
http://www.cambridge.org/9780521721622

This page intentionally left blank

C++ DESIGN PATTERNS AND DERIVATIVES PRICING

2nd edition

Design patterns are the cutting-edge paradigm for programming in object-oriented lan-
guages. Here they are discussed in the context of implementing financial models in C++.
Assuming only a basic knowledge of C++ and mathematical finance, the reader is taught
how to produce well-designed, structured, reusable code via concrete examples.

This new edition includes several new chapters describing how to increase robustness
in the presence of exceptions, how to design a generic factory, how to interface C++
with EXCEL, and how to improve code design using the idea of decoupling. Complete
ANSI/ISO compatible C++ source code is hosted on an accompanying website for the
reader to study in detail, and reuse as they see fit.

A good understanding of C++ design is a necessity for working financial mathemati-
cian; this book provides a thorough introduction to the topic.

Mathematics, Finance and Risk

Editorial Board

Mark Broadie, Graduate School of Business, Columbia University
Sam Howison, Mathematical Institute, University of Oxford
Neil Johnson, Centre for Computational Finance, University of Oxford
George Papanicolaou, Department of Mathematics, Stanford University

C++ DESIGN PATTERNS AN D
DERIVATIVES PRICING

M. S. J O S H I
University of Melbourne

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-72162-2

ISBN-13 978-0-511-39693-9

© M. S. Joshi 2008

2008

Information on this title: www.cambridge.org/9780521721622

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

paperback

http://www.cambridge.org
http://www.cambridge.org/9780521721622

To Jane

Contents

Preface page xiii
Acknowledgements xvi
1 A simple Monte Carlo model 1

1.1 Introduction 1
1.2 The theory 1
1.3 A simple implementation of a Monte Carlo call

option pricer 2
1.4 Critiquing the simple Monte Carlo routine 7
1.5 Identifying the classes 9
1.6 What will the classes buy us? 10
1.7 Why object-oriented programming? 11
1.8 Key points 11
1.9 Exercises 12

2 Encapsulation 13
2.1 Implementing the pay-off class 13
2.2 Privacy 15
2.3 Using the pay-off class 16
2.4 Further extensibility defects 19
2.5 The open–closed principle 20
2.6 Key points 21
2.7 Exercises 22

3 Inheritance and virtual functions 23
3.1 ‘is a’ 23
3.2 Coding inheritance 24
3.3 Virtual functions 24
3.4 Why we must pass the inherited object by reference 29
3.5 Not knowing the type and virtual destruction 30
3.6 Adding extra pay-offs without changing files 34

vii

viii Contents

3.7 Key points 37
3.8 Exercises 37

4 Bridging with a virtual constructor 38
4.1 The problem 38
4.2 A first solution 39
4.3 Virtual construction 43
4.4 The rule of three 51
4.5 The bridge 53
4.6 Beware of new 57
4.7 A parameters class 58
4.8 Key points 65
4.9 Exercises 65

5 Strategies, decoration, and statistics 66
5.1 Differing outputs 66
5.2 Designing a statistics gatherer 66
5.3 Using the statistics gatherer 69
5.4 Templates and wrappers 73
5.5 A convergence table 77
5.6 Decoration 80
5.7 Key points 81
5.8 Exercises 81

6 A random numbers class 83
6.1 Why? 83
6.2 Design considerations 84
6.3 The base class 86
6.4 A linear congruential generator and the adapter pattern 88
6.5 Anti-thetic sampling via decoration 93
6.6 Using the random number generator class 97
6.7 Key points 102
6.8 Exercises 102

7 An exotics engine and the template pattern 103
7.1 Introduction 103
7.2 Identifying components 104
7.3 Communication between the components 105
7.4 The base classes 106
7.5 A Black–Scholes path generation engine 111
7.6 An arithmetic Asian option 115
7.7 Putting it all together 117
7.8 Key points 120
7.9 Exercises 120

Contents ix

8 Trees 121
8.1 Introduction 121
8.2 The design 123
8.3 The TreeProduct class 125
8.4 A tree class 129
8.5 Pricing on the tree 135
8.6 Key points 139
8.7 Exercises 139

9 Solvers, templates, and implied volatilities 141
9.1 The problem 141
9.2 Function objects 142
9.3 Bisecting with a template 145
9.4 Newton–Raphson and function template

arguments 149
9.5 Using Newton–Raphson to do implied

volatilities 151
9.6 The pros and cons of templatization 154
9.7 Key points 156
9.8 Exercises 156

10 The factory 157
10.1 The problem 157
10.2 The basic idea 157
10.3 The singleton pattern 158
10.4 Coding the factory 159
10.5 Automatic registration 162
10.6 Using the factory 165
10.7 Key points 166
10.8 Exercises 167

11 Design patterns revisited 168
11.1 Introduction 168
11.2 Creational patterns 168
11.3 Structural patterns 169
11.4 Behavioural patterns 170
11.5 Why design patterns? 171
11.6 Further reading 172
11.7 Key points 172
11.8 Exercise 173

12 The situation in 2007 174
12.1 Introduction 174
12.2 Compilers and the standard library 174
12.3 Boost 176

x Contents

12.4 QuantLib 177
12.5 xlw 177
12.6 Key points 178
12.7 Exercises 178

13 Exceptions 179
13.1 Introduction 179
13.2 Safety guarantees 180
13.3 The use of smart pointers 180
13.4 The rule of almost zero 183
13.5 Commands to never use 184
13.6 Making the wrapper class exception safe 185
13.7 Throwing in special functions 186
13.8 Floating point exceptions 187
13.9 Key points 192

14 Templatizing the factory 197
14.1 Introduction 197
14.2 Using inheritance to add structure 197
14.3 The curiously recurring template pattern 199
14.4 Using argument lists 200
14.5 The private part of the ArgumentList class 206
14.6 The implementation of the ArgumentList 208
14.7 Cell matrices 220
14.8 Cells and the ArgumentLists 224
14.9 The template factory 232
14.10 Using the templatized factory 237
14.11 Key points 242
14.12 Exercises 243

15 Interfacing with EXCEL 244
15.1 Introduction 244
15.2 Usage 245
15.3 Basic data types 247
15.4 Extended data types 248
15.5 xlw commands 250
15.6 The interface file 250
15.7 The interface generator 253
15.8 Troubleshooting 254
15.9 Debugging with xlls 254
15.10 Key points 255
15.11 Exercises 255

Contents xi

16 Decoupling 256
16.1 Introduction 256
16.2 Header files 256
16.3 Splitting files 259
16.4 Direction of information flow and levelization 260
16.5 Classes as insulators 262
16.6 inlining 262
16.7 Template code 263
16.8 Functional interfaces 264
16.9 Pimpls 264
16.10 Key points 265
16.11 Exercises 265
Appendix A Black–Scholes formulas 266
Appendix B Distribution functions 270
Appendix C A simple array class 274
C.1 Choosing an array class 274
C.2 A simple array class 275
C.3 A simple array class 278
Appendix D The code 285
D.1 Using the code 285
D.2 Compilers 285
D.3 License 285
Appendix E Glossary 286

Bibliography 287
Index 289

Preface

This book is aimed at a reader who has studied an introductory book on mathemat-
ical finance and an introductory book on C++ but does not know how to put the
two together. My objective is to teach the reader not just how to implement models
in C++ but more importantly how to think in an object-oriented way. There are
already many books on object-oriented programming; however, the examples tend
not to feel real to the financial mathematician so in this book we work exclusively
with examples from derivatives pricing.

We do not attempt to cover all sorts of financial models but instead examine a
few in depth with the objective at all times of using them to illustrate certain OO
ideas. We proceed largely by example, rewriting, our designs as new concepts are
introduced, instead of working out a great design at the start. Whilst this approach
is not optimal from a design standpoint, it is more pedagogically accessible. An
aspect of this is that our examples are designed to emphasize design principles
rather than to illustrate other features of coding, such as numerical efficiency or
exception safety.

We commence by introducing a simple Monte Carlo model which does not use
OO techniques but rather is the simplest procedural model for pricing a call option
one could write. We examine its shortcomings and discuss how classes naturally
arise from the concepts involved in its construction.

In Chapter 2, we move on to the concept of encapsulation – the idea that a class
allows to express a real-world analogue and its behaviours precisely. In order to
illustrate encapsulation, we look at how a class can be defined for the pay-off of a
vanilla option. We also see that the class we have defined has certain defects, and
this naturally leads on to the open–closed principle.

In Chapter 3, we see how a better pay-off class can be defined by using inheri-
tance and virtual functions. This raises technical issues involving destruction and
passing arguments, which we address. We also see how this approach is compatible
with the open–closed principle.

xiii

xiv Preface

Using virtual functions causes problems regarding the copying of objects of un-
known type, and in Chapter 4 we address these problems. We do so by introducing
virtual constructors and the bridge pattern. We digress to discuss the ‘rule of three’
and the slowness of new. The ideas are illustrated via a vanilla options class and a
parameters class.

With these new techniques at our disposal, we move on to looking at more com-
plicated design patterns in Chapter 5. We first introduce the strategy pattern that
expresses the idea that decisions on part of an algorithm can be deferred by dele-
gating responsibilities to an auxiliary class. We then look at how templates can be
used to write a wrapper class that removes a lot of our difficulties with memory
handling. As an application of these techniques, we develop a convergence table
using the decorator pattern.

In Chapter 6, we look at how to develop a random numbers class. We first exam-
ine why we need a class and then develop a simple implementation which provides
a reusable interface and an adequate random number generator. We use the imple-
mentation to introduce and illustrate the adapter pattern, and to examine further the
decorator pattern.

We move on to our first non-trivial application in Chapter 7, where we use the
classes developed so far in the implementation of a Monte Carlo pricer for path-
dependent exotic derivatives. As part of this design, we introduce and use the tem-
plate pattern. We finish with the pricing of Asian options.

We shift from Monte Carlo to trees in Chapter 8. We see the similarities and
differences between the two techniques, and implement a reusable design. As part
of the design, we reuse some of the classes developed earlier for Monte Carlo.

We return to the topic of templates in Chapter 9. We illustrate their use by design-
ing reusable solver classes. These classes are then used to define implied volatility
functions. En route, we look at function objects and pointers to member functions.
We finish with a discussion of the pros and cons of templatization.

In Chapter 10, we look at our most advanced topic: the factory pattern. This
patterns allows the addition of new functionality to a program without changing
any existing files. As part of the design, we introduce the singleton pattern.

We pause in Chapter 11 to classify, summarize, and discuss the design patterns
we have introduced. In particular, we see how they can be divided into creational,
structural, and behavioural patterns. We also review the literature on design patterns
to give the reader a guide for further study.

The final four chapters are new for the second edition. In these our focus is
different: rather than focussing exclusively on design patterns, we look at some
other important aspects of good coding that neophytes to C++ tend to be unaware
of.

Preface xv

In Chapter 12, we take a historical look at the situation in 2007 and at what has
changed in recent years both in C++ and the financial engineering community’s
use of it.

The study of exception safety is the topic of Chapter 13. We see how making the
requirement that code functions well in the presence of exceptions places a large
number of constraints on style. We introduce some easy techniques to deal with
these constraints.

In Chapter 14, we return to the factory pattern. The original factory pattern re-
quired us to write similar code every time we introduced a new class hierarchy; we
now see how, by using argument lists and templates, a fully general factory class
can be coded and reused forever.

In Chapter 15, we look at something rather different that is very important in
day-to-day work for a quant: interfacing with EXCEL. In particular, we examine
the xlw package for building xlls. This package contains all the code necessary to
expose a C++ function to EXCEL, and even contains a parser to write the new
code required for each function.

The concept of physical design is introduced in Chapter 16. We see how the
objective of reducing compile times can affect our code organization and design.

The code for the examples in the first 11 chapters of this book can be freely
downloaded from www.markjoshi.com/design, and any bugfixes will be posted
there. The code for the remaining chapters is taken from the xlw project and can
be downloaded from xlw.sourceforge.net. All example code is taken from
release 2.1.

Acknowledgements

I am grateful to the Royal Bank of Scotland for providing a stimulating environ-
ment in which to learn, study and do mathematical finance. Most of my views on
coding C++ and financial modelling have been developed during my time work-
ing there. My understanding of the topic has been formed through daily discussions
with current and former colleagues including Chris Hunter, Peter Jäckel, Dhermin-
der Kainth, Sukhdeep Mahal, Robin Nicholson and Jochen Theis. I am also grate-
ful to a host of people for their many comments on the manuscript, including Alex
Barnard, Dherminder Kainth, Rob Kitching, Sukhdeep Mahal, Nadim Mahassen,
Hugh McBride, Alan Stacey and Patrik Sundberg. I would also like to thank David
Tranah and the rest of the team at Cambridge University Press for their careful
work and attention to detail. Finally my wife has been very supportive.

I am grateful to a number of people for their comments on the second edi-
tion, with particular thanks to Chris Beveridge, Narinder Claire, Nick Denson and
Lorenzo Liesch.

xvi

1

A simple Monte Carlo model

1.1 Introduction

In the first part of this book, we shall study the pricing of derivatives using Monte
Carlo simulation. We do this not to study the intricacies of Monte Carlo but because
it provides many convenient examples of concepts that can be abstracted. We pro-
ceed by example, that is we first give a simple program, discuss its good points, its
shortcomings, various ways round them and then move on to a new example. We
carry out this procedure repeatedly and eventually end up with a fancy program.
We begin with a routine to price vanilla call options by Monte Carlo.

1.2 The theory

We commence by discussing the theory. The model for stock price evolution is

d St = µSt dt + σ St dWt , (1.1)

and a riskless bond, B, grows at a continuously compounding rate r . The Black–
Scholes pricing theory then tells us that the price of a vanilla option, with expiry T
and pay-off f , is equal to

e−rT
E(f (ST)),

where the expectation is taken under the associated risk-neutral process,

d St = r St dt + σ St dWt . (1.2)

We solve equation (1.2) by passing to the log and using Ito’s lemma; we compute

d log St =
(

r − 1

2
σ 2

)
dt + σdWt . (1.3)

As this process is constant-coefficient, it has the solution

log St = log S0 +
(

r − 1

2
σ 2

)
t + σ Wt . (1.4)

1

2 A simple Monte Carlo model

Since Wt is a Brownian motion, WT is distributed as a Gaussian with mean zero
and variance T , so we can write

WT =
√

T N (0, 1), (1.5)

and hence

log ST = log S0 +
(

r − 1

2
σ 2

)
T + σ

√
T N (0, 1), (1.6)

or equivalently,

ST = S0e(r− 1
2 σ 2)T +σ

√
T N (0,1). (1.7)

The price of a vanilla option is therefore equal to

e−rT
E

(
f
(
S0e(r− 1

2 σ 2)T +σ
√

T N (0,1)
))

.

The objective of our Monte Carlo simulation is to approximate this expectation by
using the law of large numbers, which tells us that if Y j are a sequence of identically
distributed independent random variables, then with probability 1 the sequence

1

N

N∑
j=1

Y j

converges to E(Y1).
So the algorithm to price a call option by Monte Carlo is clear. We draw a random

variable, x , from an N (0, 1) distribution and compute

f
(
S0e(r− 1

2 σ 2)T +σ
√

T x),
where f (S) = (S − K)+. We do this many times and take the average. We then
multiply this average by e−rT and we are done.

