Chapter 1 General Principles

Let us begin this book by exploring five general principles that will be extremely helpful
I your interview process. From my experience on both sides of the interview table,
these general guidelines will better prepare you for job interviews and will likely make
you a successful candidate.

1. Build a broad knowledge base

The length and the style of quant interviews differ from firm to firm. Landing a quant
job may mean enduring hours of bombardment with brain teaser, calculus, Jinear algebra,
probability theory, statistics, derivative pricing, or programming problems. To be a
successful candidate, you need to have broad knowledge in mathematics, finance and
programming.

Will all these topics be relevant for your future quant job? Probably not. Each specific
quant position often requires only limited knowledge in these domains. General problem
solving skills may make more difference than specific knowledge. Then why are
quantitative interviews so comprebensive? There arc at least two reasons for this:

The first reason is that interviewers often have diverse backgrounds. Each interviewer
has his or her own favorite topics that are often related to his or her own educatjonal
background or work experience. As a result, the topics you will be tested on are likely to
be very broad. The second reason is more fundamental. Your problem solving skilis—a
crucial requirement for any quant job—is often positively correlated to the breadth of
your knowledge. A basic understanding of a broad range of topics often helps you better
analyze problems. explore alternative approaches, and come up with efficient solutions.
Besides, your responsibility may not be restricted to your own projects. You will be
expected to contribute as a member of a bigger team. Having broad knowledge will help
you contribute to the team’s success as well.

The key here is “basic understanding.” Interviewers do not expect you to be an expert on
a specific subject—unless it happens to be your PhD thesis. The knowledge used in
interviews, although broad, covers mainly esseatial concepts. This is exactly the reason
why most of the books I refer to in the following chapters have the word “introduction”
or “first” in the title. If I am allowed to give only one suggestion to a candidate, it will be
know the basics very well.

2. Practice your interview skills

The interview process starts long before you step into an interview room. In a sense, the
success or failure of your interview is often determined before the first question is asked.
Your solutions to interview problems may fail to reflect your true intelligence and
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knowledge if you are unprepared. Although a complete review of quant interview
problems is impossible and unnecessary, practice does improve your interview skills.
Furthermore, many of the behavioral, technical and resume-related questions can be

anticipated. So prepare yourself for potential questions long before you enter an
interview room.

3. Listen carefully

You should be an active listener in interviews so that you understand the problems well
before you attempt to answer them. If any aspect of a problem is not clear to you,
politely ask for clarification. If the problem is more than a couple of sentences, jot down
fhe k;y words to help you remember all the information. For complex problems,
interviewers often give away some clues when they explain the problem. Even the

assumptions they give may include some information as to how to approach the problem.

So listen carefully and make sure you get the necessary information.

4. Speak your mind

When you analyze a problem and explore different wavs to solve it, never do it silently.
Clearly demonstrate your analysis and write down { :
necessary. This conveys your intelli
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interviewer the opportunity to correct
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igefflk"?g your mind does not mean explaining every tiny detail. If some conclusions are
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Chapter 2 Brain Teasers

fn this chapter, we cover problems that only require common sense, logic, reasoning, and
basic—no more than high school level—math knowledge to sqlve. In a sense, they are
real brain teasers as opposed to mathematical problems in disguise. Alt_hough these brain
leasers do not require specific math knowledge, they are no less dlﬂi‘culr than other
quantitative interview problems. Some of these problems test your aqa]ytlcal and gen.eral
problem-solving skills; some require you 1o think.out oi_'the box;_whllc others E.iSk you to
solve the problems using fundamental math techniques sna creative way. I.n this chapter,
we review some interview probiems to explain the general themes of brain teasers that

you are likely to encounter in guantitative interviews.

2.1 Problem Simplification

If the original problem is so complex that you cannot come up w.lth‘an immediate
solution, try to identify a simplified version of the prob!gm and start with it. qually you
can start with the simplest sub-problem and gradually increase the cm_nplexny. You do
not need to have a defined plan at the beginning. Just try to solve the mmple;st cases and
analyze your reasoning. More often than not, you will find a pattern that will guide you

through the whole problem.

Screwy pirates

Five pirates looted a chest full of 100 gold coins. Being a bunch of democratic pirates,
they agree on the following method to divide the loot:

The most senior pirate will propose a distribution of the coi'ns. Aliﬂpir'ates. :‘}:rcluhc{ing the
most senior pirate, will then vote. 1f at least 50% of ‘thc pirates (?) pirqtes in t Ii; %?Sg)
accept the proposal, the gold is divided as proposed. If not, the n“l()§l 's-.,mor p};lrate ill be
fed 1o shark and the process starts over with the next most seniol pirate... The process 1§
repeated until a plan is approved. You can assume that all pirates ar‘c pcrf;gtly“raut;)n.al_
they want to stay alive first and to get as much ggld as possible scu)pfd. _ ’ma ¥Ys hel_ng
blood-thirsty pirates, they want to have fewer pirates on the boat if given a choice
between otherwise equal outcomes.

How will the gold coins be divided in the end?

ne theory or dynamic programming, this strategy
problem may appear to be daunting. If the problem witij 5 pif‘ﬂlf?S s‘c_:emshcomplebx._ Wf;
can always start with u simplified 1-'er.s'ion' of rhe p,-oi;rlem by r.t.duun_g’t‘c? nun‘l E:I‘ 0

pirates, Since the solution to 1-pirate case 1S trivial, let’s start with 2 pirates. The senior

Solution: If you have not studied gat
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pirate glabele':d as 2} can claim all the gold since he will always get 50% of the votes
from himself and pirate ] is left with nothing,

Let's adc'i a more _scnior pirate, 3. He knows that if his plan is voted down, pirate | will
get nothing. But if he offers private | nothing, pirate 1 will be happy to kill him. So

pirate 3 wi.!l offer private 1 one coin and keep the remaining 99 coins, in which strategy
the plan will have 2 votes from pirate 1 and 3

li.‘pim;e 4.is added. he knowg that if his plan is voted down, pirate 2 will get nothing. So
pirate 2 will settle for one coin if pirate 4 offers one. So pirate 4 should offer pirate 2 one

Now wef ﬁnail_y come 1o the 5-pirate case. He knows that if his plan is voted down, both
pirate 3‘¢md pirate l. will get nothing. So he only needs to offer pirate 1 and pirate 3 one
coin each to get their votes and keep the remaining 98 coins. If he divides the coins this
way. he will have three out of the five votes: from pirates 1 and 3 as well as himself.

On S o q 3 3 .
ob\t’it(‘) ::L }.\St‘atzlaj\;uh a simplified version and add complexity to it, the answer becomes
- Actually afier the case =S5, a clear pattern has emerged and we do not need to

t L 3 1 . 2l L
Stop at > pirates. For any 2n+1 pirate case (n should be less than 99 though), the most

senior pirate will offer pirate _
himself P $1,3., and 2n-1 each one coin and keep the rest for

Tiger and sheep

One hundred tige

ey gm:t;l [};%;rtsh aﬂd one sheep are put on a magic island that only has grass. Tigers

eat one sht;c;J and (t:} e e eal sheep. Assume: 4. Each time only one tiger can
: at hger itself will become 2 sheep affer it eats the sheep. 8. All

tigers are smart and !
el perfectly rations 1 - '
Baten? y rational and they want to survive. So will the sheep be

Solution; 100 is a large number, so

problem. If there is only 1 tiger (»
to worry about being caten. How
C.l.[ht‘l' tiger probably would do sor
Either tiger is probably Ihinkin.
*f’“' caten by the other tiger. S
tiger will eat the sheep.

‘lilgam let’s start with a simplified version of the
a;o ; f)ur'ely 'fjwlll eat the sheep since it does not need
s {l;]t ”kt.’ge“’" Since both tigers are perfectly rational.
gL eat the oo g Will happen if it eats the sheep.
0 10 pug h tclp,ll will belcon}e a sheep; and then I will

suarantee the highest likelihood of survival, neither

[t [ L% [ e

that thinks this through will eat the hae, Tk d it will not be eaten. So the first tiger
' CIC are 4 tigers, each tiger will understand
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that if it eats the sheep, it will turn to a sheep. Since there are 3 other tigers, it will be
eaten. So to guarantee the highest likelihood of survival, no tiger will eat the sheep.

Following the same logic, we can naturally show that if the number of tigers is even, the

sheep will not be eaten. If the number is odd, the sheep will be eaten, For the case
n =100, the sheep will not be eaten.

2.2 Logic Reasoning

River crossing

Four people, 4, B, C and D need to get across a river. The only way to cross the river is
by an old bridge, which holds at most 2 people at a time. Being dark, they can't cross the
bridge without a torch, of which they only have one. So each pair can only walk at the
speed of the slower person. They need to get all of them across to the other side as
quickly as possible. A is the slowest and takes 10 minutes to cross; B takes 5 minutes; C

takes 2 minutes; and D takes | minute,

What is the minimum time to get all of them across 1o the other side?'

Solution: The key point is to realize thaf the 10-minute person should go with the 5-
minute person and this should not happen in the first crossing, otherwise one of them
have 1o g0 back. So € and D should go across first (2 min); then send D back (1min); A
and B go across (10 min); send C back (2min); C and D go across again (2 min).

It takes 17 minutes in total. Alternatively, we can send C back first and then D back in
the second round, which takes 17 minutes as well.

- .t

i

Birthday problem

You and your colleagues know that your boss A’s birthday is one of the following 10
dates: F

Mar 4, Mar 5, Mar 8 ~ A

Jun 4, Iun7 -« 4 f ' /

[

~Sep 1, Sep’5

Dec 1, Dee’?, Dec 8 ~
A told you only the month of his birthday. and told your colleague C only the day. After

that, you first said: T don’t know A’s birthday: C doesn’t know it either.” After flearing

' Hint: The key is to realize that 4 and B should get across the bridge together.
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what you said, C replied: “I didn’t know A4’s birthday, but now I know it.” You smiled
and said: “Now I know it, t00.” After looking at the 10 dates and hearing your comments,
your administrative assistant wrote down A4’s birthday without asking any questions. So
what did the assistant write?

Solution: Don’t let the “he said, she said” part confuses you. Just interpret the logic

behind each individual’s comments and try your best to derive useful information from
these comments.

Let D be the day of the month of A’s birthday, we have De{1,2,4,57,8}. If the

birthday is on a unique day, C will know the A’s birthday immediately. Among possible
Qs. 2 and 7 are unique days. Considering that you are sure that C does not know A’s
blrlhda_y, you must infer that the day the C was told of is not 2 or 7. Conclusion: the
month is not June or December. (If the month had been June, the day C was told of may
have been 2; if the month had been December. the day C was told of may have been 7.)

Now C knows that the month must be either March or September. He immediately
figures out 4’s birthday, which means the day must be unique in the March and

S_f:ptember list. It means A’s birthday cannot be Mar 5, or Sep 5. Conclusion: the
birthday must be Mar 4, Mar 8 or Sep 1,

Among these three possibilities left, Mar 4 and Mar 8 have the same month. So if the
month you have is March, you still cannot figure out A’s birthday. Since you can figure

clmt A’s birthday, A’s birthday must be Sep 1. Hence, the assistant must have written Sep

Card game

pile, you win $100; otherwise (including tj
. 00 s Ing ties) you get nothing. T} Ino ¢
negotiate the price ; - ng. lhe casino allows you to
g the price you want to pay for the game. How much would you be willing to
pay to play this game?” i

tSuhmrm: This SL{:‘c]y is an insidious casino. No matter how
and the .dca]cr will always have the same
cuch pair of discarded cards have one

! the cards are arranged. you
number of cards in your piles. Why? Because
black card and one red card, so equal number of
Rt i il

¥ I[inl' -II') o a
] pproach the problem usine
What does TEFEER SN Symmetry. Each discar i bl -
es that tell you as to the numbser of black and red cards in ::lizdrgztu-t 3 9;18 'E)](‘Lk A4 s d B
wo piles?
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red and btack cards are discarded. As a result, the number of red cards left for you and
the number of black cards lefi for the dealer are always the same. The dealer always
wins! So we should not pay anything to play the game.

Burning ropes

You have two ropes, each of which takes | hour to burn. But either rope has different
densities at different points, so there's no guarantee of consistency in the time it takes
different sections within the rope to burn. How do you use these two ropes to measure 45
minutes?

Sofution: This is a classic brain teaser question. For a rope that takes x minutes to burn,
if you light both ends of the rope simultaneously, it takes x/2 minutes to burn. So we
should light both ends of the first rope and light one end of the second rope. 30 minutes
later, the first rope will get completely bumed, while that second rope now becomes a
30-min rope. At that moment, we can light the second rope at the other end (with the
first end still burning), and when it is burned out, the total time is exactly 45 minutes.

Defective ball

You have 12 identical balls. One of the balls is heavier OR lighter than the rest (you
don't know which). Using just a balance that can only show you which side of the tray is
heavier, how can you determine which ball is the defective one with 3 measurements?’

Solution: This weighing problem is another classic brain teaser and is still being asked
by many interviewers. The total number of balls often ranges from 8 to more than 100.
Here we use #=12 to show the fundamental approach. The key is to separate the
original group (as well as any intermediate subgroups) into three sets instead of two. The
reason is that the comparison of the first two groups always gives information about the
third group.

Considering that the solution is wordy to explain, [ draw a tree diagram in Figure 2.1 to
show the approach in detail. Label the balls | through 12 and separate them to three

groups with 4 balls each. Weigh balls 1. 2. 3. 4 against balls 5, 6. 7. 8. Then we go on to
explore two possible scenarios: two groups balance. as expressed using an “=" sign, or 1,

3 Hint: First do it for 9 identical balls and use only 2 measurements, knowing that one is heavier than the

rest.
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2, 3, 4 are lighter than 5, 6, 7, 8, as expressed using an “<” sign. There is no need to
explain the scenario that 1, 2, 3, 4 are heavier than 5, 6, 7, 8. (Why?4)

If the two groups balance, this immediately tells us that the defective ball is in 9, 10, 11
and 12, and it is either lighter (L) or heavier (H) than other balls. Then we take 9. 10 and
11 from group 3 and compare balls 9, 10 with 8, 11. Here we have already figured out
that 8 is a normal ball. [f 9, 10 are lighter, it must mean either 9 or 10is Z or 11 is &, [n
which case, we just compare 9 with 10, [f 9 is lighter, 9 is the defective one and it is L;if
9 and 10 balance, then 11 must be defective and i, 1f 9 is heavier, 10 is the defective

one and itis L. If 9, 10 and 8, 11 balance, 12 is the defective one. [£9, 10 is heavier, than
either9or 10is & or 11 is L.

You can easily follow the tree in Figure 2.1 for further analysis and it is clear from the
tree that all possible scenarios can be resolved in 3 measurements.

©
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Figure 2.1 Tree diagram to identify the defective ball in 12 balls

In general if ave the inf :
2 you have the Information as to whether the defective ball is heavier or

— e e
1 i
Here is where the symm i i
ymmetry idea comes in. Nothi
B npiliikiies, b €0 n. Nothing makes the 1,2,3.40r5 s speci 1.2,
eavier than 5, 6, 7, 8. let § just exchange the labels of th e A e e b ott

of 1, 2, 3, 4 being lighter than 5IETS €5¢ Iwo groups. Again we have the case
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lighter, you can identify the defective ball among up to 3" balls using no more than #
measurements since each weighing reduces the problem size by 2/3. If you have no
information as to whether the defective ball is heavier or lighter, you cﬁ_ﬁ identify the
defective ball among up to (3" —3)/2 balls using no more than » measurements.

Trailing zeros

How many trailing zeros are there in 100! (factorial of 100)?

Solution: This is an easy problem. We know that each pair of 2 and 5 will give a trailing
zero. If we perform prime number decomposition on all the numbers in 100!, it is
obvious that the frequency of 2 will far outnumber of the frequency of 5. So the
frequency of 5 determines the number of trailing zeros. Among numbers 1,2,-+-,99, and
100, 20 numbers are divisible by 5 (5, 10, ---, 100). Among these 20 numbers, 4 are
divisible by 5 (25,50, 75,100). So the total frequency of 5 is 24 and there are 24

trailing zeros.

Horse race

There are 25 horses, each of which runs at a constant speed that is different from the
other horses’. Since the wrack only has 5 lanes, each race can have at most 5 horses. If
yvou need to find the 3 fastest horses, what is the minimum number of races needed to
identify them?

Solution: This problem tests your basic analytical skills. To find the 3 fastest horses,
surely all horses need to be tested. So a natural first step is to divide the horses to 5
groups (with horses 1-5, 6-10. 11-15, 16-20, 21-25 in each group). After 5 races, we will
have the order within each group. let’s assume the order follows the order of numbers
(¢.g., 6 is the fastest and 10 is the slowest in the 6-10 group)’. That means 1. 6, 11, 16
and 21 are the fastest within each group.

Surely the last two horses within each group are eliminated. What clse can we infer? We
know that within each group, if the fastest horse ranks 5th or 4th among 23 horses, then
all horses in that group cannot be in top 3; if it ranks the 3rd, no other horse in that group
can be in the top 3; if it ranks the 2nd, then one other horse in that group may be in top 3,
if it ranks the first, then two other horses in that group may be in top 3.

* Such an assumption does not affect the generality of the solution. If the order is not as described, just
change the labels of the horses.



Brain Teasers

So let’s race h(_)rses 1. 6. 11, 16 and 21. Again without loss of generality, let's assume
the order is 1, 6, L1, 16 and 21. Then we immediately know that horses 4-5,8-10, 12-15,
16-20 and 21-25 are eliminated. Since 1 is fastest among all the horses, 1 is in. We need

to determine which two among horses 2, 3, 6, 7and 11 are in top 3, which only takes one
extra race.

So all together we need 7 races (in 3 rounds) to identify the 3 fastest horses.

Infinite sequence

Mo A A LA - : 1
If x"x*x*x"*x-- =2, where x*y=x" whatis x?

So:’ur_ion: This problem appears to be difficult. but a simple analysis will give an elegant
solution. What do we have from the original equation? i

IMx*x"x x x..= im x” x”
X I_X-w=2Slime s x "3 x-..=2. In other

e —_—

1 AT sz

words, as 1 — ©,

=1 tering

adding or minus one x” should yield the same result,

SO X M XA X MY Ay v A A A wn
% b 48 §"3aF LF | X }=x"2=2 = x =42

2.3 Thinking Out of the Box
Box packing

Can you pack 53 bricks of dimensions [x]x 4 into a 6x6x6 box?

Solution: This is a nice problem extended from g
problem, you have a §x8 chess board with (w
corners removed. You have many bricks with
Into the remaining 62 squares? (An alternative
Squares using bricks without any bricks overla
the board, which requires a similar analysis.)

popular chess board problem. In that
0 small squares at the opposite diagonal
dimension 1x2. Can you pack 31 bricks
question is whether you can cover all 62
Pping with each other or sticking out of

A real chess e 5
chess board bi:)airﬁl{']flut PPl hel}.)s the visualization. As shown in Figure 2.2, when a
opposite diag(;nq] C‘{v]m;'l:hh aIter}nanve black and white squares, both squa.r::’s at the
Tl : S have the same ¢ p . ; :
will always cover one black square T If you put a 1x2 brick on the board, it
FOTNCT Squares were removed, then
we only have ,
s 3 :tdll i 30 black squares lefi (and each brick requires or
A Ky 15 ou r n T . :
it Inlllit(;]fatrh{'nt’]dl‘huo"n. Tg cover all 62 squares without overlapping or
¥ > have exactly 31 bricks. Yer we have proved that 31 bricks cannot
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fit in the 62 squares left, so you cannot find a way to fill in all 62 squares without
overlapping or overreaching.

. . Removed
[]
[ ] | ]

L] ..
Removed 4—@,. .

Figure 2.2 Chess board with alternative black and white squares

Just as any good trading strategy, if more and more people get to know it and replicate it,
the effectiveness of such a strategy will disappear. As the chess board problem becomes
popular, many interviewees simply commit it to memory (after all, it’s easy to remember
the answer). So some ingenious interviewer came up with the newer version 1o test your
thinking process, or at Jeast your ability to extend your knowledge to new problems.

If we look at the total volume in this 3D problem, 53 bricks have a volume of 212, which
is smaller then the box’s volume 216. Yet we can show it is impossible to pack all the
bricks into the box using a similar approach as the chess board problem. Let’s imagine
that the 6x6x6 box is actually comprised of small 2x2x2 cubes. There should be 27
small cubes. Similar to the chess board (but in 3D}, imagine that we have black cubes
and white cubes alternates-—it does take a little 3D visuvalization. So we have either 14
black cubes & 13 white cubes or 13 black cubes & 14 white cubes. For any 1x1x4 brick
that we pack into the box. half (1x1x2) of it must be in a black 2x2x2 cube and the
other half must be in a white 2x2x2 cube. The problem is that cach 2x2x2 cube can
only be used by 4 of the 1x1x4 bricks. So for the color with 13 cubes, be it black or
white, we can only use them for 52 [x1x4 tubes. There is no way to place the 53th
brick. So we cannot pack 53 bricks of dimensions 1x1x4 into a 6x6x6 box.

Calendar cubes

You just had two dice custom-made. Instead of numbers 1 - 6, you place single-digit
numbers on the faces of each dice so that every morning you can arrange the dice in a
way as to make the two front faces show the current day of the month. You must use
both dice (in other words, days 1 — 9 must be shown as 01 — 09), but you can switch the
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order of the'dice if you want. What numbers do you have to put on the six faces of each
of the two dice to achieve that?

Solu!ion:_The days of a month include 11 and 22, so both dice must have 1 and 2. To
express single-digit days, we need to have at least a 0 in one dice. Let’s put a 0 in dice
one first. Considering that we need to express all single digit days and dice two cannot
have all the digits from 1 - 9, jt’s necessary to have a 0 in dice two as well in order to
express all single-digit days.

So far we have assigned the following numbers:

Dice one

1

2

0

?

Dice two

!

&

?

?

0

?

?

?

If V;T can assign all the rest of digits 3, 4, 5, 6, 7, 8, and 9 to the rest of the faces, the
Ip]:;:)nk emlzs Fo}lved. But there are 7 digits left. What can we do? Here’s where you neéd to
out of the box. We can use a 6 as a 9 since they will never be needed at the same

llmcl SO Slmpl} pl.lt 3 4 a“d 5 Oﬂ 0] 1e (li(, (l ; 8 | e [)l (5| d] CE alld ills
1 b H c
an 6, 1 dnd On h h F

Dice one i

>
=

o fw

Dice two | 2 0

Door to offer

offer, what question will you ask?

Solution: This is ¢ " classi i
ikt 8 uirs\d\,l?l}il?l c]asﬁsl.c brain teaser (maybe a little out-of-date in my opinion).
guarding the door to Ihtz E)(;tg:%: (I)tl‘] ; guard: “Would the other guard say that O
. ¢ answers yes, choos 3

no, choose the door this guard is standing in t{r\myl::s(;fthome 51 i
Fhere are two possible scenarios:

. Truth wlle

3 T guards the door to offer: [ iar o |
_, 0 offer; Liar guards the door 1o exit.

2. Truth teller guards the door to exit: Li
If we ask a guard a direc .
scenario 1, both guar

ar guards the door to offer.
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direct question does not help us solve the probiem. The key is to involve both guards in
the questions as the popular answer does. For scenario 1, if we happen 1o choose the
truth teller, he will answer no since the liar will say no; if we happen to choose the liar
guard, he will answer yes since the truth teller will say no. For scenario 2, if we happen
to choose the truth teller, he will answer yes since the liar will say yes; if we happen to
choose the liar guard, he will answer no since the truth teller with say yes. So for both
scenarios, if the answer is no, we choose that door; if the answer is yes, we choose the
other door.

Message delivery

You need to communicate with your colleague in Greenwich via a messenger service.
Your documents are sent in a padlock box. Unfortunately the messenger service is not
secure, so anything inside an unlocked box will be lost (including any locks you place
inside the box) during the delivery. The high-security padlocks you and your colleague
each use have only one key which the person placing the lock owns. How can you
securely send a document to your colleague?®

Solution: if you have a document to deliver, clearly you cannot deliver it in an unlocked
box. So the first step is to deliver it to Greenwich in a locked box. Since you are the
person who has the key to that lock, your colleague cannot open the box to get the
document. Somehow you nced to remove the lock before he can get the document,
which means the box should be sent back to you before your colleague can get the

document.

So what can he do before he sends back the box? He can place a second lock on the box,
which he has the key to! Once the box is back to you, you remove your own lock and
send the box back to your colleague. He opens his own lock and gets the document.

Last ball

A bag has 20 blue balls and 14 red balls. Each time you randomly take two balls out.
(Assume each ball in the bag has equal probability of being taken). You do not put these
two balls back. Instead, if both balls have the same color, you add a biue ball to the bag;
if they have different colors, you add a red ball to the bag. Assume that you have an
unlimited supply of blue and red balls, if you keep on repeating this process, what will
be the color of the last ball feft in the bag?? What if the bag has 20 biue balls and 13 red

balls instead?

¢ Hint: You can have more than one lock on the box.
? Hint: Consider the changes in the number of red and blue balls after each step.
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Solution: Once you understand the hint, this problem should be an easy one. Let (B,R)

represent the number of blue balls and red balls in the bag. We can take a look what will
happen after two balls are taken out.

Both balls are blue: (B,R) > (B-1.R)
Both balls are red: (B,R) = (B+1,R-2)
One red and one blue: (B, R) — (B~ 1,R)

Notice that R eithelr1slays the same or decreases by 2, so the number of red balls will
never become odd if we begin with 14 red balls. We also know that the total number of
balls decreases by one each time until only one ball is left. Combining the information

we have, the last ball must be a blue one. Similarty, when we start with odd number of
red balls, the final ball must be a red one.

Light switches

There is a light bulb inside a room and four switches outside. All switches are currently

at f)ffh state and only one switch controls the light bulb. You may tum any number of
switches on or off any numbelr of times you want. How many fimes do you need to go
into the room to figure out which switch controls the light bulb?

?To{ufr’w:: You may have seen the classical VErsion
inside the_room and 3 switches outside. Although th
approach is exact the same. Whether the light is on

.ot" this problem with 3 light bulbs
Is problem is slightly modified, the
and off is binary, which only allows

itch 3; get j : >
hether the light is on or off. TR RIS s el SANCE

I'he light bulb is on and hot — sw

bulb and observe w

g itch 1 controls the light;
The light bulb is off and hot —s switch 2 controls the light;
The light bulb is on and cold — switch 3 controls ,

1 the light:
The light bulb is off )

and cold — gwj '
—* switch 4 controls the light.
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Quant salary

Eight quants from different banks are getting together for drinks. They are all interested
in knowing the average salary of the group. Nevertheless, being cautious and humble
individuals, everyone prefers not to disclose his or her own salary to the group. Can you
come up with a strategy for the quants to calculate the average salary without knowing
other people’s salaries?

Solution: This is a light-hearted problem and has more than one answer. One approach is
for the first quant to choose a random number, adds it to his/her salary and gives it to the
second quant. The second quant will add his’her own salary to the result and give it to
the third quant; ...; the eighth quant will add his/her own salary to the result and give it
back to the first quant. Then the first quant will deduct the “random”™ number from the
total and divide the “real” total by 8 to yield the average salary.

You may be wondering whether this strategy has any use except being a good brain
teaser to test interviewees. It does have applications in practice. For example, a third
party data provider collect fund holding position data (securities owned by a fund and
the number of shares) from all participating firms and then distribute the information
back to participants. Surely most participants do not want others to figure out what they
are holding. If each position in the fund has the same fund [D every day, it’s easy to
reverse-engineer the fund from the holdings and to replicate the strategy. So different
random numbers (or more exactly pseudo-random numbers since the provider knows
what number is added to the fund ID of each position and complicated algorithm is
involved 10 make the mapping one to one) are added to the fund ID of each position in
the funds before distribution. As a result, the positions in the same fund appear to have
different fund 1Ds. That prevents participants from re-constructing other funds. Using
this approach, the participants can share market information and remain anonymous at

the same time.

2.4 Application of Symmetry

Coin piles

Suppose that you are blind-folded in a room and are told that there are 1000 coins on the
floor. 980 of the coins have tails up and the other 20 coins have heads up. Can you
separate the coins into two piles so to guarantee both piles have equal number of heads?
Assume that you cannot tell a coin’s side by touching it, but you are allowed to turn over

any number of coins.

Solution: Let's say that we separate the 1000 coins into two piles with # coins in one pile
and 1000 - coins in the other. If there are m coins in the first pile with heads up. there
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must be 20-m coins in the second pile with heads up. We also know that there are
n—m coins in the first pile with tails up. We clearly cannot guarantee that m =10 by
simply adjusting ».

What other options do we have? We can turn over coins if we want to. Since we have no
waty of knowing what a coin’s side is, it won’t guarantee anything if we selectively flip
coms. However, if we flip all the coins in the first pile, all heads become tails and all
tails become heads. As a result, it will have »—m heads and »1 tails (symmetry). So, to
start, we need to make the number of tails in the original first pile equal to the number of
heads in the second pile: in other words, to make n—m =20—m. n=20 makes the
equation hold. If we take 20 coins at random and tumn them al] over, the number of heads

among these turned-over 20 coins should be the same as the number of heads among the
other 980 coins.

-~

Mislabeled bags

You are given three bags of fruits. One has apples in it; one has oranges in it; and one
{1Ja:. 2 mix of apples and oranges in it. Each bag has a label on it (apple, orange or mix).
Jnfortunately. your manager tells you that ALL bags are mislabeled. Develop a strategy

gluiui*ir;ni Thgkc}-‘ here is to use the fact that ALL bags are mislabeled. For example, a
ag labeled with apple must contain either oranges only or a mix of oranges and applés.

([):‘:n sﬂ iol(;kb ;t rlhz lﬁbels: vrange, apple, mix (orange + apple). Have you realized that the
g and the apple label are symmetric? if not, let me explain it in detail: If you

the bag with the mix label and get one fruj

we know that bag is actually or:
‘ S ¥ orange (It cannot be a mj
know the bag’s label is wrong), Sj riy' g

it must be the mix bag. And the bag

Similarly, for the case
arly, ase that apples are in th i '
the bags using one single pick. RIS ity lebe

et LA
— e

R oo I i :! ]_ [ f- 7
C I L 1 [ g l 1
I h ]| Ub em st l(.l\ me as a WOI ame w en irs SdwW |

details besides his or her logic reasoning skills. L. But it does test a candidate's attention t0
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Wise men

A sultan has captured 50 wise men. He has a glass currently standing bottom down,
Every minute he calis one of the wise men who can choose either to turn it over (set it
upside down or bottom down) or to do nothing. The wise men will be called randomly,
possibly for an infinite number of times. When someone called to the sultan correctly
states that all wise men have already been called to the sultan at least once, everyone
goes free. But if his statement is wrong, the sultan puts everyone to death. The wise men
are allowed to communicate only once before they get imprisoned into separate rooms
(one per room). Design a strategy that lets the wise men go free.

Solution: For the strategy 1o work, one wise man, let’s call him the spokesman, will state
that every one has been called. What does that tell us? 1. All the other 49 wise men are
equivalent (symmetric). 2. The spokesman is different from the other 49 men. So
naturally those 49 equivalent wise men should act in the same way and the spokesman
should act differently.

Here is one of such strategies: Every one of the 49 (equivalent) wise men should flip the
glass upside down the first time that he sees the glass bottom down. He does nothing if
the glass is already upside down or he has flipped the glass once. The spokesman should
flip the glass boitom down each time he sees the glass upside down and he should do
nothing if the glass is already bottom down. After he does the 49th flip, which means ail
the other 49 wise men have been called, he can declare that all the wise men have been

called.

2.5 Series Summation

Here is a famous story about the legendary mathematician/physicist Gauss: When he
was a child, his teacher gave the children a boring assignment to add the numbers from |
to 100. To the amazcment of the teacher, Gauss turned in his answer in less than a
minute. Here is his approach:

(00 ]

Zn: l + 24 -+ 99+ lOUi

finef 1 + - e
100

_l;.

S n=100+99++ 2 + |
=L

- 109
2ii?=101+101+---+101+]01=101X]00:>Zn=100;10]

i

+

|
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y : : - N(N
This approach can be generalized to any integer V: Zn = —(%l)

n=1 =
The summation formula for consecutive squares may not be as intuitive:

i*‘-‘" _N(N+DRN+D) _£+ N N

- 6 3 02 6

J\f
But if we correctly guess that D n” =aN’+bN®+cN+d and apply the initial

=l

conditions

N=(=0=d
N=l=l=a+b+c+d
N=2=5=8a+4b+2c+d
N=3=14=27a+%+3c+d

we will have the solution thata = 1/3, b= 1/2, ¢ = 1/6, d = 0. We can then easily show
that the same equation applies to all N by induction.

Clock pieces

A clock (numbered 1 — 12 clockwise) fell off the wall and broke into three pieces. You

find that the sums of the numbers on each piece are equal. What are the numbers on each
piece? (No strange-shaped piece is allowed.)

- 12
- : . 4 § ’) %
Solution: Using the summation equation, > n= A 78. So the numbers on each

=l 2

lewees mistakenly assume that the numbers on
€ no strange-shaped piece is allowed. [t's easy to
en the interviewees’ thinking gets stuck because
bers that add up to 26.

Such an assumption is not correct since 12 and 1
wrong assumption is removed, it becomes clear t
second piece is 11, 12, 1 and 2;

piece must sum up to 26. Some interv
cach piece have to be continuous becaus
see that 3, 6, 7 and 8 add up to 26. Th
they cannot find more consecutive num

are continuous on a clock. Once that

come hat 12+1=13 and 11+2=13. So the
the third prece1s 3,4, 9 and 10.

Missing integers

Suppose we have 98 distinet integers from 1 to 100

two missing integers (within [1. 100])? it good way to find out the
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Solution: Denote the missing integers as x and y, and the existing ones are 2, -, Zyg .
Applying the summation equations, we have

A 3 00x101 &
Zn-:x+y+Zz‘:>x+y=——l - -3
n=1 =] = =1
100 98

1003+1002 100 i

2 2 2 2 2 2
Wexteyiey i x4y = +—
> v+ g, y'== > e 2

n=l r=1
Using these two equations, we can easily solve x and y. If you implement this strategy
using a computer program, it is apparent that the algorithm has a complexity of O(n) for
two missing integers in 1 to ».

Counterfeit coins |

Thete are 10 bags with 100 identical coins in each bag. In all bags but one, each coin
weighs 10 grams. However, all the coins in the counterfeit bag weigh either 9 or 11
grams. Can you find the counterfeit bag in only one weighing, using a digital scale that
tells the exact weight?’

Solution: Yes, we can identify the counterfeit bag using one measurement. Ta_ke 1 coin
out of the first bag, 2 out of the second bag, 3 out the third bag, ---, and 10 coins out of

19 . .
the tenth bag, All together, there are Zn= 55 coins. If there were no counterfeit coins,
f=}
they should weigh 550 grams. Let’s assumc the i-th bag is the counterfeit bag, there will
be i counterfeit coins, so the final weight will be 550 4. Since i is distinct for eat.:h bag,
we can identify the counterfeit coin bag as well as whether the counterfeit coins are

lighter or heavier than the real coins using 550 1.

This is not the only answer; we can choose other numbers of coins from each bag as long
as they are all different numbers.

Glass halls

You are holding two glass balls in a 100-story building. [f— a bal_.l is .thrown out of lh.e
window, it will not break if the floor number is less than X, and it will always break if

® Hint: In order to find the counterfeit coin bag in one weighing, the number of coins from each bag rFrrmsr
be different. If we use the same number of coins from two bags, symmetry will' prevent you trom

distinguish these two bags if one is the counterfeit coin bag.

19
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the floor number i; eql_xa! to or greater than X. You would like to determine Y. What is
the strategy that will minimize the number of drops for the worst case scenario? '

Solution. Suppose that we have a strategy with a maximum of N throws. For the first
throw of bail one, we can try the N-th floor. If the ball breaks, we can s.lart to try the
second ball from the first floor and increase the floor number ’by one uniil the sgzond
ball breaks. At most, there are NV —1 floors to test. So a maximum of N throws are
enough to cover all possibilities. If the first ball thrown out of N-th floor does not break
we have N - ]. throws left. This time we can only increase the floor number by N -1 foli
the fjrst ball since the second ball can only cover N -2 floors if the first bal? breaks. If
the first ball thrown out of (ZN-1)th floor does not break, we have N -2 throws left 'So

we can only increase the floor number b :
H y N -2 for the first b
can only cover N =3 floors if the first ball bregke. all since the second ball

U:sing such logic, we can see that the number
with a maximum of ¥ throws is N+(N

stories, we need to have NN

of floors that these two balls can cover
“D+-+1= NN +1)/2. In order to cover 100
+1)/22100. Taking the smallest integer, we have N =14,

iﬁﬁ:}ilgé“\\lz :ﬁax;l (t]he‘ﬁlrszl ball on _the 14th floor, if the bal] breaks, we can use the

l4th floor is X)) If(:irb }".'.)13 Mith & maximum throws of 14 (when the 13th or the

14+ (14-D)=27th floor. It it pueap s (1o% Pre2ks We will iry the first ball on the

15,16, T8 oill o ek ] reaks, we can use the second ball to cover floors
>~ 20 with a total maximum throws of 14 as well,

2.6 The Pigeon Hole Principle
Here is the basic version of the Pj
than pigeons and you put every pj
more than one pigeon. Basically it s
pigeons, at least 2 pi
Il:\'l)ll have # holes and at e
of the holes. These simple
Here we will use some exat

geon Hole Principle: if you have fewer pigeon holes

€, then at least one pigeon hole has
have 7 holes and more than n+1

101 ) = - . i Il
}!”“ z'\h\.‘lllm.‘ W <sSign S {L."E 1) tii n m Tow he “] Sl all is
. e d S gna “‘a

oors; if i : ’ . o Eh
the first ball is thrown twice, (he second ball can T o i el
3 an co

ver N -2 floors. ..
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Matching socks

Your drawer contains 2 red socks, 20 yellow socks and 3) blue socks. Being a busy and
absent-minded MIT student, you just randomly grab a number of socks out of the draw
and try to find a matching pair. Assume each sock has equal probability of being
selected, what is the minimum number of socks you need to grab in order to guaraniee a
pair of socks of the same color?

Solution: This question is just a variation of the even simpler version of two-cojor-socks
problem, in which case you only need 3. When you have 3 colors (3 pigeon holes), by
the Pigeon Hole Principle, you will need to have 3+1 =4 socks (4 pigeons) to guarantee
that at least two socks have the same color (2 pigeons share a hole).

Handshakes

You are invited to a welcome party with 25 fellow team members. Each of the feilow
members shakes hands with you to welcome you. Since a number of people in the room
haven’t met each other, there’s a lot of random handshaking among others as well. If you
don’t know the total number of handshakes, can you say with certainty that there are at
least two people present who shook hands with exactly the same number of people?

Solution: There are 26 people at the party and each shakes hands with from 1—since
everyone shakes hands with you—to 25 people. In other words, there are 26 pigeons and
25 holes. As a result, at least two people must have shaken hands with exactly the same

number of people.

Have we met before?

Show me that, if there are 6 people at a party, then either at least 3 people met each other
before the party, or at least 3 people were strangers before the party.

Solution: This question appears to be a complex one and interviewees often get puzzled
by what the intervicwer exactly wants. But once you start to analyze possible scenarios,

the answer becomes obvious.

Let’s say that you are the 6th person at the party. Then by generalized Pigeon Hole
Principte (Do we even need that for such an intuitive conclusion?), among the remaining
5 people, we conclude that cither at least 3 people met you or at least 3 people did not
meet you, Now let’s explore these two mutually exclusive and collectively exhaustive
scenarios:

Case 1: Suppose that at least 3 people have met you before.


YIXI LIU
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If twq people in this group met each other, you and the pair (3 people) met each other. If
no pair among these people met each other, then these people (> 3 people) did not meet
each other. In either sub-case, the conclusion holds.

Case 2: Suppose at least 3 people have not met you before.

If two people in this group did not meet each other, you and the pair (3 people) did not
meet each other. If all pairs among these people knew each other, then these people (>3
people) met each other. Again, in either sub-case, the conclusion holds.

Ants on a square

There are 51 ants on a square with side length of 1. If you have a glass with a radius of

1/7, can you put your iy
: glass at a position on the square to
encompasses at least 3 ants?'! q guarantee that the glass

So!ufio;?: To guarantee that the glass encom
Square into 25 smaller areas. Applying the
show that at least one of the areas

passes at least 3 ants, we can separate the
s generalized Pigeon Hole Principle, we can
: must have at least 3 ants. So we only need to make
sure that the glass is large enough to cover any of the 25 smaller areas. Simply separate

the area into 5x5 smaller s L
: quares with side length of : . ¢ :
radius of 1/7 can cover a square'” with side leng%h 1015 10 T NG Siceriren

Counterfeit coins Ii N

11 .
Hint: Separate the s i
IR 3 € square into 25 smaller areas: th
13 aiztcéfa:"h_:‘:dlus can cover a square with s:ideell::l?tg:;:a:[t) (:: eJE iy h: sJa“ ishihy
: with a simpler problem. What i 2rand 2 = 1414,
You need from each bag to find the typeat if you have two bags of coins instead of 5, how many coins do

of coins in e s
numbers? Then how about three bags? NS in either bag? What is the minimum difference in coin
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we only use 2 coins from bag 2, the final sum for 1 coin from bag 1 and 2 coins from
bag 2 ranges from -3 to 3 (7 pigeon holes). At the same time we have 9 (3x3) possible
combinations for the weights of coins in bag 1 and bag 2 (9 pigeons). So at least two
combinations will yield the same final sum (9>7, so at least two pigeons need to share
one hole), and we can not distinguish them. If we use 3 coins from bag 2, then the sum
ranges from -4 to 4, which is possible to cover all 9 combinations. The following table
exactly shows that all possible combinations yield different sums:

Sum 1 coin, bag 1

| 0 1
a0 [
o
Al -4 3.2
L
3| 0 -1 0 1
o
wiid | 2 3 4

Cland C2 represent the weights of coins from bag 1 and 2 respectively.

Then how about 3 bags? We are going to have 3’ =27 possible combinations. Surely an
indicator ranging from —13 to 13 will cover it and we will need 9 coins from bag 3. The

possible combinations are shown in the following table:

Sum 2+-1 C2=0 C2=1
P i 0 1 -1 0 1 -1 0 1
-4
= CRRES IR T SR it 10 o IR 6l -3
w
2 el b, indiin ol atilii i3 3. .4
o
o 5 61018 8 o 110 1 VIEAE

C1, C2, and C3 represent the weights of coins from bag 1, 2, and 3 respectively.

Following this logic, it is easy to see that we will need 27 coins from bag 4 and 81 coins
from bag 5. So the answer is to take 1, 3, 9, 27 and 81 coins from bags 1, 2, 3, 4, and 5,
respectively, to determine which type of coins each bag contains using a single weighing.

2.7 Modular Arithmetic

The modulo operation—denoted as x%y or x mod y—finds the remainder of division of

number x by another number y. For simpicility, we only consider the case where y is a
positive integer. For example, 5%3=2. An intuitive property of modulo operation is

23
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that if x, %y =x,%y, then (x, —x,)%y =0. From this property we can also show that

x%y, (x+1)%y, -, and (x+y-1)%y are all different numbers.

Prisoner problem

One hundred prisoners are given the chance to be set free tomorrow. They are all told
that each wil! be given a red or blue hat to wear. Each prisoner can see everyone else’s
hat but not his own. The hat colors are assigned randomly and once the hats are placed
on top of eacl'l prisoner's head they cannot communicate with one another in any form, or
else th_ey are immediately executed. The prisoners will be called out in random order i;l'ld
the prisoner called out will guess the color of his hat. Each prisoner declares the color of

Els hat 50 that ev?ryone_else can hear it. If a prisoner guesses correctly the color of his
at, he is set free immediately; otherwise he is executed.

Tl‘}ey are given the night to come u
prisoners as possible. What is the
can they guarantee to save?'

p with a strategy among themselves to save as many
best strategy they can adopt and how many prisoners

Solution: At least 99 prisoners can be saved.

