ J(xo) _ x;-37 36-37
1 0 J'(xo) -xo- 2x

o
=6 2x6 =6.083.

(6.083
2
= 37.00289, which is very close to 37.)

If you do not remember Newton's meth d .
function f(x)=-/; with f'(x) =.lx_112.

O ,you can directly apply Taylor's series for
2 •

J(37)~ J(36) +1'(36)(37-36) = 6+ 1/12 = 6.083.
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Alternatively, we can use algebra since it is obvious that the solution should be slightly
higher than 6. We have (6+y)2=37=;.y2+l2y-l=0. If we ignore the / term,
which is small, then y = 0.083 and x = 6 + y = 6.083.

B. Could you explain some root-finding algorithms to solve f(x) =. O? Assume f(x) IS

a differentiable function.

Solution: Besides Newton's method. the bisection method and the secant method are two
alternative methods for root-finding. 5

Bisection method is an intuitive root-finding algorithm. It starts with two initial values
aoand bo such that J(ao) < 0 and J(bo) > O. Since I(x) is differentiable, there must be

an x between Go and bo that makes f(x) =. O. At each step, we check the sign of

J(a,+b,)/2). If J«a,+b,)/2)<0, we set b,,, =b" and a,,, =(a,+b,)I2; If

J( (a" +b")/ 2) > 0, we set a,., = a, and b"., = (a" + b")/2; If I( (a" +bJ/2) = 0, or its

absolute value is within allowable error, the iteration stops and x='(G" +bJ/2. The

. X/HI-XI
bisection method converges linearly, ::;0 < 1, which means it is slower than

- ---k~t
Newton's method. But once you find an Go/ bo pair, convergence is guaranteed.

Secant method starts with two initial values xO' XI and applies the iterative step

x 1 = X - x" -X,,_I J(x ). It replaces the f'(x ) in Newton's method with a
... "J( )-J( ) " "x" xn_1

linear approximation f(x,,)- [(x" I). Compared with Newton's method, it does not
x" -X"_l

require the calculation of derivative f'(x,,), which makes it valuable if f '(x) is difficult

to calculate. Its convergence rate is (I + .J5)/2, which makes it faste~than the_bisection--- --method but slower than Newton's method. Similar to Newton's method, convergence is
not guaranteed if initial values are not close to the root.

Lagrange multipliers
The method of Lagrange multipliers is a conunon technique used to find local
maximums/minimums ofa multivariate function with one or more constraints. 6

5 Newton's method is also used in optimization-including multi-dimensional optimization problems-to
find local minimums or maximums.
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Let I(x" x" "', x,) be a function of n variables x (x x ) ith d' t" = I' 2" ", XII WI gra len

vector V!(x)=(Z" %1' "', ~). The necessary condition for maximizing or

minimizing !(x) subject to a set of k constraints

gl(XI,X2,",X,,) = 0, g2(XI'X2,"',xJ =0, "', gk(XI'X2,' . ,XII) = a
is thatV/(x)+A,Vg,(x)+A,Vg,(x)+ ... +AkVg.(x)=O, where A,,···,Ak are called the
Lagrange multipliers.

What is the distance from the origin to the plane 2x +3Y +4z = 12 ?

Solution: The distance (D) from th " I' . .. '. e ongm to a pane IS the nurumum distance between
the ongm and points on the plane. Mathematically, the problem can be expressed as

min DJ = !(x,y,z) = x2 + / + Z2

s.t. g(x,y,z)=2x+3y+4z-12=O

Applying the Lagrange multipliers, we have
i!f i!fiJx+A.fu"=2x+21=0
iJj 1 iJjiJy+/loay=2y+3A.=0
if ~aja: + /loa:= 2x + 41 = 0
2x+3y+4z-12=O

"" D=~(1!)' +(")' (-"-)'_~29 29 + 29 -.J29

In general, for a plane

D= Idl
.Ja2 +b2 +c2 •

with equation ax +by + CZ = d, the distance to the origin is

3.5 Ordinary D'u .
In thi . I"erentlal Equations

~s~ectlOn,we cover four tical di .
seen In mterviews. YP IfferentJal equation patterns that are commonly

6 The method of Lagran e '. _
reveals the necessa g .~ultlphers is a special case of .

ty conditIons for the solun ~arush-Kuhn_ Tucker (KKT) conditions, which
IOnsto constrain d I'

46 e non mear optimization problems.
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Separable differential equations