1.3 A simple implementation of a Monte Carlo call option pricer

A first implementation is given in the program SimpleMCMain1.cpp.

Listing 1.1 (SimpleMCMain1.cpp)

// requires Random1.cpp

#include <Random1.h>
#include <iostream>
#include <cmath>
using namespace std;

1.3 A simple implementation of a Monte Carlo call option pricer 3

double SimpleMonteCarlo1(double Expiry,
double Strike,
double Spot,
double Vol,
double r,
unsigned long NumberOfPaths)

{
double variance = Vol*Vol*Expiry;
double rootVariance = sqrt(variance);
double itoCorrection = -0.5*variance;

double movedSpot = Spot*exp(r*Expiry +itoCorrection);
double thisSpot;
double runningSum=0;

for (unsigned long i=0; i < NumberOfPaths; i++)
{
double thisGaussian = GetOneGaussianByBoxMuller();
thisSpot = movedSpot*exp(rootVariance*thisGaussian);
double thisPayoff = thisSpot - Strike;
thisPayoff = thisPayoff >0 ? thisPayoff : 0;
runningSum += thisPayoff;
}

double mean = runningSum / NumberOfPaths;
mean *= exp(-r*Expiry);
return mean;

}

int main()
{

double Expiry;
double Strike;
double Spot;
double Vol;
double r;
unsigned long NumberOfPaths;
cout << "\nEnter expiry\n";
cin >> Expiry;

4 A simple Monte Carlo model

cout << "\nEnter strike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

double result = SimpleMonteCarlo1(Expiry,
Strike,
Spot,
Vol,
r,
NumberOfPaths);

cout <<"the price is " << result << "\n";

double tmp;
cin >> tmp;

return 0;
}

Our program uses the auxiliary files Random1.h and Random1.cpp.

Listing 1.2 (Random1.h)

#ifndef RANDOM1_H
#define RANDOM1_H

double GetOneGaussianBySummation();
double GetOneGaussianByBoxMuller();
#endif

1.3 A simple implementation of a Monte Carlo call option pricer 5

Listing 1.3 (Random1.cpp)

#include <Random1.h>
#include <cstdlib>
#include <cmath>

// the basic math functions should be in namespace
// std but aren’t in VCPP6
#if !defined(_MSC_VER)
using namespace std;
#endif

double GetOneGaussianBySummation()
{
double result=0;

for (unsigned long j=0; j < 12; j++)
result += rand()/static_cast<double>(RAND_MAX);

result -= 6.0;

return result;
}

double GetOneGaussianByBoxMuller()
{
double result;

double x;
double y;

double sizeSquared;
do
{
x = 2.0*rand()/static_cast<double>(RAND_MAX)-1;
y = 2.0*rand()/static_cast<double>(RAND_MAX)-1;
sizeSquared = x*x + y*y;
}
while
(sizeSquared >= 1.0);

6 A simple Monte Carlo model

result = x*sqrt(-2*log(sizeSquared)/sizeSquared);

return result;
}

We first include the header file Random1.h. Note that the program has
<Random1.h> rather than "Random1.h". This means that we have set our com-
piler settings to look for header files in the directory where Random1.h is. In this
case, this is in the directory C/include. (In Visual C++, the directories for in-
clude files can be changed via the menus tools, options, directories.)

Random1.h tells the main file that the functions

double GetOneGaussianBySummation()

and

double GetOneGaussianByBoxMuller()

exist. We include the system file iostream as we want to use cin and cout for
the user interface. The system file cmath is included as it contains the basic math-
ematical functions exp and sqrt.

We have the command using namespace std because all the standard
library commands are contained in the namespace std. If we did not give the
using directive, then we would have to prefix all their uses by std::, so then
it would be std::cout rather than cout.

The function SimpleMonteCarlo1 does all the work. It takes in all the standard
inputs for the Black–Scholes model, the expiry and strike of the option, and in
addition the number of paths to be used in the Monte Carlo.

Before starting the Monte Carlo we precompute as much as possible. Thus we
compute the variance of the log of the stock over the option’s life, the adjustment
term −1

2σ 2T for the drift of the log, and the square root of the variance. Whilst we
cannot precompute the final value of spot, we precompute what we can and put it
in the variable movedSpot.

We initialize the variable, runningSum, to zero as it will store the sum so far of
the option pay-offs at all times.

We now loop over all the paths. For each path, we first draw the random number
from the N (0, 1) distribution using the Box–Muller algorithm and put it in the
variable thisGaussian.

The spot at the end of the path is then computed and placed in thisSpot. Note
that although our derivation of the SDE involved working with the log of the spot,
we have carefully avoided using log in this routine. The reason is that log and exp

1.4 Critiquing the simple Monte Carlo routine 7

are slow to compute in comparison to addition and multiplication, we therefore
want to make as few calls to them as possible.

We then compute the call option’s pay-off by subtracting the strike and taking
the maximum with zero. The pay-off is then added to runningSum and the loop
continues.

Once the loop is complete, we divide by the number of paths to get the expecta-
tion. Finally, we discount to get our estimate of the price which we return.

The main program takes in the inputs from the user, calls the Monte Carlo func-
tion, and displays the results. It asks for a final input to stop the routine from re-
turning before the user has had a chance to read the results.

1.4 Critiquing the simple Monte Carlo routine

The routine we have written runs quickly and does what it was intended to do. It is
a simple straightforward procedural program that performs as required. However,
if we worked with this program we would swiftly run into annoyances. The essence
of good coding is reusability. What does this mean? One simple definition is that
code is reusable if someone has reused it. Thus reusability is as much a social
concept as a technical one. What will make it easy for someone to reuse your
code? Ultimately, the important attributes are clarity and elegance of design. If
another coder decides that it would take as much effort to recode your routines as
to understand them, then he will recode, and his inclination will be to recode in any
case, as it is more fun than poring over someone else’s implementation.

The second issue of elegance is equally important. If the code is clear but difficult
to adapt then another coder will simply abandon it, rather than put lots of effort
into forcing it to work in a way that is unnatural for how it was built.

The demands of reusability therefore mean we should strive for clarity and ele-
gance. In addition, we should keep in mind when considering our original design
the possibility that in future our code might need to be extended.

We return to our simple Monte Carlo program. Suppose we have a boss and
each day he comes by and asks for our program to do something more. If we have
designed it well then we will simply have to add features; if we have designed
poorly then we will have to rewrite existing code.

So what might the evil boss demand?
“Do puts as well as calls!”
“I can’t see how accurate the price is, put in the standard error.”
“The convergence is too slow, put in anti-thetic sampling.”
“I want the most accurate price possible by 9am tomorrow so set it running for

14 hours.”

8 A simple Monte Carlo model

“It’s crucial that the standard error is less than 0.0001, so run it until that’s
achieved. We’re in a hurry though so don’t run it any longer than strictly necessary.”

“I read about low-discrepancy numbers at the weekend. Just plug them in and
see how good they are.”

“Apparently, standard error is a poor measure of error for low-discrepancy sim-
ulations. Put in a convergence table instead.”

“Hmm, I miss the standard error can we see that too.”
“We need a digital call pricer now!”
“What about geometric average Asian calls?”
“How about arithmetic average Asian puts?”
“Take care of variable parameters for the volatility and interest rates.”
“Use the geometric Asian option as a control variate for the arithmetic one.”
“These low-discrepancy numbers apparently only work well if you Brownian

bridge. Put that in as well.”
“Put in a double digital geometric Asian option.”
“What about jump risk? Put in a jump-diffusion model.”
To adapt the routine as written would require a rewrite to do any of these. We

have written the simplest routine we could think of, without considering design
issues. This means that each change is not particularly natural and requires extra
work.

For example, with this style of programming how would we would do the put
option?

Option one: copy the function, change the name by adding put at the end, and
rewrite the two lines where the pay-off is computed.

Option two: pass in an extra parameter, possibly as an enum and compute the
pay-off via a switch statement in each loop of the Monte Carlo. The problem
with the first option is that when we come to the next task, we have to adapt both
the functions in the same way and do the same thing twice. If we then need more
pay-offs this will rapidly become a maintenance nightmare.

The issues with the other option are more subtle. One problem is that a switch
statement is an additional overhead so that the routine will now run a little slower.
A deeper problem is that when we come to do a different routine which also uses a
pay-off, we will have to copy the code from inside the first routine or rewrite it as
necessary. This once again becomes a maintenance problem; every time we want to
add a new sort of pay-off we would have to go through every place where pay-offs
are used and add it on.

A C style approach to this problem would be to use a function pointer, we pass
a pointer to a function as an argument to the Monte Carlo. The function pointed to
is then called via the pointer in each loop to specify the price. Note that the call
to the function would have to specify the strike as well as spot since the function

1.5 Identifying the classes 9

could not know its value. Note also that if we wanted to do a double-digital option
we would have problems as the double digital pays if and only if spot is between
two levels, and we only have one argument, the strike, to play with.

The C++ approach to this problem is to use a class. The class would encapsulate
the behaviour of the pay-off of a vanilla option. A pay-off object would then be
passed into the function as an argument and in each loop a method expressing its
value would be called to output the price for that pay-off. We look at the imple-
mentation of such a class in the next chapter.

1.5 Identifying the classes

In the previous section, we saw that the problem of wanting to add different sorts
of vanilla options led naturally to the use of a class to encapsulate the notion of
a pay-off. In this section, we look at identifying other natural classes which arise
from the boss’s demands.

Some of the demands were linked to differing forms that the boss wanted the
information in. We could therefore abstract this notion by creating a statistics gath-
erer class.

We also had differing ways of terminating the Monte Carlo. We could termi-
nate on time, on standard error or simply after a fixed number of paths. We could
abstract this by writing a terminator class.

There were many different issues with the method of random number genera-
tion. The routine as it stands relies on the inbuilt generator which we do not know
much about. We therefore want to be able to use other random number generators.
We also want the flexibility of using low-discrepancy numbers which means an-
other form of generation. (In addition, Box–Muller does not work well with low-
discrepancy numbers so we will need flexibility in the inputs.) Another natural
abstraction is therefore a random number generator class.

As long as our option is vanilla then specifying its parameters via pay-off and
strike is fairly natural and easy; however, it would be neater to have one class
that contains both pieces of information. More generally, when we pass to path-
dependent exotic options, it becomes natural to have a class that expresses the
option’s properties. What would we expect such a class to do? Ultimately, an easy
way to decide what the class should and should not know is to think of whether a
piece of information would be contained in the term-sheet. Thus the class would
know the pay-off of the option. It would know the expiry time. If it was an Asian
it would know the averaging dates. It would also know whether the averaging
was geometric or arithmetic. It would not know anything about interest rates, nor
the value of spot nor the volatility of the spot rate as none these facts are con-
tained in the term-sheet. The point here is that by choosing a real-world concept to

10 A simple Monte Carlo model

encapsulate, it is easy to decide what to include or not to include. It is also easy
for another user to understand how you have decided what to include or not to
include.

What other concepts can we identify? The concept of a variable parameter could
be made into a class. The process from which spot is drawn is another concept. The
variable interest rates could be encapsulated via a class that expresses the notion of
a discount curve.

1.6 What will the classes buy us?

Suppose that having identified all these classes, we implement them. What do we
gain?

The first gain is that because these classes encapsulate natural financial concepts,
we will need them when doing other pieces of coding. For example, if we have a
class that does yield curves then we will use it time and time again, as to price any
derivative using any reasonable method involves knowledge of the discount curve.
Not only will we save time on the writing of code but we will also save time on
the debugging. A class that has been tested thoroughly once has been tested forever
and in addition, any little quirks that evade the testing regime will be found through
repeated reuse. The more times and ways something has been reused the fewer the
bugs that will be left. So using reusable classes leads to more reliable code as well
as saving us coding time. Debugging often takes at least as much time as coding in
any case, so saving time on debugging is a big benefit.

A second gain is that our code becomes clearer. We have written the code in
terms of natural concepts, so another coder can identify the natural concepts and
pick up our code much more easily.

A third gain is that the classes will allow us to separate interface from implemen-
tation. All the user needs to know about a pay-off class or discount curve class are
what inputs yield what outputs? How the class works internally does not matter.
This has multiple advantages. The first is that the class can be reused without the
coder having to study its internal workings. The second advantage is that because
the defining characteristic of the class is what it does but not how it does it, we can
change how it does it at will. And crucially, we can do this without rewriting the rest
of our program. One aspect of this is that we can first quickly write a suboptimal
implementation and improve it later at no cost. This allows us to provide enough
functionality to test the rest of the code before devoting a lot of time to the class.
A third advantage of separating interface from implementation is that we can write
multiple classes that implement the same interface and use them without rewriting
all the interface routines. This is one of the biggest advantages of object-oriented
design.

1.8 Key points 11

In the next chapter, we look at some of these concepts in the concrete case of a
pay-off class.

1.7 Why object-oriented programming?

This is a book about implementing pricing models using object-oriented C++ pro-
grams. The reader may ask why this is worth learning. A short answer is that this is
the skill you need if you want a job working as a quantitative analyst or quantitative
developer. But this begs the question of why this is the required skill.

Object-oriented programming has become popular as computer projects have be-
come larger and larger. A single project may now involve millions of lines of code.
No single programmer will ever be able to hold all of that code in his mind at once.
Object-oriented programming provides us with a way of coding that corresponds
to natural mental maps. We know what each class of objects does, and more impor-
tantly we tightly define how they can interact with each other. This allows a clear
map in the coder’s mind of how the code fits together. And equally importantly,
this allows easy communication of the code’s structure to other programmers in
the team.

When the coder needs to focus in on a particular part of the code, he need only
look at the interior of the particular object involved and its interface with other ob-
jects. As long as the interface is not broken, and the new object lives up to the same
responsibilities as the old one then there is no danger of unexpected ramifications
(i.e. bugs) in distant parts of the code. Thus object-oriented programming leads to
more robust code that is easier for teams to work on.

1.8 Key points

In this chapter, we have looked at how to implement a simple Monte Carlo rou-
tine on a procedural program. We then criticized it from the point of view of easy
extensibility and reuse.

• Options can be priced by risk-neutral expectation.
• Monte Carlo uses the Law of Large Numbers to approximate this risk-neutral

expectation.
• Reuse is as much a social issue as a technical one.
• Procedural programs can be hard to extend and reuse.
• Classes allow us to encapsulate concepts which makes reuse and extensibility a

lot easier.
• Making classes closely model real-world concepts makes them easier to design

and to explain.

12 A simple Monte Carlo model

• Classes allow us to separate the design of the interface from the coding of the
implementation.

1.9 Exercises

Exercise 1.1 Modify the program given to price puts.

Exercise 1.2 Modify the program given to price double digitals.

Exercise 1.3 Change the program so that the user inputs a string which specifies
the option pay-off.

Exercise 1.4 Identify as many classes as you can in the evil boss’s list of demands.

2

Encapsulation

2.1 Implementing the pay-off class

In the last chapter, we looked at a simple Monte Carlo pricer and concluded that
the program would be improved if we used a class to encapsulate the notion of the
pay-off of a vanilla option. In this section, we look at how such a pay-off might be
implemented. In the files PayOff1.h and Payoff1.cpp, we develop such a class.
Before looking at the source file, PayOff1.cpp, we examine the more important
header file. The header file is much more important because it is all that other files
will see, and ideally it is all that the other files need to see.