Eielzie?flti: ::l:lllje ErSft irésoner who can see everyone else’s hat. He declares his hat to
He Wall bk o 11 ¢ }?anf htflts he sees is odd. Otherwise he declares his hat to be blue.
bhe1 ovi kk loolcd Mt ;e of having guessed correctly. Everyone else is able to deduce
among 99 prisoners lllllng. the knowledge whether the number of red hats is odd
ekuaite ge;? uding the first) and the color of the other 98 prisoners
the other 99 prisone?: A vt example, if the number of red hats is odd among
the other 98 pri soners' (expll.lsd(.)'ner wearing a red hat will see even number of red hats in
red hat. cluding the first and himself) and deduce that he is wearing a

The two-color case is isn’t it? Wh
E eas)’, 1sn't it? 1 .
white? What is the beg o at if there are 3 possible hat colors: red, blue, and

trate
guarantee to save?'’ gy they can adopt and how many prisoners can they

1

scoring system: red=0, green=1. and b ' chance of survival. Let’s use the following
> and blue=2. The first prisoner counts the total score for
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the rest of 99 prisoners and calculates 5%3. If the remainder is 0, he announces red; if
the remainder is 1, green; 2, blue. He has 1/3 chance of living, but all the rest of the
prisoners can determine his own score (color) from the remainder. Let’s consider a
prisoner i among 99 prisoners (excluding the first prisoner). He can calculate the total

score (x) of all other 98 prisoners. Since (x+0)%3, (x+1)%3, and (x+2)%3 are all

different, so from the remainder that the first prisoner gives (for the 99 prisoners
including #), he can determine his own score (color). For example, if prisoner i sees that
there are 32 red, 29 green and 37 blue in those 98 prisoners (excluding the first and
himself). The total score of those 98 prisoners is 103. If the first prisoner announces that
the remainder is 2 (green), then prisoner i knows his own color is green (1) since
only 104%3 = 2 among 103, 104 and 105.

Theoretically, a similar strategy can be extended to any number of colors. Surely that
requires all prisoners to have exceptional memory and calculation capability.

Division by 9
Given an arbitrary integer, come up with a rule to decide whether it is divisible by 9 and
prove it.

Solution: Hopefully you still remember the rules from your high school math class. Add
up all the digits of the integer. If the sum is divisible by 9, then the integer is divisible by
9; otherwise the integer is not divisible by 9. But how do we prove it?

Let’s express the original integer as a =a,10" +a, 10" +---+ 10 +a,. Basically we
state that if a, +a, , +---+a +a,=9x (x is a integer), then the a is divisible by 9 as
well. The proof is straightforward:

For any a=a,10"+a, 10" +--+410'+a, let b=a-(a,+a, ++a+a) We
have b=a, (10" -1)+a,,(l 0" =D +--+a/l 0'—1)=a—9x, which is divisible by 9
since all (10* -1), k =1,---,n are divisible by 9. Because both b and 9x are divisible by 9,
a =b+9x must be divisible by 9 as well.

(Similarly you can also show that a=(-1)"a, +(=1)""a,  ++(1)'a +a,=1lx is the
necessary and sufficient condition for a to be divisible by 1 1.)
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Chameleon colors

A remote island has three types of chameleons with the following population: 13 red
chameleons, 15 green chameleons and 17 blue chameleons. Each time two chameleons
with different colors meet, they would change their color to the third color. For example,
if a green chameleon meets a red chameleon, they both change their color to blue. Is it
ever possible for all chameleons to become the same color? Why or why not?'®

Solution: 1t is not possible for all chameleons to become the same color. There are
several approaches to proving this conclusion. Here we discuss two of them.

Approach 1. Since the numbers 13, 15 and 17 are “large” numbers, we can simplify the
probl?m to 0, 2 and 4 for three colors. (To see this, you need to realize that if
combination (m+1,n+1,p+1) can be converted to the same color, combination

(m,n, p) can be converted to the same color as well.) Can a combination (0,2.4) be
converted to a combination (0,0,6)? The answer is NO, as shown in Figure 2.3:

(0,2,4) & »1,2,3)

\(0, 1,5) /

Figure 2.3 chameleon color combination transitions from (0, 2, 4)

Actually combination (1,2,3) is equivalent to combination (0,1,2), which can only be
converted to another (0,1,2) but will never reach (0,0,3).

Approach 2. A different
all the chameleons to
must have the same n
must has the combin

+ and more fundamental approach, is to realize that in order for
become the same color, at certain intermediate stage, two colors
Ufnber. To see this, just imagine the stage before a final stage. It
same be . ation (L,1,x). For chameleons of two different colors to have the
number, their module of 3 must be the same as well. We start with 15 =3x,
13=3y+1, and 17=32+2 chameleon, wh .

. en two chameleons of different colors meet,
we will have three possible scenarios:

|6 . .
Hint: consider the numbers in module of 3
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(Bx+2,3y,3z+1)=(3x",3y'+1,3z'+2),
(3x.3y+1,3z+2)=> (3(x—l)+2,3(y+1),3z+1)=(3x',3y'+1,32'+2),onexmeetsonez
(3(x-1)+2,3y,3(z+1)+1) = (3x',3y'+1,3z'+2), onexmeetsone y

one y meetsone z

So the pattern is preserved and we will never get two colors to have the same module of
3. In other words, we cannot make two colors have the same number. As a result, the
chameleons cannot become the same color. Essentially, the relative change of any pair of
colors after two chameleons meet is either 0 or 3. In order for all the chameleons to
become one color, at least one pair’s difference must be a multiple of 3.

2.8 Math Induction

Induction is one of the most powerful and commonly-used proof techniques in
mathematics, especially discrete mathematics. Many problems that involve integers can
be solved using induction. The general steps for proof by induction are the following:

= State that the proof uses induction and define an appropriate predicate P(n).
= Prove the base case P(1), or any other smallest number 7 for the predicate to be true.

= Prove that P(n) implies P(n+1) for every integer n. Alternatively, in a strong
induction argument, you prove that P(l), P(2), -, and P(n) together imply
P(n+1).
In most cases, the real difficulty lies not in the induction step, but to formulate the
problem as an induction problem and come up with the appropriate predicate P(n). The
simplified version of the problem can often help you identify P(n).

Coin split problem

You split 1000 coins into two piles and count the numbffr of coins in each pile. If there
are x coins in pile one and y coins in pile two, you multiple x by y to get xy. Then you
split both piles further, repeat the same counting and multiplicat.ion process, and add the
new multiplication results to the original. For example, you split x to x; andx,, y to y,
and y,, then the sum is xy+XX, +),y,. The same process is repeated until you only

have piles of 1 stone each. What is the final sum? (The final 1’s are .not inclu-dffd in the
sum.) Prove that you always get the same answer no matter how the piles are divided.
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Solution: Let n be the number of the coins and f(n) be the final sum. It is unlikely that
a solution will jump to our mind since the number » =1000 is a large number. If you
aren’t sure how to approach the problem, it never hurts to begin with the simplest cases
?.nd try to find a pattern. For this problem, the base case has n=2. Clearly the only split
is 1+1 a.ncl t?le final sumis 1. When »n =3, the first split is 2+1 and we have xy =2 and
the_ 2-coin Plle will ‘further giye an extra multiplication result 1, so the final sum is 3.
This analyms' also gives the hint that when » coins are split into x and #n—x coins, the
total sum will be f(n)=x(n-x)+ f(x)+ f(n—x). 4 coins can be split into 2+,2 or

S3ll4r~nl.61-“or either case we can apply x(n—x)+ f(x)+ f(n—x) and yields the same final

Claim: For n coins, independent of intermediate splits, the final sum is n(n=1)

S X
hgvgog.oic; ;vet:h prowlzel it? The answer should be clear to you: by strong induction. We
e claim for the base cases n=2,3,4. Assume the claim is true for

n= 2’. £ A4 H .
N -1 coins, we need to prove that it holds for 1 = N coins as well. Again we

apply the equation f(n)= x(n- : \
N —x coins, we ha\{e )=X(1=x)+ f()+ f(n=2). If N coins are split into x coins and

J(N)=x(N=-x)+ f(x)+ f(N -x)
—x(N-x)+ YN (N-x)(N-x-1) N(N-1)

2 2 i b

So indeed it holds for n= N as well and f(n)= gln-1)

. is true for any n> 2. Applying
the conclusion to 7 =1000, we have f(n)=1000x999/2

Chocolate bar problem

two smaller rectang] break i
! gles. For example, i , break one rectangle 1nto
bar into a 6x3 one and a 6 ple. in the first step you can break the 6x8 chocolate

x5 one. What i
to break the chocolate bar into 48 small squl;r;lgg total number of breaks needed in order

17
f@=1, f3)- f2)=2
and f(4)- £(3) =3 should give you enough hint to realize th is
f(ﬂ)=l+2+..‘+(n_]):ﬂ:3_—_2 realize the pattern
1t
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Solution: Let m be the number of the rows of the chocolate bar and »n be the number of
columns. Since there is nothing special for the case m=6 and n = 8, we should find a

general solution for all m and n. Let’s begin with the base case where m =1 and n=1.
The number of breaks needed is clearly 0. For m>1 and n=1, the number of breaks is

m—1; similarly for m=1 and n>1, the number of breaks is n—1. So for any m and n,

if we break the chocolate into m rows first, which takes m —1 breaks, and then break
each row into n small pieces, which takes m(n—1) breaks, the total number of breaks is

(m-1)+m(n-1)=mn-1. If we breaks it into n columns first and then break each

column into m small pieces, the total number of breaks is also mn—1. But is the total
number of breaks always mn—1 for other sequences of breaks? Of course it is. We can

prove it using strong induction.

We have shown the number of breaks is mn—1 for base cases m=1,n=1 and
m=1, n>1. To prove it for a general mxn case, let’s assume the statement is true for
cases where rows <m, columns<n and rows=<m, columns < n. If the first break is
along a row and it is broken into two smaller pieces mxn, and mx(n—n,), then the

total number of breaks is 1+(mxn,—1)+(mx(n—n,)—1)=mn—1. Here we use the

results for rows <m, columns <n. Similarly, if it is broken into two pieces m, Xn and

(m—m,)xn, the total number of breaks is 1+(mlxn—1)+((m—ml)xn—l)zmn—l. So

the total number of breaks is always mn—1 in order to break the chocolate bar into
mxn small pieces. For the case m = 6 and n =8, the number of breaks is 47.

Although induction is the standard approach used to solve this problem, there is actually
a simpler solution if you’ve noticed an important fact: the number of pieces always
increases by 1 with each break since it always breaks one piece into two. In the
beginning, we have a single piece. In the end, we will have mn pieces. So the number of

breaks must be mn—1.

Race track

Suppose that you are on a one-way circular race track. There are N gas cans randomly
tions of the track and the total sum of the gas in these cans is

placed on different loca ;
enough for your car to run exactly one circle. Assume that your car has no gas in the gas
location on the track and you can pick up

tank initially, but you can put your car at any :
the gas cans along the way to fill in your gas tank. Can you alwell;{s choose a starting
position on the track so that your car can complete the entire circle?

8 Hint: Start with N = 1, 2 and solve the problem using induction.
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Solution: If you get stuck as to how to solve the problem, again start with the simplest
cases (N =1, 2) and consider using an induction approach. Without loss of generality,

let’s assume that the circle has circumference of 1. For N =1, the problem is trivial. Just
start at where the gas can is. For N =2, The problem is still simple. Let’s use a figure to

visualize the approach. As shown in Figure 2.4A, the amount of gas in can | and can 2,
expressed as the distance the car can travel, are x, and x, respectively, so x, +x, =1.

The corresponding segments are Y, and y,, so y,+y,=1. Since x,+x,=1 and

Yi+yy =1 wemusthave x, 2 y, or x, >y, (x, < ¥, and x, < y, cannot both be true). If
> i

%1 =Yy, We can start at gas can 1, which has enough gas to reach gas can 2, and get more

gas from gas can 2 to finish the whole circle. Otherwi il j
. - Otherwise, we will just start at gas can 2
and pick up gas can 1 along the way to finish the whole circle. ! i

Yi

Y2
Y

A Yi
B

Figure 2.4 i
lo Gas can locations on the cycle and segments between gas cans

shown in
yl +y2 +"'+y”+| =1 fOr N

has x, 2 ¥, That means w
(For i =

Figure

24B, we have X, +x2 +oeeed X, 0= 1 al‘ld

=n+l, i
So there must exist at least one i, 1<i<n+]1, that
| henever the car reaches x
n+l.i ] i 4
s1tgoesto i =1 instead). In other words
X, 10 one gas can at th iti ’
i € position of x, with an amo
as can i :
g _ an i+1). But such combination reduces t

it can reach x_, with more gas
we can actually “combine” x, and
unt of gas x, +x,,, (and eliminate
he N'=n+1 problem to N =n, for
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which the statement holds. So the statement also holds for N =n+1. Hence we can
always choose a starting position on the track to complete the entire circle for any N.

There is also an alternative approach to this problem that provides a solution to the
starting point. Let’s imagine that you have another car with enough gas to finish the
circle. You put that car at the position of a randomly chosen gas can and drive the car for
a full circle. Whenever you reach a gas can (including at the initial position), you
measure the amount of gas in your gas tank before you add the gas from the can to your
gas tank. After you finish the circle, read through your measurement records and find the
lowest measurement. The gas can position corresponding to the lowest measurement
should be your starting position if the car has no gas initially. (It may take some thinking
to fully understand this argument. I’d recommend that you again draw a figure and give
this argument some careful thoughts if you don’t find the reasoning obvious.)

2.9 Proof by Contradiction

In a proof by contradiction or indirect proof, you show that if a proposition were false,
then some logical contradiction or absurdity would follow. Thus, the proposition must be

true.

Irrational number

Can you prove that J2 is an irrational number? A rational number is a number that can
be expressed as a ratio of two integers; otherwise it is irrational.

Solution: This is a classical example of proof by contradiction. If J2 is not an irrational
number, it can be expressed as a ratio of two integers m and n. If m and n have any
common factor, we can remove it by dividing both m and n by the common factor. So in
the end, we will have a pair of m and »n that have no common factors. (It is called
irreducible fraction.) Since m/ n=+2, we have m*> =2n’. So m’ must be an even
number and m must be an even number as well. Let’s express m as 2x, where x is an
integer, since m is even. Then m” =4x’ and we also have n® =2x’, which means n
must be even as well. But that both m and n are even contradicts the earlier statement

that m and » have no common factors. So \E must be an irrational number.

Rainbow hats

Seven prisoners are given the chance to be set free tomorrow. An executioner will put a
hat on each prisoner’s head. Each hat can be one of the seven colors of the rainbow and
the hat colors are assigned completely at the executioner’s discretion. Every prisoner can
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see the hat colors of the other six prisoners, but not his own. They cannot communicate
with others in any form, or else they are immediately executed. Then each prisoner
writes down his guess of his own hat color. If at least one prisoner correctly guesses the
color of his hat, they all will be set free immediately; otherwise they will be executed.

They are given the night to come up with a strategy. Is there a strategy that they can
guarantee that they will be set free?'’

.Solu!ion: This problem is often perceived to be more difficult than the prisoner problem
in the modular arithmetic section. In the previous prisoner problem, the prisoners can
hear oth‘ers’ guesses. So one prisoner’s declaration gives all the necessary information
other prisoners need. In this problem, prisoners won’t know what others’ guesses are. To
solve the problem, it does require an aha moment. The key to the aha moment is given

by the hint. Once you realize that if we code the colors to 0-6, (Z?:x J%? must be
i=l

amlfiﬂg 0, 1, 2,.3, 4,5 or 6 as well. Then each prisoner i—let’s label them as 0-6 as

well—should give a guess g, so that the sum of g, and the rest of 6 prisoners’ hat color

codes will give a remainder of i when divided by 7, where g, is a unique number

between 0 and 6. For example, prisoner 0’s guess should make [go o+ Zxk ]%730'
i k=0
This way, we can guarantee at least one of g, =x, for i=0,1,2,3.4.5.6

We ¢ i : : : ?
an easily prove this conclusion by contradiction. If g #x,, then (Z%J%ﬂfﬂ

i=l

ki

(since + 0 ;
8+ 2% |%7#i and g,and x; are both between 0 and 6). But if g, #x, forall

i=0,1,2,3,4,5 :
. and 6, then [ x,J%’F #0,1,2,3, 4,5,6, which is clearly impossible. So

i S - u lng h S g . y

i=]

Chapter 3 Calculus and Linear Algebra

Calculus and linear algebra lay the foundation for many advanced math topics used in
quantitative finance. So be prepared to answer some calculus or linear algebra
problems—many of them may be incorporated into more complex problems—in
quantitative interviews. Since most of the tested calculus and linear algebra knowledge
is easy to grasp, the marginal benefit far outweighs the time you spend brushing up your
knowledge on key subjects. If your memory of calculus or linear algebra is a little rusty,
spend some time reviewing your college textbooks!

Needless to say, it is extremely difficult to condense any calculus/linear algebra books
into one chapter. Neither is it my intention to do so. This chapter focuses only on some
of the core concepts of calculus/linear algebra that are frequently occurring in
quantitative interviews. And unless necessary, it does so without covering the proof,
details or even caveats of these concepts. If you are not familiar with any of the concepts,
please refer to your favorite calculus/linear algebra books for details.

3.1 Limits and Derivatives

Basics of derivatives

Let’s begin with some basic definitions and equations used in limits and derivatives.
Although the notations may be different, you can find these materials in any calculus
textbook.

d SR ! x+Ax)- f(x
Derivative: Let y = f(x), then f'(x) =Ey= lim =~ = lim A )—J ()

Ax—0 Ay Ax—0

The product rule: If u=u(x) and v=v(x) and their respective derivatives exist,

d(uv)= qr v-d—u, (uwv)'=u'v+uv'
dx dx

, d(u) (.du__av)/, (u)_uv-uw
The quotient rule: E(:}_[Vhd;-udxj/v ’ [v] ¥

dy dydu
The chain rule: If y= f(u(x)) and u=u(x), then 71 % :};E

dyn n-1 4V f
: ERCE8h — for Vn#0
The generalized power rule: ny ;

Some useful equations:
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ax___exlua ln(ab)=lna+lnb ex=lim(1+_i_)n

n—a

!‘ij)];‘l'iL:L:l Liilg(1+x)"=l+kr for any k

Erg(ln x/x")=0 forany r>0 limx"e™ =0 for any r

X—a0

QR RIIE: da" '
—e' =¢"'— —a-=(a” lna}é{ —a-l—lnu=l£{£=i‘-
dx u

dx dx dx Srhihe

: d d
—SINX=COSX, —COSX = —Si P b 2
51 H SX sinx, dxtanx-sec X

What is the derivative of y = In x"* 9!
Solution: This is a good

: problem to test i ivative f
specifically, the chain rule and the produ(iorltl:ieknowwdge AfRmhea

Let u=1In =In(1 Inx) :
Y ( R ) InxxIn(Inx). Applying the chain rule and the product rule,

we have
du d(lny) ldy dq
i “T=;E= (dl;x)xln(lnx)+lnxxd(ln(lnx)) = ln(lnx)+ In x
d(l dx X xInx’
d In x)
To derive n( i
dx ° "eagain use the chain rule by sefting v=Inx:
d (In(In x)) _dnv)yay 1 1
dx dv dl‘_-';x;:xlnx

. lay In(lnx) Iny d
e s el AN —-}—)-_-2).. ] Inx

y dx ¥ [lixlx | & x(ln(lnx)+1)= = (In(inx)+1).

X

Maximum and minimum

Derivative £ (x) is essentially

1 the Slo e .
the instantaneous rate of chan pe of the tangent line to the curve y = f(x) and

ge (velocity) of Y with respect to x. At point x =¢, if

i = f(x)", it is common to take natural
> SInce d(lny)fdx A ]fyx@/dx,
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f'(¢)>0, f(x) is an increasing function at ¢; if f'(c) <0, f(x) is a decreasing
function at c.

Local maximum or minimum: suppose that f(x) is differentiable at ¢ and is defined
on an open interval containing c. If f(c) is either a local maximum value or a local
minimum value of f(x), then f'(c)=0.

Second Derivative test: Suppose the secondary derivative of f(x), f"(x), is
continuous near ¢. If /'(¢)=0 and f"(c)>0, then f(x) has a local minimum at ¢; if
f'(c)=0 and f"(c)<0,then f(x) hasa local maximum at c.

Without calculating the numerical results, can you tell me which number is larger, " or
en2
7

Solution: Let’s take natural logs of e™ and 7°. On the left side we have 7lne, on the
Ine Inx

right side we have elnz. If e” >7°, ¢" >7° & zxIne>exlnz Sapaae,

Inx . ) ' : !
Is it true? That depends on whether f(x)=——1s an increasing or decreasing function
x

/xxx-Inx I-Inx

from ¢ to 7. Taking the derivative of f(x), we have fix)= > =T
which is less than 0 when x>e (Inx>1). In fact, f(x) has global maximum when
x=e forall x>0. So _111_e>l££ and e* > 7°.
e V4
Alternative approach: If you are familiar with the Taylor’s series, which we will discuss
. RERIPRRE T e b T it
in Section 3.4, you can apply Taylor’s series to e = € = n:(;ﬁ: l+ﬁ+z+aﬁ+--— So

/
e >1+x, Vx>0.Let x=x/e—1,then e"'¢le>mle & "¢ .

L’Hospital’s rule
Suppose that functions f(x)and g(x)are differentiable at x — a and that LI_I’I‘; g
and limg(a)=0 or that lim f(a)— too and

(a)#0.

Further suppose that lim f(a) = 0

? Hint: Again consider taking natural logs on both sides: Ina>Inb=>a>b since Inx is a

monotonously increasing function.
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lim g(a) — too, then lim-[-(f-)-=limM. L’Hospital’s rule converts the limit from

r—3a g(x) x—a g'(x)
an indeterminate form to a determinate form.

What is the limit of e /x* as x — o0, and what is the limit of x*In x as x — 0" ?

;g

, el ] .
Solution: lim—: is a typical example of L’Hospital’s rule since lime* = and

X=p0
K X

lim x* =oo. Applying L’Hospital’s rule, we have

f(x) H _f_lﬂ: Vg

lim—-——zlim—Tzlim lim—.
w0 g(x) exl xwgi(x)  con 2y

The result still has the property that ch{{n J(x)=lime* =0 and lim g(x) = lim 2x =0, 0

we can apply the L’ Hospital’s rule again: -

ALY L LIRE 1 e § 8 i
iy o=l EB i iy AV
g (x) =50 Dy xow d(2X)i"r dx x> D }

At first look, L’Hospital’s rule does not appear to be applicable to lim x* Inx since it’s

x—0"

not in th - S()
e format of !‘12} s However, we can rewrite the original limit as lim 'IE'?'
x0T i XY

and it becomes obvious that lim x7

omx = and limInx=-w. So we can now apply

x—0*

L Hospital’s rule:

lim lenx=lim-lﬂ.{=1im d(Inx)/dx 1/x TE] gt
e s e g T g = 0
3.2 Integration

Basics of integration

Again, let’s begin with some basic definitio

If we can find a function F
antiderivative of f(x).

ns and equations used in integration.
(*) with derivative f(x), then we call F(x)ad

If =F"
TO=F@. [[16)= [ Py =g = F(b)~ F(a)
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) _ fx), Flay=y, = Fx)=y,+ I:f(‘)df

k+1

The generalized power rule in reverse: Iu*duz :+i+c (k #1), where ¢ is any

constant.

Integration by substitution:

[7(g())- g ) = [fQudu with u=g(x). du=g'(x)d
Substitution in definite integrals: [ /(g(x))- g'(x)dx = J::‘: f(u)du

Integration by parts: _[udv =uv— |vdu

A. What is the integral of In(x)?

Solution: This is an example of integration by parts. Let #=Inx and v=x, we have
d(uv) = vdu + udv = (x x1/ x)dx +In xdx

Jln xdx=xInx- de = xIn x — x+ ¢, where ¢ is any constant.

B. What is the integral of sec(x) fromx=0tox = 7/6?

Solution: Clearly this problem is directly related to differentiation/integration of
trigonometric functions. Although there are derivative functions for all basic

#i.
trigonometric functions, we only need to remember two of them: Esmxzcos .

—d—cos x = —sin x. The rest can be derived using the product rule or the quotient rule. For

example,
dsecx _d(l/cosx) _ szx =secxtanx,

dx dx cos” x

: 2 in’
n°x

d tan x { d(sinx/cosx) _ cos x+le Lissetbe

dx dx cos” X

x

d(secz-tan )=secx(S€CX+tanx)°
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Since the (sec x +tan x) term occurs in the derivative, we also have

dln|secx+tanx| secx(secx+tanx)

=secx
dx (sec x + tan x)

= _[secx:ln[secx+tanx[+c

and f msec.vc = In(sec(7 / 6) + tan(rz / 6)) —In(sec(0) + tan(0)) = ln(s/§ )

Applications of integration
A. Suppose t-hat two cylinders each with radius 1 intersect at right angles and their
centers also intersect. What is the volume of the intersection?

Solution: This problem is an a

: pplication of integration to volume calculation. For these
applied problems, the most dj

fficult part is to correctly formulate the integration. The
general integration function to calculate 3D volume is J/ = f’ A(z)dz where A(z) is the

cross-sectional area of the solid cut by a plane

dicul -axi dinate z.
The key here is to find the perpendicular to the z-axis at coordin

right expression for cross-sectional area 4 as a function of z.
Figure 3.1 gives us a clue. If you cut the intersection
be a square with side-length y(2r) ~(22)’
calculate the total volume as

2x _':[(2!')2 -(22)2]0'2 =8><|:r22~z3 /3] =16/3r’ =16/3.

r
0

by a horizontal plane, the cut will

. Taking advantage of symmetry, we can

An alternative approach requj
An alter quires even i
I Inscribed inside both nn

! be agination. Let’s imagine a sphere that
cylinders, so it is inscribe

itengy . d inside the intersection as well. The
phere should have a radiys of r/2. At each cut perpendicular to the z-axis, the circle

from the sphere is jpscr: 1
A, =Z 4 i s-ls m:s cribed in the Square from the intersection as well. S0
circle =4 Asquare+ SINCE it’s true for al] values, we have

V == 4 ry3 _
sphere TI(T) T %V;nwrsecmm = Villwrsec.-;m 4 16}(3’,3 i 16;3
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Figure 3.1 Interaction of two cylinders

B. The snow began to fall some time before noon at a constant rate. The city of
Cambridge sent out a snow plow at noon to clear Massachusetts Avenue from MIT to

Harvard. The plow removed snow at a constant volume per minute. At 1 pm, it had
moved 2 miles and at 2 pm, 3 miles. When did the snow begin to fall?

Solution: Let’s denote noon as time 0 and assume Snow began to fall T’ ho'urs before

noon. The speed at which the plow moves is inversely related to the ve.rucal Cross-

sectional area of the snow: v = ¢, / A(t), where v is the speed of the plow, ¢, isa cm']stant

representing the volume of snow that the plow can remo‘ve every hour and A(7) is the

cross-sectional area of the snow. If ¢ is defined as the tlm(? after noon, we al§0 have

A(t) = ¢,(t+T), where ¢, is the rate of cross-sectional area increase per hour (since the
!

G = where ¢=—. Taking the
G+T) i t+T c,

snow falls at a constant rate). So v=

integration, we have

1+7T
.E C df:(,"lrl(l'l'T}—ClnTzcln[ 7 ]=2,
T+t

2+T
f~c—dr=cln(2+T)—clnT=cln( T ]=3
T+t

From these two equations, we get

(HTT =[2+T]22972-—T+1=02T=(\/§—1)"2-
Tr 4
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Overall, this question, although fairly straightforward, tests analytical skills, integration
knowledge and algebra knowledge.

Expected value using integration

Integration is used extensively to calculate the unconditional or conditional expected
value of continuous random variables. In Chapter 4, we will demonstrate its value in
probability and statistics. Here we just use one example to show its application:

If X is a standard normal random variable, X ~ N(0, 1), whatis E[X | X >0]?

Solution: Since X ~ N(0, 1), the probability density function of x is f (x)=7-2'?e'” 24

and we have E[X | X >0]= Exf(x)dx= fxﬁe"”"zdx.

Because d(-1/2x")=-x and je"dy=e“+c, where ¢ is an arbitrary constant, it is

obvious that we can use integration by substitution by letting u =—1/2x. Replace

=1/2t u .
e with e“ and xdx with —du, we have

f J" e3¢ gy = F——e”du—— x[e“]ﬂz*;(o )= TJB where I:“J:p is
determined by x = O:>u—0 and x=0=>y=-om,

. E[X|X>0]=1/y27

3.3 Partial Derivatives and Multiple Integrals

Partial derivative: w= f(x, )= %xf—(xﬁ, ¥o) = lim SO + A%, yy) = £ (%65 o)
Ax

Second order partial derivatives: f g (af) 4 LA (6f) *—( f
o' ox'ox axdy oxdy oy o

The general chain rule: Suppose that w = f (x,
1%

=

Xy ,xm) and that each of variables

- IRk SRERY
1 % X, 1s a function of the variables fiy ty, -, t . If all these functions have
continuous first-order partial derivatives, then ow _ow 6x o oW ow @x2 ow 0%, gor

et
each i, 1<i<n, o ox o ox, at ox, o,
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Changing Cartesian integrals into polar integrals: The variables in two-dimension
plane can be mapped into polar coordinates: x =rcos#, y =rsiné. Tthe integration in a

continuous polar region R is converted to

Hf(x, y)dxdy = ﬂf(r cos@,rsin@)rdrdo.
R R

Calculate f e 2y

Solution: Hopefully you happen to remember that the probability density function (pdf)

=x3 42

A L 1 I
of the standard normal distribution is f(x) = Fe . By definition, we have
V4

J: J(x)dx = -[i\/—;—;e“z”dr = ZE\[—;—;e“E”zdx =1=3 fe""zf'zdx & \/%

If you’ve forgotten the pdf of the standard normal distribution or if you are specifically

asked to prove J:-\/%e"‘l’ 2dx =1, you will need to use polar integrals to solve the
n

problem:

Jje_xz 12 gy [‘ e"”z’rzdy il [‘ [Ze“’z+-"zmdxdy= ff” e—{rz00336+f'35in29)f’2rdrd9
-[ f”e-’”zrdrw:— [[erd(-r*12) ["ae

=[] [6F -
Since J: e Py = J:e_”zfzdy , we have J:e‘xzfzdx =27 = f e 2y = J%

3.4 Important Calculus Methods

Taylor’s series
One-dimensional Taylor’s series expands function f(x) as the sum of a series using the

derivatives at a point x =X, :

f(n)( 0) (x_xo)n = A

£ = S )+ £ )= 5) + LD =) o B
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" (n)
If x, =0, f(x):f(0)+f'(0)x+f—2(TQx2+~-+f—@x" +oe
! n!
Taylor’s series are often used to represent functions in power series terms. For example,

Tavlor’ ; ;
ylt:)r s series for three common transcendental functions, e*, sinx and cosx, at
X, =0 are

x < X . x3
e = — e Y
gn! +1!+2l+ 1+ ”

sinx = w—(:l):x_iﬁiz __x_3.+£___x_?_

n=0 (2n+l)! 3! 5! 7!+”'9
xS 2 g

n=0 (2}1)' 211141 6!+“.
The Taylor’s

SCTIes can also be expressed as the sum of the nth-degree Taylor
polynomial ?;(x)=f(xo).‘_Jr-(xn)(x_%)+ S (%)
2!

aremainder R (x): f (X)=T (x)+ R (x).

SR P
n!

For some ¥ between X, an f(n+1) s

dx) R =-—-—._(.£2, i+
s1id : (%) (n+1)! [x=x,["". Let M be the maximum of
If cnm(i‘)' forall ¥ between X, and x, we

|n+l

get constraint |R ( x)| < Mx| x—x,
(n+1)!

4. What is ;' 9

“ = cos@ +isin@, which
plying Taylor’s series 10

o _1. 10 (i0? (i8Y (g
€ —-l+—-—+._.__'__+(‘ ) +(19) i

Uil g her 3 g
REES Q0T P T ‘l“]-,-—z—'—i% A
2 : !4 !
cosé?-l_f__k__d_ﬁfi >
2 41 gt

sin&:g__gj__'_gi__ﬂ?

3 5 gt 2ising= 2,008 g
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Combining these three series, it is apparent that €'’ = cos €+ isin 6.
When &=, the equation becomes e” =cosr+isint=—1. When 8=r/2, the

equation becomes €"*'> = cos(z/2)+isin(z/2)= i.> So Ini= ln(ej”fz):i;rf‘?.

Hence, ln(i') =ilni=i(in/2)=-n/2=1 =e™ "2,

B. Prove (1+x)" >1+nx forall x>-1 and for all integers n2>2.

Solution: Let f(x)=(1+x)". It is clear that 1+ nx is the first two terms in the Taylor’s

series of f(x) with x, =0. So we can consider solving this problem using Taylor’s

series.

For x, =0 we have (1+x)" =1 for ¥n>2. The first and secondary derivatives of f(x)

are ['(x)=n(1+x)"" and f"(x)=n(n-1)1 +x)"%. Applying Taylor’s series, we have
/ 116)

£ = F(x,)+ £ )= %) + —2(,"-1 (r-x) = O+ O+ L2

=1+nx+n(n-1)(1+5)"x
where x<¥<0 if x<0 and x>%20 if x>0.

Since x> —1 andn>2, we have n>0, (n-1)>0, (1+%)"7 >0, x> 20.

Hence, n(n-1)(1+%)" x> 20 and f(x)=(1+x)" >1+nx.

If Taylor’s series does not jump to your mind, the condition that » is an integer may give
you the hint that you can try the induction method. We can rephrase the problem as: for

every integer n> 2, prove (1+x)" 21+nx for x>-1.

The base case: show (1+x)" 21+ nx,Vx>—1 when n =2, which can be easily proven
since (1+x)? 2142x+x> 21+2x, Vx>-1.

The induction step: show that if (1+x)" 21+nx,Vx>-1 when n= k, the same

statement holds for n=k+1:  (1+x)*' 21+(k+1)x,Vx>-1. This step is

straightforward as well.

* Clearly they satisfy equation (¢"*) =i' =¢“ =-1.
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(1+x)*" =1+ x) 1 +x)

2(1+ke)(1+x)=1+k+1)x+k?, Vi>-1
>1+(k+1)x

So the statement holds for all integers 7> 2 when x > —1.

Newton’s method

Newton’s method, also known as the Newton-Raphson method or the Newton-Fourier

method, is an iterative process for solving the equation f'(x)=0. It begins with an initial

value x, and applies the iterative step x,,, =x, PACH]

/')

to solve f(x)=0 if x,x,,

converge.*

ponvergence of Newton’s method is not
is far away from the correct solution. F
necessary that the initial point is sy
differentiable around the root. When it d
(xm -x_f):’ <5 2
—-—-—-—-—-(xn _x!)z S0 <1, where X, 18 the solution to f(x)=0.

guaranteed, especially when the starting point
“or 'Newton’s method to converge, it is often
fficiently close to the root: f(x) must be

0€s converge, the convergence rate is quadratic,
which means

4. Solve x* =37 to the third digit.

Solution: et 148 4 £
L isa:tf (;f) iy 37, the original problem is equivalent to solving f(x)=0.
¢ alural initial guess. Applying Newton’s method, we have

= __j;(_._r,_]l___ O_x§_37=6"ﬂ—608
(%) 2x, %601 3.

(6.083° = 37.00289, which is very close to 37)

If ypu do not remember Newton’s method
function f(x)= \/; with f'(x} ___%x—-lfz : ;

Jf(37)= f(36)+f'(36)(37—36) =6+1/12=6.083

You can directly apply Taylor’s series for

AN gy
The iterati i
10N equation comes from the first-order Taylor’s seri
series:

_J(x)

I(x,)

f(x__,.] “--'f(-\’..)+f'(x*){xm ~X)=0=x

J:x'
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Alternatively, we can use algebra since it is obvious that the solution should be slightly
higher than 6. We have (6+y)’ =37= )’ +12y—1=0. If we ignore the y’ term,
which is small, then y =0.083 and x=6+y =6.083.

B. Could you explain some root-finding algorithms to solve f(x)=07? Assume f(x) is
a differentiable function.

Solution: Besides Newton’s method, the bisection method and the secant method are two
alternative methods for root-finding. 1

Bisection method is an intuitive root-finding algorithm. It starts with two initial values
a,and b, such that f(a,)<0 and f(b,)>0. Since f(x) is differentiable, there must be

an x between a, and b, that makes f(x)=0. At each step, we check the sign of
f((a,+b,)/2). If f((a,+b,)/2)<0, we set b, =b, and a,, =(a,+b,)/2; If
f((a,+b,)/2)>0, we set a,,, =a, and b,,, =(a,+b,)/2; If f((a,+b,)/2)=0, or its
absolute value is within allowable error, the iteration stops and x =(a, +5,)/2. The

X1 — X7 5 3
bisection method converges linearly, ——~ <5 <1, which means it is slower than
X, =X, T
=

L

Newton’s method. But once you find an a,/b, pair, convergence is guaranteed.

Secant method starts with two initial values x,, x, and applies the iterative step

X=X, = %~ %pet f(x,). It replaces the f'(x,) in Newton’s method with a
f(xn)_f(xn—l)
linear approximation f (x,,)—f(xn_,). Compared with Newton’s method, it does not
X, —xn—]

n

require the calculation of derivative f'(x,), which makes it valuable if /'(x) is difficult

to calculate. Its convergence rate is (l +5 )/ 2, which makes it faster than the bisection

method but slower than Newton’s method. Similar to Newton’s method, convergence is
not guaranteed if initial values are not close to the root.

Lagrange multipliers

The method of Lagrange multipliers is a common technique used' to find local
maximums/minimums of a multivariate function with one or more constraints.

5 Newton’s method is also used in optimization—including multi-dimensional optimization problems—to
find local minimums or maximums.
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Let f(x, x,,---,x,) be a function of n variables x =(x,, x,.---, x,) with gradient
_(a & o s " .
vector fo(x)—(g, E’T> The necessary condition for maximizing or

minimizing f(x) subject to a set of k constraints

g1(x,,x2,---,xﬂ)=0, gz(xl*xza'"’xn):oa s gk(xwxz-“' x,)=0

**n

is that Vf(x)+/?1Vg,(x)+/12Vg2(x)+---+ing,{ (x)=0, where 4.---,4, are called the
Lagrange multipliers.

What is the distance from the origin to the plane 2x+3y+4z=129

Solution: The distance

(D) from the origin to a plane is the mini i
igi : e mini n
the origin and points o P mum distance betwee

n the plane. Mathematically, the problem can be expressed as
min D’ = f(x,y,z) = x* +y 42

St g(x,y,2)=2x+3y+4z-12 =

Applying the Lagrange multipliers, we have

Z4+2L=2x424=0)

e A=-24/29

3tA5=2y+31=0 x=24/29 :
LoaZ=2rrai=ol | y=36/29 :D:\/(%)-“L(;_g)er(%)z 2_\11229
2x+3y+4z-12=0 ) z=48/29

In general, f - ,
g ‘d|0r a plane with equation ax+by+cz=d, the distance to the origin is
D=

3.5 Ordinary Differential Equations

In this section
LIt » We cover four tvpi : !
seen in interviews. typical differential equation patterns that are commonly

6
The method of La i3
reveals the necessa srange multipliers —rri i

74 is a speci .
ry conditions for the solu(ii)gma] ot I-(a'“sh‘Kuhn-Tucker (KKT) conditions, which
NS 10 constrained nonlinear optimization problems.
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Separable differential equations

A separable differential equation has the form % = g(x)h(y). Since it is separable, we
x

can express the original equation as hfy ) = g(x)dx. Integrating both sides, we have the

dy
= dx .
") _[g(x)

solution j

A. Solve ordinary differential equation y'+6xy =0, y(0)=1

Solution: Let g(x)=-6x and h(y)=y, we have ﬂ=—6Jnca’x. Integrate both sides of
y

the equation: J‘fi-}i= j —6xdx => Iny=-3x"+c= y= e *, where ¢ is a constant.
s 4

Plugging in the initial condition y(0) =1, we have ¢ =0 and y = ot

X ok 17
Xty

B. Solve ordinary differential equation y'=

Solution: Unlike the last example, this equation is not separable in its current form. But
we can use a change of variable to turn it into a separable differential equation. Let
z = x+ y, then the original differential equation is converted to

d(z-x) Al x—(z-x) i,fiz__l =_2_x__] = 202 = 2xdx => Izdz = J2xdr+c
dx z dx 4

S(x+y)l =2 =2x"+c= y* +2xy-x" =c

First-order linear differential equations

. d
A first-order differential linear equation has the form EerP(x) y = (x). The standard

approach to solving a first-order differential equation is to identify a suitable function
I(x), called an integrating factor, such that I(x)( y'+ P(x)y)=1(x)y"+ [(x)P(x)y

” Hint: Introduce variable z = x + y.
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=(/(x)y)"; Then we have (/(x)y)'=1(x)Q(x) and we can integrate both sides to solve

[1)0(x)dx

fory: I(x)y = II(x)Q(x)d.x =y= ()

dl(x)

The integrating factor, /(x), must satisfy = I(x)P(x), which means /(x) is a

separable differential equation with general solution /(x) = e [re g

Solve ordinary different equation y'+4v— =—12-, y(1)=1, where x > 0.
iy

Solution: This is a typical example of first-order linear equations with P(x)=l and
x

L] 1 Px i 1/ x )y
O(x) et So I(x) =/ b =e" =x and we have 1(x)Q(x) = %

X (y'+ P(x)y) = (x)'=I(x)0(x)=1/x

Taking integration on both sides, xy = j(l /X)dx=Inx+c=y= g
Plugging in y(1)=1, we getc=1and y= lnx+l.
x
Homogeneous linear equations
Ah . giii
omjogenous linear e(}g_atnon 1S a second-order differential equation with the form

d’ .
a(x)a%‘i' b(X)% + c(x) = 0.

It is easy to show that, if y and y
| 2
homogeneous linear equation, then any

arbitrary Constants, is a solution to the ho

:Vhen a,b .and ¢ (a#0) are constant
inear equation has closed form solution

Let r, and r

are linearly independent solutions to the
Y(X)=¢y,(x)+c,p,(x), where ¢, and c, ar
mogeneous linear equation as well.

S Instead of functions of x, the homogenous
s:

be the roots of the characteristic equation ar’

TR T i o
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1. If r, and r, are real and 7, #r,, then the general solution is y = c,e* +¢c,e™";
2. If r, and r, are real and r, =r, =r, then the general solution is y =c,e”™ +cxe™;

3. If r, and r, are complex numbers a+if, then the general solution is
y=e"“"(c, cos fx +c, sin fx).

It is easy to verify that the general solutions indeed satisfy the homogeneous linear
solutions by taking the first and secondary derivatives of the general solutions.

What is the solution of ordinary differential equation y"+y'+y =07?

Solution: In this specific case, we have a=b=c=1 and b’ —4ac=-3<0, so we have
complex roots » = —1!2-_*'\/5!21' (a=-1/2, B= \6:’2 ), and the general solution to the
differential equation is therefore

y=e™(c, cos Bx +c,sin fx) =e'** (c, cos(+/3/2x) +¢, sin(+/3 / 2x)).

Nonhomogeneous linear equations
. . . d’y | dy .
Unlike a homogenous linear equation a?+ba+c=0, a nonhomogeneous linear

2
equation a£—¥+bgl+c=d(x) has no closed-form solution. But if we can find a

2
d
particular solution y,(x) for a—‘-fdx—';}+bzy+c=d(x), then y =y, (x)+y,(x), where

J d’ .
Y,(x) is the general solution of the homogeneous equation a_d-x%i-'-bay-'_c =0, isa

2
general solution of the nonhomogeneous equation @ Ex%i +b Ey +c=d(x).

—bt\/bz -4ac
2a

should either commit the formula to memory or be able to derive it using (r +5/2a)" = (b" - 4ac)/4a’.

® A quadratic equation ar’ +br+c =0 has roots given by quadratic formula r = You
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Although it may be difficult to identify a particular solution y ,(X) in general, in the

s‘peqial case when d(x) is a simple polynomial, the particular solution is often a
polynomial of the same degree. .-

What is the solution of ODEs y"+ y'+ y =1 and y"+ y'+ y = x ?

Solution: In these ODEs, we again have a=b=c=1 and b’ —4ac = -3 <0, so we have
complex solutions r=-1/2++/3/2i (@=-1/2, B= \/5 /2) and the general solution is
y=e ™ (c, cos(v3/2x) + ¢, sin(v/3/ 2x)).

W:lat Is a particular solution for y"+ y'+ y=1? Clearly y=1is. So the solution o
Y'+y'+y=lis

Y=y,(x)+y (x)=e"* (c, cos(\/g 12x)+c, sin(\ﬁ / 2x)) +1.

To find a particular solution for By y =1 Lot y () =pix+n,. then we have
: . 3

y"+)"+y=0+m+(mx+n)=x:> m

=Ln=-1. i T
theladhion o b4yt b b 1. So the particular solution is x—1 and

Y=y,(X)+y,(x)=e (CI cos(\/?:f2x)+ & sin(\@,fo)) +(x-1).

| 3.6 Linear Algebra
Linear algebra is extensiv

el ] : FANA
Y used in applied quantitative finance because of its role in

statistics, optimization, M

£ * » Monte Carlo simulati i

it is also a comprehens:  Stmulation, signal processing, etc. Not surprisingly:

gl prehensive mathematical field that covers m e g);
eral topics that have bigai any topics. In this section, W

methods. ficant applications in statistics and numerical

Vectors

An nx1 (column) veetor is a one

$i] -di i
a point in the R" (n-dimensiorlal) Imensional array.