A separable differential equation has the form dy = g(x)h(y). Since it is separable, we
dx

can express the original equation as dy = g(x)dx. Integrating both sides, we have the
h(y)

solution f dy ~ fg(x)dx.
h(y)

A. Solve ordinary differential equation y'+ 6xy = 0, y(O) = 1

dy
Solution: Let g(x) = -6x and h(y) = y, we have - ~ -6xdx. Integrate both sides of

y

the equation: fdY = f -6xdx <> Iny = _3x2 + c :::::> y = e~3xl+c, where c is a constant.
y

Plugging in the initial condition y(O) = 1, we have c = 0 and Y = e-J.r'.

B S I di diff . I . ,x - Y 7• 0 ve or mary I rerentia equation y = -- .
x+y

Solution: Unlike the last example, this equation is not separable in its current form. But
we can use a change of variable to turn it into a separable differential equation. Let
Z = x + y , then the original differential equation is converted to

d(z -x) = x-(z -x) c> dz -I = 2x -I""zdz = 2xdx => fzdz = f2xdx+ C

dx z dx z
=::::} (x+ y)2 = Z2 = 2x2 +c =::::} i + 2xy-x2 =c

First-order linear differential equations

A first-order differential linear equation has the fonn : + P(x)y = Q(x). The standard
approach to solving a first-order differential equation is to identify a suitable function
l(x), called an integrating factor, such that f(x)(y'+P(x)y)=f(x)y'+f(x)P(x)y

7 Hint: Introduce variable z = X+ y.
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= (1(x)y)'; Then we have (1(x)y)' = I(x)Q(x) and we can integrate both sides to solve

fI(x)Q(x)dx

I(x)
for y: I(x)y = fI(x)Q(x)dx =:> y

The ! ina f ' dI(x)e mtegratmg actor, I(x), must satisfy T = I(x)?(x), which means I(x) is a

separable differential equation with general solution lex) = ef"lX)dt. 8

Solve ordinary different equation y'+ y = --\-, y(1) = 1, where x> O.
x x

Solution: This is a typical example of first-order linear equations with P(x) =..!.. and
x

Q( ) - I S I 1"<". (III,", I I
x -7' 0 (x)=e »e =e"'=x and we have I(x)Q(x)=-,

x
., I(x)(y'+ ?(x)y) = (cry)' = I(x)Q(x) = II x

Taking integration on both sides xy - f(l/)dx I In x +c, - x =nx+c::::::>y= .
x

Plugging in y(l) = I, we get c = I and y = In x+ I
x

Homogeneous linear equations
A homogenous linear '.

d' e~atlOn IS a second-ordej- differential equation with the form
a(x)--?+b(x) dy +c(x),'J,O

dx dx '

It is easy to show that if d,Iyany r I' hhomogeneous li . I 2 are mear y independent solutions to t e
mear equation, then any y( ) _ ()

arbitrary constants is a I t' x - CIYI x +C2Y2(X), where c\ and c2 are
, so U Ion to the homo liWh b geneous mear equation as well

en a, and c (a*O) are constants' d '
linear equation has cia de. mstea of functions of x, the homogeuow

se lorm sOlutIOns:
Let r: and r be th

1 2 e roots of the characteristic equation ar2 +br +cu~0 9
v ,

B The Constant c is not needed' th' .
In IS case Since itjust I

sea es both sides of the equation by a factor.
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I. If f1 and r: are real and 'i :;t:. f2, then the general solution is y = cle'lX + c2e'2X ;

2. If fl and f2 are real and 'i = r2= z-, then the general solution is Y = cle'x + c~)

3. If rl and f2 are complex numbers a ± ifi, then the general solution is

Y = e'" (c, cos fix +C, sin fix) .

It is easy to verify that the general solutions indeed satisfy the homogeneous linear
solutions by taking the first and secondary derivatives of the general solutions.

What is the solution of ordinary differential equation y"+ Y '+ Y = O?

Solution: In this specific case, we have a = b = c = 1and b' - 4ac = -3 < 0, so we have
complex roots r = -11 2 ±.,J3 /2/ (a = -112, fJ = .,J3/2), and the general solution to the
differential equation is therefore

y = e'" (c, cos fix + c2 sin fix) = e-lI2x (ci cos( .J3/2x) + c2 sin(..Jj / 2x)).