Listing 2.1 (PayOff1.h)

#ifndef PAYOFF_H
#define PAYOFF_H

class PayOff
{
public:

enum OptionType {call, put};
PayOff(double Strike_, OptionType TheOptionsType_);
double operator()(double Spot) const;

private:
double Strike;
OptionType TheOptionsType;

};
#endif

We use an enum to distinguish between different sorts of pay-offs. If we ever
want more than put and call, we would add them to the list. We will discuss

13

14 Encapsulation

more sophisticated approaches in Chapter 3 but this approach is enough to get us
started.

The constructor

PayOff(double Strike_, OptionType TheOptionsType_)

takes in the strike of the option and the type of the option pay-off.
The main method of the class is

double PayOff::operator()(double spot) const

The purpose of this method is that given a value of spot, it returns the value of the
pay-off.

Note the slightly odd syntax: we have overloaded operator(). To call this
method for an object thePayoff with spot given by S we would write
thePayoff(S). Thus when use the object it appears more like a function than
an object; such objects are often called function objects or functors. (Note that the
C++ concept of functor is quite different from the pure mathematical one.)

We have defined operator() to be const. This means that the method does not
modify the state of the object. This is as we would expect: computing the pay-off
does not change the strike or the type of an option.

Suppose we did not specify that operator() was const; what would happen?
The same functionality would be provided and the code would still compile. How-
ever, if a pay-off object was declared const at some point by a user then the com-
piler would complain if we tried to call operator(), and give us a complicated
message to the effect that we cannot call non const methods of const objects.
Thus if we want a method to be usable in const objects we must declare the
method const.

An alternative approach, adopted by some programmers, is not to use const
anywhere. The argument goes along the lines of “If we use const in some places,
we must use it everywhere, and all it does is cause trouble and stop me doing what
I want so why bother? Life will be much easier if we just do not use it.”

Yet I use const as much as possible. The reason is that it is a safety enforce-
ment mechanism. Thinking about const forces me to consider the context of
an object and whether or not I wish it to change when doing certain things. If
I am woolly in my thinking then the compiler will generally squeal when I at-
tempt to compile, and thus errors are picked up at compile time instead of at run
time.

A second benefit is that by giving the compiler the extra information that objects
are const, we allow it to make extra optimizations. Code on a good compiler can
therefore run faster when const is used. Now we are ready for PayOff1.cpp.

2.2 Privacy 15

Listing 2.2 (PayOff1.cpp)

#include <PayOff1.h>
#include <MinMax.h>

PayOff::PayOff(double Strike_, OptionType TheOptionsType_)
:

Strike(Strike_), TheOptionsType(TheOptionsType_)
{
}

double PayOff::operator ()(double spot) const
{

switch (TheOptionsType)
{
case call :

return max(spot-Strike,0.0);

case put:
return max(Strike-spot,0.0);

default:
throw("unknown option type found.");

}
}

2.2 Privacy

We have declared the data in the pay-off class to be private. This means that the
data cannot be accessed by code outside the class. The only code that can see, let
alone change, their values are the constructor and the method operator(). What
does this buy us? After all, for some reason the user might want to know the strike
of an option and we have denied him the possibility of finding it out.

The reason is that as soon we let the user access the data directly, it is much
harder for us to change how the class works. We can think of the class as a contract
between coder and user. We, the coder, have provided the user with an interface:
if he gives us spot we will give him the value of the pay-off. This is all we have
contracted to provide. The user therefore expects and receives precisely that and
no more.

For example, if the user could see the strike directly and accessed it, and if we
changed the class so that the strike was no longer stored directly (which we shall

16 Encapsulation

do in the next chapter), then we would get compile errors from everywhere the
strike was accessed. If the class had been used a lot in many files, in many different
projects (which is after all the objective of reuse), then to find every place where
strike had been accessed would be a daunting task. In fact, if this were the case
we would probably consider finding them all a considerable waste of time, and we
would probably give up reforming the internal workings.

Thus by making the data private, we can enforce the contract between coder
and user in such a way that the contract does not say anything about the inte-
rior workings of the class. If for some reason, we wanted the user to be able
to know the strike of the pay-off then we could add in an extra method double
GetStrike() const. Whilst this would seem to undo all the benefits of using pri-
vate data, this is not so since it still allows us the possibility of storing the data in a
totally different way.

To conclude, by using private data we can rework the interior workings of a class
as and when we need to without worrying about the impact on other code. That is,
private data helps us to separate interface and implementation.

2.3 Using the pay-off class

Having designed a pay-off class, we want to use it in our Monte Carlo routines. We
do this in the function SimpleMonteCarlo2 which is declared in SimpleMC.h
and defined in SimpleMC.cpp.

Listing 2.3 (SimpleMC.h)

#ifndef SIMPLEMC_H
#define SIMPLEMC_H
#include <PayOff1.h>

double SimpleMonteCarlo2(const PayOff& thePayOff,
double Expiry,
double Spot,
double Vol,
double r,
unsigned long NumberOfPaths);

#endif

Listing 2.4 (SimpleMC.cpp)

#include <SimpleMC.h>
#include <Random1.h>
#include <cmath>

2.3 Using the pay-off class 17

// the basic math functions should be in
// namespace std but aren’t in VCPP6
#if !defined(_MSC_VER)
using namespace std;
#endif

double SimpleMonteCarlo2(const PayOff& thePayOff,
double Expiry,
double Spot,
double Vol,
double r,
unsigned long NumberOfPaths)

{
double variance = Vol*Vol*Expiry;
double rootVariance = sqrt(variance);
double itoCorrection = -0.5*variance;

double movedSpot = Spot*exp(r*Expiry +itoCorrection);
double thisSpot;
double runningSum=0;

for (unsigned long i=0; i < NumberOfPaths; i++)
{

double thisGaussian = GetOneGaussianByBoxMuller();
thisSpot = movedSpot*exp(rootVariance*thisGaussian);
double thisPayOff = thePayOff(thisSpot);
runningSum += thisPayOff;

}
double mean = runningSum / NumberOfPaths;
mean *= exp(-r*Expiry);
return mean;

}

The main change from our original Monte Carlo routine is that we now input a
PayOff object instead of a strike. The strike is, of course, now hidden inside the
inputted object. We pass the object by reference and make it const as we have no
need to change it inside our routine. Note that the only line of our algorithm that is
new is

double thisPayOff = thePayOff(thisSpot);

18 Encapsulation

We illustrate how the routine might be called in SimpleMCMain2.cpp. Here we
define both call and put objects and this shows that the routine can now be used
without change to prices both types of options.

Listing 2.5 (SimpleMCMain2.cpp)

/*
requires

PayOff1.cpp
Random1.cpp,
SimpleMC.cpp,

*/

#include<SimpleMC.h>
#include<iostream>
using namespace std;

int main()
{

double Expiry;
double Strike;
double Spot;
double Vol;
double r;
unsigned long NumberOfPaths;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nEnter strike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

2.4 Further extensibility defects 19

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

PayOff callPayOff(Strike, PayOff::call);
PayOff putPayOff(Strike, PayOff::put);

double resultCall = SimpleMonteCarlo2(callPayOff,
Expiry,
Spot,
Vol,
r,
NumberOfPaths);

double resultPut = SimpleMonteCarlo2(putPayOff,
Expiry,
Spot,
Vol,
r,
NumberOfPaths);

cout <<"the prices are " << resultCall
<< " for the call and "
<< resultPut
<< " for the put\n";

double tmp;
cin >> tmp;

return 0;
}

2.4 Further extensibility defects

We have now set-up a pay-off class. One of our original objectives was to be able
to extend the code easily without needing to rewrite other code when we add new
pay-offs. Have we achieved this? Yes.

Suppose we now want to add in the digital call pay-off. What do we need to do?
We add in an extra type, digitalcall, in the enum. We also change the switch
statement in the operator() to include the extra case of a digital call and in that
case return 1 if spot is above strike and 0 otherwise.

20 Encapsulation

Everywhere the PayOff class has been used, in our case the Monte Carlo routine
but possibly in many places, the digital call is now available just by passing in a
PayOff object in an appropriate state.

Do this change for yourself and hit ‘build’. One slightly non-obvious effect is
that all the files which involve pay-offs are now recompiled. So although there is
no obvious difference in those files, we see something slightly unexpected: as they
include the file PayOff1.h, and it has changed, they must be recompiled too.

This is a warning sign that the code is not as independent as we would like. In an
extreme case, we might not have access to source code for purchased libraries; any
programming model that required us to recompile those libraries would be useless
to us. In addition even if we could recompile, it might be a time-consuming process
which we would prefer to avoid.

We would therefore like a way of programming that allows us not just to add
functionality without modifying dependent files, but also to be able to do so without
having to recompile existing files.

In fact, any solution that allowed us to do so would have to allow us to add an
extra sort of pay-off without changing the pay-off class that the files using pay-offs
see. For if the part that they see changes in any way, the compiler will insist on
recompiling them even if the changes do not appear to be material.

2.5 The open–closed principle

The previous section’s discussion leads naturally to a programming idea known as
the open-closed principle. The ‘open’ refers to the idea that code should always
be open for extension. So in this particular case, we should always be able to add
extra pay-offs.

The ‘closed’ means that the file is ‘closed for modification’. This refers to the
idea that we should be able to do the extension without modifying any existing
code, and we should be able to do so without even changing anything in any of the
existing files.

This may seem a little counterintuitive; how can one possibly make new
forms of pay-offs without changing the pay-off class? To illustrate the idea be-
fore presenting the C++ solution, we consider how we might do this using C style
techniques.

Suppose instead of making the class contain an enum that defines the option type,
we instead use a function pointer. Thus we replace OptionType with

double (*FunctionPtr)(double,double).

The constructor for the pay-off would then take in the strike and a function
pointer. It would store both and when operator() was called it would dereference

2.6 Key points 21

the pointer and call the function pointed to with spot and strike as its argu-
ments.

This code achieves a lot of our objectives. We can put the function pointed to in
a new file, so the existing file for the pay-off class does not change each time we
add a new form of pay-off. This means that neither the pay-off file nor the Monte
Carlo file which includes the header file for pay-off need to be recompiled let alone
changed.

However, there is still a fly in the ointment. What do we do when the boss comes
by and demands a double-digital pay-off? The double digital requires two strikes
(or barrier levels) and we only have one slot, the strike. Now this was also a problem
with our original pay-off class; it too had only one slot for the strike.

One solution would be to use an array to specify and store parameters. The strike
would be replaced by an array in both constructor and class members. The function
pointer would take the array and spot as it arguments. This could be made to work.
However, the code is now starting to lose the properties of clarity and elegance
which were a large part of our original objectives.

So although the function pointer gets us a long way it does not get us far enough
and we need a more sophisticated approach. The issue is that we need a way of
specifying an object for the pay-off which is not of a predetermined type. This
object will contain all the data it needs know and no more. So for a vanilla call or
put the object would contain the strike, but for a double digital it would contain
both of the two barrier levels.

Fortunately, C++ was designed with just this sort of problem in mind, and in
the next chapter we shall study how to use inheritance and virtual functions to
overcome these problems. We have used the open–closed principle as a way of
motivating the introduction of these concepts, and we shall repeatedly return to it
as a paradigm for evaluating programming approaches.

2.6 Key points

In this chapter, we looked at one way of using a class to encapsulate the notion of
a pay-off. We then saw some of the advantages of using such a class. We also saw
that the class had not achieved all of our objectives.

• Using a pay-off class allows us to add extra forms of pay-offs without modifying
our Monte Carlo routine.

• By overloading operator() we can make an object look like a function.
• const enforces extra discipline by forcing the coder to be aware of which code

is allowed to change things and which code cannot.
• const code can run faster.

22 Encapsulation

• The open-closed principle says that code should be open for extension but closed
for modification.

• Private data helps us to separate interface from implementation.

2.7 Exercises

Exercise 2.1 Modify the pay-off class so that it can handle digital options.

Exercise 2.2 Modify the pay-off class so that it can handle double-digital options.

Exercise 2.3 Test whether on your compiler using const speeds code up.

3

Inheritance and virtual functions

3.1 ‘is a’

We reconsider our PayOff class. At the end of the last chapter, we concluded
that we would like to be able to use differing sorts of objects as pay-offs without
changing any of the code that takes in pay-off objects. In other words, we would
like to be able to say that a call option pay-off ‘is a’ pay-off, and express this idea
in code.

The mechanism for expressing the ‘is a’ relationship in C++ is inheritance.
There are plenty of examples we have already seen where such ‘is a’ relationships
are natural. For example, a call option is a vanilla option. The compiler’s built-in
random number generator is a random number generator. Box–Muller is a method
of turning uniform random variables into Gaussian random variables. An Asian
option is a path-dependent exotic option. An arithmetic Asian call option is an
Asian option, as is a geometric Asian put option. Returning the mean is a way
of gathering statistics for a Monte Carlo simulation. Specifying the continuously
compounding rate is a way to specify the discount curve. The BlackScholes model
is a model of stock price evolution.

Thus ‘is a’ relationships are very natural in mathematical finance (as well as in
coding and life in general.) We shall use inheritance to express such relationships.
We shall refer to the class we inherit from as the base class and the class which
does the inheriting will be called the inherited class. The base class will always
express a more general concept than the inherited class.

Note that there is nothing to stop us inheriting several times. For example,
our base might be PathDependentExoticOption. An inherited class might
be AsianOption. We might then further inherit AsianPutOption and
AsianCallOption from AsianOption.

The key point is that each inherited class refines the class above it in the hierar-
chy to something more specific.

23

24 Inheritance and virtual functions

3.2 Coding inheritance

To indicate that a class, PayOffCall, is inherited from a class PayOff, we use the
key word public. Thus when declaring the inherited class, we write

class PayOffCall : public PayOff

What effect does this have? PayOffCall inherits all the data members and meth-
ods of PayOff. And most importantly, the compiler will accept a PayOffCall
object wherever it expects a PayOff object. Thus we can write all our code to
work off PayOff objects but then use inherited class objects to specify the precise
properties. (There are some issues, however; see Section 3.4.)

We can also add data members and methods at will. The rules of public in-
heritance say that we can access protected data and methods of the base class
inside the methods of the inherited class but we cannot access the private data. It
is generally recommended to use private data for this reason; if we did otherwise
then any changes in the design of the base class might require that any inherited
classes be rewritten and at the very least all inherited classes would have to be
checked. By using private data, we encapsulate what the base class does, and
allow ourselves to reimplement it in future. It is, however, safe to use protected
methods, as these, similarly to public methods, define part of the object’s in-
terface. As long as the implicit (or ideally explicit) contract which expresses the
method’s functionality does not change, it does not matter what interior changes are
made.

3.3 Virtual functions

Returning to our example of the PayOff class, we redefine the class to work using
inheritance. Our base class is still called PayOff but whereas previously it did a
lot, it now does almost nothing. In fact, it does one thing; it specifies an interface.

We give the code in PayOff2.h and PayOff2.cpp.