It can represent th inates of
Euclidean space. B e coord
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Inner product/dot product: the inner product (or dot product) of two R" vectors x and

yis definedas ) xy, =x"y
i=l

Euclidean norm: x| =, ,i Xi= Jx'x; Jx= = x=2) " (x=»)
i=1

T

Then angle & between R" vectors x and y has the property that cosd =-“§"-"y7“. x and y

are orthogonal if x”y =0. The correlation coefficient of two random variables can be
viewed as the cosine of the angle between them in Euclidean space ( p =cos8).

There are 3 random variables x, y and z. The correlation between x and y is 0.8 and the
correlation between x and z is 0.8. What is the maximum and minimum correlation

between y and z?

Solution: We can consider random variables x, y and z as vectors. Let & be the angle
between x and , then we have cos@ = p, | =0.8. Similarly the angle between x and z is
0 as well. For y and z to have the maximum correlation, the angle between them needs

to be the smallest. In this case, the minimum angle is 0 (when vector y and z are in the
same direction) and the correlation is 1. For the minimum correlation, we want the

maximum angle between y and z, which is the case shown in Figure 3.2.

If you still remember some trigonometry,
all you need is that

c0s(26) = (cos 0)’ —(sin 6)’
=0.8°-0.6"=0.28

Otherwise, you can solve the problem using
Pythagoras's Theorem:

08x12=1xh=h=0.96
; €020 =+1"-0.96" =0.28

y 0.6 0.6

Figure 3.2 Minimum correlation and maximum angle between vectors y and z
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QR decomposition

QR decomposition: For each non-singular nx # matrix A. there is 2 unique pair of

?hﬁT0§0nanRm%Lﬁx ( and upper-triangular matrix R with positive diagonal elements such
a fT = n

QR c.iccorpposition is often used to solve linear systems Ax =H when 4 is a non-singular

matrix. Since Q is an orthogonal matrix, O"=0" and ORx=b = Rx = Q'b. Because

15 an upper-triangular matrix, we can begin with x (the equation s simply
- 'i b

R,x,={(0'h),), and recursively calculate all Yo Vi=Rsl =T 001

If the programming language you are usin

i : g does not have i i
squares regression, how would you r e a function for the linear least

an algorithm to do s0?

Solution: The line: % & TR
analysis mel;é?e‘fe]ﬁfi‘bi SquAres regression is probably the most widely used statistical
regressions usinlg manbicgez Ofr { Stland]?rd approach to solving linear least squares
! \ sim ; : -

expressed as ple linear regression with » observations can be
Y=o g+ Bx  4ens .

f il 1744 + X =
iVl | pY oy E, Visl n where Xy =1, Vi, is the intercept
Har T Ly are p—1 €Xogenous regressors,

The goal of the linear least squares

regression i !

. Z BIESSION 1s to find a set ofﬁ:[ﬁo,@,---,ﬁr_l]

at makes ) g?
t<]

the smalleg; d [
- Let’s express the linear regression in matrix format:

}':Xﬁ#& where ¥ , -
* :[Y-}n"'- 5% ¢ = j
(%, L] and ‘9‘[‘;:@2»"',&‘“]’ are both »#x1 column

'CCIOI’S' ‘/ l 5 a X . i
.

min /() = min " ¢? _ o "
i min 2 &, um;n{Y~X,6’) Y-Xxp

A nonsingular mateix Q is called an orth
- 0

columns (ang rowsk of Q f
. o

n;nlmnonnalimlinn Process (ofte
decompasition. Please refer o

gonal matriy ; - . "
) A oot St oh o ¢ is orthogonal if and only if the
an orthonorma| ¢
. ot TIAEARY ;
D Improved tq increa {t 1essa i R'. The Gram-Schaiid

dhnuaralgebra textbook jfe Mimerical stability) is ofien used for QR

52 You are interested in the Gram-Schmidt process:
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To minimize the function f(f), taking the first derivative'' of () with respect to B,
we have [(B)=2X"(Y-XP)=0= (X" X)B=X"Y, where (X'X) is a pxp
symipetric matrix and XY isa px1 column vector.

Let A=(X"X) and b=X"Y, then the problem becomes A,fi’ = b, which can be solved
using QR decomposition as we described.

Alternatively, if the programming language has a function for matrix inverse, we can
directly calculate § as B=(X X)X’y

Since we are discussing linear regressions, it's worthwhile to point out the assumptions

behind the linear least squares regression (a common stafistics question at interviews):
1. The relationship between Y and X is linear: ¥ = X § +&.

2. Elgl=0,¥i=],n
3. var(g)=0",i=1,---,n (constant variance), and Efe,e,]=0,i# j (uncorrelated

€ITOIS). .
4. No perfect multicollinearity: p(x,,x,)#%£}, i#j where p(x,x;) is the

correlation of regressors x, and x,.

5. & and x, are independent.

Surely in practice, some of these assumptions are violated and the simple linear least
squares regression is no longer the best linear unbiased estimator (BLUE). Many

econometrics books dedicate significant chapters to addressing the effects of assumption
violations and corresponding remedies.

Determinant, eigenvalue and eigenvector

Determinant: Let 4 be an nx»n matrix with ¢lements {A,_f}a where /, j=1,---,n. The

determinant of 4 is defined as a scalar: det(A)=Zy/(p)a.,.{,‘a:_‘..:'--awn, where
r

p={(p,, p,, -, p,) is any permutation of (1,2, -, #); the sum is taken over all n!

possible permutations; and

" To do that you do need a little knowledge about matrix derivatives. Some of the important derivative

-

cr Av : Sa’ iy

--——:(A +,'1]X. -f : 24
ax i

& . da'n &xa dadx
equations for vectors/matrices ar¢ - -——=a — = A,
Fia 3 Fis 4 &

EEAX +b) C(Dx 13 e)_ = A C(Dy ey + DO (Ax e b)

" The matrix inverse introduces large numerical error if the matrix is close to singular or badly scaled.
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1, if p can be coverted to natural order by even number of exchanges

wUﬂ={

-1, if p can be coverted to natural order by odd number of exchanges
For example, determinants of 2x2 and 3x3 matrices can be calculated as

5 Ta b ¢
a
dctq dﬂ=ﬂd—bc‘, det\|d e f||=aei+bfg+cdh—ceg-afh-bdi "
1]
) hoi|)
1

Determinant properties: det(4” ) =det(4), det(AB) = det(4) det(B), dey( A—I) _ m
et

Eigenvalue: Let 4 be an nxn matrix. A real number 1 is called an eigenvalue of 4 if

there exisls a nonzero vector x in R” such that Ax = Ax. Every nonzero vector x

satisfying this equation is called an eigenvector of 4 associated with the eigenvalue 4.
Eigenvalues and eigenvectors are
ordinary differential equations, Mar
I'he importance of determinant lies

crucial concepts in a variety of subjects such as
kov chains, principal component analysis (PCA), etc.
in its relationship to elgenvalueslelgcnvectors.I

equation d - > is called the characteristic polynomial of A. The
tquation det(4~A1)=0 is called the characteristic equation of 4. The eigenvalues of

A are the real roots of the characteristic equation of 4. Using the characteristic equation,

We can also show that iy A, = det(4) and i/ﬂt = frace(4) = Zn:/l )
i=l ot

i=|

4 15 diagonalizable if and only if j has lincarly independent eigenvectors.'® Let

A5 Ay, A be the éipenvalues
1 ! ¥ €1 ‘ ‘
: genvalues of 4, x,, x . ..., X, be the corresponding eigenvectors.
and X =[x, | x, [ x,], then

[ s

A
-1 . ;"‘
X'AX = } =D A= XDY ' = 4 !
SADX = 4 = xptxt
4,
y
" In practice determiy i
clice, ant 1 usuajly ik
Eomputationally inefficient, LU du:o) e A o bk s . gaes e
instead, |

i ;
] Determinant can also b

i - ¢ applied to marix ;
Ifall » ¢igenvalues are X Inver

=3 s¢ and line LRER Iy
real and distinct, then th o euations as well.

€ eigenvectors are mdependent and 4 is diagonalizable:
54
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2 1 .
[f matrix A = L 2] . what are the eigenvalues and eigenvectors of 47

Solution: This is a simple example of eigenvalues and eigenvectors. It can be solved
using three retated approaches:

Approach A: Apply the definition of eigenvalues and eigenvectors directly.

Let A be an eigenvalue and x :[,\‘,] be its corresponding eigenvector. By definition, we
X
have
Ax = 2 s _| 2t =Ax = 45 | ""{Qxl e = 3(x + x,) = Alx, +x;)
1 2] x X, +2x, LA%; X, +2x, = Ax,

So either 2 =3, in which case x, = x, (plug A =3 into equation 2x, +x, = Ax,) and the

/42

corresponding normalized eigenvector 1s
ponding 2 l/ﬁ

1742

~UA2

, or x,+x,=0, in which case the

normalized eigenvector is and A=l (plug x,=-x into equation

2X| +x2 :/L\‘] )

Approach B: Use equationdet(4 - A1/)=0.

det(A-A)=0= (2-A)2-A)—1=0. Solving the equation, we have 4 =1 and
4, =3. Applying the eigenvalues to Ax=Ax, we can get the corresponding

eigenvectors.

Approach C: Use equations 4, - 4, o A, =det(A) and Zﬂ, = frace(A) = ;”’*-"

=1

det(A4)=2x2-1x1=3 and trace(A)=2x2=4.

So we have hx 2, :3}:>{/1' =l_ Again apply the eigenvalues to Ax = Ax, and we

+4,=4 A, =3

can get the corresponding eigenvectors.

L]
L]
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Positive semidefinite/definite matrix

When 4 is a symmetric nx# matrix, as in the cases of covariance and correlation
matrices, all the eigenvalues of 4 are real numbers. Furthermore, all eigenvectors that
belong to distinct eigenvalues of 4 are orthogonal.

Each of the following conditions is a necessary and sufficient condition to make 2
symmetric matrix 4 positive semidefinite:

1. x"Ax>0 forany nx1 vector x.

2. All eigenvalues of 4 are nonnegative.

3. All the upper left (or lower right) submatrices A4, , K =1, ---, n have nonnegative

determinants,'®

(_?ovariancefcorreiation matrices must also be positive semidefinite. If there is no perfect
linear Qe_pendence among random variables, the covariance/correlation matrix must also
be positive definite. Each of the following conditions is a necessary and sufficient
condition (o make a symmetric matrix 4 positive definite:

If -
L. x"Ax >0 for any nonzero nx1 vector x.

2. All eigenvalues of 4 are positive,
3. All the upper left (or lower right) submatrices Ag, K=1,---, n have positive
determinants,

There are 3 random variables x, y
correlation between x and 2 s 0.
between y and 29

and z. The correlation between x and y is 0.8 and the
8. What is the maximum and minimum correlation

Solution: The problem can be solv

correlation matrix. ed using the positive semidefiniteness property of the

Let the correlati )
tion between y and z pe P+ then the correlation matrix for x,yandz is

1 08 0%8]
P= 0.8 l p
08 p 1

|

e———

TS
TA llCCL‘SS.‘rll')’ but not suffie f
' . ! SUHICJCII{. conditj { ]
negative (llagUﬂﬂ' EIEIIICT‘!IS_ , tion for matrix A 10 be POSjli\'B semidifinite is that 4 has no
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1 p [0.8 0.81 0.8 0.8
det(P) = 1x det [ P ]—0.8xdet( |\:+0.8><de£[[ D
Pl e ) Lop

=(1-0")-0.8x(0.8~0.80)+0.8x(0.8p-0.8)=-0.28+1.28p-p" 20
= (p-D(e-028)<0 = 028<p<i

So the maximum correlation between y and z is 1, the minimum is 0.28.

LU decomposition and Cholesky decomposition

Let A be a nonsingular »x# matrix. LU decomposition expresses 4 as the product of a
> : 7
lower and upper triangular matrix: 4= LU. !

LU decomposition can be use to solve Ax=5 and calculate the determinant of A:

LUx=b=Ux =y, Ly=b; det(d)=deqL)ydet)=]]L,[]V,,

=1 1=l
When A4 is a symmetric positive definite matrix, Cholesky decomposition expresses 4
as A= R"R, where R is a unique upper-triangular matrix with positive diagonal entries.
— .. . T
Essentially, it is a LU decomposition with the property L=0/".

Cholesky decomposition is useful in Monte Carlo simulation to generate correlated
random variables as shown in the following problem:

How do you generate two N(0,1) (standard normal distribution) random variables with
correlation p if you have a random number generator for standard normal distribution?

Solution: Two N(0,1) random variables x,, x, with 2 correlation p can be generated
from independent N(0,1) random variables z,, z, using the following equations:

=z

xl 1
X, = pz, +J/l-pls,
It is easy to confirm that var(x,) = var(z) =1, var(x,) = o var(z) +(1- pP)var(z,) =1,

and cov(x,,x,) = cov(z,, pz, +/1 - P 5;) =coW(z. pz) = p.

This approach is a basic example using Cholesky decomposition to generate correlated
random numbers. To generate correlated random variables that follow a n-dimensionai

LG decomposition oceurs naturally in (Gaussian elimination,
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multivariate  normal  distribution X=[X, X, X,] ~N(u.2)  with mem

ol o T - - ..
=, 4, and covariance matrix 3 (a nxn positive definite matrix)'s, we cat

decompose the covariance matrix £ into R'R and generate # independent N(0, 1)

random vari T, v '
ariables z,, z, -+, z . Let vector Z =[z, z,,,2,]", then X can be generated

as X =u+ Rz

Alternatively, X can also be generated using another im

called singular valye decomposition (SVD): For any
factorization of the form X =UDV!
matrices, with columns of {7
sparining the row space; D is
For a positive definite covaria
D is the diagonal matrix o

portant matrix decomposition
nx p matrix X, there exists a
& where U and ¥ are nx p and px p orthogonal
Spanning the column space of .Y, and the columns of I
4 px p diagonal matrix called the singular values of X.
Fnce; matrix, we have V' =/ and £={/D{/'. Furthermore.
gt elge?\:alues Ay Ay A and U is the matrix of #

& eigenvectors. Let D'? pe 5 diagonal matrix with diagonal elemen

!
\/_— clear that D=(D"y = (D"} D)’ and

b /f} 1 ] /1.” 5 Ihell n Ib

Z=UD"Up'2y! Again,
variables Z=[z z ... . §
Z =z, +2,1', X can be generated as X = u+(UD")z

—_y

_—_\\‘___

(LS
The probability den:
ity density nfmullivariale normal distribye ; :
istribution is ., _ SP{~ (1 )% (x- )

(272)" " densy

i -C matricey - qx A"

4
In general, iy . LY + b, where 4

e

Chapter 4 Probability Theory

Chances are that you will face at least a couple of probability problems in most
quantitative interviews. Probability theory is the foundation of every aspect of
quantitative finance. As a result, it has become a popular topic in guantitative interviews.

Although good intuition and logic can help you solve many of the probability problems,
having a thorough understanding of basic probability theory will provide you with clear
and concise solutions to most of the problems you are likely to encounter. Furthermore,
probability theory is extremely valuable in explaining some of the secemingly-
counterintuitive resulis. Armed with a little knowledge, you will find that many of the
interview problems are no more than disguised textbook problems.

So we dedicate this chapter to reviewing basic probability theory that is not only broadly
tested in interviews but also likely to be helpful for your future career. " The knowledge
is applied to real interview problems to demonstrate the power of probability theory.
Nevertheless, the necessity of knowledge in no way downplays the role of intuition and
logic. Quite the contrary. common sense and sound judgment are always crucial for
analyzing and solving either interview or real-life problems. As you will see in the
following sections, all the techniques we discussed in Chapter 2 still play a vital role in
solving many of the probability problems.

Let’s have some fun playing the odds.

4.1 Basic Probability Definitions and Set Operations

First let’s begin with some basic definitions and notations used in probability. These
definitions and notations may seem dry without examples—which we will present
momentarily—yet they are crucial to our understanding_ of probability theory.l ‘In
addition, it will lay a solid ground for us to systematically approach probability

problems.
Outcome (w): the outcome of an experiment or {rial.
Sample space/Probability space (Q2): the set of all possible outcomes of an experiment.

' As | have emphasized in Chapter 3, this book does not teach prf)bability or any other math topics due to
the space limit-—it is not my goal to do so, either. The book gives a summary of the frequenily-tested
knowledge and shows how it can be applied to a wide range of real interview problems. The }fnowlcdge
used in this chapter is covered by most introductory probability books. It 1s always helpful to pick_ up one
or two classic probability books in case you want 10 refresh your memory on some of the topics. My
personal favorites are First Course in Probability by Sheldon Ross and Introdiction to Probability by

Dimitri P. Bertsekas and John N. Tsitsiklis.
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P(w): Probability of an outcome (P(w) 2 0, Yw e Q, > P(w)=1).

well

Eveat: A set of outcomes and a subset of the sample space.

P(A): Probability of an event 4, Pld)= Z Plw).

weA

A B : Union 4U B is the set of outcomes in cvent 4 or in event B (or both).

ANB or AB: Intersection 4 B(or AB) is the set of outcomes in both 4 and 8.
A": The complement of 4. which is the event “not 4”.

Mutually Exclusive: 4~ B =@ where @ is an empty set

For any mutually exclusive events ; y c
: s ELE,E,, Pl |E |= P(E
fL=JI £ ; r)

Random variable: A functi

on that maps ¢ : :
the set of real numbers. s cach outcome (@) in the sample space () ind

:JtL [an:l:f }tl};; gogézfil?]teaoi:( “sided dice to explain these definitions and notations. A rol
the sample space \Q 7 jlc;n'l;ci (Smgfjp’cd to a random Yz_ariable): 1,2,3,4,5, orb. 50
(assumingafairdicc)- Wetc;;in“d.ef: bt probability of each ourcome is I
is an odd number 4 = | TR li?e an event 4 representing the event that the outcome
PUY= PO+ POY+PS) =1/ o the complement of 4 is 4 = (2, 4, 6}. Cleal
B={4,56}. Then the lm;(:n et B be the event that the outcome is larger than ¥
AN B={5}. One popular By l\s-'ari/jlt:B =1L, 3’_ 4:5.- 6} and the intersection i
variable) for event 4 is defined as the fo‘lli()\ifi;‘t]‘ied indicator variable (a binary dummy
i :_.’(l. if xe{l. 3,5 ‘ i

C 0. i xel 3, 5) Basically / - when 4 occurs and 7. =0 if 4° ocours. The
expected value of 7, is £[1 | p( 4 A

Now, time for some examples
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Coin toss game

Two gamblers are playing a coin toss game. Gambler 4 has (#+1) fair coins; B has »
fair coins. What is the probability that 4 will have more heads than B if both flip all their
coins??

Solution: We have yet to cover all the powerful tools probability theory offers. What do
we have now? Qutcomes, events, event probabilities, and surely our reasoning
capabilities! The one extra coin makes A different from B. If we remove a coin from 4,

A and B will become symmetric. Not surprisingly, the symmetry will give us a lot of
nice properties. So let’s remove the last coin of A and compare the number of heads in

A’s first n coins with 8°s n coins. There are three possible cutcomes:

L, A”s n coins have more heads than B’s » coins;
E,: A’s n coins have equal number of heads as 8’s n coins;

E,: A’s n coins have fewer heads than B’s # coins.

By symmetry, the probability that 4 has more heads is equal to the probability that B has
more heads. So we have P(E,) = P(E,). Let’s denote P(£)) = P(£;)=xand P(E,)=y.

Since ZP(a})=l, we have 2x+y=1. For event £, 4 will always have more heads
than B8 20 matter what 4’s (n+1th coin’s side is; for event £;, 4 will have no more
heads than B no matter what A’s (#+1)th coin’s side is. For event £,, A’s (n+1)th
coin does make a difference. If it’s a head, which happens with probability 0.5, it will
make 4 have more heads than B. So the (n+1)th coin increases the probability that 4
has more heads than B by 0.5y and the total probability that 4 has more heads is

x+0.5y =x+0.5(1-2x)=0.5 when 4 has {n+1) coins.

Card game
A casino offers a simple card game. There are 52 cards in a deck with 4 cards for each

jack queen kg ace

value 2,3, 4, 5,6,7,8,9,10,J, O, K, 4. Each time the cards are thoroughly shuffled
(s0 each card has equal probability of being selected). You pick up a card from the deck
and the dealer picks another one without replacement. If you .have a llarger number, you
win; if the numbers are cqual or yours is smaller, the house wins—as in a]l_other Casinos,
the house always has better odds of winning. What is your probability of winning?

* Hint: What are the possible results (events) if we compare the number of heads in A’s first n coins with
B’s 1 coins? By making the number of coins equal. we can take advantage of symmetry. For cach event,

what will happen if 4°s last coin is a head? Or 4 tail?
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Solution: One answer 1o this problem is to consider all 13 different outcomes of your
card. The card can have a value 2,3, -, 4 and each has 1/13 of probability. With a
value of 2, the probability of winning is 0/51; with a value of 3, the probability of
winning is 4/51 (when the dealer picks a 2); ...; with a value of 4. the probability of
winning is 48/51 (when the dealer picks @ 2, 3, - or ). So your probability of
winning is

j«f2+i . T 4_ 12x13 8

+ TN D+l 412} = —_—=—
51 5] 51J 13%5] Wltearl2) 13x51 2 17"

Although this is a straightforward solution and it el
Sequence. it is not the most efficient way to solve th

spirtts of the ¢oin tossing problem, You may
different outcomes:

egantly uses the sum of an integer
¢ problem. If you have got the core
approach the problem by considering three

£, Your card has a numper larger than the dealer’s;

£, Your card has a number equal to the dealer’s;
£ Your card has a number lower than the dealers,

Again b) Symmetry, P(El):P(EB)_ So we onty need 1o figure out P(E,). the
probability that two cards have eqy !

. al value. Let’s say vo ed a card.
Among the remaining 51 cards, oo Y you have randomly select

fin ly 3 cards wil} h d. So
the probability that the WO cards have T ome value a5 youries

that you win is /( E)=(1- P(E)))
Drunk passenger

onvenience, let's say that the -t passenger in
fie ks Being drunk, the first person in line picks}a

ACH seat). Al] of the other passengers are sober, and will
o8 1L IS already Occupicd: In that case, they will randomly

) You're pers _ .
In your seat (i.e., seqt #100)%3m0n number 100. What is the probability that you end up

the seat number 5.
random seat (cquaily Jikely
£0 10 their Proper seats yp]
choose a free seat.

Solution: 1 ar's wome:
Let’s consider seatg #1 and #100, There are twq posibla ol b

'NCreasing the numper of pass

efficiently, By the problem i much simp|

JYLY » YOU can solve the problem mor
an mruitjye inswer

0N events and symmetry and you will have
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E,: Seat #1 is taken before #100,
E, : Seat #100 is taken before #1.

1s taken, surely you will not end up in you
If any passenger takes seat #100 before #1 is ta , | :
own )s/e}ajt. Butgif any passenger takes #1 before #100 is taken, you »_ﬂll definitely end ;l,p
in you own seat. By symmetry, either outcome has a probability of 0.5. So the

probability that you end up in your seat is 50%.

In case this over-simplified version of reasoning is not clear to you, ]conslltc,i:rd::];?
following detailed explanation: Ilf I};lhe dn;lnk passe?%zg {t;aklefssfe ltsieih;?gg, E[ }1121; 1)}0Ll e
all the rest of the passengers will have the correc . | O[h,el-sze ou il
not get your seat. The probabilities that he takes #1 or #100 are equal. sc assume
- at, where n is a number between 2 and 99. Evs:ryone etwe
;}:::it ?f? —tali)(efvi‘ll;eg;?t T:i:eown seat. That means the n-th passenger essentially becomes It;:,
new “drunk” guy with designated seat #1. [f he chooses #1, a_]l the rest ot: the jza;sasten(gTeh s
will have the correct seats. If he takes #lOO,_Ihen you will not gc}: )0}1{1 'ust. (The
probabilities that he takes #1 or #100 are aganl equal.) O(tjhem:s?ed e;e:tl#lj 15t make
another passenger down the line the new “drur}k guy with OeSISglna sl i oot
new “drunk” guy has equal probability of taking #1 or #10 .#llnce a b] e
there's an equal probability for the “drunk™ guy tq choos.e S;E;BO 150(;5 , by )
the probability that you, as the 100k passenger, will seat in 3.

N points on a circle | B
Given N points drawn randomly on the circumference of a circle, what is the probability
that they are all within a semicircle?’

Solution: Let’s start at one point and clockwise label the points as 1,2h~"'=]N!-( 'l.he
; : i clockwise
probability that all the remaining N“Ff pOIptts Ifriosrnaf[;(,)oa\’ ;;?mlsnzt 12 N are all
ici ' t point 1 (That 1s, 1f poin LT : .~
Zem:mrcle;(l)t;mni g'Og) is 172", Similarly the probability that a clockw;scl Sem_tcnc]e
t’elr\:feen lt .::1ny jjnoint-i where i €{2,---, N} contains all the other N -1 points is also
starting a > j =

/2%, - .
; P i micircle starting
. ~1 points are in the clockwise se : ung
: rents that all the other N , : T
C:am'l. tt}'le . t’;‘ﬂ; N are mutually exclusive. In other words, if we. starting at p;)ml !
atponti, =L 2, L e rs points i+, i+2,---,
anclij roceeding clockwise along the circle, sequentially RREIIRENLS -~
N lp . i—1 in half a circle. then starting at any other point j. we cannot encounter a

0 i o st of the points on the circle
tarting from a point », you can reach all t?_m rest ¢ p
* Hint: Consider the events that blar!mIg B s )
kwise /1 in a semicircle. Are these event: ¥ ex
clockwise, ne{i,---,N) inasemic
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other points within a clockwise semicircle. Figure 4.1 clearly demonstrates this
conclusion. If starfing at point /i and proceeding clockwise along the circle, we
sequentially encounter points i+1,i+2, -, N, 1,---,i—=1 within half a circle, the
clockwise arc between i—1 and i must be no less than half a circle. If we start at any
other point, in order 1o reach alt other points clockwise, the clockwise arc between i -1
and i are always included. So we cannot reach all points within a clockwise semicircle

starting from any other points. Hence, all these events are mutually exclusive and we
have

(U

AR A

N

N N
=Y PE )= P[UEJ = Nx1/2%" = Ny /2!
(] in] A

The same argument can be extended to any arcs that have a length less than half a circle.
[f the ratio of the arc length to the circumference of the circle is x (x <1/2), then the
probability of all N points fitting into the arc is N x x*™'

i

Figure 4.1 N points fall in a clockwise semicircle starting from i

4.2 Combinatoria/ Analysis
Many problems in probability
different ways that a cert
often referred 10
cover the basics o

ity theory can be solved b
ain event can oceyr.
as combinatorial analysis (or ¢
f combinatoria analysdis.

Basic principle of counting: [ ¢

ed by simply counting the number ¢
The mathematic theory of counting
ombinatorics). In this section. we will

t S
beaset of length-k sequences. If there are
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s 1, possibie first entries,
e 1, possible second entries for each first entry,
s n, possible third entries for each combination of first and second entries, efc.

Then there are a total of #, - #,---#, possible outcomes.

Permutation: A rearrangement of objects into distinct sequence (i.e., order maftters).

‘ - - .
___ ™ different permutations of n objects, of which »n, are

Property: There are
ninln!

alike, n, are alike, -, #n, are alike.

Combination: An unordered collection of objects (i.e., order doesn’t matter).

”J ——L!— different combinations of » distinct objects taken

Property: There are (r C(n-r)ir!

r at atime.

. " - n k., n-k
Binomial theorem: (x+ y) =Z[ij y
k=0

(E UE,)=P(E)+P(E) - P(EE)
(E,E,) + P(E,E,E,)

Inclusion-Exclusion Principle: 7

P(E, U E, UE,) = P(E))+ P(E)+ P(£;)~ P(EE,) = P(EE)-P

and more generally,

; % P EE .E)+
P(E,VE,u..0Ey) =Y P(E)- 2 P(EE)++ (1) >, PKEE,.E)
=1

f<f T,
.']4(!3 | e ¥

"'("DNH P{EE,- By)
(N

where Z P(En EJ,_‘ ---E{r) has L’ .I terms.

/

K<<,

Poker hands | .
Poker is a card game in which each player gets a hand of 5 ca_xrds. There are 5% 3cardsl in a
deck. Each card has a value and belongs to a sult There are values,

spade club beant dimnend
2, 3 4, 95 6. .7 8 910

jack quéeh RIBE et

J. 0. K. A, and four suits, & , &, ¥, ¢
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What are the probabilities of getting hands with four-of-a-kind (four of the five cards
with the same value)? Hands with a full house (three cards of one value and two cards of
another value)? Hands with two pairs?

Solution: The number of different hands of a five-card draw is the number of 5-¢lement

(52
=2,598.960.
S
Hands with a four-of-a-kind: First we can choose the value of the four cards with the
same value, there are 13 choices. The 5Sth card can be any of the rest 48 cards (12

choices for values and 4 choices for suits). So the number of hands with four-of-a kind is
13x48 =624 .

subsets of a 52-clement set, so total number of hands =

Hands with a Full House: In sequence we need to choose the value of the triple. 13
Jh ! ! [ /4\[

choices: the suits of the triplc, b | choices; the value of the pair, 12 choices; and the
/

: . (4 _
suits of the pair, (2]1 choices. So the number of hands with full house i
\

4 (4
13x 3 x12x ! =13x4x12x6=3,744 .

NES

Han i oI !
ds with Two Pairs: In Sequence we need to choose the values of the two pairs.

) oheide [4) 4
3 tces: the suits of the first pair, ] ‘ choices; the suits of the second pair, J
.

N L

choices: and the remaining card, 44

(52-4x2, since the last cards can not have 1
same value as cither pair) | > o

choices. So the number of hands with two pairs is

(13 (4) (4
{ﬁ xt? x 2]x44:?8x6x6x44:123,552.

= =
LY

To calculate the probability of each, w

kind by the total possible number of h gy meed to divide the number of hands of eic

ands.
Hopping rabbit
A rabbit sits at the bottom of a stairca

tWo stairs at a time, How
top of the stairs?’

S with # stairs, a8 . ot
many different wave 5. The rabbit can h_op up only he
ays arc there for the rabbit to ascend to'!

" Hint: Consider an | i
! : an inductj :
cither the (n-1)th s; N approach. Before the fi

b ¢ . . !
awr or the (»- nal hop to reach the #-th stair, the rabbit can b€ 2

2)th stair assuming p > 2
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Solution: Let’s begin with the simplest cases and consider solving the problem for any
number of stairs using induction. For n =1, there is only one way and f(l1}=1. For

n=2, we can have one 2-stair hop or two l-stair hops. So f(2)=2. For any n> 2,

there are always two possibilities for the last hop, either it’s a 1-stair hop or a 2-stair hop.
In the former case, the rabbit is at (n—1) before reaching », and it has f(n-1) ways to

reach (#—1). In the latter case, the rabbit is at {#n—2) before reaching », and 1t has
f(n=2) ways to reach (n-2). So we have f(n)=/f(n-2)+ f(n~1). Using this
function we can calculate f(n) for n=3, 4, .6

Screwy pirates 2

Having peacefully divided the loot (in chapter 2), the pirate leam goes on for more
looting and expands the group to 11 pirates. To protect their hard-won treasure, they
gather together to put all the loot in a safe. Still being 2 democratic bunch, they decide
that only a majority — any majority - of them (=6) together can open the safe. So they
ask a locksmith to put a certain number of locks on the safe. To access the treasure,
every lock needs to be opened. Each lock can have nultiple keys; but each key only
opens one lock. The locksmith can give more than one key 1o each pirate.

What is the smallest number of locks needed? And how many keys must each pirate
7
carry?

Solution: This problem is a good example of the application of combinatorial analysis n
information sharing and cryptography. A general version of the problem was explained
in a 1979 paper “How (o Share a Secrer” by Adi Shamir. Let’s randomly select 5 pirates
from the 11-member group; there must be a lock that none of them hlas the key to. Yet
any of the other 6 pirates must have the key to this fock since any 6 pirales can open all
locks. In other words, we must have a “special” lock to which none of the 5 selecied
pirates has a key and the other 6 piratcs all have keys. Such 5-pirate groups are randomly
selected. So for each combination of 3 pirates, there must be such a “special” lock. The

IAERpSY

minimum number of locks needed 55( = —— =462 locks. Each lock has 6 keys,

3} #gl
which are given to a unique 6-member subgroup. So each pirate must have

462x6 =252 kevs. That's surely a lot of locks to put on a safe and a lot of keys for

each pirate to carry.

nce is a sequence of Fibonacci numbers.

6 .
Y nized that the seque : ’
ki daeyent, i to a upique Jock that the other 5 pirates do

" Hint: every subgroup of 6 pirates should have the same key
not have.
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Chess tournament

A chess tournament has 2" players with skills 1 > 2 > .- >2" It is organized as a
knockout tournament, so that after each round only the winner proceeds to the next
round. Lxcept for the final, opponents in each round are drawn at random. Let’s also
assume that when two players meet in a game, the player with better skills always wins.
What's the probability that players 1 and 2 will meet in the final?®

Solution. There are at least two approaches to solve the problem. The standard approach
applies multiplication rule based on conditional probability, while a counting approach
is fur more efficient. (We will cover conditional probability in detail in the next section.)

Let’s begin with the conditional probability approach, which is casier to grasp. Since
there are 2" players, the tournament will have # rounds (including the final). For round

’ I
L, players 2.3,---,2" each have Lt probability to be 1°s rival, so the probability that

') 22" -1)
2.-: =5 l 2,1 — l

a3t ] n-d A
meet i round 1. 27 players proceed to the 2nd round and the conditional probability

. a~-l n-1

that 1 and 2 will not meet in round 2 is : : : _ 2@ -D We can repeat the same
2:;— _] 2n-| -1 )

process until the (n-1)th round, in which there are 22 (=2"/2"%) players left and the

conditional probability that 1 and 2 will

-2 2x(2M -]

—

D 4

1 and 2 do not meet in round 1 is

. Condition on that 1 and 2 do not

not meet in round (n-1)

Let £ be the event that | and 2 do not meet in round 1:

E, be the event that 1 and 2 do not meet in rounds | and 2;

E, | be the event that 1 and 2 do not meet in round 1,2, »—1

Apply the multiplication ruje. we have
P(l and 2 me

et in the nth game) = p(g P P
i | I )= P(E )x P(E, E)x<--xP(E, |EE, E,,)

L - 2l

1 2' _]—X‘——--)—h—-l——____l_lx.x_g__x_g_z;______l_)-: 2”_I
& _“l 2‘_] 2”__1

SliTrenaas TSNS EISTIRTTE]

" Hint: Consider separating

the players to twp 2"
’ s i s 10 T
same group? Or not in the s ) ity

ame group? subgroups. What will happen if player | and 2 in ¢

08
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Now let’s move on to the counting approach. Figure 4.2A is the general case of what
happens in the final. Player 1 always wins, so he will be in the final. From the figure, it

-player subgroups and each group

will have one player reaching the final. As shown in Figure 4.2B, for player 2 to reach
the final, he/she must be in a different subgroup from 1. Since any of the remaining

players in 2,3,---,2" are likely to be one of the (2" —1) players in the same subgroup

a=1

is obvious that 2" players are separated to two 2

fL

as player 1 or one of the 2" players in the subgroup different from player 1, the
probability that 2 is in a different subgroup from | and that 1 and 2 will meet in the final

n-l

1s simply 1 Clearly, the counting approach provides not only a simpler solution but

also more insight to the problem.

General Case 1 & 2 in the Final

| +
+ +
nth round | ? nth round /1\ /2\
(n-Dthround | 1} 9 + | (n-Dthround| | 2
? 2 ? ?

2™ players 27 players 2" players 2" players

A B
Figure 4.2A The general case of separating 2" players into 2™'-player subgroups;
4.2B The special case with players 1 and 2n different groups

Application letters

You're sending job applications 10 5 firms: Morgan Stanley, Lehman Brothers, UBS.
Goldman Sachs. and Merrill Lynch. You have 5 envelopes on the table neatly typed with
names and addresses of people at these 5 firms. 'You even have 5 cover letters
personatized to each of these firms. Your 3-year-old tricd to be helpful and stuffed each
cover letter into each of the envelopes for you. Unfortunately she randomty put letters
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into envelopes without realizing that the letters are personalized. What is the probability
that all 5 cover letters are mailed to the wrong firms?’

Solution: This problem is a classic example for the [nclusion-Exclusion Principle. In fact

a more general case is an example in Ross’ textbook First Course in Probability.

Let's denote by £,.i=1,---.5 the cvent that the i-th letter has the correct envelope. Then
3

P[Uﬁ'f‘ is the probability that at least one letfer has the correct envelope and
. dal /

PR % J ./ 5
=P Luﬁ \ is the probability that all letters have the wrong envelopes. P UE.W can
bl S Nl | LA

be calculated using the Inclusion-Exclusion Principle:

3 N[
P[UErJ=ZP(E‘)-ZP(E=JEQ)+"'+(—1)6P(E|E2"‘E5)

; i 1 3
1’s obvious that P(EY==. W¥i=1... -
B, ) e Vi, ,s.sogp(g,)_l.

P(EHE,_\) is the event that both letter i, and letter i, have the correct envelope. The

probability that i, has the correct envelope is 1/5; Conditioned on that i, has the correct

envelope, the probability that i, has the correct envelope is 1/4 (there are only 4

envelopes left). So P(E E ):lx_l__ _(5=2)
i 2 5 5__1 5! .

There ar (5\' !
¢ = $AgaF )
2) 26y members of P(E,IFAH} in ZP(EHE:‘)’ so we have

ZP(E"E,:):E:_ 2)! 5!

e
nety S!

1
2521719

Similarly we have PEE I

¢ oY= |

2 PEEE) ) Z PAEEEE,)=—, and
PLEE kel
5!

et LR R

HI - I € CC m east I|I';e| or d t 5 tr' 1
n II i Q t 15m ]i
I < [
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20 3 41 51 30

=l

; 11 1. 119
P[UEJ]=I——+————+ =

. 5 1l
So the probability that all S letters are mailed to the wrong firms is 1 - P(UEJ = I

=1

Birthday problem

How many people do we need in a class to make the probability that two people have the
same birthday more than 1/2? (For simplicity, assume 365 days a year.)

Solution: The number is surprisingly smatl: 23. Let’s say we have n pec:ple.in the c]_ass.
Without any restrictions, we have 365 possibitities for each individual’s birthday. The

basic principle of counting tells us that there are 365" possible sequences.

We want to find the number of those sequences that have no duplication of birthdays.
For the first individual, we can choose any of the 365 days; but for the secgnd, only 364
remaining choices left, ..., for the rtindividual, lhen‘e are 365—r +1 choices. So for n
people there arc 365x364x---x(365-n+ 1) possible sequences where no two

365x364x--x(365~n+1) <1/2
individuals have the same birthday. We need to have s

for the odds to be in our favor. The smallest such # is 23,

100th digit _
What is the 100th digit to the right of the decimal point in the decimal representation of
(l+\6)3°°° ?10

Solution. If you still have not figure out the solution from the hint, here is one more hint:

(14++/2)" +(1=+/2)" is an integer when » = 3000
Applying the binomial theorem for (x + y)", we have

k=01 " h=2 41

. . 4 becomes large?
LTTTONgn TN \.5}“ +0 —\E_I' _ 6. What will happen to (1 \6) as n be
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i

(1—\/2_)” :i(:]ln-k(_ﬁ)k _ Z [:Jln_k\/—; _ i ._/n\.h" :\/5*

h=0 k;zj,osy_:% \k/

So (1 +x/5)” +(] —\5)" =2 Z {:Jl”“k \/Ek,. which is always an integer. It is easy 1o

k=2;.”\’_;‘-’

2

see that 0<(1~v2)" << 107 So the 100th digit of (1++/2)" must be 9.

Cubic of integer

Let x be an integer between ] and 10'2, wha is the probability that the cubic of x ends
with 117

Solution: All integers can be expressed as x = a+10b, where « is the last digit of x.
Applying the binomial theorem, we have ¥* = (a+10b) = a’ +30a%b + 300ab? + 1000b"

The unit digit of x* only depends on 4° So @’ has a unit digit of 1. Only a =1 satisfies
this requirement and * =1. Since @’ =1, the tenth digit only depends on 30a’b =30h.

So we must have that 35 ends in I, which requires the last digit of b to be 7.

_Consequently, the last two dipits of x should be 71, which has a probability of 1% for
Integers between | and 1¢'2

4.3 Conditional Probability ang Bayes’ formula
Many financial transaction

)
most tikely incomplete—~information. Conditional
popular test subjects in quantitative intepvi

ta ews. So in thi i basic
conditiona] probability definitions and theorems. ° 1 fis section, we focus of
Conditional probability PLAIBY: If P(B)>0, then P(A4|B)y= P(AB) is the ftraction

of B outcomes that are alsg A4 outcomes

M iolicat; o P2 1 ;
et Rul (£, )~ (6 pis, | 55 | EEy)- XE, | BBl

T T e L L
{15
Hnt: The fast two digits of 3
1€ last two digits of y only depend on the last two gj its of
5 2ILs Of x.
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Law of total probability: for any mutually exclusive events {F},i=12,,n, whose

union is the entire sample space ( F NF,=0,Viz UF, =), we have

=1

P(E)= P(ER)+P(EF)+-+ P(EF,) =3 P(E|F)P(F)

i=|

= P(EVE)P(E)+ P(E| B)YP(E) + -+ P(E| F)P(F,)
Independent events: P(£F) = P(E)P(F) = P(EFS)=P(EYP(FO).
Independence is a symmetric relation: X is independent of Y < Y is independent of X,

PEIF)P(E) . -
Bayes’ Formula: P(F E) = (E1F if £, i=1, -, n, are mutuaily

L]

S PETF)PE)

exclusive events whose union is the entire sample space.

As the following examples will demonstrate, not all conditional probability problems
have intuitive solutions. Many demand logical analysis instead.

Boys and girls

Part 4. A company is holding a dinner for working tces WATH o d8ersl one sop, M.
Jackson, a mother with two children, is invited. What is the probability that both
children are boys? b At LA I

Fl

Solution: The sample space of two children is given by Q ={ (6,6), (5, £),(8.5).(8, &)}
(e:8. (g,b) means the older child is a girl and the younger child a boy), and cach

outcome has the same probability. Since Ms. Jackson is invited, she has at least one lsonh.
Let B be the event that at Jeast one of the children is a boy and A be the event that bot

children are boys, we have

P(ANB) 1

ey w41
P(BY  P({(b.b).(b,g)(g:h)}) 3/4 3

Pld)B) =

Part B. Your new colicague, Ms. Parker is known to have twlo childrcg: [I'f[ _)leLtthf:ebhE:
walking with one of her children and that child is a boy, what is the probability that bo

children are boys?
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Solution: the other child is equally likely to be a boy or a girl (independent of the boy
you've se¢en), so the probability that both children are boys is 1/2,

Notice the subtle difference between part 4 and part B. In part 4. the problem essentially
asks given there is at least one boy in two children, what 1s the conditional probability
that both children are boys. Part B asks that given one child is a boy, what is the
conditional probability that the other child is also a boy. For both parts. we need to
assume that each child is equal likely to be a boy or a gir).

All-girl world?

Ina primitiw? society, every couple prefers 1o have a baby girl. There is a 50% chance
that each child they have is a girl, and the genders of their children are mutually
independent. [f each couple insists on having more children until they get a girl and once

they 'have a girl they will stop having more children, what will eventually happen to the
fraction of girls in this society?

Solution: It was surprising that many interviewees—include many who studied
EFObi}b'_“l)"—hﬂve the misconception that there will be more girls, Do not let the word
prefer” and a wrong intuition misguide you, The fraction of baby girls are driven by
nature, or at least the X and ¥ chromosomes, not by the couples’ preference. You only
nced 1o look at the key information: 50% and independence. Every new-born child has
equal probability of being a boy or a girl regardless of the gender of any other childres.

So the fraction of girls born is always 50¢ ) ofa : /
S s always 50% and the fractions of society will
stay stable at 50%. ons of girls in the societ

Unfair coin

Y(?u are given 1000 ¢oins. Among them, |
coins are fair coins. You randomly choose
com turns up heads. What is the probability t

coin has heads on both sides. The other 992
a coin and toss it 10 times. Each time, the
hat the coin you choose is the unfair one?