Nonhomogeneous linear equations

U Iik h ' ,d'y b dy 0 h I'n I e a omogenous hnear equation a dx2 + dx + C = , a non omogeneous mear

equation a d
2

; + b dy +c = d(x) has no closed-form solution. But if we can find a
dx dx "-

d' d
particular solution Yr(x) for a--?+b-.!+c=d(x), then y=y,(x)+ y,(x), where

dx dx
, - - - , ' d'y dy

yg(x) IS the general solution of the homogeneous equatIOn a""""d7"+b-;;;+c=O, IS a

, d'y dy
general solution of the nonhomogeneous equatron a dx2 -r b dx +c = d(x).

9 . . ' . d 'c I -b+..}b'-4ucA quadratic equation ar"+hr+c=O has roots given by qua railC lonnua r=o . You'a
should either commit the fonnula to memory or be able to derive it using (r + bI2a)' = (b' - 4ac)/4a' .

49



Calculus and Linear Algebra

Alth~ugh it may be difficult to identify a particular solution YI'(x) in general, in the

special case when dCi) is a simple polynomial, the particular solution is often a
!'olynomial of the same degree.

What is the solution ofODEsy"+ y'+ y = 1 and y"+ y'+ Y = x?

Solution: In these ODEs, we again have a = b ~ -1 d b' 4 'c - an - ac = -.) < 0 so we have
complex solutions r~-1/2±J312i (a~-1I2 fJ- "/2) d h ' .,, - '\Ij an t e general solution IS

y = e-'''' (c, cos(J312x) + c, sin(J312x)).

What is a particular solution for y "+ y'+ Y = I? CI I _
y"+ y'+ Y = I is . ear y y -I IS. SO the solution to

Y = Y,(x) +Y,(x) = e-u" (c, cos(J312x) + c, sin(J312x)) + 1.
To find a particular solution for y"+y'+ = Ly x, etYI'(x)=mx+n, then we have

'" aY +Y+Y= +m+(mx+n)=x:::>m=l n-- .
the solution to y"+y'+' ' - l. So the particular solution is x-I and

y= x IS

y = y,(x)+ y,(x) = e-u" (c, cos(J312x)+ c, sin(J312x)) + (x-I).

. 3.6 Linear Algebra
Lm~a~algeb~a is extensively used in a Ii '.
~tatlshcs, optimization Monte C I . pp e~ quantitative finance because of its role in
It is I ,ar 0 sImulation si I .di a so a comprehensive mathematical fi ld ha igna processing, etc. Not surprisingly,
lSCUSS several topics that have . .file t at Covers many topics In this section we
methods. stgm tcant applications in statis~ics and nume;ical

Vectors

~n '" 1.(column) vector is a one-dimensional a
POintIn the R" (n-dimensional) E I'd rray. It can represent the coordinates of

uc I ean space.
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Inner product/dot product: the inner product (or dot product) of two R" vectors x and
,

y is defined as LX,Yi = xTy
1.. 1

Euclidean norm: IIXII~~tx"~.JXTX; Ilx-yll~J(x-y)'(x-y)

,
Then angle B between R" vectors x and y has the property that cos o = IIx I

Y II" x and y___ _ _ xillY
are orthogonal if xl'y = O. The correlation coefficient of two random variables can be
viewed as the cosine of the angle between them in Euclidean space (p = cos e).

There are 3 random variables x, y and z. The correlation between x and y is 0.8 and the
correlation between x and z is 0.8. What is the maximum and minimum correlation
between Y and z?

Solution: We can consider random variables x, y and z as vectors. Let e be the angle
between x and y, then we have cos e = PX,y = 0.8. Similarly the angle between x and z is
e as well. For Y and z to have the maximum correlation, the angle between them needs
to be the smallest. In this case, the minimum angle is 0 (when vector y and z are in the
same direction) and the correlation is 1. For the minimum correlation, we want the
maximum angle betweeny and z, which is the case shown in Figure 3.2.

If you still remember some trigonometry,
all you need is that

cos(28) = (cos 8)' - (sin 8)'
= 0.8' - 0.6' = 0.28,-, h

",
0.8

" ,

Otherwise, you can solve the problem using
Pythagoras's Theorem:

0.8x 1.2= I xh => h ~ 0.96
y 12:.. UJx __ --,- __ -"'" Z cos2B ~ .JI' -0.96' = 0.28

0.6 0.6
Figure 3.2 Minimum correlation and maximum angle between vectors y and z
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