Listing 3.1 (PayOff2.h)

#ifndef PAYOFF2_H
#define PAYOFF2_H

class PayOff
{
public:

PayOff(){};
virtual double operator()(double Spot) const=0;
virtual ~PayOff(){}

private:

3.3 Virtual functions 25

};
class PayOffCall : public PayOff
{
public:

PayOffCall(double Strike_);
virtual double operator()(double Spot) const;
virtual ~PayOffCall(){}

private:
double Strike;

};

class PayOffPut : public PayOff
{
public:

PayOffPut(double Strike_);
virtual double operator()(double Spot) const;
virtual ~PayOffPut(){}

private:
double Strike;

};
#endif

Listing 3.2 (PayOff2.cpp)

#include <PayOff2.h>
#include <minmax.h>

PayOffCall::PayOffCall(double Strike_) : Strike(Strike_)
{
}
double PayOffCall::operator () (double Spot) const
{

return max(Spot-Strike,0.0);
}
double PayOffPut::operator () (double Spot) const
{

return max(Strike-Spot,0.0);
}

26 Inheritance and virtual functions

PayOffPut::PayOffPut(double Strike_) : Strike(Strike_)
{
}

The main changes to the pay-off class are that we have added the keyword
virtual to operator() and we placed an =0, at the end of operator(). We
have added in a destructor which is also virtual. We have also abolished all the
data from both the constructor and the class definition.

We also have two new classes PayOffCall and PayOffPut. Each of these have
been inherited from the class PayOff. These classes will now do all the work. The
call pay-off ‘is a’ pay-off, and we will use PayOffCall instead of the pay-off class
where we need a call pay-off. Similarly for the put pay-off.

The crucial point is that the main method, operator() is now virtual. What
is a virtual function? In technical terms, it is a function whose address is bound
at runtime instead of at compile time. What does that mean? In the code, where a
PayOff object has been specified, for example in our simple Monte Carlo routine,
the code when running will encounter an object of a class that has been inherited
from PayOff. It will then decide what function to call on the basis of what type
that object is. So if the object is of type PayOffCall, it calls the operator()
method of PayOffCall, and if it is of type PayOffPut, it uses the method from
the PayOffPut class and so on.

It’s worth understanding how the compiler implements this. Rather than saying,
“hmm, what type is this object? Ah, it’s a call so I’ll use the call pay-off function,”
it adds extra data to each object of the class which specifies what function to use. In
fact, essentially what it stores is a function pointer. So virtual functions are really a
fancy way of using function pointers. Indeed, if you run a program involving virtual
function pointers through a debugger, and examine through the watch window an
object from a class with virtual functions, you will find an extra data member,
the virtual function table. This virtual function table is a list of addresses to be
called for the virtual functions associated with the class. So if when running a
program, a virtual function is encountered, the table is looked up and execution
jumps into the function pointed to. Note that this operation takes a small amount of
time so efficiency fanatics dislike virtual functions as they cause a small decrease in
execution speed. Note also that the amount of memory per object has also increased
as the object now contains a lot of extra data.

1

1
It is a curious fact that the C++ standard says nothing about how virtual functions are implemented so the
effects are compiler dependent: However, modern compilers typically store one copy of the virtual table for
each class, and each object contains a pointer to the relevant table.

3.3 Virtual functions 27

If virtual functions are just function pointers, why bother with them? The first
reason is that they are syntactically a lot simpler. The structure of our program is
much clearer: if we can say this is a pay-off call object and this is a pay-off put
object rather than having to say that we have a pay-off object but it contains a
pointer to a function defining a call pay-off, we have a gain in clarity.

A second and important reason is that we get extra functionality. Depending
on the complexity of the pay-off we may need extra data which cannot be ex-
pressed by a single number. With inheritance, we simply require the inherited class
to contain all the data necessary. Thus for a double-digital pay-off we simply have
two doubles expressing the upper and lower barriers. For a power option, we
have a double for the strike and an unsigned long for the power. We could
even have some complicated object stored as an extra argument. Indeed, if we
wanted to do a complicated pay-off as a linear combination of call options, the ex-
tra data could be further call options whose pay-offs would be evaluated inside the
operator() method and added together.

As well as being a virtual function, the operator() method has an =0 after
it. This means that it is a pure virtual function. A pure virtual function has the
property that it need not be defined in the base class and must be defined in an
inherited class. Thus by putting =0 we are saying that the class is incomplete, and
that certain aspects of its interface must be programmed in an inherited class.

In SimpleMCMain3.cpp we give an example of how to use the new pay-off
class. Note that it uses SimpleMC2.h which only differs from SimpleMC.h in the
replacement of PayOff.h with PayOff2.h. So we omit it.

Listing 3.3 (SimpleMCMain3.cpp)

/*
requires

PayOff2.cpp
Random1.cpp
SimpleMC2.cpp

*/
#include<SimpleMC2.h>
#include<iostream>
using namespace std;

int main()
{

double Expiry;
double Strike;
double Spot;

28 Inheritance and virtual functions

double Vol;
double r;
unsigned long NumberOfPaths;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nEnter strike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

PayOffCall callPayOff(Strike);
PayOffPut putPayOff(Strike);

double resultCall = SimpleMonteCarlo2(callPayOff,
Expiry,
Spot,
Vol,
r,
NumberOfPaths);

double resultPut = SimpleMonteCarlo2(putPayOff,
Expiry,
Spot,
Vol,
r,
NumberOfPaths);

cout <<"the prices are " << resultCall <<
" for the call and "

3.4 Why we must pass the inherited object by reference 29

<< resultPut <<
" for the put\n";

double tmp;
cin >> tmp;

return 0;
}

3.4 Why we must pass the inherited object by reference

In our Monte Carlo routine, we have a parameter of type const PayOff& called
thePayOff. This means that the parameter is being passed by reference rather
than by value. The routine therefore works off the original object passed in. If we
had not used the ‘&’ it would copy the object: it would be passed by value not by
reference. Suppose we change the parameter to type PayOff with or without the
const, what happens? The code will not compile.

Why not? When the argument Payoff is encountered, the compiler refuses to
create an object of type PayOff because it has a pure virtual method. The method
operator() has not been defined, and the rules of C++ say that you cannot create
an object of a type with a pure virtual method.

How could we get round this? Suppose we decide to make operator() an
ordinary virtual function by defining it. For example, we could just make it return
0 and still override in the inherited clases as before. The code with the ‘&’ would
compile and run as before, giving the same results. The code without the ‘&’ would
now compile and run. However, the price of every option would be zero, which is
certainly not what we want.

This happens because when the compiler encounters the argument of type
PayOff, the input parameter is copied into a variable of type PayOff. This
occurs because the compiler will call the copy constructor of PayOff. Like all copy
constructors, it takes in an object of type const PayOff&. As the compiler happily
accepts references to inherited objects instead of references to base-class objects
this is legal and the compiler does not complain. However, the copy constructor
of PayOff is not interested in all the extra data and information contained in the
inherited object: it just looks down the data coming from the base class and copies
it into the new object. As the new object is truly a base class object rather than an
inherited class object pretending to be a base class object, its virtual functions will
be those of the base class.

This all means that the new variable has the size and data of a PayOff object
regardless of the type of the inputted object. The compiler therefore truncates all

30 Inheritance and virtual functions

the additional data members which have been added, and the virtual function table
is that of the base class object not the inherited class. In fact, disastrous things
would occur if the new object inherited the virtual function table of the inherited
object, as the virtual methods would try to access non-existent data members with
possibly dangerous consequences.

Making the base class method concrete instead of pure virtual was therefore a
mistake, and, in fact, the compiler’s rejection of the argument without the ‘&’ was
saving us from a dangerous error.

It’s worth thinking a little about what actually happens when the object is passed
by reference. All that happens is that the function is passed the address of the
object in memory, no copying occurs and the object’s state is precisely as it was
outside. However, if the object’s state does change inside the routine it will also
change outside which may not be what we want. We therefore include the const
to indicate that the routine cannot do anything which may change the state of the
object. The function can ‘look but not touch.’

3.5 Not knowing the type and virtual destruction

Generally, one cannot pass an object of one type where another type is expected; a
big feature of C++ is that it enforces type security. This means that the compiler
picks up many errors at compile time instead of at run time. We cannot even run
our program until we have made sure that all objects are of the types expected. This
reduces the number of bugs that need to be found while the program is running by
enforcing some discipline.

However, the rules of inheritance say that we can always pass a reference to
an object of an inherited class instead of a reference to a base class object. This
means that at times we do not know the type of object. For example, inside the
Monte Carlo routine, SimpleMC2, we appear to be using a base class object not an
inherited one.

There are two ways to forget the type of the object. The first, which we have
already used, is to refer to it via a reference to the base class type instead of the
inherited class type. The second, related, method is via a pointer.

If we have a pointer to an inherited object we can always cast it into a base
class object without any trouble. We give an example of this in SimpleMC-
Main4.cpp.

Listing 3.4 (SimpleMCMain4.cpp)

/*
requires

PayOff2.cpp

3.5 Not knowing the type and virtual destruction 31

Random1.cpp
SimpleMC2.cpp

*/
#include<SimpleMC2.h>
#include<iostream>
using namespace std;

int main()
{

double Expiry;
double Strike;
double Spot;
double Vol;
double r;
unsigned long NumberOfPaths;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nEnter strike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

unsigned long optionType;

cout << "\nenter 0 for call, otherwise put ";
cin >> optionType;

PayOff* thePayOffPtr;

32 Inheritance and virtual functions

if (optionType== 0)
thePayOffPtr = new PayOffCall(Strike);

else
thePayOffPtr = new PayOffPut(Strike);

double result = SimpleMonteCarlo2(*thePayOffPtr,
Expiry,
Spot,
Vol,
r,
NumberOfPaths);

cout <<"\nthe price is " << result << "\n";
double tmp;
cin >> tmp;

delete thePayOffPtr;

return 0;
}

The user of our unsophisticated interface enters a zero for a call option and a non-
zero number for a put option. We use an if statement to create the pay-off object.
Note the important point here is that we use new. Whilst we would like to simply
write

if (optionType== 0)
PayOffCall thePayOff(Strike);

else
PayOffPut thePayOff(Strike);

this will not give us what we want. The reason is that whilst the object
thePayOff will happily be created, it will be an automatic variable, which is one
that automatically disappears whenever the scope is left. In this case, the scope is
the dependent clause of the if statement, so as soon we leave the if statement
the object no longer exists and any attempts to reference thePayOff will result
in compiler errors.

On the other hand, when we use new we are instructing the compiler that we
wish to take some memory whilst the code is running, and that memory should not
be released until we explicitly say so. The object created will therefore continue to
exist outside the if statement as desired. The operator new finds enough memory

3.5 Not knowing the type and virtual destruction 33

to put the object into and calls the constructor, placing the object at the memory
that has been allocated. It returns a pointer to the object created.

Thus the code new PayOffCall(Strike) creates the PayOffCall object and
it returns a pointer to the object so we can access it. The returned pointer will
be of type PayOffCall*. Fortunately, we can always cast a pointer from an in-
herited class pointer into a base class pointer. We therefore assign payOffPtr
to the result of new and we have the desired result. Note that we declare
payOffPtr outside the if to ensure that it persists after the if statement is com-
plete.

When we reach the call to the Monte Carlo routine, we can now pass in either a
call or a put, depending on what the pointer points to. We dereference the pointer
in order to pass in the object rather than the pointer by putting *payOffPtr.

The final thing we must do is get rid of the object. By using new, we told the
compiler that it must not destroy the object nor deallocate the memory until we
say so. If we never tell it to do so then the memory will never be freed up, and
our memory will slowly leak away until program crashes. The way we instruct the
compiler to destroy the object and deallocate the memory is to use the operator
delete. When we call delete, it first calls the destructor of the object. At this
point we must be careful: we have a pointer to a base object, so which destructor
will it call? If the destructor is not virtual then it will call the base class destruc-
tor. If the object is of an inherited class this may cause problems as the object will
not be destroyed properly. For example, if the inherited class object had an array as
a data member then the memory allocated for that array will never be deallocated.
In our case, the base class is abstract and there cannot be any objects of its type.
This means that calling the base class destructor must be an error. For this reason,
we declare the destructor virtual. The compiler then uses the virtual function
table to correctly decide which destructor to call. In fact, many compilers issue
a warning if you declare a method pure virtual and do not declare the destructor
virtual.

In fact, when calling and executing the destructor of an inherited class, the com-
piler always calls the base class destructor; this ensures that all the data members
of the object which arise from the base class are correctly destroyed.

In this section, we looked at one case where we did not know the type of an
object and this caused us a little trouble, but it was also very useful. By treating
the inherited class object as a base class object, we were able to make the same
code work regardless of the precise type of the object. The important fact was that
whatever the type of the object, it had to implement all the methods defined in the
base class and this was enough to ensure that the code ran smoothly. One way of
summarizing this situation is to say that the inherited class implements the interface
defined by the base class.

34 Inheritance and virtual functions

In the next chapter, we will look at some additional problems caused by not
knowing types, such as the problem of copying an object of unknown type, and
examine their solutions.

3.6 Adding extra pay-offs without changing files

One of our objectives when rewriting the PayOff class was to create a class that
could be extended without changing any of the existing code. In addition, we
wished to be able to add extra pay-offs without having to recompile either the
file containing the PayOff class or any files which included the file defining the
PayOff class. In this section, we see how to do this with our class definition.

Suppose the new pay-off we wish to add is the double digital pay-off. This pay-
off pays 1 if spot is between two values and 0 otherwise. We define the new pay-off
class in a new file, DoubleDigital.h with the associated code in
DoubleDigital.cpp.

Listing 3.5 (DoubleDigital.h)

#ifndef DOUBLEDIGITAL_H
#define DOUBLEDIGITAL_H
#include <Payoff2.h>

class PayOffDoubleDigital : public PayOff
{
public:

PayOffDoubleDigital(double LowerLevel_,
double UpperLevel_);

virtual double operator()(double Spot) const;
virtual ~PayOffDoubleDigital(){}

private:
double LowerLevel;
double UpperLevel;

};
#endif

and the source code is

Listing 3.6 (DoubleDigital.cpp)

#include <DoubleDigital.h>

3.6 Adding extra pay-offs without changing files 35

PayOffDoubleDigital::PayOffDoubleDigital(double LowerLevel_,
double UpperLevel_)

: LowerLevel(LowerLevel_),
UpperLevel(UpperLevel_)

{
}

double PayOffDoubleDigital::operator()(double Spot) const
{

if (Spot <= LowerLevel)
return 0;

if (Spot >= UpperLevel)
return 0;

return 1;
}

The crucial point is that whilst we must include the file DoubleDigital.h in
our interface we do not include it in either the Monte Carlo file, SimpleMC2, or
the pay-off file, PayOff2. The changes to the interface file are minimal and we
have

Listing 3.7 (SimpleMCMain5.cpp)

/*
requires DoubleDigital.cpp

PayOff2.cpp
Random1.cpp
SimpleMC2.cpp

*/
#include<SimpleMC2.h>
#include<DoubleDigital.h>
#include<iostream>
using namespace std;

int main()
{

double Expiry;
double Low,Up;
double Spot;

36 Inheritance and virtual functions

double Vol;
double r;
unsigned long NumberOfPaths;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nEnter low barrier\n";
cin >> Low;

cout << "\nEnter up barrier\n";
cin >> Up;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

PayOffDoubleDigital thePayOff(Low,Up);

double result = SimpleMonteCarlo2(thePayOff,
Expiry,
Spot,
Vol,
r,
NumberOfPaths);

cout <<"\nthe price is " << result << "\n";
double tmp;
cin >> tmp;

return 0;
}

3.8 Exercises 37

Thus adding the new pay-off only required recompilation of one file rather than
many and this achieves one objective: the PayOff class is open for extension but
closed for modification. In particular, we could have added the new pay-off even if
we did not have access to the source code of the PayOff class.