Solwtion: This is a class; F N
This is a classic conditional probability question that uses Bayes® theorem. L

A be the ev ; in i )
v ;-T | ;Lae[\_:;:zlul:flt ihe chosen coin is the untair one, then 4° is the event that the chose?
¢. Let B be the event that ali tep tosses turn up heads. Apply Bayes
theorem we have P( 4 | B) = f(_*?iﬁﬂi) L5 P(B|4)P(4) -
- _ :
it B(B) P(BI A)P(A)+ P(B; 4°) P(A°)
The priors are P(A)=1/1000 and p

turns up heads. so P(B] A) (4°) =999/1000. 1f the coin is unfair. it always

=1. If the coin is fair, each time it has 1/2 probability turning
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up heads. So P(B|A4)=(1/2)"° =1/1024. Plug in all the available information and we
have the answer:

3 P(B|A)P(A) _ 1/1000 %1 <05

B P(B| AYP(AY+ P(B| A)P(AY) 1/1000x1+999/1000x1/1024

P(A|B)

Fair probability from an unfair coin

If you have an unfair coin, which may bias toward either heads or tails at an unknown
probability, can you generate even odds using this coin?

Solution: Unlike fair coins, we clearly can not generate even odds with one toss using an
unfair coin. How about using 2 tosses? Let p,, be the probability the coin will yield

head, and p, be the probability the coin will yield tails (p, + p, =1). Consider two
independent tosses. We have four possible outcomes HH, HT, TH and 77 with
probabilities P(HH)= p,py, PUHT)= pyps, PTH)=prDy, and P{TT)=p,p;.

So we have P(HT)=P(TH). By assigning HT to winning and TH to losing, we can

A TN, b

generate even odds." \/D

Dart game

Jason throws two darts at a dartboard, aiming for the center. The ;econd dart lands
farther from the center than the first. If Jason throws a third dart aiming for the centerr;
what is the probability that the third throw is farther from the center than the first’

Assume Jason's skillfulness is constant.

applies the conditional probability by enumerating

. directly
Solution: A standard answer directly (A) to the worst

all possible outcomes. If we rank the three darts' results from the best
(C), there are 6 possible outcomes with equal probability:

2 [ should point out that this simple approach is not the most efficient a.ppi‘oach sn}r:cc [ham fic;sregardlng
i . . o ,

the cases HH and TT. When the coin has high bias (one side is far more likely ‘haﬂii 3‘0[1 Cftsl[?;grgzscil:]ﬂ-

the method may lake.manv runs to generate one useful result. For more complex algorithm tha g

o ol itk o Rlaes a5 ¢ - t. F.
efficiency, please refer 1o Tree__/_i‘i,c;_qr_j;;_gmsf?.- [inhinsed Coin ?;.s;.;iﬁ‘gju ith @ Biged Coin by Quentin
Stout and Bette L., Warren. Annals of Probability [ 2 (1984), pp- 214-222
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Outcome {'" 2-'3 4 5 6

Istthrow A B A C B C
2ndthrow B A C A C B
ddtow C C B B A A

The information from the first two throws eliminates outcomes 2, 4 and 6. Conditioned
on outcomes 1, 3, and S, the ouicomes that the 3rd throw is worse than the 1st throw are

outcomes | and 3. So there is 2/3 probability that the third throw is farther from the
center than the first.

This approach surely is rcasonable. Nevertheless, it is not an efficient approach. When

the number of darts is small. we can easily enumerate all outcomes. What if it is a more
complex version of the original problem:

:lason throws n (n > 5) darts at a dartboard, aiming for the center. Each subsequent darl
is father from the center than the first dart. If Jason throws the (n + 1)th F_dEﬁ. what is “_"3
probability that it is also farther from the center than his first?

This question is equivalent to a simple question: what is the probability that the (7 + 1)th
throw is not the best among all (#+1) throws? Since the 1st throw is the best among the

first n throws, essentially [ am saying the event that the (n+1)th throw is the best of all

(n+1) throws (let's call it A, )1s independent of the event that the 1st throw is the best

of the first n throws (let’s call it 4 ). In fact, A.., 1s independent of the order of the first

y independent? The answer is a resounding yes. If it
. independent of the order of the first  throws, let's look
?u it another way: the order of the first # throws s independent of 4 . Surely this claim
Is conspicuous. But independence is symmetric! Since the pr:)babi]ity of 4, 8
1/(n+1). the probability that (7+1)th throw is not the best is nin+1)."

l? a o Ty e = !
ot the original version, three darts are thrown independently, they each have a 1

3 e e L]
r:lance 10-1 being the best 'throw. As long as the third dart is not the best throw, it will b¢
MOrse than the first dart. Therefore the answer is 2/3 .

n throws. Are these two events reall
1s not obvious to you that 4, 1s

Birthday line

Atd movie theater, g whir
first person in line who
ticket. You are giy

nsical manager announc
se birthday is the g
€n the opportunity
it Pt L )

13 z 3 E 5. I H l
I! i . q
Ere Vou n xdin use g I e“\ at ’Ulllell[ 1 OV ua )

es that she will give a free ticket to ¢
ame as someone who has already bought 2
to ¢hoose any position in line. Assuming that ¥o!

likely 1o be the best.
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don't know anyone else's birthday and all birthdays are distributed randomly throughout
the year (assuming 365 da}s in a year), what position in line gives you the largest chance
of getting the free ticket?'

Solution: If you have solved the probtem that no two people have the same blrthc:]ay in
an n-people group, this new problem is just a small extenston. Assume that yo;x c 005;:
to be the n-th person in line. In order for you to get the fre'e ticket, ail of the first »n-—

individuals in line must have different birthdays and your birthday needs to be the same

as one of those »—1 individuals.

p(n) = p( first n—1 people have no same birthday) x p( yours among those n =\ birthdays)

_365X364x---(365—1?+2)xn_—l
B 365" 365

1! increase your chance of

Is intuiti ue that when » is small, inceeasing # Wi .
It is intuitive to arg e,

getling the free ticket since the increase of p(yours among those n

more significant than the decrease in p( first n—1 people have no same birthday). So

—1). As n increases, gradually the negative impact
will catch up and at a certain point we

(n)>P(n-1)

when # is small, we have P(n)> P(n
of p(first n—1 peoplehavenosamebiﬂhday) |
will have P(n+1) < P(n). So we need to find such an # that satisfies P

and P(n)> P(n+1).

365 364 365-(n=3) n-2
=D =365 365 < 365 365
365 364 365-(n-2) n-1
Py = s %368 a6 365 oy
365 364 365-(n-2) 365-(n=) 1
Py D d e i | 11365 365 365
tian
365 ~(n~2) 'h=1 n=—< I
P(n)> P(n=1) =357 *3g5 " 365 | _,n ~3=363<0L 9
iy n nr-n-365>0

1 ;;—1>365~(n_jﬂx_*J|
P(n)> P(n+1) = —2¢ 365 365

You should be the 20th person in line.

* Hint: If you are the n-th person in li
the same birthday and you must have t

ne, to get the free ticket, the first (n-1) people in line must not have

he same birthday as onc of them.
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Dice order

We throw 3 dice one by one. What is the probability that we obtain 3 points in strictly
increasing order?"

Solution: To have 3 points in strictly increasing order, first all three points must be
different numbers. Conditioned on three different numbers, the probability of strictly
increasing order is simply 1/3!=1/6 (one specific sequence out of all possible
permutations). So we have

P = P(different numbers in all three throws) x P(increasing order|3 different numbers)
=(IxgxPxL=5/54

Monty Hall problem

Monty Hall problem is a probability puzzle based on an old American show Lef’s Make
a Deal. The problem is named after the show’s host. Suppose you're on the show now,
and you're given the choice of 3 doors. Behind one door is a car; behind the other two,
goats. You don’t know ahead of time what is behind each of the doors.

You pick one of the doors and announce it. As soon as you pick the door, Monty opens
one of the other two doors that he knows has a goat behind it. Then he gives you the

option to either keep your original choice or switch to the third door. Should you switch?
What is the probability of winning a car if you switch?

S)‘;‘;!-‘al:::on_: It )rzou don’t switch, whether YOUu Win or not is independent of Monty’s action

ix.- S [(:wmg Youa goat, so your probability of winning is 1/3. What if you switch? Many

: ould argue that since ‘thcr.e are only two doors lefi after Monty shows a door with gosh
e probability of winning is 1/2. But is this argument correct?

If you look at the problem fj ift an :

) m from a different perspectiv
If you ko _ 2 . Using
a swilching strategy, you win the car i el

"l ] | R 114 ~ F b
which hag a probability of 2/3 {You pick a door with a goat, Monty shows a door with

another goat. s : '
picked he doos il he o e oy L HEVE 3 car i ). 17 you orignal
W ¢ car, which has a probability of 1 i W itching

kS E Ll l iy 3 ¥ : : - - B lC = ]'ff‘i'l‘ln I”r b} (hiitrle I
II t [ 0 t( N I rega ]|EI O L Ile 3 p 151¢ must L ITre -
M 1o ob, 1n » LOimS 10 & l(.ii\f 10C
ina J“]UE"LL. st ILH" ";C|eaS"|Q OIdeI 1S one ()t ihe pl)bSib]C p(:..”ngutatl:)“b-
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Amoeba population

There is a one amoeba in a pond. After every minute the amoeba may dic. stay _the same,
split into two or split into three with equal pfamitg._ All its offspring, if it has any, will
behave the same (and independent of other amoebas). What is the probability the
amoeba population will die out?

Solution: This is just another standard conditional probability probiem once you realize
we need to derive the probability conditioned on what happens to the amoeba one
minute later. Let P(E) be the probability that the amoeba population will die out and

apply the law of total probability conditioned on what happens to the amoeba one
minute Jater:

P(Ey= P(E|F)P(F)+P(EIFR)P(Fy)+-+ P(EIF)P(E,) .

For the original amoeba, as stated in the question, there are four possible mutually
exclusive events each with probability 1/4. Let’s denote £ as the event the amocba dies;
F, as the event that it stays the same; F, as the event that it splits into two; £, as the
event that it splits into three. For event E, P(E|F)=1 since no amoeba is left.

P(E|F,)= P(E) since the state is the same as the beginning. For £, there are two

amoebas: either behaves the same as the original one. The total amoeba p(_)pulalion wil}
die only if both amoebas die out. Since they are independent, the probability that they

both will die out is P(E)*. Similarly we have P(F,) = P(E)Y. Plug in all the numbers,
the equation becomes P(E)= 1f4x]+]!4xP(E)+l/4xP(E)2+]:’4><P(E)3_ Solve
this equation with the restriction 0 < P(E) <1, and we will get P(E)= V2-1%0414

(The other two roots of the equation are 1 and =2 1),

Candies in a jar

You are taking out candies one by one from a jar that has 10 red candies, 20 blue candies,
and 30 green candies in jt. What is the probability that there are at lcqs: ]I(E)Iue candy and
[ green candy left in the jar when you have taken out all the red candies?

o be a combinatorial one. However, a

Solution: At first look. this problem appears t
1 At firs P er. Let 7, 7, and T,

conditional probability approach gives a much more ntultive answ

' Hint: I there are at least 1 blue candy
removed before the last blue candy and the |
probability that the blue candy is the last one ’ }
probability that the last preen candy is the last one In the 30
the green candy is the last one in the 60-candy sequence?

and | green candy left. the last red candy mus ha\r’e.bccn
ast green candy in the sequence of 60 candies. What is the
in the 6f)-candy sequence? Coundittoned on that, what js the
-candy sequence (10 red, 20 green)? What if

-
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be the number that the last red, blue, and green candies are taken out respectively. To
have at least | blue candy and 1 green candy left when all the red candies are taken oul,
we need to have 7 <7, and 7 <7, In other words, we want to derive

P(T, <1, nT, <T,). There are two mutually exclusive events that satisfy 7, <7, and

5T <l <Toand ¥, <T, <T,,

o P <LNT <T)=P(T, <T, <T )+ P(T, <7, <))

T, <1, <T, means that the last candy is green (T, =60). Since each of the 60 candies

are cqually likely to be the last candy and among them 30 are green ones, we haw
L S ]

(T, = 60):@. Conditioned on T, =60, we need P(7, <7, | T, = 60). Among the 30

red and blue candies, each candy is again equally likely to be the last candy and there are

20 blue candies, so P(T, <7, |7, =60)= 2 and P(T, <7, <7.)= Exgg Similarly,

30 60 30
we have P(T < 4 ) =_2£X19_
‘ 60 40
Hence,

PA <T, AT, <T)=P(T, < T, < T)+ P(T, <T, et L e L
] 12

e et 2
60 30 60 40

Coin toss game

Two players ™ - "
. C{F:h:} *;;]Z,nA ;mc}i B, alterna!_wc]y toss a fair coin (4 tosses the coin first, then B tosses
: A, then B...). The sequence of heads and tails is recorded. If there is &

?gzlad followed by a wil (HT subsequence), the game ends and the person who tosses the
all wins. ‘What is the probability that 4 wins the game?!’

Solution: Let P( 1) be the o ; ;

1) be the probability that 4 wins: then the ili ins 15

) Y » E that B “lns 1
P(B) =1~ P(A). Let's Sl probability

-ondition P(A4) on As first toss. whi h has j lity of A
(heads) and 1/2 probability of T (tails). RITRHR 4. Pt
PCA) =1/ 2P(A| HY+1/2P(4) T

If A"s first toss is T. then B essentiall

HT subsequence). So we have P X.b?@ﬂnggmgﬁrm to toss (An H is required for the

| A|TY=P(BYy=1-P(4},
FA's first toss ends in # let?
of getting 7. in that case s further condition on B’s first toss. B has 1/2 pmbablllt}

4 loses. For the 1/2 probability that 3 gets H, B essentially

‘““. condzt b h 1} eiry,
| 0 d 101 on lh > e llh. Gf
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becomes the first one to toss an H. In that case, A has (1- P(A| HY} probability of
winning. So P(A|H)=1/2x0+1/2(1~ P(4|H))= P(A|H)=1/3

Combining all the available information, we have

P(A)=1/2x1/3+1/2(1- P(A)) = P(A)=4/9.

Sanity check: we can see that P(4) < 1/2, which is reasonable since 4 cannot win in his
first toss, vet B has 1/4 probability to win in her first toss.

Russian roulette series

Let's play a traditional version of Russian roulette. A single builet 1s PU]l] :”ll'l]fe]a 160
chamber revolver. The barrel is randomly spun so that cach chamber 1s equa }f:’ ;1 s
be under the hammer. Two players take turns to pull the tr |gger—’lw;’ll the %)”2
unfortunately pointing at one’s own head—without further spml?m'!_l U‘j‘l“ L?iunﬁﬂ;l
off and the person who gets killed loses. If you, one of"fﬁc_playcfr:{, w;\ choose to g

or second, how will you choose? And what is your probability of loss:

Solution: Many people have the wrong impression that the ﬁr;t. pelr(s‘;)]ndlzis[lg%mrir[
probability of loss. After all, the first player has a 1/6 chance of gemfngh ]f:w limes that
round before the second player starts. Unforlunate!){, this 1s onelftl' eﬁxed Fyo g0
intuition is wrong. Once the barrel is spun, the position of thde SbuSe ﬂlse mbﬁbility o
first, you lose if and only if the bullet is in e S heth ol Opﬁrs‘t or second
you lose is the same as the second player. 1/2. In that sense, whefher 10 g0 T

does not matter.

We will spin the barrel again afier every trigger pull.

Now, let’s change the rule slightly 9 And what is your probability of loss?

Will you choose to be the first or the second player

: that the
Solution: The difference is that cach run now becomes lnéfqendl:)rgébf;?ls}?tg Ioszilﬂg is
first player’s probability of losing is p. then the second player s P oor pull. He has 176
1- p. Let’s condition the probability on the first pecsOMT's first ngger bIv d pl :
probz.lbility of losing in this run. Otherwise, he esscmilaliy be(iomes ?Eafe(fg; pepn:) ‘:‘-; 11]2

: ™ bability of losing 1-p.

the game with new (conditional) pro ’ ] o should
probability 5/6. That gives us pzlxl_-ﬁ+(1~p)><f>f6:> p=6/11. So you

choose to be the second player and have 53/11 probablhty of losing.

- 9
whether to spin the barrel. Should you spin the barrel’
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Solution: if you spin the barrel, the probability that you will lose in this round is 2/6. If
you don’t spin the barrel, there are only 5 chambers left and your probability of losing in

this round (conditioned on that your opponent survived) is 2/5. So you should spin the
barrel.

What if the two bullets are randomly put in two consecutive positions? If your opponent
survived his first round, should you spin the barrel?

Solution: Now we have to condition our probability on the fact that the positions of the
two bullets are consecutive. As shown in Figure 4.3, let’s label the empty chambers as ],
2. 3 and 4, label the ones with bullets 5 and 6. Since your opponent survived the first
round, the possible position he encountered is 1, 2, 3 or 4 with equal probability. With
lf_4 chapce, the next one is a bullet (the position was 4). So if you don’t spin, the chance
of survival is 3/4. If you spin the barrel, each position has equal probability of being
chosen, and your chance of survival is only 2/3. So you should not spin the barrel.

sl
il i
7 g
/ '\Q )
iy
_\'ﬂ,

b A

A 2\ /;\
\\ / I\\_ Y

T

e e

Figure 4.3 Russian roulette with two consecutive bullets.

Aces

Fifty-two cards are rand

B omly distri
What is the probuhi]ity that e il |

0 4 plavers with e W) a1 cards.
hat each of them ! ach player getting

will have an ace?

Solution: The pr
- oblem can be : :
it p 1 can be answered using standard counting methods. To distribu®
< cards 1o 4 players with 13 cards eag 32! a
0ach hag w9’ permutations. Hf cach pla}ld
131131131131 1
82
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needs 10 have one ace, we can distribute the aces first, which has 4{ ways. Then we
48!

distribute the rest 48 cards to 4 players with 12 cards each, which has 212120121

permutations. So the probability that each of them will have an Ace is
48! 52! 52 39 26 13

41 x + = — XX —X—,
1212121120 1313113130 52 51 50 49

The logic becomes clearer if we use a conditional probability approach. Let’s begin with
any one of the four aces; it has probability 52/52 =1 of belonging to a pile. The second
ace can be any of the remaining S1 cards, among which 39 belong to a pile different
from the first ace. So the probability that the second ace is not in the pile of the ﬁrst ace
is 39/51. Now there are 50 cards left, among which 26 belong to the other two piles. So
the conditional probability that the third ace is in one of the other 2 pi'lgs given the _ﬁrst
two aces are already in different piles is 26/50. Similarly, the conditional probability
that the fourth ace is in the pile different from the first three aces giv_en that the ﬁr_st
three aces are in different piles is 13/49. So the probability that each pile has an ace 1s

39 26 13

Ix—x—x—

51 50 49°

Gambler’s ruin problem

A gambler starts with an initial fortune of idollars. On each sucge§sive game, the
gambler wins $1 with probability p, 0 < p <1, or loses $1 with I_’“’babll'ty q _=l_ P He
will stop jf he either accumulates N doilars or loses all his money. What is_the

probability that he will end up with Ndollars? 450 ¢y pus !

Solution: This is a classic textbook probability PﬁOb]Fm.C““e‘fl the Gambler’s Ruim
Problem. Interestingly, it is still widely used in quantitative interviews.
he dollars the gambler has). 0 <7 < N. let P be the probability

From any initial state i (t o , -
e is either i +1 with

that the gambler’s fortune will reach A instead of 0. The next stat

probability p or i —1 with probability g. So we have

2 g !
ddiaptint el €4 2 12, )=---:H (R-P)

F = Rn"'qp:—-a::’Pfu'_H';(Pf k) [p] (i : P e

We also have the boundary probabilities £ =0 and P, =1.

L e 2 ¢ an expression of P
So starting from £, we can successively evaluate 7, as an €xp ]
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2 k) i
B=pli+qf, = P=—0 =[1+i}p]
p p

A [l+i+{£\2],ﬂl
p P}J

Extending this expression to P, we have

- I-G4/p)" , .
P\—1={1+9-+---+(—Q-J };J;:J‘————ﬁ,v"quxl
p ]

i 1-g/p
NP, ifgqlp=1
l-¢/p
gl o,
= B=41-(g/p)" fa pﬂ:g: 1—(.:;;;)))”[)" Tp=112
1/ N, ifg/p=1 i'N, ifp=1/2

Basketbal| scores

throws (including th
50 baskets?'®

Solution: | et (n k),

1Skx, P

throws and I = P((;?.k}). '?I.‘ht::esczl;c fipecty
approach starting with f1=]3
Pu=1/2 and Ra=liol F
probability

| at the player scores k baskets after #
i ution s surprisingly simple if we use an induction

1€ thi ;L
Hjé .nrd throw has 1/2 probability of scoring. So we hase
¢ case when p = 4, let's apply the law of rotal
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P = PADIGD) B, + P(ADIG2)x By =S5 +0x3 =3

o111
(P = PUADIG0)x Py + P42 %Py =3x 1 +5 55 =3
Py = P41 GD) % By + P43 (,2) < By =05+ 2 =

!
23

The results indicate that P,, =L, Vk=1,2,---,n—1, and give the hint that the law of

n_
total probability can be used in the induction step.
induclion Step: gi\fen that R”k = l 1’ Vi = ], 2,..., n_l} we need to prove
n_
Sy =—1——=~1-, vk=1,2,,n To show it, simply apply the law of total
o (n+D-1 ~n
probability:

Py = Pmiss| (n,k)) P,, + P(score|(nk=D)F,,

[ k] 1 k-1 1 1
= l__ + _—
nin-1 n a-l n

The equation is also applicable to the 2, and £, . although in these cases p

=0

1
and [l _E] = 0, respectivel)’. So we have R;.k = 1 N vk = 1,2,- L H —1lang ¥au 2z 2.
n -

Hence, P, ., =1/99.

Cars on road

If the probability of observing _
interval is 609/625, then what is the probability of ob
S5-minute time interval? Assume that the probability
uniform (constant) for the entire 20 minutes.

at least one car on a highway during any 20-minute time
serving at least one car during any
of seeing a car al any moment is

Solution: We can break down the 20-minute interval into a sequence of 4 non-
se of constant default probability (of observing a

5.minute interval is constant. Let’s denote
S-minute interval we do not

overlapping 5-minute intervals. Becaus
car), the probability of observing a car in any :
the probability to be p, then the probability that in any

observe a caris 1 - p.
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The probability that we do not observe any car in all four of such independent 5-minute
intervals is (1- p)* =1-609/625=16/625, which gives p=3/5.

4.4 Discrete and Continuous Distributions

[n this section, we review a variety of distribution functions for random variables that
are widely used in quantitative modeling. Although 1t may not be necessary to memorize
the properties of these distributions, having an intuitjve understanding of the

diﬁtriblutions and having the ability to quickly derive important properties are valuable
skitls in practice. As usual, let’s begin with the theories:

Common function of ra ndom variables

Table 4.1 summarizes how the basic properties of discrete and continuous random
vayiables are defined or calculated. These are the basics you should commit to memory.

Random variable ()

Cumulative distribution function/cdf
—eeee e
Probability mass function /pmf

: . !
| Discrete Continuous'

— Y

Fla)= [ f(x)dx

Fla)=P{X <)

pmf; dill
Probahili[yﬂewpdf px) = P{X = x) pdf: f(x)= o F(x) !
Lxpected value/ E[X] o , o
‘—*——-ﬁ——_.__%_ SRBISEUIRER u%:’(_)_ p(x) _[ xf(x)ch‘
Expected value of a(X) Ele( X 3 J
| e Te0 gt | X s(p() [ g0 ()

jariance of X/ var(X) Bl(x & E[X1)"] E[X7]-(E(X
*—.._._‘____‘___’“ﬁ__-_ 124 2 = =

Standard deviation of v/ std( X)

Jvar(X)

h---_-~_——__,___.._._\_
d continuous random variables

Table 4.1 Basic Properties of discrete an
Discrete random variables

Table 4.2 includes some of the most widely-
random variable represents the occurrence
values in the set {a, a+1,..

used discrete distributions. Discrete uniform
of a value between number o and b when 4l
", b} have eg

il ual probability. Binomial random variable
umoer of successes in 5 se

i q—_‘-ﬁ—“‘-“_‘——

For continuous random variables, p( x

represents the
quence of n experiments when each trial

=x)=0, VX € (—m,m), sa P{X < x} = PLX <3}
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independently a success with probability p. Poisson random variable represents {he‘_
number of events occurring in a fixed period of time with the expected number of
occurrences Af when events occur with a known average rate A _and are independent of
the time since the last event. Geometric random variable represents the trial number ()
téwget the first success when each trial is independently a success with probability p.
Negative Binomial random variable represents the trial number to get to the r-th success
when cach trial is independently a success with probability p.

Name Probability mass function (pmf) E[X] | var(X)
‘ J Lo b bta | (b—a+1y -1
Uniform P(x)=m, x=a,a+1,-, 5 IE
n n-x .
Binomial P(x) =[xJp‘(l—P} . x=0,1,-,n np np(l - p)
—Af )uf X 5 . : C
Poisson P(x)= e_(_’)_, x=0,1- 20 ] Al Al )
x! :
] 1-p
Geometric P(x)=(1~ p)x"'p, x=12,- | ; pz
r r(l~p)
Negative HEin ! 1=p)y™, x=r,rtlpee | — LD 2
Binomial PRI [;‘—l}p -7 p | P

Table 4.2 Probability mass function, expected value and variance of discrete random
variables

Continuous random variables

Table 4.3 includes some of the commonly encoumered‘co.minuous"dlSlrll_)Lm‘O“Si
Uniform distribution describes a random variable unifjom?ly (.jism-?m?c.l‘ OV:‘ir' -m?bmtt'wr?s
[a,b]. Because of the central limit theorem, normal dlstrlbutl'onf(fz.ius.marl] 1sm. du);:n[h(-:
by far the most popular continuous distribution. Exponential distribution model:

> : jamma distribution with
arrival time of an event if it has a constant arrival rate 4. (falmﬂ?d gi;iilg}n:ﬁzt one
parameters (1, ) often arises. in practice, as the d{Sl:‘Jl|'.'L;[EI.)I] of ﬁe a:; et o e
has to wait until a total of n events occur. Beta distributions are use mode

. ; > ;pected value) since it is
2 gErs define the parameter (expec
Here we use the product of arrival rate 4 and time { to

the definition used in many Poisson process studies.
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that are constrained within a defined interval. By adjustir_lg 1h§lshape parameters o and
it can model different shapes of probability density functions.”

Name Probability density function {pdf) | E [X] i var(X) |
i b+a b-ay i-
_I_'nii'nrm ARAL asx<h N ‘ L‘E— \

i I_'g‘_"{‘_}: 2

Normal g 3T | 5 el-=8, o) H o
(11 41 | N2ro e , 1
_Expnucmim AT R ) l 172 1/A° i
4 Ae M (Ax)e i |

2 ; 3 H -y a-l 2
Lﬁimﬁ__ Niliss .,xuo.rm) f} Yl ald |ala _-4
r

Beta MIMU-X)&", OD<cx<i a % Py
i, F({x)r(ﬂ)_ a+p |(a+p+)a +__'B,}J

Table 4.3 Probability densit

. y function, expected value and variance of continuous
random variables

Meeting probability

Two bankers each arrive at the station at some r
am (arrival time for either banker is uniformi

minutes and then leave. What is the probability they will meet on a given day?

Solution: Assume banker 4 arrives X minutes afte

5:00 am. X and Y are ind

(-)T'} :;Iill\ exactly five minutes, as shown in Figure 44, 4 and B meet if and only it
F e

andom time between 5:00 am and 6:0{ﬁ
y distributed). They stay exactly five

r 5:00 am and B arrives ¥ minutes ail¢!

So the probability that 4

and B will
divided by the it

area of the square (
60x60-2x(i/2

60x 60

et is simply the area of the shadowed 1'egi9f;
the rest of the region can be combined to a square il
X39%35) _ (60+55)x(60-55) 23

60 60 144"

size length 35

ependent uniform distribution between 0 and 60. Since both
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Figure 4.4 Distributions of Banker A's and Banker B's arrival times

Probability of triangle LN ) i

A stick is cut twice randomly (each cut point follows a uniforn; distribution on the stick),
1 7

what is the probability that the 3 segments can form a triangle’

ick is 1. Let’s
Solution: Without loss of generality, let’s assume that the Jength of the stic

asy.
also label the point of the first cut as x and the second cut as y

1 S —
Ifx < y, then the three segments are x, y-x and &
I-y. The conditions to form a triangle are ! L
" Vv
¥ y-x i-y !
142,

x+(y=x)>1-y=>y>1/2
x+(1—y);>y—x:>y<1/2+x
(y-x)+(-y)>x=>x<li2
The feasible area is shown in Figure 45UThL= i I
case for x < y is the left gray triangle. sl‘nlg o—— 175 X
symmetry, we can see that the case forx>yis
the right gray triangle.

Figure 4.5 Distribution of cuts X and Y

———

. . ) ne be y, usé
? Hint: Let the first cut point be x, the second 0 Y

the figure to show the distribution of x and y.
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Thc? total shadowed area represents the region where 3 segments can form a triangle,
which is 1/4 of the square. So the probability is 1/4.

Property of Poisson process

Yop are waiting for a bus at a bus station. The buses arrive at the station according toa
Poisson process with an average arrival time of 10 minutes (A = 0.1/ min ). If the buses
have lbeen running for a fong time and you arrive at the bus station at a random time.
what is your expected waiting time? On average, how many minutes ago did the last bus

leave?
.So:’im;o::-, ConStderfng the importan_ce of jump-diffusion processes in derivative pricing
and the r_ole of Po1sson. processes in studying jump processes, let’s elaborate more on
Epf?c? r:enIIal dralndom variables and the Poison process. Exponential distribution is widel
sed to model the time interval between independent events that happen at a constant
A (120)
0 (<0

and the vari i ;L ; I
il "be NATTRIE i 11*” 4" . Using integration, we can calculate the cdf of an exponential
\ari“bluuo? to bt’: Fi=P(r<t)=1-¢" and P(r>ry=¢™, where 1 is the random
Iy 'd e . . L . .
memor)’lcs(:;e;r-rl;)al llme_] Vg e p‘;"pe“y of exponential distribution I8

Sshiess: PAr> 4 +Hr3 @ Pr> 12 That means if we have waited for §

time units, the extra waitine t]
5 ! aiting time h; Tl .. . ;
LAy 14 g as the same distribution as the waiting time when We

a arTi ;. i LA
verage rate {arrival rate) /: f(1) H{ The expected arrival time is 1/4

When the arrivals i
. .ai\ Sy 5 - i
Sietibbin il ;Ir{l)i? Su:u:; of events each independently follow an exPU“e"“a}
ai rate 4, the number of arrivals between time O and ¢ can b¢
— A x

modeled as a Poisson Anf,
process P(N(1)=yx)=5_* 2 od
S —— = v pecic
IR ) g Xl ], The expe
number of arrivals js At :

and the variance is
o 5 g ¢ is also 2
of exponential distributior P

1. the number of arrivalg bet

process P(N(t-g5)=y)= £ (A =5))
-__‘-—_—'_-_-‘E——-—

x|

Because of the memoryless nature
ween time s and £ is also a Poissol

laking advantage of the memoryless
the expected waiting time is 1/
property stills applies. So on ave

0 groperty of exponential distribution, we know tha
—1Vmin. If you look back in time. the memoryless
rao M - LI [ A
age. the last bus arrived 10 minutes ago as well.
I T LTI it
P{E’ > ¥ +"i ] .\'} _—.-{1_’.‘“”1 /e-f'.\

More Tigerously, At is defined as g ri
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This is another example that your intuition may misguide you. You may be wondering
that 1f the last bus on average arrived 10 minutes ago and the next bus on average will
arrive 10 minutes later, shouldn’t the average arrival time be 20 minutes instead of 107
The explanation to the apparent discrepancy is that when you arrive at a random time,
you are more likely to arrive in a long time interval between two bus arrivals than in a
short one. For example, if one interval between two bus arrivals is 30 minutes and
another is 5 minutes, you are more likely to arrive at a time during that 30-minute

interval rather than 5-minute interval. In fact, if you arrive at a random time, the
E[X?
EX7] for a general

expected residual life (the time for the next bus to arrive) is 26X

distribution.*®

Moments of normal distribution

If X follows standard normal distribution (X ~ N(0, l)), wh.at is E[X"] forn=1,2.3
and 4? i - (7 / = 3

/ 1 e 1 - - ¢ - .
Solution: The first to fourth moments of the standard normal distribution are essentially

the mean, the variance, the skewness and the kurtosis, So you probably have
remembered that the answers are 0, 1, 0 (no skewness), and 3, respectively.

oo :
Standard normal distribution has pdf f(x)= \/Zr—e - Using simple symmetry we

1 ? . . i A N
have Efx"]= EX” e 2dy =0 when »n is odd. For »n =2, integration by parts are
N2

often used. To solve E[X"] for any integer », an approach using moment generating
functions may be a better choice. Moment generating functions are defined as

Zeup(x),
M(r)= Ele¥]=1 *
e™ f(x)dx, if x is continuous

if x is discrete

Sequentially taking derivative of M(r), we getone frequently-used property of M(1):
M(t)= % E[e ] = E[Xe™ ]| = M (0) = E[X],

M1y = % E[Xe" | = E[X %" = M "(0) = E[X"],

‘__"_‘—_
f The residual life is ex_plained in Chapter 3 of “Discrete Stochastic Proces

5" by Robert G. Gallager.
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and M"(0)=E[.X"], Vu21 in general.
We can use this property to solve A{X"] for X ~N(0,1). For standard normal

distribution M(1) = E[¢* | = J: e" e e = o2 J::

x

(e~ )22 1y
e(ru; dx:erh.

27 7z

(@v is the pdf of normal distribution X ~N(t, 1), so J:f(x)dle).

Taking derivatives, we have
MOy =te" "= M(0)=0, M ()= ¢ 4 2,00 SM 0=’ =1
M) = 1" 426" 4 22 gy re"? = M0y = 0

1 moorhi e iy 2 o pm
and M7(1)=3¢" "2 437" 4 32, -~'+3;“e’”2:>M“(_0)=3e°=3.

3 are independent of each other or not.
if Yand ¥ are independent, theq E[g(X)h(Y)J = E[g(x)]F[h(Y)]
V= E[(X - E[XTyy - E[YD) = £ x7]-~ E[X]E[Y].

Correlation: X, Y)= ___(‘("'(11'.}’)
P
‘/rm'(X War(Y)

Covariance: Cov( Xy

[f X and ¥ are independent, Cov(X.¥)=9g and p(X.¥yy=p 2

General roles of variance and Covariance:

('(;'.‘(TYTQ_X_. Zh ¥)= Zi(:,f)'('r)»‘(sz‘ ¥)

Var(y ) - ZI’EH‘{X{]*’ZZZ Cov(X,, ¥ )
] | by i i

* The reverse is
S 15 not frue, AN Fy— ’ ;
)= 0 only means x ang Y are uncorrelateq: they may weli be dependent

Q 2
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Conditional expectation and variance

For discrete distribution: E[g(X)|V = V] =Zg(x)p’r; (;ly) :\—Zg(x)p(X =x[¥V=y)

For continuous distribution: Elg(X) Y =y]= Eog(X)fW (x{y)dx

Law of total expectation:

D E{X|Y = ylp(¥ = y), for discrete ¥
E[X]= ElE[X | P])=1 *
[ ELx 17 = 1/, (»)d, for continuous ¥

Connecting noodles

You have 100 noodles in your soup bowl. Being blindtolded, you are told lo take two
ends of some noodles (each end on any noodle has the same probability of being chosen)
in your bowl and connect them. You continue until there are no free ends. The number
of loops formed by the noodles this way Is stochastic. Calculate the expected number of
circles.

Solution: Again do not be frightened by the jarge number 100. [f you have no clue hgw
1o start, let’s begin with the simplest case where n = I. Surely you have onlylonc choice
{to connect both ends of the noodle), so £[f(1)]=1. How about 2 noodles? Now you

(4 4x3 -6

have 4 ends {2x2) and you can connect any two of them. There are L " 5
s

combinations. Among them, 2 combinations will connect both ?nds_ of the 'same noodle
together and yield 1 circle and | noodle. The other 4 choices will yield a single noodle.

So the expected number of circles is

ELF @) =2/6x(1+ E[Lf(D)])+4/6x E[f (D)= 1/3+ E[f/(D]=1/3+1.

"

We now move on 10 3 noodles with (6] 63 _ 15 choices. Among them, 3 choices
= - 2 2

\
will yield | circle and 2 noodies; the other 12 choices will yield 2 noodles only, so

ELS D =3/15x (1 + ELFQN) +12/15% E[f(D) = 1/5+ ELf ()] = 1/5+1/3+1.

¥4 el sl L
See the pattern? For any » noodles, we will have £[ /()] :.1 N ,H (T
which can be casily proved by induction. Plug 100 in, we will have the answer.
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Aciually after the 2-noodle case, you probably have found the key to this question. If

. 2n : L
you start with » noodles, among 5 = n(2n —1) possible combinations, we have

- 1 " ) ) 2n-—
n(2:— m 2 T probability to vield 1 circle and » -1 noodles and 22 _?

probability

to yield #~-1 noodles only, so E[f(n)]= E[ f(n-1)]+

. Working backward, you
2n-1

can get the final solution as well.

Optimal hedge ratio

You just bought one share of stock 4 and want to hedge 1t by shorting stock 8. How
many shares of B should you short to minimize the variance of the hedged position?
Assume that the variance of stock A’s return is &}; the variance of B’s return is oy}
their corrclation coefficient is p.

Solution: Suppose that we short / shares of B, the variance of the portfolio retum IS
var(r, —hr,) = o’ - 2pho o, + ol

The best hedge ratio should minimize var(r, ~hr,). Take the first order partial

derivative with respect to 4 and set it 10 zero: 2

i
e r — ey TR
=-2po,0,+2hc, =0=h --pg
H
To confirm it's ni 4
U's the minimum. we can also check the second-order partial derivative:

B var .y
YR =20, >0. So Indeed when k=

o 21 J 4
P~—=. the hedge portfolio has the minimun

. GH
variance,

Dice game

Suppose that you roll a dice, F
or 6, you can roll the dice ag
expected payoft of this game?

.O.r cach roll. you are paid the face value. If a roll gives 4.3
4In, Once you get 1, 2 or 3. the game stops. What is the

Solution: This is an ex [
different dcp€lldillf f}:‘:;‘:{llc Ot\ e la\}-f)t total expectation. Clearly your payoff will be
v = Vit e outcome of first rol], | et E1X] be your'expecled Pa“’(’ffﬂnd
Come of v . J
¢ ol your first throw. You have /2 chance to get ¥ e {1,2.3}, in Wi

L } C .\Il Vi p L FA !4 L]
b L%
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1/2 chance to get ¥ €{4,3, 6}, in which case you get expected face vaiue 5 and extra

throw(s). The extra throw(s) essentially means you start the game again and have an
extra expected value E[X]. So we have E[X [ ¥ €(4,5,6)] =5+ E[X]. Apply the law of

total expectation, we have E[X]= E[E[X Y]} =$x2+5x(5+ E[X]) = E[X]=7 F

Card game

What is the expected number of cards that need to be turned over in a regular 52-card
deck in order to see the first ace?

Solution: There are 4 aces and 48 other cards. Let’s label them as card 1,2,---,48. Let

3

Y < {l, if card 7 is turned over before 4 aces

(), otherwise

The total number of cards that need to be turned over in order to see the first ace Is

FE] 48 .
B¢ =1+ZX=* so we have E[X]=1+ZE[Xf]' As shown in the following sequence,

1=l =l

each card i is equally likely to be in one of the five regions separated by 4 aces:

142434445

So the probability that card i appears before all 4 aces is 1/, and we have E[X J=1/35.

48
Therefore, £[X]=1+Y E[X,]=1+48/5=10.6.

=1
This is just a special case for random ordering of m ordinary cards and n special cards
The expected position of the first special card is 1+ ZE[X’ o nel

=1

Sum of random variables

Assume that X,, X,, -, and X, are independent and idcnticall)-'u.distributed (I.I_D)
random variables with uniform distribution between 0 and 1. What is the probability
that S, = &, + X, +--+ X, <17

Wald's equality in Chapter 3.

A 4y q g 3 : .
% You will also see that the problem can be solved using formuia and prove It using

. ~ a general
_ Hint: stan with the simplest case where n =1, 2. and 3. Try to find & g
Induction,
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Solution: This problem is a rather difficult one. The general principle to start with the
simplest cases and try to find a pattern will again help you approach the probiem; even
though it may not give you the final answer. When #=1, P(S, <1} is 1. As shownn

Figure 4.6, when n=2, the probability that X, +X,<1 is just the area under
X, + X, 1 within the square with side length 1 (a triangle). So (S, £1)=1/2. When
n=3, the probability becomes the tetrahedron ABCD under the plane X, + X, + A £l
within the cube with side length 1. The volume of tetrahedron ABCD is 1/6.% S
P(S, £1)=1/6. Now we can guess that the solution is t/x!). To prove it, Jet's again
resort to induction.  Assume PS <D=1/n'. We need 1o prove that
(S, <D=1Kn+1)..

A £ —

X,
X, My

‘!:}-—'1'-::"_'::""” i A
0 — B = ik Ea iy
X] | 0 XI C
n=2 3
n:

Figure 4.6 Probability that Sn£1whenn=2¢r n= 3

tere we can use ili onl
an use probability by conditioning. Condition on the value of X . we haw

PGS, 2= f(X. DP(S |
: . JJ/-( Y -..”{-S. o B __])dX,,Jl. where f(XHP) is the probabim)’ densily
unction of .\ ]

onot A, 50 f{X |)'- L. But how do we caleulate (S, <1- X, )7 The e
' provided us with so
we essentially need to shrink e

ot. H=_c \lnd i A l‘; e (9} e
= 1ave ) L) I
1l "

v r i . . 1 i
ery dimension of the -dimensional simplex™ from | 0

—— s LA

'FOIIZ _‘:A(:)""- 2

the n-dimensional

i \ Ol Can dL”\L W ] | !-" = W I 4 -
‘¢ 1L k n“t.."[ al 15 I hi.,' Cross-sedc
’ I f'{ . d. E i."f(‘) i he € A( T ] o 0 I

(]
An n-Simplex is
plex is analog of a triangle
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- ! 1 o
1-X .. So its volume should be L@)— instead of —- Plugging in these results,
nt n‘ n!
1
(=X R S A O U B
we have P(S,., <D= -E n! o = 1! n+l n' n+l (n+D)!

So the general result is true for n+1 as well and we have P(S, <hy=1/nl.

Coupon collection

There are N distinct types of coupons in cereal boxes and each type, independent of prior
selections, is equally likely to be in a box.

A. If a child wants to collect a complete set of coupons with at least one of each type,
how many coupons (boxes) on average are needed to make such a complete set?

B. If the child has collected » coupons, what is the expected number of distinet coupon
types‘?3 .

Sotution: For part 4, let X,, i=1,2,+, N, be the number of additional coupons needed
to obtain the i-th type after (i-1) distinct types have been collected. So the total number

N
of coupons needed is X = X, + X, +-+ X =ZX, '

=1
lected. 1t follows that a

D1 et have already been col
Forany i, i—1 distinct types of coupons NIV = (N-i+])/N.

new coupon will be of a different type with probability 1-( ;
Essentially to obtain the i-th distinct type, the random VA s a g{'-:om
distribution with p=(N —i+1)/N and E[X]= N /(N —i+1). For example, if i =1, we

simply have X, = E[X,]=1.

etric

| y o, N _ A K
..E[X]=;E[Xf]=;m=N\ﬁ+NE1 1

———

3 .
'Hint: For part A, let X, be the number of extra coupons colle
@, Then the tota

cted to get the i-th distinct coupon after

rt B. which is the expected probability (P) that the i-th

T L N 7
all distinct types is E[X]= Z E[X,]. Forpa

Coupon type is not in the # coupons?
97
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For part B, let ¥ be the number of distinct types of coupons in the set of # coupons, We
introduce indicator random variables /.i=1,2,--- N where

[/, =1, ifat least one coupon of the i-th type is in the set of » coupons
{, =0, otherwise

N
Sowehave Ve /41, 4...4 ] = Bl
i=l

For each collected coupon, the probability that it is not the i-th coupon type is TN
Since all # coupons are independent. the probability that none of the 5 coupons 1s the i-th

. N_] L _ '\H
Coupon type is P(/ =0) :(‘T"\l and we have £[/]= p(J =1)=1- N1 :
(g ' f N

) LR TR
MY S M [-’%{_‘ |
[ j

Joint default probability

LF there is a 50% probability that bond 4 will default next year and a 30% probability

that bond .B will defauiI‘. What is the range of probability that at least one bond defaults
and what is the Tange of their correlatjon?

Solution: The runge. 91‘ pmbability that at leas; one bond detaylts is easy to find. To have
sbability. we

L ara e t

\?ieurizr;aiqfﬁ' ;:jrfr. . - G40 assume whenever 4 defaults, 2 does not default

ki d:ﬁ ; ‘L. Tuiltz. A dooes not default. So the maximum probability that at least one
claults is 30/6+30/o=80%. (The result only applies if P(A)+ P(B)<1). For

the minimum, we can e . !
M, we can assume whenever 4 defaults, B also defaults. So the minimum

probability that at |cagt one bond defaulty js 50%

Lo calculate the ' ' i
aleulate the corresponding correlation, Jey Iy and 1, be the indicator for the even!
that bond A/B defaults nexq year and p

- s be their correlati we have
. 1 ! i rrelation. Then
LI!;] = “5. E[II;J:O_S‘ Var(f;,):p_‘x(l

"P.)=0.25, var(/,)=0.21.

L aE T e 2R ed [N
A similar question: |

fyou randomiy : :
DoXes T ¥ P 18 balls ing 19 boxes, what is the expected number of empty

uyg
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P(A or B defudts) = E[1 ]+ E[1,]- E[T 1]
=E[],]+ E[lﬁ]—(E[]A]E[IB]—cov(]AJ,,))
=0.5+0.3-(0.5x03-p,,0,0,)
=0.65-0.21/2p ,

For the maximum probability, we have 0.65-+/0.21 2p,,=08=p,=-3/7.

For the minimum probability, we have 0.65—+/0.2] 120, =05=p,=3/7.

In this problem, do not start with P(A or B defaulls)=0.65-v0.21/2p ,, and try to set

Pay =%l 10 calculate the maximum and minimum probability since the correlation

cannot be 1. The range of correlation is restricted to [-\BI’I, \/3;’?].

4.6 Order Statistics
Let X'be a random variable with cumulative distribution function F, (x). We can derive
the distribution function for the minimum Y, = min{X,, X,,---, X, )and for the maximum
Z,=max(X,, X,, -, X,) of n IID random variables with cdf F, (x)as

H =

PH2x) = (P(X 2 2)) = 1- F, () = (1= Fy ()" = f, (1) = 1f ()1 - Fo(x)"
P(Z <x)= (P(X £x))" = F, (x)=(F, (x))' = £, ()= nf ()(F (x))'

Expected value of max and min
Let X, Xy, X, be IID random variables with uniform distribution between 0 and 1.

. ility density function and
What are the cumulative distribution function, the probablllt} dcllbit_}’r --fucli'ﬂiribution
expected value of 7 =max(X,, Xy, X,)? What are the cumulative dis

h, i = i /Y./Y-pn"'n/\/,.)?
function, the probability density function and expected value of ¥, = min(.X,. A,

ife istributi 0.1].
Solution: This is a direct test of textbook knowledge. For uniform dls;flb;tlon 0:;, [) “J,e
Fy(x)=x and f,(x)=1. Applying F,(x) and f,(x)10 Z, = max{X,, X, A,
have
M2, sx)=(P(X <x) = F, ()= (F(x) ="
=L ) = nf () (F ()T = ™

99



Probability Theory

and E[Z,)= [ f, (v)d = [ s =;%|:x“”1 7%.

Applying £, (x) and f, {x)to ¥, =min(X, X,,---.X,) we have

P(Y,2x) = (P(X 2 0)) = F, (1) =1 (1= F,(x))" =1=(1—x)'
= £, @) =0 ()A= F(x)"™ = a(l-x)"

and £[Y]= £m(l—x)""dx= .[:n(l-y)y""dr=|:y":|; _;}T[ym:‘:} = ”11 '

Correlation of max and min

Let X, and X, be [ID random variables with uniform distribution between 0 and 1,
Y=min(X,,X,) and Z=max(X,,X,). What is the probability of ¥ >y given thal
Z<z forany y,ze[0, 1]? What is the correlation of ¥ and 77

Solution: T_his problem is another demonstration that a figure is worth a thousand words.
As shown in Figure 4.7, the probability that Z < 7 is simply the square with side length

2 S0 P(Z<z)=7". Since Z=max(X,,X,) and ¥ =min(X,,X,), we must haw

¥ <Z for any pair of X, and X,.80if y>z, P(¥Y2y|Z<z)=0. For y <z, that X

and X, satisfies Y2y and 7 <z is the square with vertices (y, y),(z,»).(z.2): and

(¥.z), which has an area (z-y). So PYzymZ<z)=(z-y). Hence
P2y Z<0) __| (2012, if 0<z <1 and O<y<z
0, otherwise ‘

Now let’s move on to calculate the correlation of Y and 7

cnrr()'\z'):—__c.n_\jf_‘lz) LHZJ“MY]MZ]

std(Y)xstd(Z) ./E[}""']— ElYY x JF[?]_——?_[ZT
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Xz A
1
(v,2) (z,z)
z
___________ (yv.y) | (zy)
y ------ L]
0 y z 1 x

Figure 4.7 Distribution of X4, X, their maximum and minimum.

: ] _ 2 _
Using previous problem’s conclusions, we have E[Y ]=§+_1=§’ Bl ]_ﬁ 3

From the pdfs of Y and Z, f, (x) =n(l_x)n—l =2(1—x) and fz(z)znz"—l =2z, we can

5 , 2 1 2 _2 ich giv
also get £[¥?]= Ez(l—y)y'dy‘"“;;:g and E[Z7)= [ 25 =~ Bl grve s the

\‘ o H _l— 33

1“2 | 2 2
TELT )=~ = :
18 Chillrn A [3/ 18

variances: va(Y) = E[Y’]- E[Y] = _é _[_

~
L.

To calculate £[¥Z], we can use E[YZ]= Jj Eyzf(y,z)c{udz. To solve this equation, we

need f(y,z). Let’s again go back to Figure 4.7. From the figure -
0<zgland 0 < y<z, F(p,z)isthe shadowed area with probability

=2 ~(z-y) =2

e can see that when

Fly2)=p(y < ynZ<z)=P(Z<2)-P(Y2ynZ<

ZSC& =

S (y,2)= LEn F(y,z)=2 and E[¥2]= ,E '[J:Zyzafl’d_-, ¥ fz[y" ik E 4
Oyoz

der whether it is a coincidence for n=2. it Is

kK] 3
You may have noticed that var(¥) = var(Z) and won t is trug without resorting to

aCtually true for all integer #. You may want 10 thin.k about why tha
Calculation. Hint: var(x} = var(l - x) for any random variable x

: . 1 Loy Y THEENNY o B
Ao LXK Re ), it ( i 101
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An alternative and simpler approach to calculate E[YZ] is again to take advantage of
symmelry. Notice that no matter x, <x, or x; >x,, we always have yz=xy,

(z=max(x,,x,) and y=min(x,,x,)}).

~E[YZ) = [ [ xmdndy, = ELX,ELX, )= —;—x% %
cov(Y,Z)
\ﬁar(}’) vaar(Z)

Sanity check: That ¥ and Z have positive autocorrelation make sense since when Y
becomes large, Z tends to become large as well (Z > V).

Hence cov(¥,Z) = E[YZ]—E[Y]E[Z]=;—6 and comr(Y,Z) = =%‘

Random ants

300 ants are randomly put on a t-foot string (independent uniform distribution for each
ant beljwfeen 0 and 1). Each ant randomly moves toward one end of the string (equal
probability to the lett or right) at constant speed of 1 foot/minute until it falls off at on¢
end of the string. Also assume that the size of the ant is infinitely small. When two ants
colhdel head-on, they both tmmediately change directions and keep on moving at !
foot/min. What is the expected time for all ants to fall off the string‘?34

Solufion: This problem is often perceived to be a difficult one. The following
sf)n;lpone!}}s contr}bute to lhf? complexity of the problem: The ants are randomly located:
‘(1c Tanr can go either direction; an ant needs tg change direction when it meets another
ant. To solve the problem, let’s tackle these components.

When two ants collide

head-on, both immed; : irect .5 it mean
The fillsvhe Bageim ediately change directions. What does it mea

illustrates the key point:

Bed o o i h. e =5 1
clore collision: ——5 2\ Afyer collision: 21— %, - switch label: «2———

When an ant A collides wi
e sl it .o swichdivetion. Bt i wecxchans
197 st m- i f‘i‘ L(])lllblon never happens, 4 continues to move to the right
i e b -oinee the tabels are randomly assigned anyway, collisions make
¢ that when two ants meet, each just keequ

Once the collision is removcd s jl-b.(-).m the random dircc_Eign that each ant.:‘:l_mOSE‘S'..
which direction that an ant goes e (L US¢ symmetry to argue that it makes no differenc
i an ant goes either. That means if an ant is put at the x-th foot, the

-erence o the result. So we can assum
Onf gomg I its original direction. What

CC

e bl b Lig b
4 i :
Hint: If we switch the fabe

| of tw 3 : ] ;
happened. 0 ants that collide with each other, it's like that the collision ne¥ef
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expected value for it to fall off is just x min. If it goes in the other direction, simply set x
10 |- x. So the original problem is equivalent to the following:

What is the expected value of the maximum of 500 JID random variables with uniform
distribution betwecn 0'and 17

Clearly the answer is \g%% min, which is the expected time for all ants to fall off the

string.




Chapter 5 Stochastic Process and Stochastic Calculus

In this‘chapter, we cover a few topics—Markov chain, random walk and martingale,
dyngm)c programming—that are often not included in infroductory probability courses.
Unhge basic probability theory, these tools may not be considered to be standard
reqplrelnents for quantitative researchers/analysts. But a good understanding of these
fopics can simplify your answers to many interview problems and give you an edge in
the interview process. Besides, once you learn the basics, you'll find many interview
problems turning into fun-to-solve math puzzles.

5.1 Markov Chain

A Markov chain is a sequence of random variables X, X\, -, X, with the Markov
property that given the present state, the future states and the past states are independent:
P{/Y"H = "’ | X—“P = j’ Xu—l = I.”_}’ T XO = IiI(.'!} = pi} 7 P{‘}(m-! e J’ l /\/” T i} f‘Of a“ n, iU'
as Land j, where i, je{l, 2,---, M} represent the state space § = {5, 834 s By} OF
X

In other words, once the current state is known, past history has no bearing on the future.

For 4 homogenous Markov chain, the transition probability from state i to statc j does
not depend on n.' A Markov chain with M states can be completely described by an

MxM transition matrix P and the initial probabilities P(X,)

Poyo Piw 1 Py
fransition matrix: P":{Pq}“—” # p.ﬂ pﬁ;” . where p, is the transition
Pvyi Pur 7T P

Probability from state i to state J.

if

Mitial probabilities: P(X,) = (P(X, =1). P(Xy =2): s Py = M) 2 X, ==l

Thc prObabiii't}' Ofa path: P(/Y} = :I;| !A’E = i:_' T [kf” = ir.‘- I Xﬂ = if!) & -'U-‘ L1 ‘UJ 63 ]1' 1

sitjion matrix

T - T - 1 -
ransition graph: A transition graph is often used (0 EXpress the tran _
t emphasizes

T - i T 3
Sfaphically. The transition graph is more intuitive than the matrix, and i

|
N this chapter, we only consider finite-state homogenous Markov chains (i.e., transition probabilities do

no
tchange qver time).



———— RN

Stochastic Process and Stochastic Calculus

possible and impossible transitions. Figure 5.1 shows the transition graph and the
transition matnx of a Markov chain with four states:

i= 1 2 3 4~
0 05 0 057
0.5 0 025 025
0 04 04 02
0 0 0 I

F L) pa

Figure 5.1 Transition graph and transition matsix of the Play

Classification of states

.Slalej 15 accesstble from staie i if there is a directed path in the transition graph from/ 10
J {Hrf. ?uch that 7" >0). Let 7, =min(n:X, = j| X, =1), then P(T, <) > 0 ) if and
afnly |'I smre.‘,f_ls accessible from state i. States i and Jj communicate if i is accessible
from 7 and j is accessible from /. In Figure 5.1, state 3 and | communicate, State 4 is

accessi " tate : ;
;tatc; ble form state 1, but they do not communicate since state | is not accessible from

We e s i i
w:‘:::?m{:}l stal‘e i—; is repurren_t if for every state j that is accessible from i, i is also
S rom; (v, P(T, <»)>0= P(T, <o) =1). A state is called transient if it is
nat recurrent (37, P(T <»)>0 and P(T, <o)<1)
Ly ¥

recurrent. States 1, 2 and 3
not accessible from 4.

In Figure 5.1, only state 4 IS
are all transient since 4 is accessible from 1/2/3, but 1/2/3 ar¢

Absorbing Markov chains: A st
s (p o =Lp =0.Y2i). AM
state and if from every g1

ate £ is called absorbing it it is impossible to leave this
arkov chain is absorbing if it has at least one absorbing

: dle it is possible to o : d tate
4 is an absorbing state. The possible to go to an absorbing state. In Figure 5.1, state

o corresponding Markov chain is an absorbing Markov chain.
Lquations for absornii bt h R
state s, a,,:--.a ilrpllop probability: The probability to reach a specific absorbing
i by ! EL T ¢ ! 1]]’!1Lflh;_' '\{U]utiolls o e . .
equations ¢ =1, =0 ¥ ;orbIng
. | . a, =0 for all abso
blu[C(.‘;) =5 and a =

‘ZU p, for all transient states i ° I :
. transient states i. These equations can be easily

A Practical Guide To Quantitative Finance Interviews

derived using the law of total probability by conditioning the absorption probabilities on
the next state. |
expected times to absorplion,

i for the expected time to absorption: The ' .
T e ] for all absorbing state(s) i and

fh,+, ft,,~ Ar€ unique solutions to the equations #, =0

4 =1 +i p,u, for all transient states i. These equations can be easily derived using the
i g

= L. . i ext
law of total expectation by conditioning the expected times (O absorption on the 1

state. The number | is added since it takes one step to reach the next state.

Gambler’s ruin problem ‘ |
Player M has $1 and player A has $2. Each game gives the winner $1 t_;‘ogl tfllicruOt:lc& ';\a:
a better player, M wins 2/3 of the games. They play untii one of them 1s SanKIupt.

is the probability that M wins?

Solution: The most difficult part of Markov chain pro‘»b.lems (:,»flen .1ie.s 1111} hso“r ;EIEEOEZ:
the right state space and define the {ransition probabilities B s, Vi, J- 1; - Pllon P
fairly straightforward states. You can define the state space as thi’a(f;n ;\?a []1;15 ($n):
money that player M has ($m) and the money o ? tizc since the whole
{(m,n)}={(3,0),(2,1),(1,2),(033)}- (Neither m nor. 1 can b? ne&.dt. 1hle dollars of both
game stops when one of them goes bank“’?“) Smcc i bL»l[m s ace using only 7%
players is always $3, we can actually simplify the state p

im}={0,1,2,3} .

ks £ in Figure 5.2.
The transition graph and the corresponding transition matrix are shown g

1

Pon | P P02 1”0.1 | =4 0 0

L 23 ! L i, I [k 7 0

Oa e ok T
)

gyt il

E i | P Fax L0

R\.l_{g’/ \_:i’?/r P:_n fr-,l 1 E

iti 's yuin problem
Figure 5.2 Transition matrix and transiton graph for Gambier P

At state 1, the next state is 0 (M
probability 2/3. So
—2/3. Both state 3
bsorbing staies.

ply absorption

The initial state is X{) = | (Aj[ has $1 at the begiﬂl’l‘illg). A
loses a game) with probability 1/3 and A wmsr'dl %?n;i)d P13
pm il 4"3 ] P, = 9/4 Slmllarly we ¢can gt':l P~ 3 33

hole game) are a
(M wins the whole game) and state 0 (M loses the whole ganc)

! te "_} we can ap
To calculate the probability that M reaches absorbing state 2

probability equations:
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3 3
a, = ], .- 0 , and a) = Z‘DLJGJ’ a, = Zpl,.far
=0 '

+=0
Plugging in the transition probabilities using either the transition graph or transition
a :l!3x0+2x’3xa2} {a, =4/7

matrix. we have =
ay =1/3xa +2/3x] a,=6/7

S0, starting from $1, player M has 4/7 probability of winning.

Dice question

;""I;? [)Jtl_a])';rs _liel on roll(s) of the total of two standard six-face dice. Player A bets thata
. will occur first. Player B bets that two consecutive 7s will occur first. The

Solution: i
olution: Many of the simple Markov chain problems can be solved using pure

conditional probubility argument. I ; 151
! ) - It 15 not su ideri in |
defined as conditional probability: PrIIG consideriug that Markov chefi

Pl m A ae X my o y
il »ha R ,/YO-0}=PU=ID{X”‘]=‘}'|XH=II}.

So let’s firs - "
o tet's first solve the problem using conditional probability arguments. Let P(A4) be the

ssbabil] %L .
[ (. ?.dblhly that .1 wins. Conditioning P(A4) on the first throw’s sum F, which has three
possible outcomes F =12, F =7 and F {712}, we have ?

Py = PLA|F = _
Then we iac|k]e e!\f}:i(o!: P A I DPE=T)+ P4 F e {7.120).P(F ¢ {7,12})
can eusily see that P(FT[]Jgne-nl on the right hand side. Using simple permutation, we
Is obvious that P(.4: 1_ l‘:)))-_]]{{?& P(inf’)= 6/36, P(F ¢{7,12})=29/36. Also it
starts over again. ) 'I‘olcq]c 1_ ‘& | g _P(A' Fei7,12}) = P(4). (The game essentially
throw's tnnlb .]." , wlate (4| F =7), we need to further condition on the second

al. which again has three possible outcomes: £ — 12, £=7, and E 47,12}

P(A|F - DEPUIF =7, E<12)P(E=12] F=7)4 p(g| p o 7 E=T)PE=T|F=T)
-P(.-‘li!--?.Ee{?,l2})!’(£e{?._12};F:?)
=P(4|F=7E 120x1/36+ P(A| F=7,E = 7y 6/36
+ P{,-JEF=7.EE{?.12})><29f36 |
-]x1’3ﬁ+0x6'36+P(-'!')>(29f36:lf36+29/3()P(/1')

Here the see :
ccond equy Tl :
rolls. If F=17 ‘]miilhi:!oll{?lub on the independence between the second and the first
2 = F. T } bt
- Ly ‘I W Ins: lf‘ F = ? and ‘LJ‘ = ?. /{1 lose«,‘ “- 1'1 L ? ﬁnd
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Eg{7.12}, the game essentially starts over again. Now we have all the necessarily
information for P(A4). Plugging it into the original equation, we have

P(A)= P(A| F = 12)P(F =12)+ P(4| F =7)P(F =7)+ P(4| F & {112} P(F ¢{7,12})
=1x1/36+6/36x(1/36+ 29/36 P(A)) +29/36P(4)

Solving the equation, we get P(4)=7/13.

This approach, atthough logically solid, is not intuitively appealing. Now let’s try a
Markov chain approach. Again the key part is to choose the right state space and define
the transition probabilities. It is apparent that we have two absorbing states, 12 (A wins)
and 7-7 (B wins), at least two transient states, S (starting state) and 7 (one 7 occurs, yel
no 12 or 7-7 occurred). Do we need any other states? Theoretically, you can have other
siates. In fact, you can use all combination of the outcomes of one roll and two
consecutive rolls as states to construct a transition matrix and you will get the same final
result. Nevertheless, we want to consolidaie as many equivalent states as possible. As
we just discussed in the conditional probability approach, if no 12 has OCPumd anq )
most recent roll did not yield 7, we essentially go back to the initial starting state S. So
all we need are states S, 7, 7-7 and 12. The transition graph and probability to reach state
12 are shown in Figure 5.3.

Probability to absorption state 12

G, =1 a,=0
a, =1/36x1+6/36xa,+29/36xa = dg = 713

/"’6"
\@QI a, =1/36x1+6/36x0+29/36xay |

Figure 5.3 Transition graph and probability to absorption for dice rolls

Here the transition probability is again derived from conditional probability arguments.

Yet the transition graph makes the process crystal clear.

Coin triplets

Part A, 1f you keep on tossing a fair coin, what is
that you can have HHH (heads heads heads) in a ro
t0sses to have THH (tails heads heads) in a row?

the expected number of tosses such‘
w? What is the expected number of

chain is, again, to choose the right state
ghtforward. We only need ff)u]‘
r whenever a T turns up before

Solution: The most difficult part of Markov .
SPace. For the HHH sequence, the state space is stral
Sates: § (for the starting state when no coin is tossed 0
HHH), f 1, HH, and HHH. The transition graph 15
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112 @SD/I%@/% /UZ\'@G) |

U2
1/2

At state S, after a coin toss, the state wil Stay at S when the toss gives a 7. If the toss
gives an H, the state becomes H. At state 1, it has 1/2 probability goes back to state S if
the next 10ss is T otherwise, it 80¢€s to state HH. At state HH, it also has 1/2 probability
goes back to state S it the next toss is T} otherwise, it reaches the absorbing state HHH.

So we have the following transition probabilities: P, =1, Piy=% P=1,

NN
¥ =4 . =1 =L =
[" 11l " ‘F:H"  -Rpa R’H.’,HHH = and R’ﬂa’f.’_!ﬂﬁf =1

We are interested in the expected number of tosse
time 1o absorption starting from state S,
expeeted time to absorption, we have

S t0 get AHH, which is the expected
Applying the standard equations for the

Hg =14+t p +dy, WI Uy =14
M
|

M=+ ',u_\. O o A, =12
Hyg =1+Lu + -Lp- e Hpy =8
Moy =0 J Mgy =0

So from the starting state, the expected number of tosses to get HHH is 14.

Similarly for expected time to reach THH, w

| _ © can construct the following transition
graph and estimate the corresponding expecte

d time to absorption:

i1
172 A 19 n Hy=l+tpu +1iy l 'rﬂq___g
el g g it ) (et
J @/@ Mg =t dp + g, Ho =2

Hownr =

My =0

So from the starting state S, the expected number of tosses to get THH is 8.

Par s Mlhsincics e | L1 1]
_ .llil B. .KuP‘f.hppmg a Rair coin until either Hi7H of TH1H occurs in the sequence. What
15 Ihe probability that You getan HHK subsequence before THH?®
T . -
" Hint: This problem dies
betwee an 1 pattem

ot require the drawing of a M

i arkov chain. just th e relationship
and a THH pattern. Houw 2 ain. Just think about the re

Nwe get an Hi{H sequence before a THH sequence?
o
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Solution: Let’s try a standard Markov chain zlxpproacll]. Again the focusils on;l;c;g:;zg
the right state space. In this case, we begin with starting state S. We only Eee ordered
subsequences of either HHH or THH. After one coin is flipped, we have. e}lt her s el or
H. After two flips, we have states TH and HH. Wg do not need 77 (\ThlcFl is f}?:l:e ent
to T for this problem) or AT (which is aiso equwalent to T as we 110) Orlatcg oo
sequences, we only need THH and HHH sta_tc_es, which are both absorbing s . g
these states, we can build the following transition graph:

172 112 1/2 112 1/2 l
Ip 172 / /—\‘®/_\\ /-—\
] 2 12—
12
Figure 5.4 Transition graph of coin tosses to reach HHH or THH

i ling state S.
We want to get the probability to reach abso_ri_amg state HHH from the starting
Applying the equations for absorption probability, we have

=0,d4,, =
Gy =1, @y, =0 @ ’ “T
=lg 41 s =3
i Y4 +3a, . 1
il | _1 1 ay =7
G =34 v yay,, a, =ta, +¥ay,

il I =1 1 i
Iy =3a, +tay,, a,, = > Ap + 5 3uuy

S0 the probability that we end up with the HHH pattern 15 1/8.

» calculation unnecessary. You
This problem actually has a special feature that renders ic. <]:alrculaﬁ1e i i b
May have noticed that a, = 0. Once a tail occurs, we will always g

) thich i . first two coins In
ity i thad thie Jas. toas ool I SRS M“cl?eslsstgiz ;{HH before THH
Yequence HHE. In fact, the only way that the sequence re}z:chiS.e Tk have T
g -whprldaripai ity be'gmr'lmglfOit eSo if ;vc don't start the coin
bcfore the first /777 sequence and always end in ?HH 11551}8 Il e
flipping sequence with HHH, which has a probability of 1/,
before fz777

' “fixed triplets for the
Part C, (Difficult) Let’s add more fun to the triplet game. Instead of

-hooses a
ir own triplets. Player | chooses
Wo players, the new game allows both to choose their f(;u nntlr?;i ivti-dgfbintpeety
triplet f‘;rst E;nd announces it; then player 2 chooses a di ;c;;:s et SR
1955 the ¢oing until one of the two triplet sequences appedis.

triples dppears first wins the game.
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If both plaver 1 and player 2 are perfectly rational and both want to maximize their

probability of winning, would you go first (as player 1)? '
probability of winning?® 2 player )7 I you 8o second, whit ke

Solution: A common misconception is that there is always a best sequence that beats
other sequences. This misconception is often founded on a wrong assumption that these
;u:quc:nces arc transitive: if sequence 4 has a higher probability occun‘i-ng bef‘oi-e
atf:::::if ia}?;iqsgqtrl]?:}::;z? hats} a _l;}gller prob_ability occurring before sequence C. then
ransitiviry does R ProDmt 'ty occurting before sequence C. In reality, such
riiing ) Olei n{(‘n.exm for this game. No matter wha sequence player 1 chooses,
'].i;g kCY,Li:l.j]\ic“l};:\?cbi}::;'?sf[a-nio'[{]er sequence with more than 1/2 probability of winning.
as the first two coins 01';?;\1':-F]I’)jﬂ .B’. ]i 10 ehoose the last two coins of the ST
cach pair of sequences: "Asqlikice. We can compile the following table for
e
2’s winning | _

s —— _ Player 1
Probability lnun run iy HHT

—
TTH [THT [HTT [TTT

HHH |

,T; —t 8 5 lin B 5/12 (/5 1/2
‘f.lu.l

(1HH [78) | 12 B4 |15 1/2 12 [3/5

HTH i

—2 2§ 1/3 3/8 1/2 172 7/12

%“L 2 /g Lf; 2 Isis b3/ o
T8 10 (s b |1 ”

: ot Y '2;‘3._1 v (174 1

THT 712 ip ! 2

| i <AV " I | 12 s
HTT  [3/5 2 —

ITT 172

Plaver 2

Table 5.1 Player 2's winning Probability with gi
As shown in Table 5]

i s =i (\’ i '
choices are. plaver 2 can alwe € results yourself), no matter what player 1's
Mot mrrden 'lhzll“pkli?‘ ::‘!\;d}*'s choose g S¢quence to have better odds of winiiﬂ)i%- The
bold. In order 1o m;ni‘n;itc hhiidgdcdhooéc J response 10 1°s choices are highlighted in
HTT, THH and Tur o . 18 04ds of winning, p '

: and a0 i & Player | should HTH
HT. Even in these cases, player 2 has 2/3 probabilicr};oc;)fsi?ia:lrnn?nngg

Fhis prob)
S Pproblem iy g ditficuly
and Expected W altlins T one. Interesied reader may fj { ing S
I Ung Time-Paradoxical Sipma . o2 1ind the following paper heinful- “Wai §Hor
Np. 2 {May, 1997y, pp. 1 Hic)33 ![dn'“?dl S”_ua"O”S' by V. C. Hombas ”’er; py.l}wlp;u"‘ .f]m il
- Inthis seetion, we will only discuss tl; niion. |
» dIscuss the intuition.
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Color balls

A box contains # balls of » different colors. Each time, you randfomly select a pair qf
balls, repaint the first to match the second, and put the pair back into the box. What 1s
the expected number of steps until all balls in the box are of the same color? (Very

difficult)

Solution: Let N, be the number of steps needed to make all balls the same color, and let
F,i=1,2,---, n, be the event that all balls have color i in the end. Applying the faw of

I

total expectation, we have

EIN,1= EIN, | R1PUF 1+ EIN, | ][R 1+ -+ E[N, | F,)PLE].

Since all the colors are symmetric (i.e., they should have equivatent properties), we have
PIR)=P[F,]=---= P[F,|=\/n and E[N,]=E[N,|R]=EN,|F]=EN, [ £,]}. That
means we can assume that all the balls have color 1 in the end and use EIN, | F] 10
epresent E(N, ].

50 how do we calculate E[N, | £}? Not surprisingly, use a Markov chain. Since we

anly consider event £, color 1 is different from other colors and colors 2, -, #
' r 1 ball involved

become equi any pairs of balls that have no colo '
fantvalent. In other words, any B f another color are equivalent

are equivalent and any pairs with a color 1 ball and a ball o L
if the order is the same as well. So we only need to use the number of balls that have
®lor | as the states. Figure 5.5 shows the transition graph.

C@@@C}/v /'\:vl'-/h@

e i ] .'l‘ 't \\-'li]l DL‘\*’C

‘eah £ In fact, all the transition probability is conditioned B i
. unconditional probability p,,., an

the tranest: hahili = higher than the
ansttion probability ., | £ highet ~1/n (Without

‘ = d p
P& F example. Pl F 0 an T 4
e gl i i color | has l/n probability of

“Onditioning, each ball is likely to be the second ball, 50 ¢ e - the nroblent
being the gsecon(j ball.) Usir:;g the conditional transiiion probability, the p

s . ; emt cquations:
*Sentially becomes expected time to absorption e _
i | EIP 3 Y

EINiF]1=14 E[N_ |F]x P, | F+EN | FIx,] R+EN
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T : '
o caleulate P | |F, let’s rewrite the probability as P(x,, =i-1{x, =i, F)
+ I | !

Vi =10, 1, ..., to make the derivation step clearer: I
P(X“i .‘.;‘-—-] | I‘ :;'r}f;):fw———_it@
Plx, =i, F)
PF | x, =) x P(x, =)

x;-,.| :f—])XP(x‘Hl =i-] [xk =f')

P(F|x, = i)

b |k ]
i _alnel)_(n-i)x(i-))

, iln nin-1)
[he first equation is simply the definition

s t.ﬁe application of Bayes® theorem:
derive P(F |x, =i)=i/n. we :

_ P,

of conditional probability; the second equation

R
the balls have different colors tg}am neC:HLQ use symmetry. We have shown that if all
e » HIEN we have P[F] =pP 2 :

the probabilit s TS, L [Fl=-=PIF1=1/n Whatis
y of'ending in a given color, labeled as ¢, if i of the balls zzre—gf?color c?lt

s simply i/ To see L
T ly- !r' (e\i SL; that. we can label the color of each of the i balls of color ¢ as
R Rt W M T g B
wugh they are in fact the same color). Now it’s obvious that all
bility 1/n. The probability for ¢ is the sum of
ult i/n

balls will end with color ¢, with proba

probabilities of ¢,'s. which gives the res

Similarly we hav - !
buSiC iy n]e‘he dPg[{';; | X of B ‘I) = (1_1)1(}} I:OI' P(x{t )= i—1 I X, = 1) we use @
o, P L s — s 3
n balls. In orzer for one :z[lL -‘ulh bn(III?—U possible permutations to chokose 2 balls out of
which has ; choices. ol all 1o change color the se
5; the first ball needs 1o be another color \(:/r!]]qclt;a;ll m(uSI b;a CIOI('}r l
otor, which has (n-/) choices.

S0 P(x, =i~1|x, =jy=t01=0)
n(n-1)
Applying the same principles, we can et
PO, =il x, =i,y =D)X2i
i .’.fl)_:—_J___.,__,. Plx,. =j4i | (n—-x{i+1)
n(in-1) iy (% =l F)=o— 7

n{n-1)

I hiLL’HL. I“IU 5 | & \I m i iy ‘J a') W i
fs pec 1 I \ J g . I : ' .II /.J
| fa e e e ]d VC

and simplify
=52z 2 =

nin D+(n-ii+z at(n~ixi-\z
41
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the third equation applies the Markov property. To
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Using these recursive system equations and the boundary condition Z, =0, we can get

Z =(n-120

5,2 Martingale and Random walk

Random walk: The process {S,; n21} is called a random walk if {X,;iz1} are [ID
(identical and independently distributed) random variables and S, =X, +- X, where
n=1.2.--- The term comes from the fact that we can think of S, as the position at time

n for a walker who makes successive random steps X, Xy,

If X, takes values 1 and -1 with probabilities p and 1 - p respectively, S, is called a
the process S isa

simple random walk with parameter p. Furthermore, if p=4,
to show that

symmetric random walk. For symmetric random walk, 1t’s easy
E[Su]=0 and Val"(Sn) = E[Sj]_, E[Sﬂ]z = E[S:] =n -5

most often tested in quantitative
Ik often revolve around finding the
or the probability that S, reaches

Symmetric random walk is the process that is
interviews. The interview questions on random wa
first # for which S, reaches a defined threshold &,
a for any given value of ».

a stochastic process with the propertics that

Martingale: a martingale { Z,;n21} is ‘
Ly = z]] = z_. The property of a

E[ Z, )< for all n and E[Z,,1Z, = ZusZu1 = Zutr”

martingale can be extended t0 E[Z,;m > 1|4, = 2 23 (
W, 3]
is the current value Z,.

=z et ly =5 )= which
means the conditional expected value of future Z,,

A symmetric random walk is a martingale. From the definition of the symmetri¢ random

: LR il by Pliai i
walk we have § —{S"H with probability 1/2 L8O E[S,,_, (8, = Sy ied) '—-‘1]—-‘.,-

™ 7§ —1 with probability 172
5] 2 o2 St a1 artineale
Since  E[S2, ~ (n+1)] = 4[(S, +1)? +(S, =D’ - (a+D) =5 =7 §% —n is a martingale

H ?
as wel],

e s and try a few cases starting with

4
Ey ; : J i
_E¥en this step is not straightforward. You need to plug in th .7 cancel out.

. skl
"=n-1. The pattern will emerge and you can see that all the terms containing Z_. %,
aduction step: If !
is independent of S,..

ingate does not need to be a Mark

! ! ar( S ) = m. then we
Induction again can be used for its proof. Yar(5)= Far(Z )=l wr(S,

h ol v ' ;
ave Im‘(.S_. Y=lar(S +x )= Var(S_ Y+ barlx,, y=np+1 SINCE X, i
Markov process. A mart

fi
Do i :
not confuse a martingale process with a |
a martingale process. either.

Q) s
Process: a Markov process does not need to be
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Stoppi ; ' '
opping rule: For an experiment with a set of IID random variables X, X a
Xy

StonDi g . L
pping rule for {X ;i 21} is a positive integer-value random variable M (stopping time)

suc)
ch that for each n> 1. the event {N < n} is independent of X, |, X, ,,---. Basically it

says that whether to stop at # depends only on X, Xy X, (i.e., no look ahead)
Ao X, (e, ok ahead).

pel? )

Wald’s Equality: ,
o s Equality: Let N be a stopping rule for IID random variables X,..X,,--- and let
XX o X, bhen BS,1= BBV,

Since it is an im
portant—yet relatively little k
roof. Le - ively little known—theorem, let’s bri iew |
p t 1, be the indicator function of the event {(N2n}.So S, ca bbieﬂylrewe\x .
- . N n e\Wll‘Ien as

Sy = 3 P o O =11
; oty where I =1if N2n and [,=0if N<n-1.
£r - )
(.mm lthe definition of stopping rules, we know that / is independent of X _, X
it only depend ’ PR e
e Son X, Xy X, ) So E[X,1]= E[X,)E[1,)= E[X]E[1,] and
E[Sy]=E| Y x.1 ]

= L ELX )= Y B LX) E]L )= B[]S B[, )= £ XIEM.

n=l =]

i+l

=

.4 p Il]] I Oﬂ €,
B

Drunk man

A drun i

o Smmlf'n_mn 18 at the 17th meter of a 100-meter-ton
| staggering forward or backward one meter ¢

will make it to the end of the bri e K

meter)? What is the ex ;

the end of the bridge”?

t‘é bfia%f- He has a 50% probability
) ep. at is the bability that he
dge probability that
pected numbc: o(;‘he; 00th meter) before the beginning (the 0th
steps he takes to reach either the beginning Of

Solution: iti

ilm"u.fnrm. The probability part of the problem

,lm‘mg _(he most popular mantineaje i
nterestingly, few people use a

problems i earing in different disguises--1$

use Mark : a clear-cut marting asked by quantitative interviewers.

F.Imt.ﬂ ‘u‘ ov.cham with two abSOrbing Statesmoaie argument. Most candidates cither
AHPIEr's ruin problem with 3 Or treat it as a speci '

il = b fal v of the

P=U/2. These approaches yield lhepcorrect (;E:SSIL?JIZS in the

“nd. yet a mari
§ i ngalﬁ‘ arﬂulnen - -
the problem, g L1s not only simpler but also illustrates the insight behind

S S A
Far detmd

ed peoof and applicati

gL and applications oy LY

Processes by Robery G (hﬁggérmm\ of Wald's Equality. please refer to the book D hasti
Tt : i ¢ book Discrete Stochastic

il6

4———_1
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then the problem becomes a

Let’s set the current position (the 17th meter) to 0
Iso know that both S, and

symmetric random walk that stops at either 83 or-17. We a

$’ -n are martingales. Since a martingale stopped at a stopping time is a martingale,

S, and S, - N (where S, =4, + X, +---+ X, with N being the stopping time) are
martingales as well. Let p, be the probability that it stops at «=83, p, be the

be the stopping time. Then we
E[S 1= p,x83-(1- p,)x17=5,=0 :>J[ p, =017
FIS: ~ N)= Ep, x83 + (1 - p,)x 1T}~ E{N) = §; ~0=0]  [EIV]= 1441
Henee, the probability that he will make it to the end of the bridge (the 100th meter)

before reaching the beginning is 0.17, and the expected number of steps he takes to
reach either the beginning or the end of the bridge is 1441.

probability it stops at =8 =-17 (p,=1-p,), and N

have

We can easily extend the solution to a general case: a symmetric random \_Nalk starting
frora O that stops at either a (@ >0) or -B(f>0) The probability that it Stops at a
instead of -4 is p, = B/(a + B). The expected stopping time to reach either & or i

is E[N]=ap.

Dice gam
e
value. If a roll gives 4, 5

oll, you are paid the face :
; ame stops. What is the

Suppose that you roll a dice. For eachr
you get 1.2 or 3. the g

or 6. you can roll the dice again. If
€xpected payoff of this game?

1 to solve the problem. A
Wald’s Equality since the
ess has 172 probability of
=1/2 and we

Solution: Tn Chapter 4, we used the law of total expectatiol
simpler approach—requiring more knowledge—is to apply
Problem has clear stopping rules. For each roll, the proccss 4
Stopping. So the stopping time N follows a geometric distribution with p =17 i
have E[N|=1/p=2. For each roll, the expected s E[X]=7/2. The tola

eXpected payoff is E[S,]= LIX|EIN]= 7/2x2="T.

face value 1

Ticket line

Al a theater ticket office, 2n people are waiting 10 bu

bills and the other » people have only $10 bills. The ti

11 have only $5

v tickets. n of the:
i art

cket seller has no change to st
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with. 1f each person buys one $5 ticket, what is the probability that all people will be
able to buy their tickets without having to change positions?

Solution. This problem is often considered to be a difficult one. Although many can
correctly formulate the problem, few can solve the problem using the reflection

principlf—:.8 This problem is one of the many cases where a broad knowledge makes 2
difference,

Assign +1 to the # people with $5 bills and -1 to the n people with $10 bills. Consider
the process as a walk. Let {«,b) represent that after a steps, the walk ends at b. So we
start at (0,0) and reaches (2n,0)after 2n steps. For these 2n steps, we need 1o choose 1

2n)_ 2n!

steps as +1, so there are =
n) nlp!

possible paths. We are interested in the paths thal

have the property 20, VO <a<2n steps. It's easier to_calculate the number of

complement paths that reach 5=-1. 30 < @ <2n. As shown in Figure 5.6, if we reflect

the path across the line y =1 after a path first reaches -1, for every path that reaches

(2n.0) at step 2n, we have one corresponding reflected path that reaches (2n,-2) &
step 2n. For a path to reach (2n,-2). there are (n~- 1)_s’teps of +1 and (»+1) steps of -1.

{ 21 ) Yl
So there are | - .

\n=1) (1-Di(n+1)

such paths. The number of paths that have the

property b= -1, 30 <a < 2n, given that the path reaches (2n,0) is also [ 4 j and the
n—)

number of paths that have the property b2 0, V0<a <2n is

|. zn\l i !;-2'” X I 1 (2}3\1

| | I 1] )
nj\n=l) \n| n-f-l‘hn ) J1+1Ln)

2ny [ 2n )

Hence, the .p.roba_hilil}' that all people will be able to buy their tickets without having 10
change positions is 1/(n+1).

Consider a random walk starting at @, S =g, and reaching b in 1 steps: § =p. Denote N (a,b) 8 the
number of possible paths from (0,a) 10 (n.6) and N (a.b) as the number possible paths from (0.4) ©
LB that at some step k (4 » 0, ). S, =0 in other words, v {a.b) are the paths that contain
. The reflection principle says that if

intuitive: for each path 0, a) W (5.0, there

Al Mok -
a. b >0, then N'(a.h)= N (—a.k). The proot I3

iS & ope-to-one corresponding path from (0.—a) 0 (£.0}
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. - solid line
Figure 5.6 Reflected paths: the dashed line is the reflection of the

after it reaches -1

Coin sequence T
i er of coin tosses 10 E
Assume that you have a fair coin. What 1S the expected numb
heads in a row? |
coin tosses 10 get 7 heads in a row. In
where n=3 (to get the panc{:n H]-}IIZ?A
' ing the Markov ¢
ion approach. Ubl‘ S e
s ) 6 and E[f(3)=14 A natu
lways, let’s prove the

~1.2.3. So we only

f
Solution: Let E[ f(n)) be the expected number Ci
the Markov chain section, we discussed the cas

For any integer n, we can consider an in

=2 E 2)]=
approach, we can easy get that ELJ (H]=4 Ef ;M 14 4
guess for the general formula is that ﬁ@—

: ; 1a is true for 7 :
formula using induction. We have shown the formula 1 o . T
need to prove that if EL/(M]=2" =2 E[f(n+DI=2" —~

. +1)}:
shows how to prove that the equalion holds for ELf(n )

nmust be 7 heads in @ 1OW

noted as (#+ DH) 1
« /}H“"'I _2 tnsses

: o reach nff.
d E[f(mi=~ n+ D H (the new toss

The state before (n+1) heads in a oW (de

Sttt It e 1450 bility it will go to ( . the
Conditoned on state . there 18 V2 PIFTCRLE, ) iy that 1 1L 87 €
: ‘here is also a 1/2 P
Vields H) and the process stops. There 15 @
19
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starting state 0 (the new toss yields 7) and we need another expected E[ f(1+1)] tosses
1o reach (n+1)H. So we have

E[f(n+ )] = E[F(m)+$x1++x E[ [ (n+]1)]
L f(n+ D] = 2% E[F(m)]+2=2"" =2 ’

General Martingale approach: Let’s use HH --- H to explain a general approach for the

expected time (o get any coin sequence by exploring the stopping times of martingales.”
Imagine a gambler has $1 to bet on a sequence of # heads ( HH ---H, ) in a fair game

with the following rule: Bets are placed on up to # consecutive games (tosses) and each
time the gambler bets all his money (unless he goes bankrupt). For example, if /f
appears at the first game, he will have $2 and he will put all $2 into the second game. He
stops playing either when he loses a game or when he wins n games in a roll, in which

case he colleets $27 (with probability 1/27). Now let’s imagine. instgad-of one gambler.

bgft}re cach toss a new gambler joins the game and bets on the same sequence of n heads
with a bankroll of $1 as well. After the i-th game, ; gamblers have peirticipated m i
game and the total amount of meney they have put in the game should be $i. Since each
game is fair, the expected value of their total bankroll is $i as well. In other words, if w¢
denote x, as the amount of money all the participating gamblers have after the i-th game
then (x, ~i) is a martingale. '

Now. let’s add a stoppin

¥ g rule: the whole game will stop if one of the gamblers becomes
the first to get n heads i

B aroll. A martingale stopped at a stoppi ime i rtingale.
= ‘ _ - ; pping time is a marting

So we still have El(x,-)]=0. I the sequence stops afler the i-th toss (=7} the
(i ¥ [)-th player is the (first) player who gets # heads in a roll with payoff 2". 50 4l
the (i ~n) players before him went bankrupt; the (i -
n i roll with pavoft 27! | \
payoftis fixed and x =

n+2)-th player gets (-1 heads

-+ the i-th player gets one head with payoff 2. So the fofal
x4 2”_| da i "_)1 .3 2”+] _n

Hence, £|(x, ~i)]=2"' -2 Efi]= 0= Efl=g™ -2
This ach can be i : '
qéqI:l-jp-p-[;g:t'hj-t-(“-) bt appin.d_xo any coin sequences—us well as dice sequences of any
-f ”ﬁ};j;;!_ :\1'1‘1 :uh:,trzujy number of elements, For cxarﬁpie, ks oohsider the Seqllel:l.;l.:
gamblers "ui : L|IIn A%AI0 Use a stopped martingale process for sequence HHTTHH. The
;iHT!Y!;‘*{jllrlr;ill ::] game t:lnw bby one before each toss to bet on the same Seql‘c"f

¢ gambler beg § Flh o =1 1
sequence stops after or oecames the first 1o get the sequence HHTTHH. 100

15 161 the i-th toss, the (i~5)h gambler gets the HHTTHH with Py

4
] Y ol 'y {
”\r Wil |_mILr_mnu details about the approach, please
CUITM e . T 4 ! ! ‘
urence of Sequence Patterns in Repeated Experis

~ I 1
refer 1o “A Martingale Approach to the Study
.I)'u.‘;..:l"" J
rodsahility, Vol. 8, No. 6 (Dec,, 1980), pp. 1171-1176

nents™ by Shuo-Yen Robert Li. The Annals ¢
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4)th player loses 1n the
he first toss (1)
gets H with

2 All the (i -6) players before him went bankrupt; the (- .
second toss (HT); the (i ~3)rh player and the (i—2)ffz player lt:fse in 1
the (i—1)th player gets sequence HH with payoff 2° and the i-th player
payoff 2.