What we would really like is to be able to add new pay-offs without changing
any files. That is we would like to be able to add new pay-offs without changing the
interfacing file. In the interface, the user would simply type the name of the pay-
off and this would be translated into the relevant pay-off. Rather surprisingly it is
possible to do this. The solution is to use a design known as the Factory pattern.
We shall discuss how to do this in Chapter 10.

3.7 Key points

In this chapter, we looked at how inheritance could be used to implement a
PayOff class that is closed for modification but open for extension.

• Inheritance expresses ‘is a’ relationships.
• A virtual function is bound at run time instead of at compile time.
• We cannot have objects from classes with pure virtual functions.
• We have to pass inherited class objects by reference if we do not wish to change

the virtual functions.
• Virtual functions are implemented via a table of function pointers.
• If a class has a pure virtual functions then it should have a virtual destructor.

3.8 Exercises

Exercise 3.1 Write an inherited class that does power options, and use it to price
some.

Exercise 3.2 Implement an interface in which the user inputs a string and this is
turned into a pay-off class.

Exercise 3.3 In the evil boss’s list of demands in Chapter 1, try to identify as many
inheritance relationships as possible.

4

Bridging with a virtual constructor

4.1 The problem

We have written a simple Monte Carlo program which uses a polymorphic class
PayOff to determine the pay-off of the vanilla option to be priced. If we think about
the real-world objects we wish to model, a very natural object is the option itself.
At the moment, we have two pieces of data, the expiry and the pay-off, it would be
much more natural to have a single piece of data, the option, which encompassed
both.

How would we do this? One simple solution is simply to copy all the pay-off
code we have written, add an extra data member, Expiry, to the base class and
an extra method, GetExpiry, to the base class and be done. However, this rather
spoils the paradigm of code reuse – we would like to reuse the same code rather
than cut and paste it. In addition, if we do this for each new class of options, then it
will be very time consuming to add new types of pay-offs as we will have to write
a new inherited class for each option type.

A preferable solution would be to define a Vanilla Option class which has as data
members a PayOff object and a double to represent expiry. However, if we try this
we immediately hit a snag; the class PayOff is abstract. The compiler will squeal
if we attempt to have a data member for our class of type PayOff, as you cannot
instantiate an object from an abstract class. The issues we encounter here are very
similar to those of Section 3.4. As there, making the PayOff class non-abstract
by defining operator() in the base class causes more trouble than it solves. Any
attempt to make the data member equal to an inherited class member will simply
result in the object being copied and truncated into a base class object which is not
what we want.

What we want is for the Vanilla Option object to be able to contain an object
from an unknown class. Note that as the size of the unknown class object will not
be constant, we will not be able to put it directly in the Vanilla Option object as
this would lead to Vanilla Option objects being of variable size. This is something

38

4.2 A first solution 39

that is not allowed in C++. However, it is possible to refer to extra data outside
the object using pointers or references. This is after all what an array, or a list, or a
string, does.

One solution is therefore to store a reference to a pay-off object instead of a
pay-off object.

4.2 A first solution

In this section, we implement a Vanilla Option class using a reference to a pay-off
object and then discuss what’s wrong with it.

Listing 4.1 (Vanilla1.h)

#ifndef VANILLA_1_H
#define VANILLA_1_H

#include <PayOff2.h>

class VanillaOption
{
public:

VanillaOption(PayOff& ThePayOff_, double Expiry_);
double GetExpiry() const;
double OptionPayOff(double Spot) const;

private:
double Expiry;
PayOff& ThePayOff;

};
#endif

The source file is

Listing 4.2 (Vanilla1.cpp)

#include <Vanilla1.h>

VanillaOption::VanillaOption(PayOff&ThePayOff_,
double Expiry_)

: ThePayOff(ThePayOff_), Expiry(Expiry_)
{
}

40 Bridging with a virtual constructor

double VanillaOption::GetExpiry() const
{

return Expiry;
}

double VanillaOption::OptionPayOff(double Spot) const
{

return ThePayOff(Spot);
}

This is all very straightforward. The only subtlety is that the class member data is
of type PayOff& instead of PayOff. However, we can use a reference to a pay-off
object in precisely the same way as a pay-off object so this causes no extra coding.
Our class provides two methods, one giving the expiry of the option and the other
stating the pay-off at expiry given spot.

We can now rewrite the Monte Carlo routine to use the VanillaOption class.
We thus have

Listing 4.3 (SimpleMC3.h)

#ifndef SIMPLEMC3_H
#define SIMPLEMC3_H
#include <Vanilla1.h>

double SimpleMonteCarlo3(const VanillaOption& TheOption,
double Spot,
double Vol,
double r,
unsigned long NumberOfPaths);

#endif

and

Listing 4.4 (SimpleMC3.cpp)

#include<SimpleMC3.h>
#include <Random1.h>
#include <cmath>
// the basic math functions should be in namespace
// std but aren’t in VCPP6
#if !defined(_MSC_VER)
using namespace std;
#endif

4.2 A first solution 41

double SimpleMonteCarlo3(const VanillaOption& TheOption,
double Spot,
double Vol,
double r,
unsigned long NumberOfPaths)

{
double Expiry = TheOption.GetExpiry();

double variance = Vol*Vol*Expiry;
double rootVariance = sqrt(variance);
double itoCorrection = -0.5*variance;

double movedSpot = Spot*exp(r*Expiry +itoCorrection);
double thisSpot;
double runningSum=0;

for (unsigned long i=0; i < NumberOfPaths; i++)
{

double thisGaussian = GetOneGaussianByBoxMuller();
thisSpot = movedSpot*exp(rootVariance*thisGaussian);
double thisPayOff = TheOption.OptionPayOff(thisSpot);
runningSum += thisPayOff;

}

double mean = runningSum / NumberOfPaths;
mean *= exp(-r*Expiry);
return mean;

}
/*

Our new routine is very similar to the old one, the difference being that we pass in
an option object instead of pay-off and an expiry separately. We obtain the expiry
from the option via GetExpiry().

Our main routine is then

Listing 4.5 (VanillaMain1.cpp)

/*
requires DoubleDigital.cpp

PayOff2.cpp
Random1.cpp
SimpleMC3.cpp

42 Bridging with a virtual constructor

Vanilla1.cpp
*/

#include<SimpleMC3.h>
#include<DoubleDigital.h>
#include<iostream>
using namespace std;
#include<Vanilla1.h>

int main()
{

double Expiry;
double Low,Up;
double Spot;
double Vol;
double r;
unsigned long NumberOfPaths;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nEnter low barrier\n";
cin >> Low;

cout << "\nEnter up barrier\n";
cin >> Up;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

PayOffDoubleDigital thePayOff(Low,Up);

4.3 Virtual construction 43

VanillaOption theOption(thePayOff, Expiry);

double result = SimpleMonteCarlo3(theOption,
Spot,
Vol,
r,
NumberOfPaths);

cout <<"\nthe price is " << result << "\n";
double tmp;
cin >> tmp;

return 0;
}

The main change is that now we first pass a PayOff object and the expiry time into
a VanillaOption object and that is then passed into the Monte Carlo.

This program will compile and run but I do not like it. Why not? The
VanillaOption class stores a reference to a PayOff object which was defined
outside the class. This means that if we change that object then the pay-off of
the vanilla option will change. The vanilla option will not exist as independent
object in its own right but will instead always be dependent on the PayOff ob-
ject constructed outside the class. This is a recipe for trouble. The user of the
VanillaOption will not expect changes to the PayOff object to have such an
effect. In addition, if the PayOff object had been created using new as we did in
the last chapter then it might be deleted before the option ceased to exist which
would result in the vanilla option calling methods of a non-existent object which is
bound to cause crashes.

Similarly, if the option was created using new then it would likely exist long
after the PayOff object had ceased to exist, and we would get similarly dangerous
behaviour.

4.3 Virtual construction

What do we really want to do? We want the vanilla option to store its own copy
of the pay-off. However, we do not want the vanilla option to know the type of the
pay-off object nor anything about any of its inherited classes for all the reasons we
discussed in the last chapter. Our solution there was to use virtual functions: how
can we use them here? Well the object knows its own type so it can certainly make
a copy of itself. Thus we define a virtual method of the base class which causes the
object to create a copy of itself and return a pointer to the copy.

44 Bridging with a virtual constructor

Such a method is called a virtual copy constructor. The method is generally
given the name clone. Thus if we want the PayOff class to be virtually copyable,
we add a pure virtual method to the base class by

virtual PayOff* clone() const=0;

and define it in each inherited class. For example,

PayOff* PayOffCall::clone() const
{

return new PayOffCall(*this);
}

Note that the statement new PayOffCall(*this); says create a copy of the ob-
ject for which the clone method has been called, as the this pointer always points
to the object being called. The call to clone is then a call to the copy constructor
of PayOffCall which returns a copy of the original PayOffCall, and because
the operator new has been used, we can be sure that the object will continue to
exist.

Note that we have made the return type of clone PayOff* which is a pointer
to the base class object. Strictly speaking according to the standard, we should be
able to change the return type to PayOffCall*, as it is permissible according to the
standard to change the return type of a virtual function from a base class pointer to
a pointer to the inherited class. As inherited class pointers can always be converted
into base class pointers, this does not cause problems. However many compilers
will not compile this syntax, as this is an exception to the general rule that you
cannot override the return type of a virtual function.

We give the revised PayOff class in PayOff3.h. We now have

Listing 4.6 (PayOff3.h)

#ifndef PAYOFF3_H
#define PAYOFF3_H

class PayOff
{
public:

PayOff(){};

virtual double operator()(double Spot) const=0;
virtual ~PayOff(){}
virtual PayOff* clone() const=0;

4.3 Virtual construction 45

private:
};

class PayOffCall : public PayOff
{
public:

PayOffCall(double Strike_);

virtual double operator()(double Spot) const;
virtual ~PayOffCall(){}
virtual PayOff* clone() const;

private:
double Strike;

};

class PayOffPut : public PayOff
{
public:

PayOffPut(double Strike_);

virtual double operator()(double Spot) const;
virtual ~PayOffPut(){}
virtual PayOff* clone() const;

private:
double Strike;

};
#endif

and PayOff3.cpp

Listing 4.7 (PayOff3.cpp)

#include <PayOff3.h>
#include <minmax.h>

PayOffCall::PayOffCall(double Strike_) : Strike(Strike_)
{
}

46 Bridging with a virtual constructor

double PayOffCall::operator () (double Spot) const
{

return max(Spot-Strike,0.0);
}

PayOff* PayOffCall::clone() const
{

return new PayOffCall(*this);
}

double PayOffPut::operator () (double Spot) const
{

return max(Strike-Spot,0.0);
}

PayOffPut::PayOffPut(double Strike_) : Strike(Strike_)
{
}

PayOff* PayOffPut::clone() const
{

return new PayOffPut(*this);
}

We similarly have to change the contents of DoubleDigital to reflect the extra
method in the base class. We do this in DoubleDigital2.h and in
DoubleDigital2.cpp, which we do not reproduce here.

Using PayOff3.h, we can now make copies of PayOff objects of unknown type
and reimplement the VanillaOption class accordingly.

Listing 4.8 (Vanilla2.h)

#ifndef VANILLA_2_H
#define VANILLA_2_H

#include <PayOff3.h>

class VanillaOption
{
public:

VanillaOption(const PayOff& ThePayOff_, double Expiry_);

4.3 Virtual construction 47

VanillaOption(const VanillaOption& original);
VanillaOption& operator=(const VanillaOption& original);
~VanillaOption();

double GetExpiry() const;
double OptionPayOff(double Spot) const;

private:
double Expiry;
PayOff* ThePayOffPtr;

};
#endif

and the source file is

Listing 4.9 (Vanilla2.cpp)

#include <Vanilla2.h>

VanillaOption::VanillaOption(const PayOff&
ThePayOff_, double Expiry_)

: Expiry(Expiry_)
{

ThePayOffPtr = ThePayOff_.clone();
}

double VanillaOption::GetExpiry() const
{

return Expiry;
}

double VanillaOption::OptionPayOff(double Spot) const
{

return (*ThePayOffPtr)(Spot);
}

VanillaOption::VanillaOption(const VanillaOption& original)
{

Expiry = original.Expiry;
ThePayOffPtr = original.ThePayOffPtr->clone();

}

48 Bridging with a virtual constructor

VanillaOption& VanillaOption::
operator=(const VanillaOption& original)

{
if (this != &original)
{

Expiry = original.Expiry;
delete ThePayOffPtr;
ThePayOffPtr = original.ThePayOffPtr->clone();

}
return *this;

}

VanillaOption::~VanillaOption()
{

delete ThePayOffPtr;
}

We modify SimpleMC3 to get SimpleMC4 by changing the name of the include file
to be Vanilla2.h and doing nothing else.

Listing 4.10 (SimpleMC4.h)

#ifndef SIMPLEMC4_H
#define SIMPLEMC4_H

#include <Vanilla2.h>

double SimpleMonteCarlo3(const VanillaOption& TheOption,
double Spot,
double Vol,
double r,
unsigned long NumberOfPaths);

#endif

Listing 4.11 (SimpleMC4.cpp)

#include <SimpleMC4.h>
#include <Random1.h>
#include <cmath>

// the basic math functions should be in namespace std
// but aren’t in VCPP6

4.3 Virtual construction 49

#if !defined(_MSC_VER)
using namespace std;
#endif
double SimpleMonteCarlo3(const VanillaOption& TheOption,

double Spot,
double Vol,
double r,
unsigned long NumberOfPaths)

{

double Expiry = TheOption.GetExpiry();

double variance = Vol*Vol*Expiry;
double rootVariance = sqrt(variance);
double itoCorrection = -0.5*variance;

double movedSpot = Spot*exp(r*Expiry +itoCorrection);
double thisSpot;
double runningSum=0;

for (unsigned long i=0; i < NumberOfPaths; i++)
{

double thisGaussian = GetOneGaussianByBoxMuller();
thisSpot = movedSpot*exp(rootVariance*thisGaussian);
double thisPayOff = TheOption.OptionPayOff(thisSpot);
runningSum += thisPayOff;

}

double mean = runningSum / NumberOfPaths;
mean *= exp(-r*Expiry);
return mean;

}
/*

Our main program is now VanillaMain2.cpp.

Listing 4.12 (VanillaMain2.cpp)

/*
requires PayOff3.cpp,

Random1.cpp,
SimpleMC4.cpp
Vanilla2.cpp

*/

50 Bridging with a virtual constructor

#include<SimpleMC4.h>
#include<iostream>
using namespace std;
#include<Vanilla2.h>

int main()
{

double Expiry;
double Strike;
double Spot;
double Vol;
double r;
unsigned long NumberOfPaths;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nStrike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

PayOffCall thePayOff(Strike);

VanillaOption theOption(thePayOff, Expiry);

double result = SimpleMonteCarlo3(theOption,
Spot,
Vol,
r,
NumberOfPaths);

4.4 The rule of three 51

cout <<"\nthe call price is " << result << "\n";

VanillaOption secondOption(theOption);

result = SimpleMonteCarlo3(secondOption,
Spot,
Vol,
r,
NumberOfPaths);

cout <<"\nthe call price is " << result << "\n";

PayOffPut otherPayOff(Strike);
VanillaOption thirdOption(otherPayOff, Expiry);
theOption = thirdOption;

result = SimpleMonteCarlo3(theOption,
Spot,
Vol,
r,
NumberOfPaths);

cout <<"\nthe put price is " << result << "\n";

double tmp;
cin >> tmp;

return 0;
}
/*

The actual syntax in our main program has not changed much.