Hence, E[(x, —i)]=2°+2" +2' - E[i]=0= Eli]=70.

5.3 Dynamic Programming

: eveloped to solve
Dynamic Programming refers (o a coliection gf g?nemler;igzgfy dversat?le tool with
sequential, or multi-stage, decision problems. }t is an HEe Y ¢ airline scheduling
applications in fields such as finance, supply chain manag g algorilluns ks
Although theoretically simple, mastering dynamic Proir result, it is often perceived
exiensive mathematical prerequisites and rigorous logic. AS d .
to be one of the most difficult graduate level courses.

i to encounter in
Fortunately, the dynamic programming problems y[;lu arZS ];tig——are rudimentary
inferviews—although you often may not recognize t f;mq-c Jogic used in dynamic
problems. So in this section we will focus on o aleo cfully the solutions 1o
programming and apply it to several interview pr;? gl:e IE;']C prr;grammini_l-
these examples will convey the gist and the power of Ay : i
A discrete-time dynamic progl‘amming model includes two Wacre
L. The underlying discrete-time dynamic system

; ivided int
A dynamic programming problem can always bi?sgltcs et Y
required at each stage. Each stage has 2 Qumber 0 g
atone stage transforms the current state into a state 1

A : choice).
st o ivial if there is only one : . ,
(L2 3e desdsion may be trivil ). Following the convention, we

Assume that the problem has N +1stages e F eréosstl <k < N—1.the state {ransition
label these stages as 0, 1, -, N —1, N. At any stage & B="2
ges as 0,1, --,N-1,

- . ig the state ©
can be expressed as x,,, = (X Wy ): WHETE % o called disturbance)
is the decision selected at stage k; w, is @ random pa

o stages with 2 deci.s%on
d with it. The decision
(at some stages and

]
f system at stage ko

rameter (

mming. For up-to-date d)'na;mi
and Optimal Conirol by Professe

B o d
This section barely scratches the surface of dy

Programming topics, ['d recommend the book Dynamic
Dimite; p. Bertsekas.

1 ; informa
1 | : nt into
In general, X, can incorporate all past releva

namic progra
Progranuniity

¥ thb
I ur 150 155 - 4 nl &On‘_\;ldt.l
t1cei. no d 10on WY v

Present information by assuming Markov property.
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Basically the state of next stage x,,, is determined as a function of the current state x,.
current decision u, (the choice we make at stage & from the available options} and the

random variable w, (the probability distribution of w, often depends on x, and u,).
2. A cost (or profit) function that js additive over time.

Except for the last stage (V), which has a cost/profit g, (x,) depending only on x,. the
costs at all other stages g, (x,,u,,w,) can depend on x,, u,, and w,. So the totl
N=}
costprofitis g, {x, )+ Zgi (x, w0},
ke
'he goal of optimization is to select strategies/policies for the decision sequencs
B Ly K AR e o
AT =%, *) that minimize expected cost (or maximize expected profit):

=]
Selx) = min E{g (x,)+ 3 g, (5,0, w,)}.

k.l

Dynamic programming (DP) algorithm

T(H)he'dymmw programming algorithm relies on an idea called the Principle of

ey *_. ¥ 2 1

D(lmﬂhf..‘f- W 2% ={u*,u, *} is the optimal policy for the original dynami

programming problem, then the tajl policy 7 * = {u* - u, *} must be optimal for the
! I il » ’n’_|

. -
il subproblem ¢
problem Efg, (x, }+Zg& (Xatt,.90,)}

DP algorithin:

3 T

T 3 N 3 e ii=l '
o soive lhk‘ b‘lblc p]'“blem J_-_—-(J-’u) = min E{gn'(x«!)Jr Zg [x‘__u(_u'{. I
“1art with _.f_. {(x.) e il ST

and go backwards minimizing cost-to-go function J; (%

J: [x V= 'J' £ Fog [ : ) "
ek AN LA RTSE oa U (xu w, Nj.k=0,--,N-1. Then the Sl X!
Benerited ﬁ'nm ‘j-lis ’ i
Although the
programming
the finy

algorithm is the expected optimal cost

algorithm looks complicat
problems. we should st
..:.l stage (which has the
uncertainty ) first
policies

ed. the intuition is straightforward. T'or d}’“‘"m‘t,
art with optimal policy for every possible Sl Ui,
mount of information and least amount ¢

: I
8 SO bt stages by applying the al
Ou reach the initial stage.

highest a
and then work backwar
and cost-to-go functions untjl y
Now let’s use several ex:

Se several examples 1o show how the DP algorithm is applied
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Dice game

You can roll a 6-side dice up to 3 times. After the first or the second _rol], if l};pu)gt[:ﬂl a:
number x, you can decide either to get x dollars or to choose 10 ¢conlinue 0 mg,.lhlud
once vou decide to continue, you forgo the number_ you just rotled. If you get \:;)} tl:e_s :;c
woll, you'Il Just get x dollars if the third number is X and the game stops. What i
game worth and what is your strategy?

. . : amic
Solution: This is a simple dynamic programming Srategy SFe kﬁﬁ:&:{‘t’l‘l =
programming questions, the key is to start with the final stage an wor“‘ e
this question, 7t 15 the stage where you have forgone the first two FOIS. :

e a l/6
simple dice game with one roll. Fa_cz{vvai es 1,2, 3, 4, 5, and 6 cach hav
probability and your expected payoff if $3.5.

Now let’s go back one step. Imagine that you ar¢ at the point after th;s;efc §§d5 ré,): l‘,(ef;)];
which you can choose either to have a third roll with an exlpe.cl'ed payf oy 5 | other
(he current face value. Surely you will keep the face value if it IIS l?firgrtg » k.e{;p voiling.
words, when you get 4, 5 or 6, you stop rollirlg.' When you get} 6,>< (Z F Si’ &= $4.25.

So your expected payoff before the second roll s 3/6x3.5+]

2 noi the first roll,
Now let’s go back one step further. Imagine that you are at the point after

. $4.25 (when
for which you can choose either to have a second roll with Fxpfcieifﬁ’ﬁifki:;ih (e =
face value is 1,2, 3 or 4) or keep the current face et bu;c 3 }(; ou stop rolling. So
value if it is largér than 4.25; In other words, when you /ggl (So.lr- 65 Z $14/3.
your expected payoff before the first roll is 4/6x 4.25+1/6x .

"y : 3 ing—gives us the
strategy and also the expected value of the game at the initial stage,

World series

: e i 1d Series finals. In
lhe BOS{OH Red SOX and the CO]OradO F(0(:’1{“:-5 ik pia}{lng l.n;:]i(}::ftlrm Uf ‘7 gﬂ[“t‘s Llﬂd
<ase you are not familiar with the World Series, the.re o Y:-.u have $100 dollars (o
the first team that wins 4 games claims the chamPlO“ShTP- :

Place a double-or-nothing bet on the Red Sox.

El L] (Hl ( a” (]nl bet A 7 P b 2 s Qe 1 5 S- l ]! H

muich should you bet on each game so that if the Red Sox Wi

&
exactly $100, and if Red Sox loses, you lose exactly $100°

Gox has won i games and the

off, which can be ncgative when
| that there may be
hat whenever the

Solution: et (i, /) represents the state that the Red
) iy ay
Rock’CS has won J games, and let /(i) it 1’161 i ne. we Know
e lose money, at state (i, j). From the rules of 'Ihe gal‘ ;tmtcﬂ)’ 3Lk
between 4 and 7 games in total. We need 10 decide on & g
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series 18 over, our final net payoff is either +100—when Red Sox wins the
championship—or ~100—when Red Sox loses. In other words, the state space of the
final stage includes {(4.0), (4,1}, (4,2), (4,3)} with payoff f( j)=100 and
1(0.4), (1,4), (2,4), (3,4)} with payoff f(i,j)=~100. As all dynamic programming
questions, the key is to start with the final stage and work backwards—even though in
this case the number of stages is not fixed. For each state (i, ;), if we bet $y on the Red
Sox for the next game, we will have (f(i, j)+ y) if the Red Sox wins and the state goes

to (i+1, /), or (f(i./) y)if the Red Sox loses and the state goes to (i, j+1). S0
clearly we have

JUG =0 g

WG D=6, D S j+D)i2
JUJ+0= £G, D-3)

Ly =(fG+L )= £G, f+1))12

For example, we have f(3,3)= [ 3+ /G, 4) _—_M
‘ 2 2
.\wlh the. colunins rl-cpreseming i and the rows representing j. Now we have all the
m.formatmn to fill in f(4,0), 7(4,1), f(4. 3 f(4,2), F0,4), f(.4), f2.49
S, 4). as well as £(3,3). Similarly we can also fill in all £, J) for the states where

f=3or j=3 as shown in Figure 5.7 Going further backward, we can fill in the n¢!
payoffs at every possible state. Using equation y=(f(i +1, j)— f(i, j+1)}/2. we can

also calculate the bet we need to place at each state, which is essentially our sirategy.

If you are not accustome : -
- « stomed to the table format. Fiour . . ia] tree, ¢
’ ure 5.8 redr binomial tree,
format you should be b £ edraws it as a

) iar with. If you consider that the boundary conditions ar¢

{{n(j : ?) JAD, @3 J42. 0.4, £0,4), 12 4. and . 4)

inlc;:'s}[ ”:E;SIS‘L; czthg,]r Increases by | or decrease by | after each step, and there 15 ¢

skl ﬁn.tc i dﬂ??- .cn; l}:-c‘cozpcs a 51.mple hinomial tree problem and the bet we p;acc

B kg \b i _la n }ﬂ.:llmlc hedgmg. [ fact, both European options and Americ!
P can oe solved numerically using dynamic programming approaches.

=0. Let’s set up a (able
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Red Sox Red Sox
wing| 0O 1 2 3 4 wins| 0 i 2 3 4
5100
g4 0 100 2 8] 8'{?5"
é 1 100 ':2 1 ?§4—100
4 E:D 2 4100
% 2 b § : QI -100
E L 94--100 1'56 3 |8 5—-;5*-?0*—?*
< 1
¢ 4 |-100|-100|-100 _110() © 1 4 [-100{-100{-100{-100
Red Sox £t Redgsox3 Y
wins| 0| 1] 2| 3| 4 bets| 0 | 1
1725 25 |12.5
g | 0| 0 [3128625(87.5 100 3 0 [31.293 —
g $ . L
2| 1 |31.3 o |37.5] 75 | 100 : :: g 1 31_2537.2 2
P 25 | 317.
2| 2 |s25|-375 ¢ | 50 | 100 2| 2
; €[ 3 |125| 25 | 50 | 100
£13 |875 -75|-50| 0 |100 3 _
£ 4 L]
LL 4 |-100|-100(-100|-100 R B
Figure 5.7 Payoffs and bets at different states
100
@ 100
87.5 )
(3.0 75 100
o {3~1) 4 100
LI . 30 43
31.25 375 22
(L) 2.0 ] 0
' (3.3)
) y 2. | 100
10.0) (1.1) W i
~31.23 375 23)
(0.1 (1.2} o 100
£ 24)
HL (1.3)
©.2) -100
e o
£ 2100

(0.4

. inomial tree
Figure 5.8 Payoff at different states expressed In @ i

P
]
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Dynamic dice game

A casino comes up with a fancy dice game. 1t allows you to roll a dice as many times as
vou want unless a 6 appears. After each roll, if 1 appears, you will win $1; if 2 appears,
vou will win $2; ._; if 5 appears, you win $5; but if 6 appears all the moneys you have
won in the game is lost and the game stops. After each roll. if the dice number is I-5.
you can decide whether to keep the money or keep on rolling. How much are you
willing 1o pay to play the game (if you are risk neutral)?'?

.S'UIIHH””.' J'\Ssulﬂing thal we have acCumulated # do]]arS’ [hf:‘ dSCISIOH 10 haVe an{)lht‘l'

roll or not depends on the expected profit versus expected loss. If we decide to have an
extra roll. vur expected payoff will become

- g l | | 1 5
=)+~ (n+2)+—=(n+3)+— - —x0=~
6( } G(H ) 6(n+a)+6(n+4)+6(n+5)+6x0-6n+2.5.

We have another roll if the expected payoff -§n+2.5 > n, which means that we should
T o 6

keep rolling if the money is no more than $14. Considering that we will stop rolling

when #2135, the maximum payoff of the game is $19 (the dice rolls a 5 after reaching

the state #n=14). We then have the following: f(19)=19, f(18)=18, f1N=I7
J(16)=16. and £(15)=15. When n<i4,

£l

we will keep on rolling,

o 2 25 :
Jmins M]ZEZEU(””N- Using this equation, we can calculate the value I0f
ial ’

ELf(n)] recursively for all =14, 13, .-

$ . . 0. The results are summarized in Table 3=
Since £]£(0)]=6.15, we

are willing to pay at most $6.15 for the game.
I UV | i i 213

BN S NVEE Y 1N I AT T (NI S DU s |

| 1|! T ————— ISttt o

lf TR R I
VIAID00 1800 1700 16.00 1500 1417 1336 12.59 1185 1116

B el 4 3 2 1 0

SAANELRREL ML ST AL

Sel0S2 991 934 880 829 781 736 693 653 613

Table 52 E
Xpected payoff of the game when the player has accumulated 1 doliars

|1
 Himi: I veu decid
i i ¢ I have another S
Sohig) H I roli. s A 1 « gl
thars 1h4. st B R : : ol the expected amount you have after the roll should be i‘_ ¢
dppears, 50 when the ; -

——

1 L 4 cqfa
ars increases, you risk losing more mone:
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Dynamic card game

A casino offers yet another card game with the standard 52 cards (26 redIS 26 l;lz;calzl.sglz
cards are thoroughly shuffled and the dealer draws cards one by one. F r?_\i ards e
not returned to the deck.) You can ask the dealer to stop at any time \if lcm i xtah For eact
red card drawn, you win $1; for each black card drawn, you los}e $1 g a;zt 12 he g ]]:;ng o
siopping rule in terms of maximizing expected payoff and how much are y

pav for this game?

; ' jewees. Yetitisa
Solution: 1t is another problem perceived to be difficult by many interviewees

k and red
simple dynamic programming problem. Let (b, r) represent the number of black an
cards left in the deck, respectively. By symmetry, we have

red cards drawn — black cards drawn = black cards left —red cardsleft = h—r
ying. 1f we ask the
h

EE—

. If we keep on going. there 15 ol

: ' la
Ateach (b, r), we face the decision whether to stop or keep on p

dealer to stop at (b, r), the payoff is b— h [
' ‘ te changes to
probability that the next card will be black—in which case the sta g

_in which cas¢ the state
(b_ 15 r) ——-and

r

probability that the next card will be red

Y f the expected pay

changes to (b, r —1). We will stop if and only i
cards is less than b - . That also gives us the systeim

off of drawing more

equation:

A

+r

r pile
E[f(b>f)]=max[b—r,bb E[f -1+ 51O I)U

g the boundary conditions f(0. 1) =),

As g o . , usin _ o
oo, ) Fgte 33 (el 100 ion for E[f(h. r)]. we can

f(b,0)=b, Wb, r=0,1, -, 26, and the system €qud

recursively calculate E | /(2 r)] for all pairs of band r.

. : 26)] = $2.62.
The expected payoff at the beginming of the game 1S E [./ (20, )1

ou
-—“-‘-“"“-———-——_____._,_______——

Y.ou probably have recognized this system equation
“Cide whether you want to exercise the option at state

T g
' i zeganthilly ¥
the one for American ophons. Essen
as

(b. r)
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Number of Black Cards Left

fb,
i'}J111>345

6 7 8 9 10 11 12 13 1435 14617 18 20
oty B 4 67 9 @ 1 12 43 14 5 18 17 18 20
1 c=01 2 3 4 5 8 7 8 9 10 N 12 13 14 15 i 17 19
Gan GEr s 2 3 4 5 6 7 B 0§ 10 1+ 12 13 34 15 16 18
029 NS0 085 134 2 3 4 5 6 7 8 9 40 11 12 13 14 15 17
U0 D4c 086 100 144 2073 4 5 B8 7 8§ 9 0 11 12 13 14 18
T OB AM ATR 1121552953 4 5 6 7 @ 8 W 11 12 13 15
MO 045086 09r 123188 2233 4 5 5 7 g g 10 11 12 14
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She b 007 013 920 028 035 04s Zi: 2-;: ”:9 PRAPE B 222 20 am am s 6T
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é 16 | 00 QI2 dis 02 03y 035 D47 0-5? 0.6? At 10? ] 10 167 nom 2% 2m 3 ?
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£
igure 5.9 Expected payoffs at different states (b, )
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5.4 Brownian Motion and Stochastic Calculus

In this section, we briefly go over some proble.ms for stochashc ca_lgulus, ttéctchzl;t:;:lza;}
of stochastic processes in continuous space. Su_me the basic df?ﬁmt;(.ms an s el
Brownian motion and stochastic calculus are_dlrectly used as mterv'l(;W l:]roovewi’e w of
simply integrate them into the problems instead of starting with 2

definitions and theorems.

Brownian motion

. . ol
4. Define and enumerate some properties of a Brownian motion

. . ; ingly, part of the
Giions i i the ot basi Brovnian motkn queston. Inretngl, ar 1
definition, such as W (0) =0, and some properties ar¢ 50 O [

recite all the details.

. . - ian motion if
Acontinuous stochastic process W(f), 12 0, is a Brown

¢ W(0)=0;

) s RN W(,'”)*W({,. ;).‘
¢ The increments of the process W(!,)—H« (0) I’V(’:) IV([])
V0<1 <1, <~ <, are independent; AL ion

| i stributl

e Bach of these increments is normally distributed  with  dIs
Wt Y-W)~N(@O, 1, —1)- .
o) X ( } the following: continuous (no

motion aré
martingale  property

W)~ NI ‘
and Markov property (in

Sotte of the important properties of Brownian
sy E[w(n]=0,  E[W@)]=
EW @+ sy 1w ()] = w @), cov (PR ()=
tontinuous space).

Vi<s <!

i ; le
ated to Brownian motion that arc valuab

There are two other important martingales rel
tols in many applications.

* Y{)=w(@) -1 is a martingale. vy is a Brownian
' and W({t) 18
x Z(r):exp{ ;{W(;)—lzizf}, where A 18 any constant and )

: 1 Jale i
motion, is a martingale. (Exponential maring )

—-‘--_-_--'_——-_

L ln ‘h] 1 ¥ : . *'h.lh'..
” sIngce 115 a U!\ !
¢ B \a‘ i 2 Iy |l
W “‘lll “013.“0]]; Iﬂl\,I Chdl‘lgeab] S0 ‘
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¢ demonstrated in Figure 5.70. When we have B >0 and

volume. (All 8 regions separated by
ty volume by symmetry.)

We’ll show a proof of the first martingale using 1to’s lemma in the next section. A

2 This approach is bette
sketch for the exponential martingale s the following:

B, - B, < —B,, which accounts for 1/8 of the density
x=0, y=0, y=x, and y =-x have the same densi

E[20+9)= E[exp{2 (W4 () -4 471 + 9)] |
=exp{/IW(!%%A'(}exp{-—%izs} E[exp{iW(s)}]
=Z exp{-%/lzs} exp{%fs} =Z,

B. What is the correlation of a Brownian motion and its square?

Solution: The solution to this problem is surprisingly simple. At time 1, B, ~ N(0,). by
symmetry. E[B]=0 and E[B']=0. Applying the equation for covariance
Cov(X,Y) = E[XY]~ E[X|E[Y], we have Cov(B,, B’) = E[B']~ E[B JE[B?] =0-0=0
So the correlation of a Brownian motion and its square is 0, too.

C. Let B, be a Brownian motion. What is the probability that B, > 0 and B, <97

Solution: A standard solution takes advantage of the fact that B, ~ N(0,1), and 5, - ¥
15 tndependent of B, which is again a normal distribution: B, ~ 8 ~ N(0.L) 8
B, = x>0, then for B, <0, we must have B,~ B, <~-x.

P(B, > 0.8, <0)= P(B, >0,B,~ B, <-B)

3 l ™ - { - 1 .
* _[ ~=d o dn —_— "’zd = _r__ - \-"r_\'_l.-'ﬁcird
N ,[ G y f L 5-¢ ly
SO l B ha b, J =
:f.[g_;;( | —F‘d?'a’S:?M]‘:) 3}2”[_84-;1 :é_
F 20 0
we fully take advantage of the facts thit B
the answer is no. Using condittonal probability and
the equation as

W =P(B > 0)P(B, =B <O)P({B, - B |5| B
= 2x112x1/2=1/8 -.

But do we really need the integration step? If
and B. =8 arc wo 11D N0 1),
independence. we can reformulate
PIB >0.B, .

~ Nil.s). So Efexpfan ()] able

i ; e
'S the moment generating function of normal random V&

0.15 . AL
g ™ i H ._

BB

Figure 5.10 Probability density graph of (Bi.

Stopping time! first passage time

ither -1 or 17
ach either 1 or
A What is the mean of the stopping time for @ B

rownian motion to 1€

g sine [107s
) s roved by dppl) g
Solution: As we have discussed, B, =1 15 martingale. It can be p

lemma;
Al _de+dt=2B4dB,.
: 13 B -1 (18" B 1) - 2B.dB, Ft :
0B gy« B0 g ABD 2 =5
i O min{s: B, =T o). A

artingale. Let e

still applies: A martingale stopped at

S0 d(B; -1) has no drift term and is am
Continuous time and space. the following property

131



————— T

P e A Practical Guide To Quantitative Finance [nterviews
Stochastic Process and Stochastic Calculus
= b 8
ﬂ ! j : ch either x or —oo and E[7,]=xxe=%
a stopping time is a martingale! So B; -7 is a martingale and E[B{- - T] =By -0=0 | essentially the expected stopping time to rea R
=2-2N =1, the expected va
The probability that B, hits 1 or -1 is 1. s0 B =1= E{T}= E[Bf]:] _ Although we have P(z, <0) =2 A (xf\/—)
7 .
T B4t S — '
B. Let W(r) be a standard Wiener process and 7, {x > 0) be the first passage time to y|-===-

. . - ) . |
level x (v =min{t; W (1) =x}). What is the probability density function of 7_and the
expected value of 7 ?

Solution: This s a textbook problem that is elegantly solved using the reflectin
principle, so we will simply summarize the explanation. For any Wiener process paths
that reach x before 1 (1, <r), they have equal probability endmg above x or below x4l

time 1, Pz, st W(1)2x)= P(r, <t,W(r) <x). The explanation lies in the reflection

principle. As shown in Fi igure 5.11, for each path that reaches x before / and is at alevel
y above x at time 4, we can switch the sign of any move starting from 7, and the

reflecied path will end at 2x -y that is below x at time 1. For a standard Wiener process
(Brownian motion), both paths have equal probability.

Pr, 20)=P{z, <t,W(1)>x)+ Pt <t.W(ysx)=2P(r_ < 1,W (1) 2 x)
=2PF(2x)=2] eI

. d path
i flecte
. ‘ ‘ | i rocess and its ré
LBI i = “\‘/*-:., wieg have e'w‘.«’?_r 23—:- ] and dv = _C_f_]rz FlgUfe 511 Samp|e path Of a Standard Welner p
{ .
1
1= If X starts at 0,
e dX(t) = dW{1). ! .
- P(r. <n=2 I EYS S RN 3 { otion with no drift, 1.€. ¢ i g
{ )= .r ’)m dw=> ,;J\/_z_;‘? / dv=2—2N(x/\/?)- Suppose that X is a Brownian m g Hhrat,

what is the probability that X hits 3 before hitt

Take the derivative with respect 1o 4, we have XY= mds + AW (6)?

he
' 5, be the prohabl]n) that 1
5= JP__‘,__“__Q dPir, dPir, <1} a’(\fr Vi) ¥ g T : Solution: A Brownian motion is 2 martingale. Le;e "Swpped i g
dt d(\f\f) dt ‘2x\f'(x/\/;)x-—;~3f3:> N s U Brownian motion hits 3 before -5. Since a mar“;jg i Agrys
From part A, it's eacy _ | martingale, we have 3P, +(-5)1=-R)= 0=hR e e Ey
PAFL AL IS easy to show that the expected stopping time to reach cither @ (a>0

(B> 0). the probabil

r=8 (f>0)is again E[;\] d stopping time tO

s have stopping boundaries (¢ >0) and - (
nstead of — Bis p, =Bl a+ B). The expecte

5 again E[N] =af.

v =/
reach either & ©
aff. The expected first passage time (0 jevel

he probability
Let P(r.x)bet

When X has drift i, the process is no longer @ Al ¢ time 1. Although X is no longer a
hat the process hits 3 before hitting -3 when X =¥ &

riingale.
T —————
1
It we define (v H)
Min wak sy, then pyr <0 if and only if 4y x Taking the derivative of Ar,

oK,
We L dum, the proby aoility density function of ).
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martingale process, it is still a Markov process. So P(7,x) = P(x) is actually independent
of 1. Applying the Feynman-Kac ec1uali0n4, we have

mPAx)+1/2P (x}=0 for =5 <x <3.
We also have boundary conditions that P(3)=1 and P(-5)=0.

mP (x)+1/2P,(x)=0 is a homogeneous linear differential equation with two real roois:
n=0 and r,=-2m So the general solution is P(x)=ce™ +c, e =¢ +ee

Applying the boundary conditions, we have
'(' Fep = ¢, = —(‘Jl“ﬁ" {'((‘J_ﬁ"” o elﬂ””) i0m -1

= = P0)=¢ +c, =

t'l. el It I'] L I/(e—-{)m __e]ﬂm) elOm _e—-ém

f:\ different and simpler approach takes advantage of the exponential martingale:
Z(1) =exp{)LW(z)—l.,1‘;}_ Sinee W{t)y=X(1)—mt, X{(t)—mf is a Brownian motion a

well. Applying the exponential martingale, we have E[exp[/l(/\’ _m)_%l’z!ﬂ:] for

any constant 4. To remove the terms including time 1. we can set A=-2m and the

equation becomes £ LEXP(—2mX ) =1. Since a martingale stopped at a stopping time s

elﬂm —'l

a martingale, we have P exp(-2m x D+A-Pexp(~2mx-5)=1=> ———.
3 10 ~Hm
e —&

D. Suppose that X is a generalized Weiner process dX = dr +dW (1), where W (1) is2

Brownian motion, What is the probability that X ever reaches -1?

Sofution: To solve this mr : _ ;
olve this problem, we again can use the equation E[exp(—Z:’?f,\*). =

from the previ -ohle -

] ‘::, Erutgus problem with m =1, Iy may not be obvious since we only have 0¥

i are Qunds el bpn i a :
ary, -1. To apply the stopping time, we also need a correspoﬂdm':'

. o B (4] W . 0 !

e

"Lt Y be an 1o process gi il F
Define function TN O St () BU XY+ (¢, XyaW and f(x) bea function o1 4
; Slunetion V() e & 1 ’ ’ i

(63)= B/ ) X, = 3. then V(. x) is a martingale process that satisfies the P

v

M F 7 ,"
) o ac 2/ (!,J)___ﬁg'- =0 and terminal condition ¥'(7.x)=f{1) 1

T AT . ar [
ditlerential cquation ~— - B -
F o b
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3 -2
P oexp(-2x-H+(l ~ P yexp(=2x+w) = Pe=1=PFP =¢".

lto’'s lemma

lio’s lemma is the stochastic counterpar
be an lio process satisfying dX ()= pu, X)dt+y(,
wice-differentiable function of X (f) and r. Then f (X(t

¢ of the chain rule in ordinary calculus. Let X (1)
X)dW (s}, and F(X(),0) be a
),¢) is an Ito process satisfying

(¥ o Lo 0 Ny ) Law )
df‘[g{"kﬁ((,X)a‘i‘z}/ ((aX)axz 4 By
. of oF 1, 0’
Dift rate = 2+ (1, X) 2=+ =77 (LX)
ot ox 2 ox

. i of Z71s
4.Let B be a Brownian motion and Z, = Jt B,. What is the mean and variance .

Z, a martingale process?

: 1 ic about 0. Since Jr s
Solution: As a Brownian motion, B, ~ N0, 1), which is symmetric

a constant at ¢, Z, =JI-B, 15 sym
txvar(B ) = 1*. More exactly, Z, ~ N(0, ).

metric about 0 and has mean 0 and variance

L - aale. Applying [t0’s
Although Z, has unconditional expected value 0,itisnota :namns,a e. APP
oz, 52, d{_l_an___.Z’ di =—l—{'1 :'de!-i-\/;dB, .
!Cmma to Z’ :J;Bf , We have dzx =-——dB[ +"_a?" 3 68,3 1
Ly I :B[df 1s not

2B
| i ift term 5
For all the cases that B, =0, which has probability 1, the drif )

B - 5 ineale roCess.
zero.” Hence, the process Z, = J;B; is not a martingal¢ p

T ocess?
B.Let W (1) be a Brownian motion. Is () amartingale pr

s if and only if the

1 el '« a martingale proees
A generalized Wiener process dx = a(x,dl "'b(x"!)dw(l) TN

drit tepm has coefficient a(x,1) =0.
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S‘ tion: ing ’ - a ! i
olution: Applying lto’s lemma to f(W(r), 1) =W (1)’. we have a”jﬁ(!):3W(!)‘, Chapter 6 Finance

of alf i i fi knowledge to get hired into
k) _—6l(1), and df (W(1), 1) = ) _ ‘ I used to be common for candidates with no finance xnowiedg g ¢
ot W (1) ) (W), 1) = 3W (e + 3W (@) dW (7). So again for the quentitative finance positions. Although this still happens for candidates with specialized
= - - - ‘e in i it ' i least
cases W (r) = 0, which has probability 1. the drift term is not MU I knowledge that is in high demand, 1t's more likely that you are required, or at
mantingale rocess m is not zero. Hence, W (¢)" isnota expected, to have a basic grasp of topics in finance. So you should expect to answer
some finance questions and be judged on your answers.

Besides classic textbooks,' there are a few interview books in the market to help you
prepare for finance interviews.” If you want to get prepared for general finance p robl_ems,
you may want to read a finance interview book 1o get 2 feel for what types of questions
are asked. The focus of this chapter is more on the intuitions and mathematics behind
derivative pricing instead of basic finance knowledge. Derivative problems are pap
choices in quantitative interviews—even for divisions that are not directly related to
derivative markets—because these problems are complex enough to fest your
understanding of quantitative finance.

6.1. Option Pricing

Let's begin with some notations that we will use in the following sections.

) L Q. ; ime f;
T. maturity date; r: the current time; ¢=7 —¢: me to maturity; S : stock prlc&;l ;E,(;lr:ssci
r: continuous risk-free interest rate; y: continuous d}\»’ldelld yield; a.'alzguarlice b
volatility; ¢: price of a European call; p price of a Europcan ;‘)l{l, dp prodiy g
American call; P; price of an American put; [ present value, at £, of futare G 7
strike price; PV- present value at /.

Price direction of options

How do vanilla European/American option pric
changes?

es change when S K F|d 7 OF D

‘ o is max(K —5.0).
Solution: The payoff of a call 1s max(S — K.0) and the payott Qfa put;'s}.ma'.; ( American
4 Furopean option can only be exercised at the.cxpiran’o‘n I]“-ne"e‘f:i;]i-ﬁgurc S
Option can be exercised at any time hefore maturity. Intuitive )}f] ,\\-.trikc priée At
the price of a European/American call should decrease when the

e | : Badie. Ales
; _ ' L vestments by Zvi Bodic. A
For basic finance theory and financial market knowledge. | ru.omm?ﬂd g'erivaﬂvc’s by John C. Hull is @

ane and Alan J, Marcus. For derivatives, Options, Futures and .01 ;e]r lus and dcrfvaiive pricing. i°d
Classic, [f you want to gain a deeper understanding of stochastic calcll:

. Qreven E. Shreve. S e
i*eommend Stochastic Caleutus for Finance (Volumes | and 11) by St:.}\ er:ﬂ “vuvanced and Quantitative
For example, Vault Guide to Finance Interviews and Vault Guide

Mance Interviews.
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since a call with a higher strike has no higher—and sometimes lower—payoff than a call

with a Jower strike. Using similar analyses, we summarize the effect of changing market
conditions on an option’s value in Table 6.1.

The impact of time to maturity on the price of a European call/put is uncertain. If there is
a large dividend payoff between two different maturity dates, a European call with
shorter matunty that expires before the ex-dividend date may be worth more than a call
with longer maturity. For deep in-the-money European puts, the one with shorter
maturity is worth more since it can be exercised earlier (time value of the money).

| Vuriable European call | European put | American call | American Put :
Stock price 1 1 ! 1 :
Strike price * 1} 1 4 {
Time 1o maturity 7 ? ? 1 |
| Volatliy t | 1 1 1 1 |
Risk-free rate 1 I ! 1 ! _
| Dividendst || 1 ! L el

Table 6.1 Impactof S, K, g, r, and D on option prices

Tiincrease; |: decrease; 7: increase or decrease

t is also worth noting that Table 6. assumes that only one factor changes value while
21l others stay the same. which in practice may not be realistic since some of the factors
Are ;-clalth. For example, a large decrease in interest rate often triggers a stock markel
rally and increases the stock price, which has an opposite effect on option value.

Put-call parity

Put-¢: itwvs o -y g i . :
al.l pitys o K7 = g S ~ D, where the European call option and the Europed?

put option have the same underlying security, the same maturity 7 and the same strike

i_‘ e . = = : . ‘
price K. Since p20, we can also derive boundaries for ¢, S—D—Ke™"" €€ <5, from

the put-call parny.
For American options, the e
Y-D-K2C-ps§_yp-r

quality no longer holds and it becomes two inequalities

Lan you write down the

“C Tty for B . 2 3 ying
stocks and prove i1? put-call parity for Européan options on non-dividend pa
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Solution: The put-call parity for European options on non-dividend paying stocks is
4K = p+S. We can treat the left side of the equation as portfolio A—a call and 2

zro-coupon bond with face value K—and the right side as portfgiio B—a put and ;ihf?f
uderlying  stock, which is a protective  put. Portfolio A4 has payo

nax(S, - K,0)+ K = max(S,,K) ~at  maturity T. portfolio B has payo[:f
max(K - §,,0)+ S, =max(S,,K) at . Since both porifoli}c)s have the same payoff at T
and no payoff between ¢ and 7, the no-arbitrage argument” dictates that they must have
(he same value at 7. Hence, c+ K" = p+8§.

] : R . _C_ k™" it will give us different
If we rearrange the put-call parity equation Into ¢= p= S-K7, nwillg

: F —has
insight. The portfolio on the left side of the equanon—-lqng a call and si;;)rtfa p;s(trwa::
e payoff max(S, — K,0)— max(K S;,0) = §; =K. which is the payots © a

i x 5 S‘_}(r_-”, So
with delivery price K. A forward with delivery price K has prf?Senl xaluelhat prld 4
we again have the put-call parity ¢ - p = § _ ,hr This expression shows
strike price K = S'7 (forward price), a call has the sam

call has higher value; and when K>S 77 aput has higher value.

¢ value as put: when K <5 ,a

American v.s. European options

. - v they are often
4. Since American options can be exercised at any tme Pef9l'it?;2tuétfjxfhei the stock
mare valuable than European options with the Samé SR gy cal should e
Pays no dividend, the theoretical price for an American _cali an“ Wy should you never
'he same since it is never optimal to exercise the Amenicat (;a piil
exercise an American call on a non-dividend paying stock before

. mresent three
. i ; roblem. We prescil
Solution: There are a number of solutions to this popular p

drguments for the conclusion. . oahid e

aluc, which 18
selling the

. : , wet the Intrins
Atgument 1. If you exercises the call option, you it ?nl}ifcludcs time v
Soit 0 bt il of 1 A i Ei Soinvcsmr js better off
Pusitive for a call on a non-dividend paying stock. S0 Th

OPlion than exercising it before maturity. have

: ; an options, We¢
" fact, if we rearrange the put-call panty for Eutopean OF

Il on a non-
C=S-K 4 p=(S-K)+(K-K)+p. The value of 2 Europi?]tcii the intrinsic
dividend payi_ng stock jncludes three components: the first compo

. t verclse oW,
. i ke (if you exere
Value § - K: the second component is the tme value of the sirl {

‘-\---_-_'_'—l—

? iR the initia
oAr 5t of transactions is an arbitrage opportunity N
¢ nequalities is strict.

ff> 0; and at least ane

| investment = 0; payo
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you pay K now instead of K at the maturity date, which is lower in present value); and
the third component is the value of the put, which is ofien considered to be a protection

against falling stock price. Clearty the second and the third coniponents are both positive.

So the Furopean call should be worth more than its intrinsic value. Considering that the
corresponding American call is worth at least as much as the European call, it 15 worth

more than its intrinsic value as well. As a result, it is not optimal to exercise the
American call before maturity.

Argument 2. Let’s compare two different strategies. In strategy 1, we exercise the call
option® at time 7 (¢ < T) and receive cash S — K. Alternatively, we can keep the call,
short the underlying stock and lend K dollars with interest rate r (the cash proceedings
from the short sale, S, is larger than K). At the maturity date 7, we exercise the call ifit's

n the money. close the short position and close the lending. Table 6.2 shows the cash
flow of such a strategy:

It clearly shows that at time 1. we have the same cash flow as exercising the call, S-K.
But at time 7. we always have positive cash flow as well. So this strategy is clearly

bel‘lg than exercising the cail at time 1. By keeping the call alive, the extra benefit can be
realized at maturity.

Cash flow -
e | Sr <K S, K
| Call option [0 0 Sr—K
[Stort Stock | § S 51
[end K a1 K K:_ Ke'™
| ~ — . | Ke e —
| Toal _|5-k Ke™ -8, >0 Ke'"—K>0

Table 6.2 Payoff of an alternative strategy without exercising the call

Argument 3. Let's use a

mathematical argument relyi - icing and
- k ) nt relving on risk-neutral pricing ¢
Jensen’s inequality ol ying P

.y " _ 1 f(X) is a convex function,” then E[ (X)]= f(E[X]). From
h.;l:ure 6.1, it’s obvious that the payoff (if exercised when §> K ) of a call optio
CS)={8-K)" is aconvex function of stock price with property

CAS, +(1-4)S,) < ).('(S,)Jr(l—/'i)(“(Sz), 0<2<«l.

4
Wemssime S A Bl Lk .
O > A& Inour discussion. Otherwise, the call surely should not be exercised.

: ' comex i and only if £ (2x 4 (1-2)y)5 Af() e (=), 0< A<
FReh =0, %r. then XY s convex. ' 1

* A function Fix)

i40

A Practical Guide To Quantitative Finance Interviews
Lt S =S and S, =0, then C(4S) S AC(SH+(-DCO) = AC(S) since C(0)=0.
9

CA

?\C(S] )+( 1 -)\)C(Sg) --------------------------
CAS +(1-N)Sy) |---mrmmmmmmmme )

1

AS+(1-M)S2 Su S

Y

0 S,

Figure 6.1 Payoff of a European call option
—-K). it is not exercised until

. ST ime 7, the payoff atis C(S,
[Tthe option is exercised at tume pay [e'”C(S;-)] under risk-neutral

maturity, the discounted expected payoff (to 1) 1 E

e . - = Sre:'.-"
measure. Under risk-neutral probabilities, we also have E[S,]

So E[e—rrC(Sr)] — e-—rrE[C(ST )] ZE’-”C(E[ST.D : e_rr(ﬂ(f'ﬂs;)-

where the inequality is from Jensen’s inequality.

(e”x;) <eg 1 E [C(‘("f }] '

¢ < T under the

Let S= e”St and A=e™", we have C(/?.S) = C(Sr) ge™"C

- ' 39 § ) for any

Since the discounted payoff e™’" E[C(S, )] isno less than ‘C (S,) X ;

rcise the option before exp .

a convex function of thp stock pnlc!u

- non-dividend paymne stock. ?p

ty that P(AS) € AP(S). [n fact,
ply 10 American puts.

ation.
risk netral measure, it is never optimal to €xe

| should point out that the payoff of a pm-is ’ tona

B_u{ it is often optimal to exercise an American pu oper

difference is that PO)=K, soil does not have Lhe]il) d ¢s not ap
- . a S 0 ’

P(AS) > AP(S). So the argument for American ¢ can call option for

an Ameri Py X
ht before an €xX

exercise of RN
carly for the time g

Similar i o show that
ang show i
nalysis can als  except pl.ssﬁ)l}"

dividend-paying stocks is never optima
dividend date.

th strike price $80 1s

ng stock Wi $00 is priced

tock with strike price
tions”

s avi
B A EUTOpean put OpliOH on a nOIl-dl\rldenfi P;}s
currently priced at $8 and a put option on the b'amthg;qe ol
489, Is there an arbitrage opportunity existing i £
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Sofution: In the last problem, we mentioned that the payoff of a put is a convex function
in stock price. The price of a put option as a function of the strike price is a_convex
function as well. Since a put option with strike (I is worthless, we always have

P0)+ AP(K) = AP(K) > P(AK).

For this specific problem, we should have 8/9x P(90) =8/9x9 =8 » P(80). Since the

put option with strike price $80 is currently price at 8, it is overpriced and we should
short it. The overall arbitrage portfolio is to short 9 units of put with X = $80 and long 8

units of put with K = 90. At time 0, the initial cash flow is 0. At the maturity date, we
have three possible scenarios:

S, 290, payoff =0 (No put is exercised.)
90> S, =80, payoff =8x(90- §,)>0 (Puts with K =90 are exercised.)
§, <80, payoff =8x(90-§,)~9x(80 ~ S,)=S5, >0 (All puts are exercised.)

The final payoff =0 with positive probability that payoff > 0. So it is clearly an
arbitrage opportunity.

Black-Scholes-Merton differential equation

Can you write down the Black-Schole

o s-Merton differential equation and briefly explam
how to derive it?

Solution: [f the evolution of the s
dS = puSdi+cSdW (1), and the deriv

applying 1to’s lemma yields:

tock price is a geometric Brownian motion.
ative V' =V (S,1) is a function of S and ¢, then

oV av 1 oty ,
7 = oI e s oV _ !
N o i P 57 S EST)df + o-SaSTdW(I), where #(¢)is a Brownian motion.

The Black-Scholes-Merton differential equation is a partial differential equation thal
should be satisficd by Q+’_S§£+102S2 _a_};_ = AP

ot af o8'° T
To derive the Black-Scholes-Merton differential equation, we build a porifolio with tW0

co s i 1 . 3 . .
mponents: long one unit of the derivative and short o unit of the underlying stock-
o8

"‘V

Then the portfolio has v: LA, :
p 10 nas value ]I =y =ES—_-S and the change of I1 follows equation
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oV

=av-224s
" % av
vV LV 1 .0 OV oty =22 (uSds + oSaw (1)
=(-—+;1S:3~§+EJES 587)df+o‘8 an (1) GS(ﬂ
oV 1 ,.,0V
& L di
(6,' +2J 882)

: ; o uld have
[tis apparent that this portfolio is risk-free since it has no diffusion term. [t sho

oy . lts we have
| bining these resu
risk-free rate of return as well: df1= V- S S)di. Com £

TV
av oV ov . 1 2628 7y,
Ydt = r(V _BTS-S)df = -a-+ rS o + 2cr Y%

oV 1 .0V

(—+—=0°§" —
or 2 oS _

which is the Black-Scholes-Merton differential equation. | e discontied

The Black-Scholes-Merton differential equation is 2 Speillio::r;e Qunds the bridge

Feynman-Kac theorem. The discounted Feym_nan-_[i(}gc ot equations and applies {0

between stochastic differential equations and p artiel difteres

all Ito processes in general:

Let X be an Ito process given by equatlo

be a function of X. Define function Vit,x)= Ele

() = B X+ G, X0dW () and )
nnf(X,)| X, =x], then Vr,x)isa

Iy ' ation
martingale process that satisfies the partial differential eq
oy o 1 OV e
—+ Bt X)—+=y (1, X) 7 =! (£, %,
a PO Wy

and boundary condition V(T,x)= f(x) for all x.

dS = rSdt + oSdw(t). Let S=4X,
tion becomes

ﬂ(lr,/\’).—_rs and
Under risk-neutral measure, the Black-Scholes-

- a
7{{,X)= oS, then the discounted Feynman Kac equ

-~

4 z vV
Loy Y L e .

Merton differential equation —— +rS A T
ot &S 2

Black-Scholes formula

The Black-Scholes formula for European cal
1s:

1s and puts with continuous dividend yield y

PN —d 45.8—,\‘.*‘,\:(_,(;1) d
¢ :S(f_”;\"(m)_ Ke_"r;\"(dg) and AT Ke ?\( 2]
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J In(Se™ /K)+(r+0* /) IS/ K)+(r—y+ o'/ 2)z
' cr\/; O’x/;

- 2
dzzln(SM)+(r—y—cr /2)1*:0,]*0\/;

o

N(x) 1s the cdf of the standard normal distribution and N (x) 1s the pdf of the standard

where

2 i 0
e gy and N'(x)=——e ¥ 2

I distribution: N(x)= [
normal distributi {x) L = 5

[f the underlying asset js a futures contract, then yvield vy = r. I{ the underlying asset is a
foreign currency, then yield v=r,, where r, 1s the foreign risk-free interest rate.

A. What are the assumptions behind the Black-Scholes formula?

Solution: The original Black-Scholes formula for European calls and puts consists of the
equations ¢ = SN(dl)~Ke'”N(a’2) and p = Ke ™ N(~d,)—SN(-d), which require the
following assumptions:

I The stock pays no dividends. Com peloy

2. The risk-free interest rate is constang and known. \_/

3. The stock price follows a geometric Brownian motion with constant drift x and
volatility o a’S=;tSdt+o*SdH"(t). .

4. There are no lransaction ¢osts or

taxes; the proceeds of short selling can be fully
invested, -

5. All securities are perteetly divisible. 4

6. There are no risk-free arbitrage opportunities, \_/

8. How can you derive the Black-S

i  deri choles formuta for a Furopean call on a non-dividend
paying stock using risk-neytrg| pro

bability measure?
Solution: The Black-Scho

L les formula for 5 European call on a non-dividend paying
stock is

¢=SN(d) Ke ™" N(d,), where d, :w and d, =4, -
oz ‘
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' il ift of stock price becomes the risk-free
he risk-neutral probability measure, the drift o .
ilrJ;tledr‘::rstt thr.relSr(r) cdS =pr(()8dt + o SdW(1). Risk-neutral measure aliows the option 10 be

priced as the discounted value of its expected payoff with the risk-free interest rate:

! . .
V() = E[e_‘[ r(u)duV(T) Sm} 0<r T, where V(T) is the payofl at maturity 7.

When r is constant, the formula can be further simplified as V{¢) = e‘”E[V(T)\S(!)}.
] ) , t
Under risk-neutral probabilities, dS = rSdt+cSdW(t). Applying Ito’s lemma, we ge

d(In(S)) = (r 7 1 2)dl +odW ()= In S, ~ N(InS+(r -0’ 12)r.077).

tion, we have
So 8§, = Se' 7" M+ Vie where £~ N(0, ). For a European op

bl

Se(r—ozf2}r+aﬁ: —K, o Se(r-o-gf’Z)nchr-e: s K
V(T) ={

*

otherwise

JINKIS)=( =0T 17 4 o

ot

r-g? 2)r+oJ?£ _ -
E[V(TJIS]=E[max(S,~K,0)|S]=ﬁz(Se‘ / K)Jz_;;e

Se(r~02f2)r+ow'?£ > K -

{o-irof' 1 | e,

l _
! de - K
=se [, = R Wiy
= = d we have
Let £=¢—or, then CfE=d§,8=—dg:>5:_d2'JJ— d, and w

& --J?o‘)2 e_‘j:’fzdgm = S(?rrN(dl) ,

1
rr l _( 12 =S rr
¥l e L

] o 7 7 = !
I Ny K’ - N —‘d-; KN 52)

V(D))= Se"N(d,)- KN(dy) and V(1) =¢ “E[V(T)]=SN{d)) |
N(~d,)= N(d,) is the risk-

- Ke " N(d,)

. ‘ious that 1-
From the derivation process, it is also Ob\loush oney
. ishes in the money.

Neutral probability that the call option finishes 1t

pean call option on a non-

a Buro ,
C. How do you derive the Black-Scholes formula for fferential equation?

-Merton di
dividend paying stock by solving the Black-Scholes-Merto
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Solution: You can skip this problem if you don’t have background in partial differential
equations (PDE). One approach to solving the problem is to convert the Black-Scholes-
Merton differential equation to a heat equation and then apply the houndary conditions
10 the heat equation to derive the Black-Scholes formula.

ov._ oV oV oV dy LoV

o 8F3S v dS S oy

3 V(v av(lg_q_-lav Lov(ov
Say 6};

Let y=In§ (S=e¢")and ¥ =T, then

1oV 1,
_"_—_+_‘_"-ﬂ PR
S oy S oy

a5 aslas ) s

S s
S5 dv SOS

The Black-Scholes-Merton differential equation _@Y_+r8§1i+lgzsziai_,.p":u

ot as 2 os?

- 7
can be converted to - g{—+[r —]—a?)@_{.‘.l_oz oV - =0,

cr 2 o 2 9t

Let u=e¢'"V _ the equation becomes —21-24.[,‘ _lg?}éi+_1_gl _6_2{ =0.
v 2 o

ot 2
) I, '
Finally, let x=y+[r-—or"\lf=ln8+ r--l—orz 7 and r=7, then ?E:QE and
2 ) 2 ’ &y o
Ou_ou (1 ,\ou ;
> ~—a?+ ! -50' )—5-: which transforms the equation 1o
B = ey 2
_s__tf_{r_ig-);£+(,._lgz U L Qu_ w1 0
or z /& 2 Jx 2 & or 2 &’

= —g -

T P Y - 1
So the original equation becomes 1 heat/diffusion equation Ou 1204 For heat
5.
or 2 ox

equation TR I
el e i e — - 1 . . i B
dr 2 g’ where w=u(x, 1) is a function of time r and space variable x-

with boundary condition w(x,0)= i, (x), the solution is

23
w(x, 1) =

(x—.y;)
mre J- Nn(tg/)exp[— 5ot )__U;y.?

" ll Er ih
= AR T lU Cony et (hb Se0mg Q
I I 1 St I’\ 1 1A% elr IC BIOWI]MI] ny [
. “ 5 4 - 131t an 3””.““’.‘“‘- E". UW j
15 U.\Ld [0 cony ert ‘hL LL]U.‘“!O!I hUIII d deI\ Wa y tal

- i rd equati vt scuaiion s lili ERit il icondeg M
t =10 (the boundary condition at t=T = r=() RATO i EC operin T RER

Fat
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For European calls, the boundary condition is #,(S;) = max (S, -K,0).

S=exp(x—(r—0.50"))r). When x=y and 7=0, S, =¢".

2
, (x-v)
u(S,7) = u(x,7) = r___zim fwmax(e”—K,O)exp(-_zyr v

[ G-w)
i v T
) NGy 'E‘;K ¢ K)‘SXPL 20’ }mf
23
_ d 04T (JC“',!/) = -1 d when
W—-X _ W Vo Xt exp| — =¢ an
= th de=—=, € e y EXP 2
Let & cr\/-r—? en crr_'( [ 20,)

In(K/8)-(r-c’ 1Dt __,
=Ink, £= =
v ¢ O"J; 2

1

L u(S,7) = J’jod (Se(r—c—z.f:!)r+0'-f;6‘ _K)_Jz___;
1

2
e-ﬂ f‘ng

, tion for
Now, it’s clear that the equation for u(S,7} 18 exactly the same as the cqual

-f — _ -."fh; d
E[¥(7)|S] in question B. Hence, we have (S, =e"u(S,7)=5N(d,) Ke " N(d,)

as well.

rice at $1 that pays no dividend.

. 1 nt .
D. Assume zero interest rate and a stock with current p ercise the option and

When the price hits level $H (A >1) for the ﬁrsl? fime you can €x
receive $1. What is this option worth to you today
solve the problem by assuming that

motion under risk-neutral measure:
Y= -Lotdt+adWit)

Solution: First let’s use a brute-forqe approaclh to
the stock price follows a geometric Browman d(ln§
dS=rSd{+O'SdW(f) Since r:O, dS:JSd;'V(f)ﬁ (

When ¢ =0, we have S, =1=> In(S,) =0.

BEETES BRaTy TR =t

I

u_10u h initial condition &, (w)=flw) is

n — =—— Wit

7 ;

The fundamental solution to heat equatio T 2 ac }
! ; {2t}

3 o L A = —=—¢X[ —‘(J-—‘W)

u(x, 1) =[ plx. = xix, = W) f(w)dy, where plx, =iy £ J2at {

y smatics of Financ
For detajled discussion about heat equation, please refer to The Mathe
Paul Witmott, Sam Howison, and Jeff Dewynne.

ial Derivatives by
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12
Hence, In§ =—§JEI+JW(1):E_S+2_J’

=W {(f) is a Brownian motion.

Whem?yer S reaches $H, the payoff is $1. Because the interest rate is 0, the discounted
payoff'is also $1 under risk-neutral measure. So the value of the option is the probability
that § ever reaches $H, which is equivalent to the probability that inS ever reaches

In . Apain we can apply the exponential martingale Z(/) =exp{2W(r)—§/121} as we

-

2

did in Chapter 5: E[Z(r)]:E expéiM-if;Hﬂ,
| o

To remove the terms including time 1, we can set A=o and the equation becomes
E[exp(ln S)] =1. The Let P be the probability that InS ever reaches In £ (using —*
as the negative boundary for stopping time), we have

Pexp(ln H)+(1-Pexp(-0)= Px H=1= P = 1/ H.

So the probability that S ever reaches $4 is 1/H and the price of the option should be
$1/H. Notice that S is a martingale under the risk-neutral measure:® but InS has @
negative drift. The reason is that InS follows a (symmetrical) normal c,listribuiion, but §
tself follows a lognormal distribution, which is positively skewed. As T — oo, although

1
the expected value of S, is 1, the probability that §, =1 actually approaches 0.

It is si - .
simpler o use a no-arbitrage argument to derive the price. In order to pay $1 when

tsf}l]i jizclgepr::;:}:ts $H, we need to buy 1/H shares of the stock (at $1/H). So the option
P <n]0} m?‘re‘ than $i/4. \fet if the option price C is less than SUH
initial investment is 0. (\;Q ian by option by borrowing C shares of the stock. The
the stock by buying hh(.:k, l’he sLock price hits $17, we will excise the option and relurt
e g Ekd hg { shares at price $77, which gives payoff 1—CH > 0. That means W

inihal investment, vet we have possible positive future payoff, which is

contradictory to the no arbitra
K on g age argument. So the prj Tence.
the price is exactly $1/. the price cannot be less than $1/H. Hen

E. Assume a non-dividend
the value of a contract that
the maturity?

paying SI'Ole follows a geometric Brownian motion. What is
at maturity 7' pays the inverse of the stock price observed &

—

Once we recognize that S is g
that § follows a geometric Brow
conditions are 7y

martingale under the risk neutr

vnian motion. S has two boy
0 and s,

s H - M=y |

al measure, we do not need the assumptio’
ndaries for stopping: 0 and #. The boundary

P | fibee 4 martingale, the probability that it will ever reaches 1
= Palll,
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Under risk-neutral measure dS = rSdt + o SdW (1). Apply Ito’s lemma to

Solution:
av . oV 18V 2] )4
_| O g s & L 58 i+ o SAW (1)
v [ ST 2
S #L,-S.,_o.,._1__2_0253)(1:—-%JSdW(r)=(—r+JZ)Vdf—JVdI'V(r)
2 ZS“ S

2 ’ to
So V follows a geometric Brownian motion as well and we can apply Ito’s lemma

In¥:

2 1

V LV v :(—r+—az]a’r—adW(f)-
d(an):(?(—r-l—al)-kO—E?J ja’HVadW(:) i

—rr H?JE'

L]

- T Inly = 1_
Hence, In(¥,) ~ In(¥,} + N((_.r +io7)7, o-lr] and E[V,)=Ele I=5

k!
—drrad v

- P L
Discounting the payoff by e”", we have V=g E[f f] e

6.2. The Greeks

i jvatl tion price with
- ial derivatives of the op
e Ord;l;cl‘:la;e used to measure the risks-—as well as

respect to different underlying factors, W . | & derivative f are
poti):ntial T ﬁ);ancial derivative. The following Greeks fora ac

routinely used by financial institutions: »

a
Ca ; Rho: p ==~
do

?Z;Theta: ®=%; Vega: U= or

D E =gf—-' + I'=
elta A s ] Gamma asz

Delta

For a European call with dividend yieldy: A=¢ YN(d,)

. LA o e N
For a European put with dividend yield y: A=~¢ Brit )

o ng stock? How do
A. What is the delta of a Furopean call option on & non-dividend paymng

you derjve the delta?

Solution: The delta of a Europea
expression: A = N(d,). For the de

paying stock has a ciecan

. -dividend ]
p; cal gl & 03 ke the mistake by treating

rivation, though, many ma
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N(d,)and N(d,) as constants in the call pricing formula ¢ = SN (d,) - Ke™'"N(d,) and

simply taking the partial derivative on § to yield N(d,). The derivation step is actually

more complex than that since both N(d,) and N(d,) are functions of S through d, and

d,. So the correct partial derivative is g =N(d,)+ Sx—< N(d)-Ke™™ -—a—N(dJ .
oS ' oS as -

Take the partial derivative with respect to § for N(d,} and N( dz)g:

6 a l gl l l 2
—N(d)=Nd)—d =——¢ /2 _ o2
as | Cos 2z Sot So~N2ar
0 ! 0 ] —d3 i | 2
__N(dg): N (d)=d, = e di2 . ___ v R
& os "/ZT. So \f; So~2xr
I -4 12 odrd -3 i a S
= gt T —dF2 O e
SoN2rr So 272'7'_8 X —g

0 S 3
So we have ——N(d,)=~¢" N(d - ke D Nidy = , the
oS ,) % 4 ( l): Sx S N(dl) Ke P j\f(dz) 0. Hence.

last two components of o cancel out and e = N(d,)
&s as o

B. What is your estimate of th

: e delta of an at-the-monev call tock without dividend’
What will happen to delta as t i SRR} Bipck 1NN

he at-the-money option approaches maturity date?
Solution: For an at-the-money European call, th

§=kog L1/ r o Gk
o odr(GtFNr>0and a=N@)>05. As shown in Figue

¢ stock price equals the strike price.

6.2, all at-the-moncy call options indeed have A > 0.5 and the longer the maturity, the

higher the A T Z, & {iiH
er the A As 7—150, (;TE)J;AQ = N(d)= N(0)=0.5, which is als

shown in Fj =1 [ .
1 F'g‘“_m 6.2 (T =10 days). The same argument is true for calls on stock will
continuous dividend ¢

aevif r> oy,
Figure 6.2 aiso shows that w
shorter the maturity, the fas
(S<<K), A approaches 0

hen Sis large (§ > K ). A approaches 1. Furthermore: thj
ter the delta approaches 1. On the other hand. if § is smal
and the shorter the maturity, the faster the delta approacheso-

—_—

—eeppaia Lidiiin )]

9
i & 3 3
d =g — .t = N {d,) = —:‘L’“ YN (d ), L{_j_z.:fid_l_
K as &8
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1 ‘ '

———

0.9 —r = 10 day‘S
_____ 1= 1 month
0.8 seessess oz 3 months

0.7

0.86;

e e N L L

0.5~

Delta

0.4
0.3;

0.2 -

o R

at"
et

1 L
075 8IU s5 o0 95 100 105 110 115 120
Spot Price
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i ' to S and
Figure 6.2 Variation of delta of a European call option with respect to
T.K=100, r=0.05 =025
and decide

i GM stock
C. You just entered a long position for a European call option on

] ) p o (-1\4 5[“ 'K

| i ition?
sudden increase, how will you rebalance your hedging pos

; —§T : sly
—— . 1n(S!K)+(}-‘;y—ig—2—'=2—)£ and A=¢ "N(d) 1s a monotonuusty
Ofution: Since d, = o T
: iy
increasing function of d,, we have 5 1= 4, T= I
ring, for which we short A = ¢ 'TN(d,) shares 0 f(-M
ke 4folio delta-neutral. Since A s;h.a‘reb 0 'hn
thjef g e also need to invest cash (if the optio
patprtel ed to lend $Ke " N(d,) for cach

One hedging method is delta hed

for cach unit of call option to ma
stock costs more than one unit of . la, we ne
Price exactly follows the Black-Scholes formula,
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unit of option) in the money market. If there is a sudden increase in S . d, Increases and

A increases as well. That means we need to short more stock and lend more cash
(Ke™ N(d,) also increases).

The delta hedge only replicates the value and the slope of the option. To hedge the
curvature of the option, we will need to hedge gamma as well.

D. Can you estimate the value of an at-the-money call on a non-dividend paying stock?
Assume the interest rate is low and the call has short maturity.

Solution:  When S=K, we have c= S(N(a’,)—-e_”N(dz)]. In a low-interest
environment, r 0 and e x50 ¢ = S(N(d)-N(d,))

l 2
Wealso have N(d)=N(d,) = [ L oii2v g,
NGy '

where d, =(L—E)\/; and 4, =(—F~+E)\/;-
o 2 o 2

Fora small 7, a typical & for stocks (< 40% per year) and a short maturity (< 3 months).
both o, and 4, are close to 0. For example, if r =0.03, o = 0.3, and r =1/6 year, then

dy,=-0.02 and ¢ _pog

o ]
SN (du)—ﬁ’(dg)“*\f—z—;(d, “632)=g\/2i{- *04oVT -t = ¢ ~046S7.
r

[p Pl"fltj,nce, this approximation 1S used by some volatility traders to estimate the implfed
volatility of an at-the-money option,

The . 3 __”2'\,2 I | = 3
(The approximation e =1 causes a small overestimation since ¢~''* < 1: but the

approximation —¢ " K ~ — ¥ awri. : ]
oppo : ;“aift[on ¢ K =-K causes a smal] underestimation. To some extent, the tWO
Ppostte ellects cancel out and the overall approximation js fairly accurate.)

Gamma

For a European call/put with dividend yield y: I = Nid)e™

i’ \\O—\f;

A Practical Guide To Quantitative Finance Inlerviews

What happens to the gamma of an at-the-money European option when it approaches its
maturity?

Solution: From the put-call parity, it is obvious that a call and a put vfi_th identica!
characteristics have the same gamma (since I" =0 for both the casl_1 position and the
underlying stock). Taking the partial derivative of the A of a call option with respect to

Nl(d )e—b’r | B l
] [=——L—— where N'(d,)=—=—c¢
§, we have SO‘\/; (4, m

-2}

So for plain vanilla call and put options, gamma is always positive.

Figure 6.3 shows that gamma is high when options are at the money. which is the stock
price region that A changes rapidly with S. If § << K or §>> K (deep in the money or
out of the money), gamma approaches 0 since A stays constant at | or 0.

The gamma of options with shorter maturities approaches O_much faster tha:cll Op[i;,oﬁ
with longer maturities as S moves away from K.‘So for deep in-the-money 9; 1 }f;:psto(:k
of-the-money options, longer maturity means higher gamma. In comrast,]r the sk
prices are close to the strike price (at the money) as the maturity qears, llhe 5 [opthe e
for an at-the-money call becomes steeper and steeper. So for options close 1o

price, shorter-term options have higher gammas.

As —0, an at-the-money call/put has [' — o (A becomes a step furac[ion).dT.h.l;ec:Ln
be shown from the formula of gamma for a European call/put with no dividend,

ro V@),

Sor
g i ! ——— . The numerator is 1/ 3
WhenS = K, d, = ],ii’[}%*?)‘/; ~>0=lmV'(d) = —=-The

it i \/ her words, When ¢ =7,
yet the denominator has a limit ll_r;%Scr r 0, so T >0 Inot
T

' s at-the-money oplions
delta becomes a step function. This phenomenon makes hedbmgj_itSLh-., mongey op
T L | .
difficult when ¢ — T since delta is extremely sensitive to change
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Gamma of Call/Put Options

0.1 ) i

009 — 10 dayS |
_____ = 1 month
.......... = 3 months

0.08
0.07
0.06;

0.05|

Gamma

004
0.03
0.02
0.01 )
o'..“. =

580 8 9 95 100 105 110 115 120 125
Spot Price

-u-c--c—._4_._.-..'_-—-—-—.-._._J_._._._._._._._._._-_.

Figure 6.3 Variation of gamma of

K=100, r=0.05 o= (.25 a European call option with respect to S and 7.

Theta

For a European call option: @ = _SN'(d)oe™ g -
/ P HYSETN, )~ rKe ™ N (dy)

For a European put option: @ = _w -yt :
Wt = ¥8¢ " N(=d)) + rKe™ "N(-d,)

When there is no divj y
. v tvidend, the theta for a European call option is simplified 0

=y I ; 3
2T ¢ " V(d.), which is always negative. As shown in Figure 6.4, when

S<<K, =8 Gad A
<K, N(dy)=0 and v (4,)=0. Hence, ® -0, When S>> K, N(d,)=l and
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1\"(d])“~= 0. Hence, ® - —rKe™". When S=K, © has large negative value and the

smaller the 7, the more negative the ©.

| ——— ¢ = 10 days

Theta of Call Options
0 — s =
....... S i
\\ i
i
-5 H
i
i ......
i
10 i
i
-__i._‘
1
A5 i
2 !
£
-20 | ‘\;-
i
i
- 8 1
290 || e T=‘Im0nlh i
e = 3 months :
-30 | i
b
LAl [ e — —
e e o9 6 100, 105 130415 | 120,105
Spot Price

Figure 6.4 Variation of theta of a European call option with respect o Sand

T K=100,06=0.25,r=0.05

A. When will a European option have positive theta?

on non-dividend paying asscts,
ropean puts. their values may
may have positive

Solution: For American options as well as European caéls
theta is always negative. But for deep in-the-money EUOD 5o they
increase as ¢ approaches T if all other factors remati the same, $0 10C)
theta.

- oSNNI | ke N(—d,). If the
A put option on a non-dividend paying asset has © = =

I & N{=d, )= 1. Hepce,
put option is deep in-the-money (§ <<K). then N'(d,)=0and A d,)
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© = rKe™" > 0. That’s also the reason why it can be optimal to exercise a deep in-the-
money American put before maturity.

For deep in-the-money European call options with high dividend yield. the theta can be

positive as well. If a call option with high dividend yield is deep in-the-money (S >> K},

N(d)=N(d,)=1, N'(d,)=0, so the component vSe " N(d,) can make © positive.

8. Ygu Just entered a long position for a call option on GM and hedged the position by
shorting GM shares to make the portfolio delta neutral. [f there is an immediate increase
or Qecrease in GM’s stock price, what will happen to the value of your portfolio? Is it an
arbitrage opportunity? Assume that GM does not pay dividends.

Solution: A position in the underlying asset has zero gamma. So the portfolio is delta-
neutral a_nd Io_ng gamma. Therefore, ¢ither an immediate increase or decrease in the GM
stock price will increase the portfolio value. The convexity (positive gamma) enhances
returns when (here is a large move in the stock price in either direction.

xe?eﬂlleles{s{ It 1s not an arbitrage opportunity. It is a trade-off between gamma and
eta instead. From the Black-Scholes-Merton differential equation, the portfolio V'

satisfies the equation i+f’5§£+10282 oV

1 22
= = g -— L= lta-
o oS 2 as? @+5ﬁ+208[“;V.RnaMa

ne | i ; I, .
utral portfolio, we have @-I--z—o' S C=r This indicates that gamma and theta often

have o ite s !
pposite signs. For example. when an al-the-money call approaches maturity.

theta is large and i ifolio
has Dositive _ g negative. Qur delta neutral portto
positive gamma and negative theta. That means if the price does not move, the

assage of time wi i i
pon;};- d ¢ will result in a lower portfolio value unless we rebalance. So the
p 10 does not provide an arbitrage opportunity

Vega

For European options: U:_a_c__ S A~
Po " ag =S VN )

At-lhe.-mun.ey options are niost sensitive
than either m-the-money or out-of-the-m

s time {0 expiration becomes short
sensitive to change in volatility

to volatility change, so they have higher vegas
oney options. The vegas of all options decrease
er (Vr - 0) since a long-term option is MOIC

A. Explain impli ility ar o
P& Plied volatility and volatility smile. What is the implication of volatility

156

_A

A Practical Guide To Quantilative Finance Interviews
smile for the Black-Scholes pricing model?

Solution: Imphied volatility is the volatility that makes the model option price equal to
the market option price. Volatility smile describes the relationship between the implied
volatility of the options and the strike prices for a given asset. For currency options,
implied volatilities tend to be higher for in-the-money and out-of-the-money options
than for at-the-money options. For equity, volatility often decreases as the strike price
increases (also called volatility skew). The Black-Scholes model assumes that the asset
price follows a lognormal distribution with constant volatility. In reality, volatilities are
neither constant nor deterministic. In fact, the volatility is a stochastic process itself.
Fusthermore, there may be jumps in asset prices.

8. You have to price a European call option either with a/constant volatility 3_0% or by
drawing volatility from a random distribution with a mean’of 30%. Which option would
be more expensive?

Solution. Many would simply argue that stochastic volatility makes the stock price
more volatile, so the call price is more valuable when the volatility is drawn from a
random distribution. Mathematically, the underlying argument is that the price of a
European call option is a convex function of volatility and as a .resu]t
¢(£lo ]) <E [c(d)], where o is the random variable representing volatility and ¢ is the

call option price. [s the underlying argument correct? It’s correct in most, but not all.

2

' Fe oo P
cases. If the call price ¢ is always a convex function of &, then o8

Vega of the option. For a European call option,

o
u=5§= SVTN(d,) = iexp(-a’f /2).

T
V2

The secondary partial derivative - is called Volga. For a European call option.
oo

|

e _sVr dd, _ dd

& mexp(adf !2) o "

fdd

oney call options, both 4 and d, arc

v is always positive. For most out-of-the-m AL

! i ! ' are positive. So dyd; ~
Negative; for most in-the-money call options, both d, and d, are p fip i i
| ' : soreticatly, we ¢
in most cases and ¢ is a convex function of o when dd, > 0. But theoretically.

2 i « . 2 -
Qid < (} when the option 15 close 1o being

have conditions that d, >0 and d, <0 and =k}
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at-the-money. So the function 15 not always convex. In those cases, the option with
constant volatility may have a higher value.

C. The Black-Scholes formula for non-dividend paying stocks assumes that the stock
follows a geometric Brownian motion. Now assume that you don’t know the stochastic
process followed by the stock price, but you have the European call prices for all
(continuous) strike prices K. Can you determine the risk-neutral probability density
function of the stock price at time 77

Solution: The payoff a European call at its maturity date is Max(S, - K, 0). Therefore

under risk-neutral measure, we have c=e‘”J:(s~K)f\. (s)ds, where f (s} Is the

probability density function of S, under the risk-neutral probability measure. Taking the
first and second derivatives of ¢ with respect to X,'° we have

L

P |
= ggj;(s-m,{\}(s)ds

-rr os—K ’
N f (i?!\’ )f"l ($)ds - (K - K)x1

=e " [~ (9)ds

&c G(@c\

and 5= O X &7 e
FTEFTd Tl i R RO ST T o

Hence the risk-neutral probability density function is f(K)y=e" oc :
Sy oK

6.3. Option Portfolios and Exotic Options
[n addition 1o the pricing and properties of vani]
may be expected to be familiar wi
trading strategies-—covered call.
straddle, elc. Furthermore, if you

la European and American options. you
th the construction and payoff of basic option-based
protective put, bull/bear spread, butterfly sprcﬁdv
are applying for a derivatives-related position. you

e

In
lo calculate the deriviiives : 4 s
ol derivitlives reduires the Leibniz integral rule, a formula for differentiating 8 definite
g = fhts are functions of the differential variable:

S0 o ez .
L\'."[ A W)y J:“ "*j:h-fil‘+ "'{P‘:L:)'?f‘—_f(ﬂ(:),:)ffi

£z
Cz o
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shoutd also have a good understanding of pncing and hedging of some of the common
exotic derivatives—binary option, barrer option, Asian option, choaser option, etc.

Bull spread

What are the price boundaries for a bull call spread?

Solution: A bull call spread is a portfolio with two options: long a call ¢; with strike K,
and short a call ¢, with strike K, (K, <K,). The cash flow of a bull spread is

surnmarized in table 6.3.

Maturity 7
Cash flow Time 0 5, <K, K <S, <K, |S82K
Long ¢, -c, 0 S, -K, S, - K,
Short c, ¢, 0 0 (8, - K,)
Total ¢,—¢ <0 0 S, -K, K,-K !

Table 6.3 Cash flows of a bull call spread.

Since K, < K,, the initial cash flow is negative. Considering that the final payoff is
' ! }_’rllll " .
bounded by K,-K,, the price of the spread, ¢ —¢;, )8 bounded by ¢ (K, - K))

F © S,, so the price is also bounded by

Besides, the payoff is also bounded by
2

K,-K
K

LS.

2

Straddle

Explain what a straddle is and when you want to purchase 2 straddle.

: tion with
Solution: A straddle includes long positions in both a call option f}‘;}d . ;’”:J ff;‘polf Ik long
the same strike price X and maturity date 7 on the same stock. ckp :_m Corh
Straddle is | S, —~ K |. So a straddle may be used to bet on large stock p

i latility. If an
Practice, a straddle is also used as a trading strategy for makmbg b;ﬁcc}:nh\;zher L the
Investor believes that the realized (future) volatility ShOUI}cll ; straddle. For example,
mplied volatility of call and put options, he or she will purchasca
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the value of an at-the-money call or put is almost a linear function of volatility. If the
investor purchases an ai-the-money straddle, both the call and the put options have the

price cz;JzO.clcr,S\/;, where o, is the implied volatility. 1f the realized volatility
o, > o,, both options are undervalued. When the market prices converge to the prices
with the realized volatility, both the call and the put will become more valuable.

Although initially a straddle with an at-the-money call and an at-the-money put (K =)
has a delta close to 0, as the stock price moves away from the strike price, the delta is no
longer close to 0 and the investor is exposed to stock price movements. So a straddle is
not a pure bet on stock volatility. For a pure bet on volatlity, it is better to use volatility

- . I : j
swaps or variance swaps. ' For example, a variance swap pays N x (o, — K, ), where A

- . 2 . . . . &
is the notional value, ¢, is the realized variance and K is the strike for the variance.

Binary options

\‘\_)’h_al is the price of 2 binary (cash-or-nothing digital) European call option on a non-
dividend paying stock if the stock price follows a geometric Brownian motion? How

would you hedge a cash-or-nothing call option and what’s the limitation of your hedging
strategy?

Solution: A E:ash-qr-nothing call option with strike price X pays $1 if the asset price is
above the strike price at the maturity date, otherwise it pays nothing. The price of the

option is ¢, =¢ " N(d,) if the underlying asset is a non-dividend paying stock. As we
have discussed in the derivation of the Black-Scholes formula, N(d,) is the probability

Il?at a vanilla call option finishes in the money under the risk-neutral measure. So its
discounted value is ¢ N(d,).

Theoretically, a cash-or-nothing call option can be hedged using the standard delid
. . Ge 4

hedging strategy. Since A=——L=¢"INYd,) : , a long position in a cash-0r
as Sot

nothing call option can be hedged by shorting "N '(d,) ]

SO’\/;

ell when the difference between S and &
ption is approaching maturity 7(? =0)

shares (and a risk-free

meney market position). Such a hedge works w
is large and 7 is not close to 0. Bu when the o

L EL AR TR
K} . . .

For detailed discussion about vol
to Know about Volatility Swaps™ b
be approximated by a portfolio of s

a.“!"y swaps. please refer to the paper “More Than You Ever wanted
1}- :lt\s"m.r Demeterfi, et al. The paper shows that a variance swap ¢d°
raddles with proper weights inversely proportional to /A",
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and the stock price S is close to K, 4 Is extremely volatile'” and small cl}angcs .in the
stock price cause very large changes in A. In these cases, it is practically impossible to
hedge a cash-or-nothing call option by delta hedging.

We can also approximate a digital option using a bull spread \_wish two calls. f call
options are available for all strike prices and there are no transaction cosils, we can lclu_nlg:
1/2¢ call options with strike price K —¢ and short 1/2¢ c'al] options lwnl} strike price
K +¢. The payoff of the bull spread is the same as the digital cail option if S, S K -¢

(both have payoff 0) or S, 2 K+¢& (both have payoff §1). When K-¢<S, <K +é¢,

their payoffs are different. Nevertheless, if we set & — 0, such a strategy will exactly

replicate the digital call. So it provides another way of hedging a (.jighal'call option. Eh_ls
hedging strategy suffers its own drawback. [n practice, not all strike prices are Ifrade' in
the market, Even if all strike prices were traded in the market, the number ot options

needed for hedging, 1/2¢, will be large in order to keep £ small.

Exchange options
@”—&rﬂanmmmy

geometric

How would you price an exchange call option that pays max
Assume that S, and §, are non-dividend paying stocks and both follow

Brownian motions with correlation g.

ge of numeratre. Numeraire means &
et, we usually use the focal
fien casier to usc a different
always be

Solution. The solution to this problem uses cban
unit of measurement. When we express the price of & .a‘ss
currency as the numeraire. But for modeling purposcs, It 1S O1€7 i
asset as the numeraire. The only requirement for a numeraire ¥ ‘

positive.
The payoff of the exchange option depends on both 5.
and S, , (price of S, at 7), so it appears that we need two geome

{price of §, at maturity date 7)

{ric Brownian motions:

dS, = i S\dt + 0,8,dW, ,

dS, = p,S,dt + 0,8,dW, ,

et if we use S, as W roble just one gcnmclric
- 1 ! 3 / the P oblem to Ju

Yot v the numeraire, we can convert ‘

| S 0)=S,, max st l AR When
(lﬁ 1y ‘S"{ JdF ) =l .| _RI i

i Il /;

Brownian motion. The final payoff is max

l L L1 4

5 J_—a(}ﬂtﬁ‘-#" = TS
2§ 5K and r = 0= n(S/K) > 0=, = (rio+030NNT P Sy
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S, and S, are geometrical Browian motions, f=§i is a geometric Brownian motion as 6.4. Other Finance Questions

5 Besides option pricing problems, a variety of other quantitative finance problems are
tested In quantitative interviews as well, Many of these problems tend to be position-
S0.Inf=InS, ~InS, follows a normal distribution as well and / follows a lognormal specific. For example, if you are applying for a risk management job, prepare (0 answer
questions about VaR; for fixed-income jobs, get ready to answer questions about inferest
rate models. As [ explained in Chapter 1, it always helps if you grasp the basic
' knowledge before the interview. In this section, we use several examples to show some

A T S LY 28, 8 &r - typical interview problems.

-, == Y

well. One intuitive explanation is that both In Sy and InS, follow normal distributions.

distribution. More rigorously, we can apply the Ito’s lemma to f= £2-:

':""'IJ *"'.I-I s (?SQ ) Sl , aSﬁ Sﬁ : 53'; o ﬁxg
o o 1O v 18y 2y Portfolio optimization
df = Z—dS +=—as, + _ 2L cyeyy 1OS 0y _
as, ! as, ' 2 as? ( )+ 288, (dSZ) * 88,85, a3,ds, You are constructing a simple portfolio using two stocks 4 and B. Both have the same

2 S, S S S S expected return of 12%. The standard devialtion of A’g retumn is‘20%u and ther slftJTdard
= -4, E—dt -0, E‘dW,,J + fy 2 (it +0, —idW:g + 07 22 gy —- po,o, =2 d deviation of A’s return is 30%; the correlation of thel_r returns is §0 Yo. \Ho“ wi quu?
| | > E 5 B allocate your investment between these two stocks to minimize the risk of your portfolio

- 2 . _ _ } :
= (,Uz ~ {4+ 0, —po',az)jd!—aldeu +o, fdiv, Solution: Portfolio optimization has always been a crucial topic for investment
' ' . - ' is by far the most
={ 4, ~ - ; management firms. Harry Markowitz’s mean-variance portfolio theory is by
variance portfolio theory assumes that investors prefer (1) higher expected returns for a

S, : - . - viations/variances
To make f=22 4 martingale, set s,  ,; 407~ po.c, =0 and we have £ Sy :;2 given Jevel of standard deviation/variance andl (2) lower stz}ndar]? de ia gy
X i e il S for a given level of expected return. Portfolios that provide t ¥ mn ey T
d 22 : ‘ deviation for a given expected retum are termed efficient portfolios. The expected retu
and — s ; . ) ) . 2
S, 4 martingale under the new measyre. The value of the exchange option using and the variance of a portfolio with N assets can be expressed as
T
S, as th o . - V] Hp =Wt Wy +- -+ wypuy =w
| ¢ numeraire 1s C = £ may e ==L0 ||, which is Just the value of a call option i ]
Pr J Vaf(rp)=20',. W, +Zoyw,wj =w Xw
1=}

| | | iy
with underlying asset price § = 1 strike price §

S ¥
i

e 2 2 |
o, = /o, —2poio,+0l. $o s wvalue

i J ector of 20's:
d = IH(S;_.I’S,)+0.SO'.31' i correlation; w is an Mx1 column vector of w,’s; u is an Nx1 column vector of 2
A and d, =d -5\t The payoff of the exchange option

. aots N x N matrix.
2 is the covariance matrix of the returns of N assets, an M | iven level of
expressed in local currenc is S,C i rasieipoe jof dhe TEIGtN. for 4 ghied T
oy = - J ; : RE bk > variance ot he n e
i W V), it Loven it Inlmg}iiescgi:' E;eaformulatcd as the followng optimization
€Xpected return, the efficient portfolio
problem:

=1, interest rate r =0, and volatility where w,,Vi=1.--, N, is the weight of the i-th asset in the portfolio; 4, ¥i=1-Nis

' . 214 iance of i-th asset’s return;
the expected return of the i-th asset; o) is the vari

i ] - ¢ /-th assets and o, 15 their
Py =8, 0,0, is the covariance of the returns of the /-th and the "

—

is Cy= % N(d\)- N(d,), where
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. r
min w' Zw
1

. . where e is an ¥ x1 vector with al] el 13
sdoow' = g, we=l ements equal to 1.

For this specific problem, the expected returns are 12% for both stocks. So u, is always
i -

[2% no matter what w, and w, (w, + wy =1) are. The variance of the portfolio is
var(r,) = owl + T + 2P, 40 T uW, W,

=g +ol(l- w,) +2p, 50,0,w,(1-w )
Taking the derivative of var(r ) with respect to w, and setting it 10 zero, we have
O var(r,)

= 2 - 2 K
- 200w, 20',,(1-HA)+2pA.BcerB(I~w{1)—2pwc7/fo'5wﬁ =0

0.09-0.5x0.2x0.3

aff " PusCoy
G, =20,,0,0,+ oy 0.04-2x0.5%0.2x 0.3+0.09

=S U, =

28
=
So we should invest 6/7 of the money in stock 4 and 1/7 in stock B

Value at risk

Briefly explain what VaR is. Wh

[ at is the i ' ¢
the cisk of dertvativao potential drawback of using VaR to measure

Solution: Value at Risk (VaR) and stress te
two important aspects of risk mapa

. gement. |
VaR is de_ﬁned as the following: VAR is 1h
that there is a low, pre-specified probability

$t—O0r more general scenario ana]ysis“art;
. . - |

nthe Financial Risk Manager Handbook

€ maximum loss over a target horizon such

. i that the actual loss wil] be larger.
ven
a confidence level @e(0, 1), fhe VaR can be implicitly defined as

agement since it g ari :
g L Since it summarizes the risk to a single dollar number.

——
i
The optimal weiahts I
l weights have closed form solution w* = J¥ e+ 4, where A E—;{ﬁ
Tieh N €T L, ‘= |
A-0B I
F==—. A=e¢'2 >0, B=pry
» =N £, " g
"1F.r'rmrrz'r'li"£ M Al s #>0, D=4C- 5.
@l Risk Manager Handbook by Phill;
e ¥ Phill on 3 .
aspects of risk management. A classie book for \:,ggei;(Il:}(;‘?elztakio?p;ehinsg:_ |b00k covering different
34, also by Philippe Jorion.
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Mathematically, it is simply the (negative} first or fifth percentile of the profit

distribution.

As a percentile-based measure on the profit distribution, VaR does not depend on the
shape of the tails before (and after) probability ] —a, so it does not describe the loss on
the left tail. When the profit/loss distribution is far from a normal distribution, as in the
cases of many derivatives, the tail portion has a large impact on the risk, and VaR often
does not reflect the real risk."® For example, let’s consider a short position in a credit
default swap. The underlying asset is bond 4 with a $1M notional value. Further assume
that 4 has a 3% default probability and the loss given default js 100% (no recovery).
Clearly we are facing the credit risk of bond A. Yet if we use 95% confidence level,
VaR(A4) =0 since the probability of default is less than 5%.

Furthermore, VaR is not sub-additive and is not a coherent measure of risk, which
means that when we combine two positions 4 and B to form a portfolio €, we do.nol
always have VaR(C) < VaR(A4)+VaR(B). For example, if we add a short position in a
credit default swap on bond B with a $1M notional value. B also has a_3% default
probability independent of 4 and the loss given default is 100%. Again we have
VaR(B)=0. When 4 and B form a portfolio C, the probability that at least one bond will

default becomes 1-(1-3%)(1-3%)=5.9%. So VaR(C)= $IM > VaR(A) + VaR(B).
Lack of sub-additivity directly contradicts the intuitive idea that diversification reduces
risk. So it is a theoretical drawback of VaR.

(Sub-additivity is one property of a coherent risk measure. A risk measure o( '
considered coherent if the following conditions holds: p(X +¥)s p(){)f/)(}');
plaX)=ap(X), Va>0, p(X)<p), if X<F; and p(X +k)=p(X)-k for t':m)’
constant k. It is defined in Coherent Measure of Risk by Artzner, P.. et al., Mathematical
Finance, 9 (3):203-228. Conditional VaR is a coherent risk measure.)

X) is

Duration and convexity

ThE Bathbion of's bped o dolimd o D ,_1_92),, where P is the price of the bond and y

P dy
L d'p -
L L o . & s (T ——— A l /INE
Is yield to maturity. The convexity of a bond is defined as C = ppty
Doy

T ) .l L ‘Ay. when Ay is small, 2,
aylor’s expansion, — =~ ~DAy+~2-C Y 1 It

For a fixed-rate bond with coupon rate ¢ and time-to-maturity :

: g ail risk.
5 Stress test is often used as a complement 10 VaR by estumating the tail
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712 D1 ¢ToDl yT=2pd TT=Ctcl=cl yTo ol

Another important concept 1s dollar duration: $D=~—az)-= PxD. Many market
participants use a concept called DVO1: D)0l S [
10,000xdy° which measures the

rice ch l i
J;UCh < :;Ee wcl;e;; the quld (.:hanges.by one basis point. For some bond derivatives
o ps, dollar dfjrahon is especially important. A swap may have value P =90 iI;
which case dollar duration is mare meaningful than duration o

When # bo i .
ool thf;d; Wll.h values P,i=1,+, n, and Durations D. (convexities C,) form a
. uration of the portfolio is the value-weighted average of the durations of

the components: D= y ﬁ,{) C= i S
;P a _Z];:};C: ), where P=ZP,. The dollar duration of

=l

th 0 15 si
e portfolio is simply the sum of the dollar durations of the components: $.2 = iﬂ)

=l

What are the pri . ,
price and duration of an inverse floater with face value $100 and annual

coupon rat % —3r tha atures 1 ? ons are pa d
. I lel 30% that nl. tures 1 S years: Assume that the coup ai
emiannually and the current _‘fle]d curve is flat at 7 5% . |

. [t}

Solution: The k : :
price a ﬁ,\'ed-inc?m‘g ss:iw'lg basic fixed-income problems is cash flow replication. To
using a portfolio of fundai?-l} \*I«lth exotic structures, if we can replicate its cash f.low

ental bond types such as fixed-rate coupon bonds (including

zero-coupon  bonds -
follow! ds) and floating-rate bonds, no-arbitrage ;
lowing conclusions: - arbitrage arguments give us the

Pric i ) i
DO]E_:);S:;?;?;?‘ sl;acunty_= Prlce_of the replicating portfolio
‘ the exotic security = Dollar duration of the teplicati '
To reP!lcate the described inverse floater. we ¢ el
% ﬂnoalmg rate bonds, which is worth $160 eaccélhn -
.S/(_) annual coupon rate, which is worth
floating-rate bond is adjusted every (.5

5¢ a por?folio constructed by shorting
$10, and longing 4 fixed-rate bonds with a
. Ly .0 "’a‘:h. as well. The coupon rate of a
t+0.5y is determined at ¢. The cash ﬂofwsa:)sf ﬁdy;lb]e tn arrear: the coupon rate paid at
summarized in the followine tahle b oth positions and the whole portfolio are

owing table. 1t is apparent that the total cash flows of fhc portfolio

are the same as the descri i h
of the replicati S r_lbed nverse floater. So the price of the i I pri
eolicatl e o price of the inverse float is the price
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| Cash flow Year 0 | Year0.5 Year 4.5 | vears |
| _ l
Short 3 floating- | 54 ~150r, 150 3001507, |

| rate bonds ! ) r

1 i

| Long 4 bonds with i

| 7.5% coupon rate =i L - ‘iS \ Ay \
303007, 1151507, l

| Total 100 | 15-150,

L
—

e same as the dollar duration of the
Since the yield curve is flat.