4.4 The rule of three

One difference between the VanillaOption class and all the classes we have pre-
viously defined is that we have included an assignment operator (i.e. operator=)
and a copy constructor. The reason is that whilst the compiler by default generates
these methods, the compiler’s definitions are inadequate.

If we do not declare the copy constructor then the compiler will perform a shal-
low copy as opposed to a deep copy. A shallow copy means that the data members
have simply been copied, whilst this is adequate when no memory allocation is

52 Bridging with a virtual constructor

required it will lead to disaster when it does. If we have shallow copied a Vanilla-
Option then both copies of the object have the same member ThePayOff-
Ptr, so any modifications to the object we have pointed-to will have the same effect
in each copy. Whilst for our particular object this is not really an issue as we do not
want to change it, in a more complicated class this would certainly lead to trouble.

More seriously, when the one of the two VanillaOption objects goes out of
scope then its destructor will be called and the pointed-to PayOff object will be
deleted. The object remaining will now be in trouble as attempts to use its pointer
will lead to methods of a non-existent object being called. On top of which when
the remaining object goes out of scope, its destructor will be called and there will
be a second attempt to delete the pointed-to object. As the object has already been
deleted, this will generally result in a crash.

Thus if we write a class involving a destructor, we will generally need a copy
constructor too. In fact, we have very similar issues with the assignment operator so
it is necessary to write it as well. This leads to the “rule of three,” which states that
if any one of destructor, assignment operator and copy constructor is needed for a
class then all three are. Whilst it is possible to construct examples for which this is
not true, it is a very good rule of thumb. If you feel that you will never want to copy
or assign objects from a class and do not bother to write the appropriate methods
then you are storing up trouble; when someone does use the copy constructor the
compiler will not complain but the code will crash. One solution is to declare the
copy constructor but make it private. The attempt to use it will then result in a
compile-time error instead of a run-time error which would be more easily spotted
and fixed. (Similarly for the assignment operator.)

We analyze the copy constructor from VanillaOption. It copies the value of
Expiry from the original into the copy, naturally enough. For the pointer, we call
the clone method generating a copy of the PayOff object which we store in the
copy’s pointer. Note that the data members of the original and its copy will not be
equal, since the pointers will have different values. However, this is precisely what
we want, as we do not want them to be using the original PayOff object.

Note, however, that if we decided to define a comparison operator (i.e. opera-
tor==) for the class, we would have to be careful to compare the objects pointed
to rather than the pointers, or we would always get false.

Having analyzed the copy constructor, let’s look at the assignment operator. The
first thing to note is that its return type is VanillaOption&. The effect of this is
that it is legitimate to code

a=b=c;

which is equivalent to

b=c;
a=b;

4.5 The bridge 53

but saves a little typing. The second, odder, point is that it it also legitimate to code

(a=b) = c;

which is equivalent to

a=b;
a=c;

which is not particularly useful. If we made the return type const then the second
of these examples would not compile which might be regarded as an advantage;
however, for built-in types the return type has no const and it is generally better
to be consistent. Note that if we had made the return type void, the first exam-
ple would not compile. If we had made it VanillaOption rather than Vanilla-
Option& then the two examples would both compile but give odd behaviour. The
first would work but might result in extra copying of objects which would waste
time. The second would end with a being equal to b, as the returned object from
a=b would have nothing to do with a any more and would happily be assigned the
value of c and then disappear.

The second point to note about the assignment operator is that the first thing we
do is check against self-assignment. If we accidentally coded a=a, we would not
want the code to crash. Whilst it might seem an unlikely occurence when objects
are being accessed through pointers it is not immediately obvious whether two
objects are actually the same object. By checking if the address of the assigning
object is equal to the this pointer, we check against this eventuality and do nothing
if it occurs as nothing is needed to be done to ensure that a is equal to a.

The rest of the assignment operator is really just a combination of destructor and
copy constructor. The destructor part is needed to get rid of the PayOff which the
object owned before, as otherwise it would never be deleted. The copy constructor
part clones the pointed-to object so the new version of the assigned part has its own
copy of the object as desired.

4.5 The bridge

We have now achieved what we desired: the vanilla option class can be happily
copied and moved around just like any other class and it uses the code already
written for the PayOff class so we have no unnecessary duplication. However,
there is still one aspect of our implementation which is slightly annoying – we had
to write special code to handle assignment, construction and destruction. Every
time we want to write a class with these properties, we will have to do the same
thing again and again. This is rather contrary to the paradigm of reuse. What we
would really like is a pay-off class that has the nice polymorphic features that
our class does, whilst taking care of its own memory management. There are a
couple of approaches to solving this problem. One is to use a wrapper class that has

54 Bridging with a virtual constructor

been templatized: this is really generic programming rather than object-oriented
programming, and we explore this approach in Section 5.4. The other is known
as the bridge pattern. Suppose we take the vanilla option class and get rid of the
member Expiry and the method GetExpiry. We then are left with a class that
does nothing except store a pointer to an option pay-off and takes care of memory
handling. This is precisely what we want.

We present such a class:

Listing 4.13 (PayOffBridge.h)

#ifndef PAYOFFBRIDGE_H
#define PAYOFFBRIDGE_H

#include<PayOff3.h>

class PayOffBridge
{
public:

PayOffBridge(const PayOffBridge& original);
PayOffBridge(const PayOff& innerPayOff);

inline double operator()(double Spot) const;
~PayOffBridge();
PayOffBridge& operator=(const PayOffBridge& original);

private:
PayOff* ThePayOffPtr;

};

inline double PayOffBridge::operator()(double Spot) const
{

return ThePayOffPtr->operator ()(Spot);
}

#endif

Listing 4.14 (PayOffBridge.cpp)

#include<PayOffBridge.h>

PayOffBridge::PayOffBridge(const PayOffBridge& original)
{

4.5 The bridge 55

ThePayOffPtr = original.ThePayOffPtr->clone();
}

PayOffBridge::PayOffBridge(const PayOff& innerPayOff)
{

ThePayOffPtr = innerPayOff.clone();
}

PayOffBridge::~PayOffBridge()
{

delete ThePayOffPtr;
}

PayOffBridge& PayOffBridge::operator=
(const PayOffBridge& original)

{
if (this != &original)
{

delete ThePayOffPtr;
ThePayOffPtr = original.ThePayOffPtr->clone();

}

return *this;
}

We test the new class in VanillaMain3.cpp. This file is almost identical to
VanillaMain2.cpp so we do not present it here but it is included on the accom-
panying CD. It includes Vanilla3.h instead of Vanilla2.h and SimpleMC5.h
instead of SimpleMC4.h, the only differences being the inclusion of PayOff-
Bridge.h. In Vanilla3.h, we code the vanilla option in the way we originally
wanted to! That is, we treat the pay-off as an ordinary object requiring no special
treatment.

Listing 4.15 (Vanilla3.h)

#ifndef VANILLA_3_H
#define VANILLA_3_H

#include <PayOffBridge.h>

class VanillaOption
{

56 Bridging with a virtual constructor

public:
VanillaOption(const PayOffBridge&

ThePayOff_,double Expiry);

double OptionPayOff(double Spot) const;
double GetExpiry() const;

private:
double Expiry;
PayOffBridge ThePayOff;

};
#endif

and

Listing 4.16 (Vanilla3.cpp)

#include <Vanilla3.h>

VanillaOption::VanillaOption(const PayOffBridge&
ThePayOff_, double Expiry_)

: ThePayOff(ThePayOff_), Expiry(Expiry_)
{
}

double VanillaOption::GetExpiry() const
{

return Expiry;
}

double VanillaOption::OptionPayOff(double Spot) const
{

return ThePayOff(Spot);
}

Everything in Vanilla3.h is totally straightforward as all the work has already
been done for by the bridged class.

An interesting aspect of VanillaMain3.cpp is that we do not have to change
the lines

PayOffCall thePayOff(Strike);

VanillaOption theOption(thePayOff, Expiry);

4.6 Beware of new 57

Although the VanillaOption constructor expects an argument of type
PayOffBridge, it happily accepts the argument of type PayOffCall. The rea-
son is that there is a constructor for PayOffBridge which takes in an object of
type PayOff&. The compiler automatically accepts the inherited class object as
a substitute for the base class object, and then silently converts it for us into the
PayoffBridge object which is then passed to the VanillaOption constructor.

4.6 Beware of new

We have presented the bridge as a solution to the problem of developing an open-
closed pay-off class. It is a very good solution and we will use this approach again
and again. However, there is a downside which it is important to be aware of:

new is slow.

Everytime we copy a bridged object, we are implicitly using the new command.
So if our code involves a lot of passing around of bridged objects, we had best be
sure that we do not copy them unnecessarily, or we will spend all our time calling
the new function. One easy way to reduce the amount of copying is to always pass
parameters by reference.

Why is new slow? To understand this, we first have to understand what it actually
does. When we create variables normally, that is when not using new, the compiler
gets them from an area of memory known as the stack. The important point is that
these variables are always destroyed in reverse order from their creation (which is
why the memory area is called the stack). Each variable as declared is added to
the top of the stack, and when destroyed is removed from the top; in fact, all that
happens is that the code remembers a different point as the top.

This is very easy to do but really depends rather heavily on the fact that the
order of creation is the reverse of the order of destruction. Thus the variable to be
destroyed is always the variable at the top of the stack.

Suppose we want to destroy variables in a different order, which is what we are
really doing when we use new; remember that a variable created by new persists
until the coder tells it to disappear. If we were using the stack we would have to
scan down to the point where the variable was stored. We would then need to move
all the variables further up the stack down a bit to cover up the gap caused by the
release of memory. Clearly, this could be very time-consuming.

The compiler therefore does not use the stack for new but instead uses a different
area of memory known as the heap. For this area of memory, the code keeps track
of which pieces are in use and which pieces are not. Everytime new is called, the
compiler has to find an empty piece of memory which is large enough and mark

58 Bridging with a virtual constructor

the memory as being in use. When delete is called, the code marks the memory
as being free again.

The upshot of all this is that calling new involves a lot of behind the scenes work
which you would probably rather not have to think about.

One solution to the time-consumption of new is to rewrite it. This is allowed by
the standard. It is, perhaps, a little surprising that one can rewrite new to be more
efficient than a good compiler. The reason that this is possible is that the coder
has a better idea of what objects will be needed during his program’s run, and
possibly in what order they will be created. This allows the programmer to make
extra assumptions not available to the compiler, and thus to speed things up. For
example, if the programmer knows that a lot of PayOffCall objects will be used,
he could section off an area just for PayOffCall objects and allocate them and
deallocate them as necessary.

We shall not further explore how to rewrite new, but finish with an admonition
that it should never be used explicitly nor implicitly within time-critical loops.

4.7 A parameters class

We know that eventually the evil boss is going to demand a variable parame-
ters Monte Carlo routine. Let’s apply the ideas of this chapter to developing a
Parameters class which allows easy extension to variable parameters without
actually putting them in. Note the crucial distinction between including variable
parameters, and redesigning so that it would be easy to add them if one so desired.

What should a parameters class do? We want it to be able to store parameters
such as volatility or interest rates or, in a more general set-up, jump intensity. What
information will we want to get out from the class? When implementing a financial
model, we never actually need the instantaneous value of parameter: it is always
the integral or the integral of the square that is important.

For example, in our simple Monte Carlo model, we need the square integral of
the volatility from time zero to expiry, and the integral of r over the same interval.
Similarly, for jump intensity it is the integral over a time interval that is important.

Our parameters class should therefore be able to tell us the integral or integral
square over any time interval, and nothing else.

What sort of differing parameters might we want? It is important in object-
oriented programming to think to the future, and therefore think about not just
what we want now but what we might want in the future. The simplest possible
sort of parameter is a constant and our class should certainly able to encompass
that. Some other obvious sorts of parameters are a polynomial, a piece-wise con-
stant function, and an exponentially decaying function. For all of these, finding the
integral and square integral over definite intervals is straightforward.

4.7 A parameters class 59

We employ the bridge design. We therefore define a class Parameters that han-
dles the interaction without the outside world, and the memory handling. Its only
data member is a pointer to an abstract class, ParametersInner, which defines
the interface that the concrete classes we will eventually implement must fulfill. We
also include the clone method, as well as Integral and IntegralSquare meth-
ods, so the wrapper class, Parameters, can handle the copying. We then inherit
classes such as ParametersConstant from ParametersInner. As with the pay-
off class, additional classes can then be added in separate files, and their addition
will not require any recompilation or changes in routines that use the Parameters
class.

We give a possible implementation:

Listing 4.17 (Parameters.h)

#ifndef PARAMETERS_H
#define PARAMETERS_H

class ParametersInner
{

public:
ParametersInner(){}

virtual ParametersInner* clone() const=0;
virtual double Integral(double time1,

double time2) const=0;
virtual double IntegralSquare(double time1,

double time2) const=0;
virtual ~ParametersInner(){}

private:
};

class Parameters
{

public:
Parameters(const ParametersInner& innerObject);
Parameters(const Parameters& original);
Parameters& operator=(const Parameters& original);
virtual ~Parameters();

60 Bridging with a virtual constructor

inline double Integral(double time1, double time2) const;
inline double IntegralSquare(double time1,

double time2) const;

double Mean(double time1, double time2) const;
double RootMeanSquare(double time1, double time2) const;

private:
ParametersInner* InnerObjectPtr;

};

inline double Parameters::Integral(double time1,
double time2) const

{
return InnerObjectPtr->Integral(time1,time2);

}

inline double Parameters::IntegralSquare(double time1,
double time2) const

{
return InnerObjectPtr->IntegralSquare(time1,time2);

}

class ParametersConstant : public ParametersInner
{
public:

ParametersConstant(double constant);

virtual ParametersInner* clone() const;
virtual double Integral(double time1, double time2) const;
virtual double IntegralSquare(double time1,

double time2) const;

private:
double Constant;
double ConstantSquare;

};
#endif

and the source file

4.7 A parameters class 61

Listing 4.18 (Parameters.cpp)

#include <Parameters.h>

Parameters::Parameters(const ParametersInner& innerObject)
{

InnerObjectPtr = innerObject.clone();
}

Parameters::Parameters(const Parameters& original)
{

InnerObjectPtr = original.InnerObjectPtr->clone();
}

Parameters& Parameters::operator=(const Parameters& original)
{

if (this != &original)
{

delete InnerObjectPtr;
InnerObjectPtr = original.InnerObjectPtr->clone();

}
return *this;

}

Parameters::~Parameters()
{

delete InnerObjectPtr;
}

double Parameters::Mean(double time1, double time2) const
{

double total = Integral(time1,time2);
return total/(time2-time1);

}

double Parameters::RootMeanSquare(double time1,
double time2) const

{
double total = IntegralSquare(time1,time2);
return total/(time2-time1);

62 Bridging with a virtual constructor

}

ParametersConstant::ParametersConstant(double constant)
{

Constant = constant;
ConstantSquare = Constant*Constant;

}

ParametersInner* ParametersConstant::clone() const
{

return new ParametersConstant(*this);
}

double ParametersConstant::Integral(double time1,
double time2) const

{
return (time2-time1)*Constant;

}

double ParametersConstant::IntegralSquare(double time1,
double time2) const

{
return (time2-time1)*ConstantSquare;

}

We have added a couple of useful, if unnecessary, methods to the Parameters
class. The Mean method returns the average value of the parameter between two
times, and is implemented by calling the Integral method which does all the
work. The RMS method returns the root-mean-square of the parameter between
two times. As it is the root-mean-square of the volatility that is appropriate to
use in the Black–Scholes formula when volatility is variable, this comes in
useful.

The rest of the code works in the same way as for the PayOff class. We give one
inherited class, the simplest possible one, ParametersConstant, which enacts a
constant parameter. As well as storing the value of the constant, we also store its
square in order to minimize time spent computing the square integral. In this case,
the saving is rather trivial, but the principle that time can be saved by computing
values, which may be needed repeatedly, once and for all in the constructor, is
worth remembering.

4.7 A parameters class 63

In SimpleMC6, we give a modified implementation of the simple Monte Carlo
which uses the new classes. First though we need

Listing 4.19 (SimpleMC6.h)

#ifndef SIMPLEMC6_H
#define SIMPLEMC6_H

#include <Vanilla3.h>
#include <Parameters.h>

double SimpleMonteCarlo4(const VanillaOption& TheOption,
double Spot,
const Parameters& Vol,
const Parameters& r,
unsigned long NumberOfPaths);

#endif

Listing 4.20 (SimpleMC6.cpp)

#include<SimpleMC6.h>
#include <Random1.h>
#include <cmath>

// the basic math functions should be in namespace
// std but aren’t in VCPP6
#if !defined(_MSC_VER)
using namespace std;
#endif

double SimpleMonteCarlo4(const VanillaOption& TheOption,
double Spot,
const Parameters& Vol,
const Parameters& r,
unsigned long NumberOfPaths)

{

double Expiry = TheOption.GetExpiry();
double variance = Vol.IntegralSquare(0,Expiry);
double rootVariance = sqrt(variance);

64 Bridging with a virtual constructor

double itoCorrection = -0.5*variance;

double movedSpot = Spot*exp(r.Integral(0,Expiry) +
itoCorrection);

double thisSpot;

double runningSum=0;

for (unsigned long i=0; i < NumberOfPaths; i++)
{

double thisGaussian = GetOneGaussianByBoxMuller();

thisSpot = movedSpot*exp(rootVariance*thisGaussian);

double thisPayOff = TheOption.OptionPayOff(thisSpot);

runningSum += thisPayOff;
}

double mean = runningSum / NumberOfPaths;

mean *= exp(-r.Integral(0,Expiry));

return mean;
}

with the obvious corresponding changes in the header file. The main difference
from the previous version is that instead of computing Vol*Vol*Expiry and
r*Expiry, the IntegralSquare and Integral methods of the Parameters
class are called. Note that by forcing us to go via the methods of the
Parameters class, the new design makes the code more comprehensible. We know
immediately from looking at it that the integral of r is used, as is the square-integral
of the volatility.

In VanillaMain4.cpp, we adapt our main program to use the Parameters
class. The main difference from the previous version is that we create a
ParametersConstant object from the inputs which is then passed into the Monte
Carlo routine. Note that we do not have to create the Parameters object explicitly;
the conversion is done implicitly by the compiler. The relevant portion of code
is

4.9 Exercises 65

ParametersConstant VolParam(Vol);
ParametersConstant rParam(r);

double result = SimpleMonteCarlo4(theOption,
Spot,
VolParam,
rParam,
NumberOfPaths);

4.8 Key points

• Cloning gives us a method of implementing a virtual copy constructor.
• The rule of three says that if we need any one of copy constructor, destructor and

assignment operator then we need all three.
• We can use a wrapper class to hide all the memory handling, allowing us to treat

a polymorphic object just like any other object.
• The bridge pattern allows us to separate interface and implementation, enabling

us to vary the two independently.
• The new command is slow.
• We have to be careful to ensure that self-assignment does not cause crashes.

4.9 Exercises

Exercise 4.1 Test how fast new is on your computer and compiler. Do this by using
it to allocate an array of doubles, ten thousand times. See how the speed varies with
array size. If you have more than one compiler see how they compare. Note that
you can time things using the clock() function.

Exercise 4.2 Find out about an auto ptr. Observe that it cannot be copied in the
usual sense of copying. Show that a class with an auto ptr data member will need
a copy constructor but not a destructor.

Exercise 4.3 Implement a piecewise-constant parameters class.

5

Strategies, decoration, and statistics

5.1 Differing outputs

Our Monte Carlo routine is now easily extendible to handle any pay-off and time-
dependent parameters. However, there are plenty of valid criticisms that could still
be made. One thing that is definitely lacking is the absence of any indication of
the simulation’s convergence. We could make the routine return standard error, or
a convergence table, or simply have it return the value for every single path and
analyze the results elsewhere.

As we are trying to develop an object-oriented routine, we make the statistics
gatherer an input. Thus the Monte Carlo routine will take in a statistics gatherer
object, store the results in it and the statistics gatherer will then output the statistics
as required. This technique of using an auxiliary class to decide how part of an
algorithm is implemented is sometimes called the strategy pattern.

5.2 Designing a statistics gatherer

We want our statistics gatherer to be reusable; there are plenty of circumstances
where such a routine might be useful. For example, we might have many other
Monte Carlo routines such as an exotics pricer or a BGM pricer for interest-rate
derivatives. Also, if we are developing a risk system, we might be more interested
in the ninety-fifth percentile, or in the conditional expected shortfall, than in the
mean or variance.

What should the routine do? It must have two principal methods. The first should
take in data for each path. The second must output the desired statistics.

Since we do not wish to specify what sort of statistics are being gathered in
advance, we proceed via an abstract base class using virtual methods, just as we
did for the PayOff and Parameters classes. However, as most of the time we will
not need to copy these objects we do not bother with the bridge but work with the
base class by reference.

66

5.2 Designing a statistics gatherer 67

We have to decide the precise interface for our two principal methods. They will
be pure virtual functions declared in the base class and defined in the concrete in-
herited class. Our first method, DumpOneResult, we make quite simple: it takes
in a double and returns nothing. Note that it is not a const method, since by its
very nature it must update the statistics stored inside the object. Note that we have
not allowed the possibility of dumping more than one value per path, which could
be argued to be a defect. The object will store what it needs to in order to com-
pute the statistics desired and no more. So if statistics gatherer’s job is to compute
the mean, then it need only store the running sum and the number of paths. How-
ever, for a more complicated statistic we might need the value for every path to be
stored.

Our second method, which will indeed return the results, requires a little more
thought. We have to decide what sort of object to return the results in. Another
issue is whether it should be possible to ask for statistics en route or ought we be
able to call the method for returning results only once.

With regard to the form in which to return results, we opt for a vector of
vectors. This will allow us to easily return a table if we so desire. Whilst this
would not be a great way to implement a matrix-class if we were doing linear al-
gebra, the return statistics are not a matrix, just a table and this is sufficient for our
purposes.

We opt to allow the return statistics method to be called many times and therefore
name it GetResultsSoFar. This will cost us little (possibly nothing), and will be
more robust than an object that crashes if the get results method is called twice.
We make it a const method as it should not change the state of the object in any
substantive way: this enforces the rule that the method can be called many times.

Listing 5.1 (MCStatistics.h)

#ifndef STATISTICS_H
#define STATISTICS_H

#include <vector>

class StatisticsMC
{
public:

StatisticsMC(){}

virtual void DumpOneResult(double result)=0;
virtual std::vector<std::vector<double> >

GetResultsSoFar() const=0;

68 Strategies, decoration, and statistics

virtual StatisticsMC* clone() const=0;
virtual ~StatisticsMC(){}

private:
};

class StatisticsMean : public StatisticsMC
{

public:
StatisticsMean();
virtual void DumpOneResult(double result);
virtual std::vector<std::vector<double> >

GetResultsSoFar() const;
virtual StatisticsMC* clone() const;

private:
double RunningSum;
unsigned long PathsDone;

};
#endif

Our abstract base class is StatisticsMC. It has the pure virtual functions Dump-
OneResult and GetResultsSoFar. We include the clonemethod to allow for the
possibility of virtual copy construction. We also make the destructor virtual, as any
cloned objects will likely need to be destroyed via pointers to the base class which
will not know their type, as usual. The base class does nothing but the important
task of defining an interface.

We give a very simple inherited class StatisticsMean, which returns the mean
of the simulation, just as our routine previously did. The source code is included in
MCStatistics.cpp.

Listing 5.2 (MCStatistics.cpp)

#include<MCStatistics.h>
using namespace std;

StatisticsMean::StatisticsMean()
:
RunningSum(0.0), PathsDone(0UL)

{

5.3 Using the statistics gatherer 69

}

void StatisticsMean::DumpOneResult(double result)
{

PathsDone++;
RunningSum += result;

}

vector<vector<double> >
StatisticsMean::GetResultsSoFar() const

{
vector<vector<double> > Results(1);

Results[0].resize(1);
Results[0][0] = RunningSum / PathsDone;

return Results;
}

StatisticsMC* StatisticsMean::clone() const
{

return new StatisticsMean(*this);
}

Note that whilst we write the DumpOneResult method to be efficient since it
will be called in every iteration of the loop, we do not worry about efficiency for
GetResultsSoFar, as it will generally be called only once per simulation.

5.3 Using the statistics gatherer

Having written a class for gathering statistics, we now need to modify our Monte
Carlo routine to make use of it. We do this in the function SimpleMonteCarlo5
which is declared in SimpleMC7.h.

Listing 5.3 (SimpleMC7.h)

#ifndef SIMPLEMC7_H
#define SIMPLEMC7_H

#include <Vanilla3.h>
#include <Parameters.h>

70 Strategies, decoration, and statistics

#include <MCStatistics.h>

void SimpleMonteCarlo5(const VanillaOption& TheOption,
double Spot,
const Parameters& Vol,
const Parameters& r,
unsigned long NumberOfPaths,
StatisticsMC& gatherer);

#endif

Note that the StatisticsMC object is passed in by reference and is not const.
This is crucial as we want the object passed in to gather the information given to
it and for this information to be available after the function has returned. If we had
passed by value then the object outside would not change, and all the results would
disappear at the end of the function which we emphatically do not want. If the
object was const, then it would not be possible to put any new data into it which
would be useless. Previously, our routine returned a double; now it is void as all
the data to be returned is inside the object gatherer.

We define the function in SimpleMC7.cpp:

Listing 5.4 (SimpleMC7.cpp)

#include <SimpleMC7.h>
#include <Random1.h>
#include <cmath>
// the basic math functions should be
// in namespace std but aren’t in VCPP6
#if !defined(_MSC_VER)
using namespace std;
#endif

void SimpleMonteCarlo5(const VanillaOption& TheOption,
double Spot,
const Parameters& Vol,
const Parameters& r,
unsigned long NumberOfPaths,
StatisticsMC& gatherer)

{
double Expiry = TheOption.GetExpiry();
double variance = Vol.IntegralSquare(0,Expiry);
double rootVariance = sqrt(variance);

5.3 Using the statistics gatherer 71

double itoCorrection = -0.5*variance;
double movedSpot =

Spot*exp(r.Integral(0,Expiry)+itoCorrection);
double thisSpot;
double discounting = exp(-r.Integral(0,Expiry));

for (unsigned long i=0; i < NumberOfPaths; i++)
{

double thisGaussian = GetOneGaussianByBoxMuller();
thisSpot = movedSpot*exp(rootVariance*thisGaussian);
double thisPayOff = TheOption.OptionPayOff(thisSpot);
gatherer.DumpOneResult(thisPayOff*discounting);

}
return;

}

Our routine appears simpler than SimpleMonteCarlo4; all the work previously
spent accounting the results is now sublimated into the line on which we call
.DumpOneResult. Of course, the code has not disappeared; it has simply moved
into a different file. Thus the strategy pattern gives us a readability benefit as well
as flexibility.

We illustrate how the gatherer might be called in StatsMain1.cpp:

Listing 5.5 (StatsMain1.cpp)

/*
uses source files

MCStatistics.cpp,
Parameters.cpp,
PayOff3.cpp,
PayOffBridge.cpp,
Random1.cpp,
SimpleMC7.cpp,
Vanilla3.cpp,

*/
#include<SimpleMC7.h>
#include<iostream>
using namespace std;
#include<Vanilla3.h>
#include<MCStatistics.h>

72 Strategies, decoration, and statistics

int main()
{

double Expiry;
double Strike;
double Spot;
double Vol;
double r;
unsigned long NumberOfPaths;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nStrike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

PayOffCall thePayOff(Strike);

VanillaOption theOption(thePayOff, Expiry);

ParametersConstant VolParam(Vol);
ParametersConstant rParam(r);

StatisticsMean gatherer;

SimpleMonteCarlo5(theOption,
Spot,
VolParam,
rParam,

5.4 Templates and wrappers 73

NumberOfPaths,
gatherer);

vector<vector<double> > results = gatherer.GetResultsSoFar();

cout <<"\nFor the call price the results are \n";

for (unsigned long i=0; i < results.size(); i++)
{

for (unsigned long j=0; j < results[i].size(); j++)
cout << results[i][j] << " ";

cout << "\n";
}
double tmp;
cin >> tmp;

return 0;
}

Our output of the results is now a bit more complicated in that we have to loop
over the vector of vectors in order to display the results. Of course, for the
particular class we have defined, only one number is returned so this is not strictly
necessary. However, by writing it for the most general sort of return statement
from a statistics gatherer, we produce more robust code. After all, the object has
contracted to return a vector of vectors, and we should code in accordance with
this contract, and make no extra assumptions.

5.4 Templates and wrappers

We have created a class hierarchy for gathering statistics. This hierarchy includes
a virtual constructor, clone, so we can copy these objects without knowing their
type. However, if we wish to start copying and storing the objects then we have a
slight issue in that, just as with our PayOff class, this will have to be done manually
unless we write an extra wrapper class to do it for us. In the next section, we give an
example where this copying will be necessary, so we do need to provide a wrapper
class.

It becomes clear at this point that we will need to write these wrapper classes
repeatedly in a very similar way. We therefore present a templatized solution. The
name of the base class to be wrapped is taken as an argument to the wrapper class
and it can then be used for any class which provides a clone method.

74 Strategies, decoration, and statistics

Our Wrapper class provides various functionalities which are intended to make
it act like a pointer to a single object but with added responsibilities. The added
responsibilities are that the pointer is both responsible for and owns the object
pointed to at all times. Thus if we copy the Wrapper object, the pointed-to object
is also copied, so that each Wrapper object has its own copy of the pointed-to
object. When the Wrapper object ceases to exist because of going out of scope, or
being deleted, the pointed-to object is automatically deleted as well.

If we set one Wrapper object equal to another, then the object previously pointed
to must be deleted, and then a copy of the new object must be created so each
Wrapper still owns precisely one object.

In addition, it must be possible to dereference the Wrapper to obtain the under-
lying object. In other words, if you put *mywrapper then you should obtain the
object pointed to by mywrapper. We do this by overloading the operator*() and
just make it return the dereferenced inner pointer.