103.75 (after the payment of
5, and the dollar duration'® is

The dollar duration of the inverse floater is th
portfolio as well: $Dm,m_,=4x$DJ,,_h,dﬁ3><$D‘,,.m,,.W.

r,=7.5% and the floating-rate bond is always worth $

§3.75, the price of the floating-rate bond is $100) at year 0.

d(103.75/0+y12) 5. 10375 . i 10,

$D —_—

Soatng = T dy - (l+y/2)2 1+y/2

_ LR T 100
The price of a fixed-rate bond is £ = ZW +W J

=1

where 7 is the maturity

of the bond. So the dollar duration of the fixed-rate bond is

5D e LS f——ﬁg——+——10g‘7}:410.64
' dy 1+ /205204572 (+y/2)

So 8§D, =4x8D, , —3x - T 1498 and the duration of the inverse floater 15

HHerse

B . =8D

Wy IAVEESE

/P, =1498

Forward and futures

What's the difference between fut
Is strongly positively correlated with
which one has higher price: futures or

ures and forwards? 1f the price of the underlying asset
are stochastic,

interest rates, and the interest raics
forwards? Why?
ntracts; forward

ded standardized €0 .
Futures contracts

are mMore flexible.

Solution: Futures contracts
£ the contract wenm.

contracts are over-the-counter a
ar¢ marked-to-market daily; forwards cont

are exchange-tra
‘.’

greements SO thes
acts are settled at the end ©

Sr( COUpOn bond.

16 - . 11 ! ’ ati 4 six-nionth Z
The initial duration of a floating rate bond IS the same as the duration of 8
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If the interest rate is deterministic, futures and forwards have the same theoretical price:
F=8e" 7 \where u represents all the storage costs and y represents dividend yield

for investment assets, convenience yield for commodities and foreign risk-free interest
rate for foreign currencies.

The mark-1o-market property of futures makes their values differ from forwards when
interest rates vary unpredictably (as they do in the real world). As the life of a futures
contract increases, the differences between forward and futures contracts may become
significant.  [f the futures price is positively correlated with the interest rate, the
increases of the futures price tend 10 occur the same time when interest rate is high
Because of the mark-to-market feature, the investor who longs the futures has an
immediate profit that can be reinvested at a higher rate. The loss tends to occur when the
interest rate is low so that it can be financed at a low rate. So a futures contract is more

valuable than the forward when its value is positively correlated with interest rates and
the futures price should be higher.

Interest rate models

Explain some of the basic interest rate models and their differences.

Selution: In general, interest rate models can be separated into two categories: short-raté
f'nodels and fo.nvard-rale models. The short-rate models describe the evolution of the
mstantancous nlerest rate R(/) as stochastic processes, and the forward rate models
(e.g.. the one- or two-factor Heath-Jarrow-Morton model) capture the dynamics of the
whole forward rate curve. A different classification separates interest rate models mto
arbitrage-free models and cquilibrium models. Arbitrage-free models take the current
term structure—constructed from most liquid bonds-—and are arbitrage-free with respect

to the current market prices of bonds. Equilibrium models, on the other hand, do not
necessarily match the current term structure.

Some of the simplest short-rate models are the Vasicek model, the Cox-Ingersoll-Ross
model. the Ho-Lee model, and the Hull-White model. ]

Equilibrium short-rate models

Vasicek model: dR(1) = alb- R())dt+ o dW (1)

W hc.:n R{#) > b, the drift rate is negative: when R(t) < b.the drift rate is positive. So the
Vasicek model has the

b. But with constant vo
which 15 undesirable.

desirable property of mean-reverting towards long-term average

Cox-Ingersoll-Ross model: dR(t)=a(h- R())dl + o Ru) dW (1)
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perty of the Vasicek model.

_Insersoll-Ross model keeps the mean-reversion pro
e k of Vasicek mode! by

But the diffusion rate o+ R(u) addresses the drawbac
guaranteeing that the short rate is positive.

No-arbitrage short-rate models

Ho-Lee model: dr = O(1)dt + odz

The Ho-Lee model is the simplest no-arbitrage short-rate model where 8(t) 1s a time-
dependent drift. 8(¢) is adjusted to make the model match the current rate curve.

Hull-White model: dR() =a(b(0)—R())d! +odW (1) |
the Vasicek model. The difference s
White model to make it fit the current

The Hull-White model has a structure. similar to
that (¢ is a time-dependent variable in the Hull-

term structure.




Chapter 7 Algorithms and Numerical Methods

Although the percentage of time that a quant spends on programming varies with the job
function (e.g., quant analyst/researcher versus quant developer) and firm culture, a
typical quant generally devotes part of his or her time to implementing models through
programming_ Theretore, programming skill test is often an inherent part of the
guantitative interview,

To a great extent, the programming problems asked in quantitative interviews are similar

to those asked in technology interviews, Not surprisingly, many of these problems are
platform- or language-specific. Although C++ and Java still dominate the market, we've

seen a growing diversification to other programming languages such as Matlab, SAS., 8-
Plus, and R. Since there are many exjsting books and websites dedicated to technology
interviews, this chapter will not give a comprehensive review of programming problems.
Instead, it discusses some algorithm problems and numerical methods that are favorite

topics of quantitative interviews.

7.1. Algorithms

In programming, the analysis of algorittm complexity often uses asymptotic analysis
that ignores machine-dependent constants and studies the running time 7'(x) —the
nurmber of primitive operations such as addition, multiplication, and comparison—as the
number of inputs n — .'
Three of the most important notations in algorithm complexity are
notation and ® notation:

big- O notation, {2

0(8 (ﬂ))’- { /(n): there exist positive constants ¢ and », such that 0 < f(n) < cg(ny for

all n>n,}. It is the asymptotic upper bound of /().

Q(g(n))={ f(n): there exist positive constants ¢ and n, such that 0 £ cg(n) £ f(n) for
all n2 n, }. It is the asymptotic lower bound of f{(n).

9(8(”)) = { f(n): there exist positive constants ¢, ¢, and o, such that
¢g(n)< f(n) < c,g(n) forall nzn,}. Itis the asymptotic tight bound of f(n).

: . e cmnbdasity:
Besides notations, jt is also important to explain 1wo concepts algorithm complexity

clion to Algorithm’” by Thomas ).

commend *fatrodi il vas |
¥ theories discussed in

d Clifford Stein. it covers all the
pearing in interviews.

It you want to review basic algorithms, | highly re
CQrmcn, Charles E. Leiserson, Ronald L. Rivest an
this section and includes many algorithms frequently ap
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Worst-case running time #(»7): an upper bound on the running time for any #» inputs.

Average-case running time A(»): the expected running time if the # inputs are
randomly selected.

For many algorithms, () and A(n) have the same O{g(n)). But as we will discuss

in some problems, they may well be different and their relative importance often

depends on the specific problem at hand.

A problem with » inputs can often be split into ¢ subproblems with #/5 inputs in each

subproblem, This paradigm is commonly called divide-and-conquer. If it takes f(#)

pr‘imitive Qperations to divide the problem into subproblems and to merge the solutions

of the subproblems, the running time can be expressed as a recurrence equation

T(ny=aT(n/b)+ f(n), wherea>1.h> 1 and f(1)20.

Ihe master theorem is a valuable tool in finding the tight bound for recurrence
. o 2, (s

equation I(n)=aT(n/b)+ f(n): If f(n)=0fnl%"'(}°) for some constant &> 0.

log, a ) .
e G)(” - ) since f(n) grows slower than n'"*. Iff(n):@(niogf’a log* n] for
; |[1|'_{." - ) . — L
some k > 0, T(n) = @[f? . ]Og n) , Slnce f(”) Emd nlﬂgha grOW at Slmllar ook “I‘
log; ti+€ 4 1 T _
f(n):Q(n ; ]for some constant £ >0, and af (n/b) < ¢f (1) for some constant

¢ <1, T(n)=O( [ (n)),since f(n) grows faster than n"°®°

Let's use binary segrch to show the application of the master theorem. To find an
element in an array, if the numbers in the array are sorted (@, <@, <--- < a,), we can use

binary search: The ithm Wi |

£ he algorithm starts with G, If @, =x, the search stops. It

a ., > x, we only . o i Lo

. y need to search «, S ) If a . <x, we only need to search
“:“ e at i

w.jet s, Bach time we can reduce the number of elements to search by half after

making one comparison. So we have g = , b = 2, and f(n)=1. Hence.

= log,1 .
f(n)= ®(n log® n) and the binary scarch has complexity ©(logn).

Number swap

How do you swap two integers, | , Wi I iti
p cgers, i and j, without using additional storage space?

Sotution: C . .

s Efliﬁmm?‘n-a-nq swap are the basic operations for many algorithms. The most

i mb]cn:q.l'lt . m]map USCs a tlemporary variable. which unfommateiy s forbiddeﬂ
p since the temporary variable requires additional storage space. A simple
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mathematic approach is to store the sum of i and j first, then extract i’s value and assi'gn
it to j and finally assign j’s value to . The implementation is shown in the following

code:”
igd swaplint &i, ant &j) |

}

An alternative solution uses bitwise XOR
thatx *x=0and 0 *x=x:

(") function by taking advantage of the fact

void swapl(int &i, 0T &G
i=1i" 7;
jo=49 "~ i: /7 i {
i=1"73; / = ’

Unique elements | ok
_ 1 write some code to extract the unique clements

If you are given a sorted array, can yo 1 3.3.3,5.5 59999 the unique

from the array? ﬁB‘F?:‘Xampl”C, if the array is [1.
elements should be [1,3,5,9). = Lidd
ment sorted array with elements 4,

t a in the sorted array, its val

<a S Sa Whenever

Solution: Le e an n-ele = : A

s 1 n ue is different from its
wC encounter a new ¢lenme . ‘ e
sing this property We can casily extract the untque

revigu t (a #2a,,) U RN e P
p ous element ( f : I) the following function:

elements. One implementation in C++ is shown as

o=l

Adogue (T L1, 2 ey

remplate <clazs T> vector<l>

vec.reserve (nj;
vec.push_back(allj)i

T 4 . -4 H H
for fint d=13 a<n; *F 00

e e

f This chapter uses C++ 10 demonstrate some implement
described using pseudo codes.

The following is a one-line equiva
it Tacks clarity .

Jvold dwap(int &i, int &3
*Ishould point out that €+ STL lias general algor

the algorithms arc

atjons. For other problems,

]ell‘ "]“] rswd no Wil gaels. t Sll[][l C lin1cnd. [h(!UL.'h, as

( jo=j=(i#=]) =37 37

i ique jque_copy.
ithms for this basic operation: umque and unique_cop
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Horner's algorithm
Write an algorithm (o compute Y=AF Ax+ A+ A v 4 7

Solution: A natve approach caiculates each component of the polynomial and adds them

up. which takes O(#n%) number of myl(inliens: !
umber of multiplications. We can use Horner’s algorithm to

reduce the number of multiplications to O(n). The algorithm expresses the original

polynomial as = ((((A”.r A4, dx+ An_ng oot AQJX + A,)x +4, and sequentially
calcul = -

CL_] at.e ?" A B, = Bx+d, . By = Bx+ Ay We have y= B, with at most 1
multiplications. - iz

Moving average

Given a lar _

another arx‘ii array A _ot‘ length m, can you develop an efficient algorithm to build

3. g ¥ fc.onlammg the n-element moving average of the original array
\-l- L] z;l"f‘zr. ll?,:(A‘,_“”'FAr f-—f+“'+Af)/ﬂ, v1=}7,,m)r)

al moving average and then add the new number, and you
© NCWsum by n yields the new moving average. Here 15

analyze the _ sorting algorithms o Sort n distinct values A,,-, 4, and
UYZC Lhe Complexn}r of each 31g0rithm9

Solution: Sorting ;
- D0rling is a _ .
many programs. Sq : i?llqamenlai process that is directly of indirectly implemented in
& . anet_\ Of SUrt[ng algori[hms ha\-"e bcen dCVClOpCd fbl difff:]'cl]t
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purposes. Here let’s discuss three such algorithms: insertion sort, merge sor and quick
sort.

Insertion sort: Insertion sort uses an incremental approach. Assume that we have sorted
subarray A[l, ..., i-1]. We insert element 4, into the appropriate place in A[l, ..., i-1),
which yields sorted subarray A[, ..., i]. Starting with i =1 and increases i step by step
o n, we will have a fully sorted array. For each step, the expected number of
comparisons is i/2 and the worst-case number of comparisons 1s i. So we have

A(n) = G[iuzj =O(n%) and W(n)= @[Zn:i} = O(n?).

i=| =1

Merge sort: Merge sort uses the divide-and-conquer paradign. It divides the array into
two subarrays each with #/2 items and sorts each subarray. Unless lh{? gubarray is s;pal]
enough (with no more than a few elements), the subarray is again divided for sorting.
Finally, the sorted subarrays are merged to form a single sorted array.

The algorithm can be expressed as the following pseudocode:
mergesort( A, beginindex, endindex)
if beginindex < endindex
then centerindex « (beginindex + endindex)/2
mergel <- mergesort(A, beginindex, centerindex)
merge2 <- mergesort(A, centerindex + 1, endindex)
merge{mergel, merge2)
The merge of two sorted arrays with n/2 elements each in{o one array Iai.m (~)f n)
Primitive operations. The running time 7(n) follows the following recursive function:

2T(n/2)+ (), if n>1
k ifn=1
i Seydk iy =ENn),
Applying the master theorem to 7(n) with a=2.b=2. and f(#) . the
: PR = the
f(”)=@(nlogba log® n). So 7(rn) = O(nlogn). For merge sort, A(n) and W(n) are

T(n)= {

we have

same gag T(n). I

ui r 3 ses one ol the
i ui : v 3 ethod. It chooses

QUleSO t: Q 101(801[ 15 anothcr recursive SOI’I!Ilg nl ;:]C!n-:nh

Smaller than A.‘ are put in a Suban‘al\! to the left of A, those € i bOlh (il
Put in a subarray to the right of 4, The algorithm is then repeate |
(and any subarrays from them) until all values are sorted.
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In the worst case, quicksort requires the same number of comparisons as the insertion
sort. For example, if we always choose the first element in the array (subarray} and
compare all other elements with it, the worst case happens when 4,.---, 4, are already

sorted. In such cases, one of the subarray is empty and the other has »—1 element. Each

step only reduces the subarray size by one. Hence, W{n)= @(z i] =0().

i=l

To estimate the average-case running time, let’s assume that the initial ordering js
random so that each comparison is likely to be any pair of elements chosen from
Ao, A, IF we suspect that the original sequence of elerments has a certain pattemn, we

can always randomly permute the sequence first with complexity ©(x) as_explained in
the next problem. Let 4, and ;fl_f be the pth and gth element (1< p < g < ») in the final
sorted array. There are ¢ — p + | numbers between A » and Eq. The probability that E
and ;f_f Js compared is the probability that ;fq 1s compared with ;fp before ;IPH...._ or

A,y 1s compared with either 4, or ﬁq (otherwise, ;fp and A4 , are separated into

different subarrays and wili not be compared), which happens with probability

P(p.q)= P (you can again use the symmetry argument to derive this probablity).

"oyl u ¢l 2 \'.
The total EXPCC[@d number OF comparison iS A‘(H) = 1 .P( = [
pvq)
ZZ 2 q = p—f— I/'
= @(F? Ig .r‘?).

¢=2 p=| -2 gl

Although Ibforglical!y quicksort can be slower than merge sort in the worst cases. It i
often as fast as, if not faster than. merge sort. e

Random permutation

A. If you have a random number generator that can generate random numbers from

either discrete or continuous uniform distributions. how do vou shuffle a deck of 32
cards so that every permutation is equally likely? '
Solfution: A simple algorithm to permute # elemen
assigns a random number 1o cach card and the
random numbers. * By svmunetry, every po
sequences) is cqually likely. .

ts 1s random permutation by sorting. It
n sorts the cards in order of their assigned
b ssible order (out of a! possible ordered
Ihe complexity is determined by the sorting step, so the¢

e

4 .
If we use the continuous uniforn:

i : di»tribution‘ theoreti ; LYy et yve Zero
probability of being equal. tically any two random numbers have
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unping time is ©(nlogn). For a small », such as n=>52 in a deck of cards.. the
complexity @(nlogn) is acceptable. For large n, we may want 10 use a faster algm‘n.mml
known as the Knuth shuffie. For » elements A[l],+-+, Aln), the Knuth shuffle uses the
following ]oop?c: generat:e_z;_random permutation:

for (i=1 to n) swap(A[i], A[Ra_nci_om(_i,_r?_&),
where Random(i. ») is a random number from
iand n.

The Kputh shuffle has a complexity of ®(n) and an intuitive interpretation. In the fi

step, each of the n cards has equal probabilit}_J of belr}g ghos_en abs m{-'.-i-‘]]:bt} L;:;i :nn;; t;l;]t
card number is chosen from the discrete uniform distribution C'll“uobabimy n,f Aty
second step, each of the remaining n — | cards elements has equl-,l}dpl:c( ucmé ity
chosen as the second card; and so on. SO naturally each ordered scq

probability .

he discrete uniform distribution between

st

characters in the file can be read

B. You have a file consisting of characters. rheHow do you pick a character 50 that

SR is upknown.
sequentially, but the length of the file is unk ; 9
every character in the file has equal probability of being S

[ is a sec character, we
Solution: Let’s start with picking the first character. If 1t{herc ﬂ::e apis;,;o:ﬂm sty
keep the first character with probability 1/2_ and replace i iy
character with probability 1/2. If there 1s a third charac&er, o e O
it ettty 13, The pmbabi[iw 2;3' a]::gni?gll::ile lfnteilpihe final character. In ﬂlhicr
With prObabdlty 1/3 The 2 process ‘ls 1w / “anncd H Ch'dI'BL'[Cl'S and the

t we pick after we have s¢

i - o " and the probability

ty of keeping the pick is —=2

(n+1)th character exists, the probabili |
ing Sl - Juction, we can eastly
itchi 1)th character 18 4—1—= Using simple inductic
of switching to the (n+1)th ¢ ntl if there are m characters.
prove that each character has 1/m probability of being chosen !

Search algorithm

4. Develop an algorithm t0 f'm.d both th
using no more than 3»/2 comparisons.

: " UmBpeTs
. maximum of 7 1
4 g nd the max
e minimum &

s, it takes #1 comparisens 10 14&:11!:5;
gy . However. it takes @t most 3 l__l
nprf maximur. 1f We sparate the
= th":r an‘ci‘ put the smaller one In Broup
al

Solution: For an unsorted array of
¢ither the minimum or the maximum ©
comparisons to identify both the Immmfll_'ﬂ i
elements to n/2 pairs, compare the clement5 1%
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A and the larger one in group B. This step takes #/2 comparisons. Since the minimum
of the whole array must be in group 4 and the maximum must be in group B, we only
need to find the minimum in 4 and the maximum in B, either of which takes n/2 -]
comparisons. So the total number of comparisons is at most 3n/2.>

B. You are given an array of numbers. From the beginning of the array to some position,
all elements are zero; afier that position, all elements are nonzero. If you don't know the
size of the array, how do you find the position of the first nonzero element?

Solution: We can start with the Ist element; if it is zero, we check the 2nd eJement; if the
2nd element s zero, we check the dth element... The process is repeated until the ith

¢ =1

step when the 2tk element is nonzero. Then we check the ———— 4 element. If it is
- 2

4 -1

zero, the search range is limited to the elements between the th element and

the 2'th element; otherwise the search range is limited to the elements between the

L i-]

2" th element and the th element... Each time, we cut the range by half. This

methpd is basically a binary search. If the first nonzero element is at position n, the
algorithm complexity is ®(log n).

(.:' You have a squa_re grid of numbers. The numbers in each row increase from left to
right. The numbers in each column increase from top to bottom. Design an algorithm to
find a given number from the grid. What is the complexity of your algorithm?

Solfution. Let 4 b.e an nxn matrix representing the grid of numbers and x be the number
we want o ﬁl'lfi in the grid. Begin the search with the last column from top to bottom:
A+ A, . If the number is tound, then stop the search. If 4, < x, x is not in the grid

and the search stops as well. If 4, <x< A.,,. then we know that all the numbers ki

rows 1,‘- -1 are less than x and are eliminated as well.® Then we search the (i + 1)th row
from right to lefi. If the number is found in the (i+1)h row, the search stops. If

T > %, Xis notin the grid since all the number in rows i+] and above are Jarger than

x. 164, = X>A, . we eliminate all the numbers in solvaizs | +1,,n Then | w8

can search along column from A.,, towards A, , until we find x (or x does not exist in

k] .
Sfight adjustment needs to be made if 1 is add. but the u

b er bound 3#/2 sti
ican be 0, which means x < 4 pp und 3a/2 still applies

- In which case we can search the first row from right to left.
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the grid) or a & that makes A4,  <x <4, and then we search left along the row & +1

from 4, , towards 4, ... Using this algorithm, the search takes at most 2n steps. S0

its complexity is O(n).

Fihonacci numbers
Consider the following C++ program for producing Fibonacci numbers:

int Fibonacci{int n}
if (n <= U

elga 1f (n==1}
return 1;

. .y -2
reru - Fibonacei (n-1i tFibonacei (n-2)

}
B _ Lbiiabiy
If for some large n, it takes 100 seconds to compute Fibonacci{n). how long will it take

is algori ient? How
to compute Fibonacci(n+1), to the nearest second? Is this algorithm efficien

would you calculate Fibonacci numbers? 1
r inefficient recursive method to calculate

ion: Thi jon uses a rathe ¢ _ 7l
Solution: This C++ functio o ot i ity b i1

Fibonacei numbers. Fibonacci numbers are de

F=0,F=1F=F_ +F_,, vn22

(1+45) -(1-45) Which can be easily proven
F. has closed-formed solution F, =T ‘

using induction. From the function, it is clear that

T)=1, T()=1, T(n)=Tn-D+T(n=2)+1 1)
i N s of Fibonaccl numbers as well. Fora

So the running time is a proportional to a sequence f
T(n+ 1) 3 \/5 rd gl takes 100 seconds to comp

large n, (1-+/5)" =0, so T 3
(n) : 1 . l __'_\/54-!.!.(”;!::*()2
Fibonacci(), the time to compute Fibonacei(n+1) is T+ 7
seconds,’
1 $= VS +] is called the golden ratio.
2
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\E+l
2

The recursive algorithm has exponential complexity @ [ J . which is surely

inefficient. The reason is that it fails to effectively use the information from Fibonace
numbers with smaller » in the Fibonacci number sequence. If we compute 5, F.--- F

LF
in sequence using the definition, the running time has complexity Q(x).

An algorithm called recursive squaring can further reduce the complexity to ©(logn).

SinCe F:HI Fn l l % F:il JIli:—l d F; F; 1 1 h [i |
= an - _ ow tha
£, b o) (£, F FoOF | o e can shoy

[EJ#] l

F; l H . . l ]
£ E :-I_l {J using induction. Let A:[l 0}, we can again apply the divide-

d

Anfz XAHH
AT XA 4 i n s odd
multiplication of two 2x2 matrices has complexity ©(1). So T'(m)=7(n/2)+0().
Applying the master theorem, we have T'(n)=O(log n).

if 17 1s even

and-conquer paradigm to calculate A" A”:{ The

Maxhnun1conﬁguoussubanay

3uppose you have a one-dimensional array 4 with length 7 that contains both positive
and negative numbers. Design an algorithm to find the maximum sum of any contiguous

£
subarray A[/, j] of A: Vi, N =ZA[X], t<igj<n.

Solution: Almost all tradin
Up or maximum drawdown of ej

/

=Z/ux]=L”(i,j~l)+A[;] when /> ;.

e

Y(i,1) = A[i] when J=iand V(i j)

As the V(i, /) ’_S are calculated, we alsg keep track of the maximum of V(i, j) as well as
the corresponding subarray indiceg ; and j,
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A more efficient approach uses the divide-and-conquer paradigm. Let’s define

T(f)=2A[x] and 7(0)=0, thenV{i, )=T{(J)-T({-1),¥V1<i<j<n. Clearly f_oE'
x=)

any fixed j, when T(i-1) is minimized, ¥(i,/) 1s maximized. So the maximum
smy_ending at j is Vl_w; =T(j)-T,,, where T . =min(T(),---,7(j-1)). If we keep
track of and update ¥ and T asj increases, we can develop the following O(n)
algorithm: '

T=A1);V, = A[]; T, =min(0.7T)

For j=2ton
{ T=T+AJ]
If T - Tmin > Vma.x then Vn‘ra.\' = T_Tmin;

7<T ,thenT, =T;

min *

Return V. :

max *?

: indices i and J
The following is a corresponding C++ function that retuns V. and indice

given an array and its length:

b qad {nt &i, int
maxSubarray (double A[], int Len, |
{
Gouble T=A[0], Vmax=Al|U]:
double Tmin = min{0.0, Tl;
(int k=1; k<leni ++k)
{
T+=A[k];
T-Tmin > Vmax) A
(T<Tmin} (Tmin = T; i
}
ralurn Vmax;
}
Applying it to the following array 4. L AL L

o el i veet
ible A[}={1.0,2.0,-5.0,4.0,-3:0,

0: 3 =0
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i > Vmax = maxSubarray (i, i of (@ [P A O

willgive V| =9,i=3 and j=6.So the subarray s [4.0, - 3.0, 2.0, 6.0].

7.2. The Power of Two

There are only 10 kinds of people in the world-—those who know binary, and those who
don't. If you happen to get this joke, you probably know that computers operate using
the binary (base-2) number system. Instead of decimal digits 0-9, each bit (binary digit)
has only two possible values: 0 and 1. Binary representation of numbers gives some

interesting properties that are widely explored in practice and makes it an interesting
topic to test in interviews.

Power of 2
How do you determine whether an integer is a power of 27

Solution: Any integer x=2" (n20) has a single bit (the (

e (n+ Dtk bit from the right) set

to 1. For example, 8 (=2") is expressed as 0---01000 . It is also easy to see that 2" -1
has all the # bits from the right set to 1. For example, 7 is expressed as Q---00111. S0
2" and 2" - do not share any common bits. As a result, x & (x—1)==0, where & is4
bitwise AND operator, is a simple way 10 identify whether the integer x is a power of 2.

Multiplication by 7

Give a fast way to multiply an integer by 7 without using the multiplication (*) operator?

Solution: (x << 3) - x, where << is the bit-shj

ft left operator. x << 3 is equivalent to x*8.
Hence (x << 3} - x is x*7.8 h perale

Probability simulation

You are given a fair coin. Can you desi

probability of winning is p, 0 mgg“ a simple game using the fair coin so that yout
/ p. 0<p<l?

_—

& . £
) FIil_u.[meuil cauld be wrong if << causes an overflow.

nt: Lomputer stores binury numbers i ‘
) : ary numeers instead of de nes; each digit i i ot 5o 08
simulated using a fair coin, ST e B by el i
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Solution: The key to this problem is to realize that p e {0,1) can also be expressed as a

binary number and each digit of the binary number can be simulated using a fair coin.
First, we can express the probability p as binary number:

p=0.pp,p, =p2” +P22_2+"'+pn2_”= p, {0}, Vi=12, 0.

Then, we can start tossing the fair coin, and count heads as 1 and tails as 0. Let s, € {0,1}
be the result of the i-th toss starting from i =1. Afier each (oss, we compare p, with ..s', .
If 5, < p,, we win and the coin tossing stops. If 5, > p,. we lose and the coin FOS.HT]?
stops. If 5, = p,, we continue to toss more coins. Some p values (e.g., 1/3) are infinite

series when expressed as a binary number (1 —>0). In these cases, the pmdbablmi ;:
reach s = p, is | as i increases. [f the sequence is finite, (e.g., 1/4=0.01) and we rea

the final stage with s, = p, . we lose (e.g., for 1/4. only the sequence 00 will be

Jassified as Such
classified as a win; all other three sequences 0.1, 10 and 11 are classified as a loss). Suc
asimulation will give us probability p of winnng.

Poisonous wine

, fore arty,
You've got 1000 bottles of wines for a birthday party. T We_‘“y_I’g‘?ﬁfc;girgoiz_pwfu
the winery sent you an urgent message that one bottle otbw:?le ofvlvine & sri st
happen to have 10 lab mice that can be used to test whetherd D97 E L 0 Pp iy e
The poison is so strong that any ameuit will kill a mouse 2 Exaf Jsure ﬁ'a\-‘ that you can
the death on the 18th hour, there are no other symptoms. &5 hetc 3 7

. "?
find the poisoned bottle using the 10 mice before the party”

[1l . K »s cach tume,
Solution: 1f the mice can be tested sequentially to eliminate half of the bottles

e can identify the
the problem becomes a simple binary search problem. '.lT}en .:::;::tehg il\],nipmm won't
poisonous bottle in up to 1024 bottles of wines. Unfortuna 8% Aho sequentially test the
show up until 18 hours later and we only have 20 hours, we ‘;2 IeTS Behvccn 1 and 1000
mice. Nevertheless, the binary search idea s ]CEIUOO can be labeled as
can be expressed in 10-bit binary format. For

6 4t 2%
1111101000 since 1000=2° +25 +27 +2" +2° ¥

-t first bit (the lowest bit
Now let mouse 1 take a sip from every bottle that has a 1 ‘m] t?;lillibietxé n(d ;ilg i
on the right); let mouse 2 take a sip from e\‘zjeryl b?\t;lui :Ilﬂindthc = b o (e Yoghesd i
~ ke d g guH FRSE gl ivhes » Jowest bit and treat a
Ei;hti;;e;:)r:lortslsleali? if we iirﬁ: up the mice from the hig{l}istbt;:lihim(;\ktme el o e
' , - > can €asl j ajernt
live mouse as 0 and a dcad mouse as 1. W€ © g O g aad ol othas
i d 9th mice arc _ s3ri
Ol ample, if the 6th, 7th, an e poisonous bo
gii:/s:nl?ll;si?noctfll; giovrese);hc Is)ecmencfe 0101100000 and the label for tne p

@ gt o By LR C

till applies. All in
example, boft
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7.3 Numerical Methods

The prices of many financial instruments do not have closed-form analytical solutions.
The valuation of these financial instruments relies on a variety of numerical methods. In
this section, we discuss the application of Monte Carlo simulation and finite difference
methods.

Monte Carlo simulation

Monte Carlo simulation is a method for iteratively gvaluating a deterministic model
using random numbers with appropriate probabilities as inputs. For derivative pricing, i
simulates a_large number of price paths of the underlying assets with probability
corresponding to the underlying stochastic process (usually under risk-neutral measure),
calculates the discounted payoff of the derivative for eam averages the

discounted payoffs to yield the derivative price. The validity of Monte Carlo simulation
relies on the law of large numbers.

Monte-Carlo simulation can be used to estimate derivative prices if the payvoffs only
dePeimd on the final values of the underlying assets, and it can be adapted to estimate
prices if the payoffs are path-dependent as well. Nevertheless, it cannot be directly
apphc_d lo American options or any other derivatives with early exercise opti(;ns.

A. Explain how you can use Monte Carlo simulation to price a European call option?

Sg!uﬁon_- Jf we assume that stock price follows a geometric Brownian motion, we can
simulate possible stock price paths. We can split the time between ¢ and 7 into N

¢qually-spaced time steps." So AF*‘TA:‘! and 1, =1+ Arxi, for i=0,1,2,--,N. We

then smulat:: the stock price paths under risk-neutral probability using equation
S =5 eh'—rr‘a‘l}{f_\_l)+o"r5—;gf. h = .
A » where ¢, 's are IID random variables from standard normal

distribution. Let's say that we simulate M paths and each one yields a stock price S, ;-
where k=1,2 .- M, at maturity date 7.

1 - -
For European options, we can simply st V=],

B\.Il f T o i o - i ~ ﬂﬂ".
dependent ones, we want 1o have sm or more general options, especially the p

all time steps and therefore N should be large.
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The estimated price of the European call is the present value of the expected payoff,

M
Zmax(sr‘k -K,0)

- —r( T~ k=1
which can be calculated as C =¢ (T-0 i

B. How do you generate random variables that follow N(u,0") (normal distribution

with mean g and variance o) if ;
that follow continuous uniform distribution between 0 and 17

; ; mber
Solution: This 15 a great question to test the b_asn: knowledgc of rha_erOl;T:Stfilgn i)
generation, the foundation of Monte Carlo simulation. The solution to this q

be dissected to two steps:

1. Generate random variable of x~ N(0.]) from unifor
using inverse transform method and rejection method.

nerate the final random variables that fol

your computer can only generate random variables

m random number generator

low N(;I.O':}-
2. Scale xto y+ox toge

: ox tions. A popular
The second step s straightforward; the first g B detc,encs Sc:n;fxs(;':{?ri:n;ethod: Fporp any
approach to generating random variables is the inverse if

- i - = /\/ 4 th
continuous random variable X with cumulative density ﬁmﬁ:ff“ F;-f;’?{—hj (U <) (),f’sl.
random variable X can be defined as the inverse function of Ui =1 1}

il h 0<lU/<1. So any
It is obvious that X =F~'(U) is a one-lo-one AL Ithoc{:asfs
. . ng T .
continuous random variable can be geﬂerated using the rey §:.]3 1Y
umber u from the standard uniforn distribution.

*  Generate a random n f I
¢ from e
= F(x) as the random number

» Compute the value x such that u
distribution described by £

For this model to work, #7'(U) must be compt

1 (X) ,[l f—l =€ 't;udx. The nverse function |
7 W ing of X to U/ as the numeric
et j 1 ith the one-to-one mappitis
rencall}’, we can come up l

i JEAE L = x)= [
solution of ordinary differential equauon Fix)= 1) 7;} .
I yet this approach 1

table. For standard normal distribution,

has no analytical solution.

417 ysing numerical

s fess efficient than

|
integration method such as the Euler method.
the rejection method:

). il Euler

valug ¥, = F %

f(0) and a knowh initial

i cmate v valugs.
tive) 1o sequentially approximate |

il To imegrate y=F(x) with first derivative ¥ = ‘
( h can be positive of nega

method chooses a small step size /i 185
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Some random variables have pdf f{x), but no analytical solution for FNU. 1n these

cases, we can use a random variable with pdf g(y) and ¥ =G (U ) to help generate

random variables with pdf J(x). Assume that M is a constant such that S) SM, vy,

£ g
We can implement the following acceptance-rejection method:

* Sampling step: Generate random variable y from g(y) and a random variable v

from standard uniform distribution [0,1].
* Acceptance/rejection step: If y< /)
Mg (y)

. accepl x = y; otherwise, repeat the
sampling step."?

An exponeatial random variable (g(x)=de™
So the inverse function has analytical solution
with exponential distribution can be convenie
L 1 2

distribution, f(x)= e

Var

/) f \/2 PO i sl
= [ T« (Rt o[£ 4 L
g(xy Vax T “,C 132, v0<x <o

So we can choose M =137 and use the acceptance-rejection method to generate
X~ N(0,1) random variables and scale them to N(1,0%) random variables.

Y with A =1 has ¢df u=CG{x}=1-¢".
x=~log(l-u)and a random variable
ntly simulated. For standard normal

C. Can you e)_iplam_a few variance reduciion techniques to improve the efficiency of
Monte Carlo simulation?

- . ' l dl 2
IR TN % Y'*'I/?Z]}f- Since the expected value of each Y, is unbiased. the

estimator ¥ g unbiased as well,

a If Var(Yy=o and we generate [ID Y. then
(Var(}') =o/JM. where A is the

number of simulations. Not surprisingly, Monte Carlo

——
Flx +)=F X+ f(x)%h, Flx, +2h) =
a standard normal can be FiD) =03,

—_—

—

Fix + M+ \f'(,r_“ + h)

%A+ The initial value of the cdf of

2 . /(¥ . :
PN Sx)e | (=22 oy T 1 . .
L Mii{{_l'} {b" }. f() )(‘{1 = F(l) = 7_“'(—,(—:;3 = 'I..r f(y)d"y
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simulation is computationaily intensive if ¢ js large. Thousands or even mil!ions_of
simulations are often required to get the desired accuracy. Df:pendlng on the specific
problems, a variety of methods have been applied to reduce variance.

Antithetic variable: For each series of ¢ 's, calculate its comesponding payoff

Y(g,,&,). Then reverse the sign of all £,'s and calculate the corresponding payoff
[ERRE R : _

Y(~¢,,—€,). When Y(g,--,&,) and Y (¢, -, ~¢,) are negatively correlated, the
1* 3 -

vanance is reduced. -

Moment matching: Specific samples of the random variable may not match tne

rescale
population distribution well. We can draw a large set of S-amPieS ﬁr;t angs:h:onm;mnl)’
the samples to make the samples’ moments (mean and variance are the m

used) match the desired population moments. : ; Jated
ﬁoutrol variate: If we want to price a derivative A and ther_e is a ciéﬁscl}’n lfn ;eLrS
derivative Y that has an analytical solution, we can generate a.serlef of ranc O;Ih et
and use the same random sequences 1o price both X arld Yto yield X anq Y | e:rmr F
be estimated as X + (Y - Y ). Essentially we use (¥ ~Y) to correct the estimation
Importance sampling: To estimate the expected value of #(x) from distribution f(x),

; distribution g(x) and
instead of drawing x from distribution f(x) , we can draw x-from dl‘s ribt
lue of h(x)f(x) :
use Monte Carlo simulation to estimate expected value o _-————'. prew,

S oy = h(x).f(x)}_ E
E“I}[h(X)] ) ‘[h(x)f(X)dx ) I_(_Z')(_x)—_g(‘r)dx : EH{-(}{ g(x)F 1% f AA & ]

i
|_' | g1 e I

Ll St 7 sampling can result in a
i 40/ () has a smaller variance than A(x}, then importance samp

g(x . ing a deep out-of-the-money’
more efficient estimator. This method is better explained using a decp

y istribution, most of
option as an example. If we directly use risk-neutral f(S,) as the r._l_l_sm L
e si . ¢ 1t the estimation v
the simulated paths will yield #(S;)=0 and as a resu by i
large. If we introduce a distribution g(S‘?,) that has muc ;

arjance will be

er tail for S, ),

i /'(J.‘) L] r.ll kl:l-'p T.hL.
¢ 3 The scaling factgr —— W1
more sj ill have positive A(S,). The scaling 1actqr~ o

simulated paths wi p £l {7

: Al have [ower variance. :
cstimator unbiased, but the approach will have |

a change of measure.

L . ion method using
" Importance sampling is essentially a variance reduction
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Low-discrepancy sequence: Instead of using random samples, we can generate a
deterministic sequence of “random variable” that represents the distribution. Such low-
discrepancy sequences may make the convergence rate 1/ M.

D. If there is no closed-form pricing formula for an option, how would you estimate its
delta and gamma?

Solution: As we have discussed in problem A, the prices of options with or without
closed-form pricing formulas can be derived using Monte Carlo simulation. The same
methods can also be used to estimate delta and gamma by slightly changing the current
undertying price from § to S*458, where 85 is a small positive value. Run Monte

Carto simulation for all three starting prices S-&S, S and S+6S, we will get their
corresponding option prices f(S-465), f(S) and f(S+6S).

Estimated delta; A = g S(§+68)-1(S-69)

5S 258
(f(S+§S)—f(S))~(f(S)—f(S—5S))
5S?

To_ reduce variance, it’s often better to use the same random number sequences (o
estimate /(S -685), f(S) and f(S+55)."

Estimated gamma: I' =

E. How do you use Monte Carlo simulation to estimate 7 2

Solution: Estimation of # is a classic example of Monte Carlo simulation. One standard
melhod to estimate 7 is to randomly select points in the unit square (x and y are
independent uniform random variables between 0 and 1) and determine the ratio of
points that are within the circle x* + y* <1. For simplicity, we focus on the first quadrant.

As shown in Figure 7.1, any points within the circle satisfy the equation x’ +y’ <1. The
percentage of the points within the circle
Number of (x,3,) within x> +1* <1 1747 |

Number of (x,.y,) within the square  1x1 4~ " 4P

1S proportional to its area:
b=

So we generate a large number of independent (x. y) points, estimate the ratio of the

points within the eircle to the points in the square. and multiply the ratio by 4 to yield an
estimation of z. Figure 7.1 uses only 1000 points for illustration. With today’s

14 L
The method may not work well if the payoff function is not continuous
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compuling power, we can casily generate milions of (x, y) pairs to estimate 7 with
good precision. 1,000 simulations with 1,000,000 (x, y) points each using Matlab 10v.:>k
less than | minute on a laptop and gave an average estimation of 7 as 3.1416 with
standard deviation 0.0015.

i R o5 08
x .
Figure 7.1 A Monte Cario simulation method to estimate 7

Finite difference method

The finite difference method is another popul: e
pricing. It numerically solves a diffe_rentlal equatiém 1ur)in it
by discretizing the time and the price of the un e{_})ﬂ% e it
Black-Scholes-Merton equation, 8 second order non H}Fh' -pnew qualion, expresse 443 5
-yeat diflinion squgfion 25 T2 (jiid i(n ic?lilffsg g)f.the ;::?icc of the underlying sccur%l}').
function of 7 (time to maturity) and x (a TUAETEE e Aifference between vartous
15 a gencfral( differential equation for der:v'atl\’QS-l_ lh; iﬁiﬂ and r and using the
derivatives lies in the boundary c.ondi'iimlls. (]i}i’cl;ll.l;:; mug mbcvel‘)’ y and 7 using finite
boundary conditions, we can recursively EEETE

difference methods.

far numerical technique for dcrEvaI!vc
price of a derivative
We can convert the
atial equation. to

ifti g,
A. Can you briefly explain finite difference methods Wit
iffe d in practice. Let
i i erence methods use ; .
b oo et gl AR 5 ﬁmtflocclimlhe implicit difference method and the

briefly go over the explicit difference met
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Crank-Nicolson method. As shown in Figure 7.2, if we divide the range of 7, [O T] into
N discrete intervals with increment A7 =7/ N and divide the range of x, [x,, x, ], no
X 1 Xe0 %5 )

J discrete intervals with increment Ax =(x, —x,)/./, the time r and the space of x can be
expressed asagridof ¢, o n=1, - N and x . j=1,---,J
E - ,f- - L] . .= a .
x A

Xy

j-
X 2
X,
Xp

0 r e

T >

! - T T
" il Tat Ty 7

A

Figure 7.2 Grid of 7 and x for finite different methods

II oy I t 'I f' th d e h. ‘ = j N p ] .and,

order central difference at x ;- & it
£ B it

st _2“: H"T—| O'u

~

o&r 4
R | At (Ax)’ i
carranging erms, we can express »' "

as a linear combinati ”
) nallon it 1 i
i, +{1- :cr)“ of o, U, and 1,

au A 4

g .+ Where @ = Ar/(Ax)’, Besides, we often have boundary

. and up tor all m=1, .- N g
=1l Ni f=0.-- J. Combining the boundary

BEESSSSSNS———— e
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. . W - y " we can estimate all W''s on
conditions and egquation W = +(l 2a]u} +ou,, We cal :

the grid.

' ' and the
The implicit difference method uses the backward difference al time !,,, and
n+l n+l Iy a8

U ‘
-5 . : tx T — P E] a
second-order central difference at X, - AT (&x) £

i : 17 and the
The Crank-Nicolson method uses the central difference at time {f, +,) = 20

second-order central difference at x,:

a+l n+l il f‘\:l
Wl (w2 Wi 5_._-__2_Liﬁf_'_\ Rt
—_——— = e — i a\,
o 2 u :
or At 2 (Ax) (&x)

g the explicit finite

T sl equation usin
differentia! ©d 00 many

ettt ore o0 B passbolts Por many steps in the time dimension o t

difference method, is it worse t0 have 100
steps in the space dimension?

= . S Crare method is

Soluti : A+l plicit  finite difference

Solution: The equation for ¥, in the expl
(mc)z. For the €X

el ] - H A e a = N{J ;
Hem £ +(1 26()“} T et ):" <1/2. Soa small A7 (1€

method 1o be stable, we need 10 have 1-22>0= At l(Ax | pnlifhts
| all Ax (too many $ s \

many time steps) is desirable, but a sm -+ is worse 10 have too many steps
g, i n
AfJ(Ax)' >1/2 and the results unstable. [n that sense. P L
BasE L g is always slé
in the space dimension. 1n contrast, the jmplicit difference method 18

convergent.

plicit finite difference

pace stc
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