We also want to be able to access the methods of the inner object. Whilst this can
always be done by putting (*mywrapper).theMethod(), it is a lot less elegant
than being able to type myWrapper->theMethod(), which is the normal code for
an ordinary pointer. We provide this functionality by overloading operator->().

We provide the relevant code in Wrapper.h.

Listing 5.6 (Wrapper.h)

#ifndef WRAPPER_H
#define WRAPPER_H

template< class T>
class Wrapper
{
public:

Wrapper()
{ DataPtr =0;}

Wrapper(const T& inner)
{

DataPtr = inner.clone();
}

~Wrapper()
{

if (DataPtr !=0)

5.4 Templates and wrappers 75

delete DataPtr;
}

Wrapper(const Wrapper<T>& original)
{

if (original.DataPtr !=0)
DataPtr = original.DataPtr->clone();

else
DataPtr=0;

}

Wrapper& operator=(const Wrapper<T>& original)
{

if (this != &original)
{

if (DataPtr!=0)
delete DataPtr;

DataPtr = (original.DataPtr !=0) ?
original.DataPtr->clone() : 0;

}

return *this;
}

T& operator*()
{

return *DataPtr;
}

const T& operator*() const
{

return *DataPtr;
}

const T* const operator->() const
{

return DataPtr;
}

76 Strategies, decoration, and statistics

T* operator->()
{

return DataPtr;
}

private:
T* DataPtr;

};
#endif

We start before each declaration with the command template<class T> to
let the compiler know we are writing template code. The class T will be spec-
ified elsewhere. The compiler will produce one copy of the code for each dif-
ferent sort of T that is used. Thus if we declare Wrapper<MCStatistics>
TheStatsGatherer;, the compiler will then proceed to create the code by sub-
stituting MCStatistics for T everywhere, and then compile it. This has some side
effects: the first is that all the code for the Wrapper template is in the header file –
there is no wrapper.cpp file. The second is that if we use the Wrapper class many
times, we have to compile a lot more code than we might actually expect. Whilst
this is not really an issue for this class, it could be one for a complicated class,
where we might end up with rather slow compile times and a much larger than ex-
pected executable. There are some other effects and we will return to this topic in
Section 9.6.

We provide the Wrapper class with a default constructor. This means that it is
possible to have a Wrapper object which points to nothing. If we did not then a
declaration such as

std::vector<Wrapper<MCStatistics> > StatisticsGatherers(10);

would not compile: the constructor for vector would look for the default con-
structor for Wrapper<MCStatistics> in order to create the ten copies specified,
and not find it. Why would we want a vector of Wrappers? We saw in Section
3.4 that we can get into trouble if we try to copy inherited objects into base class
objects without a wrapper class. The same reasons apply here. We cannot declare
a vector of base class objects as they are abstract, and even if they were not, they
would be the wrong size. We therefore have to store pointers, references or wrap-
pers, and wrappers are the easiest option; they take care of all the memory handling
for us.

Given that a Wrapper object can point to nothing, we have to be able to take this
into account when writing the class’s methods. We indicate that the object points to

5.5 A convergence table 77

nothing by setting the pointer to zero. When carrying out copying and assignment,
we then have to take care of this special case.

We provide two different versions of the dereferencing operator *, as it should be
possible to dereference both const and non-const objects. As one would expect,
the const version returns a const object and the non-const version does not.
We have declared the two operators inline to ensure that there is no performance
overhead induced by going via a wrapper.

Similarly, we declare the operator-> to have both const and non-const ver-
sions. The syntax here is a little strange in that all the operator does is return the
pointer. However, there are special rules for overloading -> which ensure that any
method following -> is correctly invoked for the pointer returned.

5.5 A convergence table

If we use a statistics gatherer and run the simulation it will tell us the relevant
statistics for the entire simulation. However, it does not necessarily give us a feel
for how well the simulation has converged. One standard method of checking the
convergence is to examine the standard error of the simulation; that is measure the
sample standard deviation and divide by the square root of the number of paths. If
one is using low-discrepancy numbers this measure does not take account of their
special properties and, in fact, it predicts the same error as for a pseudo-random
simulation (see for example [10]). Which we can expect to be too large. (Else why
use low-discrepancy numbers?)

One alternative method is therefore to use a convergence table. Rather than re-
turning statistics for the entire simulation, we instead return them for every power
of two to get an idea of how the numbers are varying. We could just write a class
directly to return such a table for the mean, but since we might want to do this for
any statistic, we do it in a reusable fashion.

Our class must contain a statistics gatherer in order to decide for which statis-
tics to create a convergence table. On the other hand, it must implement the same
interface as all the other statistics gatherers so we can plug it into the same sim-
ulations. We therefore define a class ConvergenceTable which is inherited from
MCStatistics, and has a wrapper of an MCStatistics object as a data member.

The fact that the class is inherited from MCStatistics guarantees that from the
outside it looks just like any other statistics-gatherer object. The difference on the
inside is that we can make the data member refer to any kind of statistics gatherer
we like, and so we have a convergence table for any statistic for which a statistics
gatherer has been written. We give the implementation in ConvergenceTable.h
and ConvergenceTable.cpp.

78 Strategies, decoration, and statistics

Listing 5.7 (ConvergenceTable.h)

#ifndef CONVERGENCE_TABLE_H
#define CONVERGENCE_TABLE_H
#include <MCStatistics.h>
#include <wrapper.h>

class ConvergenceTable : public StatisticsMC
{
public:

ConvergenceTable(const Wrapper<StatisticsMC>& Inner_);

virtual StatisticsMC* clone() const;
virtual void DumpOneResult(double result);
virtual std::vector<std::vector<double> >

GetResultsSoFar() const;

private:
Wrapper<StatisticsMC> Inner;
std::vector<std::vector<double> > ResultsSoFar;
unsigned long StoppingPoint;
unsigned long PathsDone;

};

#endif

Listing 5.8 (ConvergenceTable.cpp)

#include<ConvergenceTable.h>

ConvergenceTable::ConvergenceTable(const
Wrapper<StatisticsMC>& Inner_)

: Inner(Inner_)
{

StoppingPoint=2;
PathsDone=0;

}

StatisticsMC* ConvergenceTable::clone() const
{

return new ConvergenceTable(*this);
}

5.5 A convergence table 79

void ConvergenceTable::DumpOneResult(double result)
{

Inner->DumpOneResult(result);
++PathsDone;

if (PathsDone == StoppingPoint)
{

StoppingPoint*=2;
std::vector<std::vector<double> >

thisResult(Inner->GetResultsSoFar());

for (unsigned long i=0; i < thisResult.size(); i++)
{

thisResult[i].push_back(PathsDone);
ResultsSoFar.push_back(thisResult[i]);

}
}

return;
}

std::vector<std::vector<double> >
ConvergenceTable::GetResultsSoFar() const

{
std::vector<std::vector<double> > tmp(ResultsSoFar);

if (PathsDone*2 != StoppingPoint)
{

std::vector<std::vector<double> >
thisResult(Inner->GetResultsSoFar());

for (unsigned long i=0; i < thisResult.size(); i++)
{

thisResult[i].push_back(PathsDone);
tmp.push_back(thisResult[i]);

}
}
return tmp;

}

Note that we do not write a copy constructor, destructor or assignment operator
as the class itself does no dynamic memory allocation. Dynamic memory allocation

80 Strategies, decoration, and statistics

does occur inside the class but it is all handled automatically by the Wrapper tem-
plate class.

The class does not do a huge amount; every result passed in is passed to the
inner class. When we reach a point where the number of paths done is a multiple of
two, the inner class’s GetResults() method is called, and the results stored with
the number of paths done so far added in. When the class’s own GetResults()
methods is called, it calls the inner class’s method one more time if necessary and
then spits out all the stored results.

In StatsMain2.cpp, we illustrate how the routine might be called:

Listing 5.9

StatisticsMean gatherer;
ConvergenceTable gathererTwo(gatherer);

SimpleMonteCarlo5(theOption,
Spot,
VolParam,
rParam,
NumberOfPaths,
gathererTwo);

vector<vector<double> > results =
gathererTwo.GetResultsSoFar();

First create a StatisticsMean object: then pass it into a ConvergenceTable
object, gatherTwo. Note the constructor takes a Wrapper<MCStatistics> object
but the compiler happily does this conversion for us. We then pass the new gatherer
into SimpleMonteCarlo5 which has not required any changes. We have also not
made any changes to either of the MCStatistics files.

5.6 Decoration

The technique of the last section is an example of a standard design pattern called
the decorator pattern. We have added functionality to a class without changing the
interface. This process is called decoration. The most important point is that, since
the decorated class has the same interface as the undecorated class, any decoration
which can be applied to the original class can also be applied to the decorated
class.

We can therefore decorate as many times as we wish. It would be syntactically
legal (but not useful), for example, to have a convergence table of convergence
tables. We will more often wish to decorate several times but in differing manners.

5.8 Exercises 81

How else might we want to decorate? If we have a stream of numbers defining
a time series, we often want the statistics of the successive increments instead of
the numbers themselves. A decorator class could therefore do this differencing and
pass the difference into the inner class.

We might want more than one statistic for a given set of numbers; rather than
writing one class to gather many statistics, we could write a decorator class which
contains a vector of statistics gatherers and passes the gathered value to each one
individually. The GetResults() method would then garner the results from each
of the inner gatherers and collate them.

We can also apply these decoration ideas to the Parameters class. We could
define a class that takes the linear multiple of an inner Parameters object for
example. This class would simple multiply the integral by a given constant, and
the square integral by its square.

5.7 Key points

In this chapter, we have seen that we can allow the user to specify aspects of how
an algorithm works by making part of the algorithm be carried out in an inputted
class. We have also examined the techniques of decoration and templatization.

• Routines can be made more flexible by using the strategy pattern.
• Making part of an algorithm be implemented by an inputted class is called the

strategy pattern.
• For code that is very similar across many different classes, we can use templates

to save time in rewriting.
• If we want containers of polymorphic objects, we must use wrappers or pointers.
• Decoration is the technique of adding functionality by placing a class around a

class which has the same interface; i.e. the outer class is inherited from the same
base class.

• A class can be decorated several times.

5.8 Exercises

Exercise 5.1 Write a statistics gathering class that computes the first four moments
of a sample.

Exercise 5.2 Write a statistics gathering class that computes the value at risk of a
sample.

Exercise 5.3 Write a statistics gathering class that allows the computation of sev-
eral statistics via inputted classes.

82 Strategies, decoration, and statistics

Exercise 5.4 Use the strategy pattern to allow the user to specify termination con-
ditions for the Monte Carlo, e.g., time spent or paths done.

Exercise 5.5 Write a terminator class that causes termination when either of two
inner terminator classes specifies termination.

Exercise 5.6 * Write a template class that implements a reference counted wrapper.
This will be similar to the wrapper class but instead of making a clone of the inner
object when the wrapper is copied, an internal counter is increased and the inner
object is shared. When a copy is destroyed, the inner counter is decremented. When
the inner counter reaches zero, the object is destroyed. Note that both the counter
and the inner object will be shared across copies of the object. (This exercise is
harder than most in this book.)

6

A random numbers class

6.1 Why?

So far, we have been using the inbuilt random number generator, rand. In this
chapter, we look at how we might implement a class to encapsulate random number
generation. There are a number of reasons we might wish to do this.
rand is implementation dependent. The standard specifies certain properties of

rand and gives an example of how it could be implemented but it does not actually
specify the details. This has important consequences for us. The first is simply that
we cannot expect any consistency across compilers. If we decide to test our code
by running it on multiple platforms, we can expect to obtain differing streams of
random numbers and whilst our Monte Carlo simulations should still converge to
the same number, this is a lot weaker than having every single random draw match-
ing. Thus our code becomes harder to test. A second issue is that we do not know
how good the compiler’s implementation is. Either we have to get hold of technical
documents for every compiler we use and make sure that the implementors have
done a good job, or we have to run a number of statistical tests to ensure that rand
is up to the job. Note that for most simulations we will actually need many random
draws for each path, and so it is not enough for us to check that single draws do a
good job of simulating the uniform distribution; instead we need a large number of
successive draws to do a good job of filling out the unit hypercube, which is much
tougher.
rand is not predictable. A crucial aspect of running Monte Carlo simulations

is that they must be reproducible. If we run the same simulation twice we want
to obtain precisely the same random numbers. We can achieve this with rand by
using the srand command to set the seed which will guarantee the same number
stream from rand every time. The problem is that the seed is a global variable.
This means that calling rand in different parts of the program will cause totally
unrelated pieces of code to affect each other’s operation. We therefore want to be

83

84 A random numbers class

able to insulate the random number stream used by a particular simulation from the
rest of the program.

Another advantage of using a class is that we can decorate it. For example, sup-
pose we wish to use anti-thetic sampling. We could write a decorator class that
does anti-thetic sampling. This can then be combined with any random number
generator we have written, and plugged into the Monte Carlo simulator, with no
changes to the simulator class. If we used rand directly we would have to fiddle
with the guts of the simulator class. Similarly, if we wish to carry out moment
matching we could use a decorator class and then plug the decorated class into the
simulator.

A further reason is that we might decide not to use pseudo-random (i.e. random)
numbers but low-discrepancy numbers instead. Low-discrepancy numbers (some-
times called quasi-random numbers) are sequences of numbers designed to do a
good job of filling out space. They are therefore anything but random. However,
they have the right statistical properties to guarantee that simulations converge to
the correct answer. Their space-filling properties mean they make simulations con-
verge faster. If we are using a random number class, we could replace this class
with a generator for low-discrepancy numbers without changing the interior of our
code.

6.2 Design considerations

As we want the possibility of having many random number generators and we want
to be able to add new ones later on without recoding, we use an abstract base class
to specify an interface. Each individual generator will then be inherited from it. In
order to specify the interface, we have to identify what we want from any random
number class.

Generally, when working with any Monte Carlo simulation, the simulation will
have a dimensionality which is the number of random draws needed to simulate
one path. This number is equal to the number of variables of integration in the
underlying integral which we are trying to approximate. It is generally cleaner
therefore to obtain all the draws necessary for a path in one go. This has the added
advantage that a random number generator can protest (i.e. throw an error) if it is
being used beyond its dimensional specification. Additionally, when working with
low-discrepancy numbers it is essential that the generator know the dimensionality
as the generator has to be set up specifically for each choice of dimension.

This means that we need methods to set the dimensionality, and to obtain an
array of uniforms of size dimensionality from the generator. We also provide a
method that states the dimensionality.

6.2 Design considerations 85

For financial applications, we will want standard Gaussian draws more often
than uniforms so we will want a method of obtaining them instead. In fact, we
can separate out the creation of the uniforms and their conversion into Gaussians.
The conversion into Gaussians can therefore be done in a generator-independent
fashion and this means that it can be implemented as a method of the base class
which calls the virtual method that creates the uniform draws.

What else might we want? For many applications, it is necessary to generate
the same stream of random numbers twice. For example, if we wish to compute
Greeks by bumping parameters, the error is much smaller if the same numbers are
used twice. (See for example [11] or [13].) Or if we wish to carry out moment
matching, the reuse of the same random numbers stream twice enables us to avoid
storing all the numbers generated. Thus we include methods to reset the generator
to its initial state, and to set the seed of the generator.

Occasionally, we wish to be sure of having a different stream of random num-
bers. For example, when carrying out an optimization in order to estimate an exer-
cise strategy, we generally use one set of random numbers to optimize parameters
for the strategy, and then having chosen the strategy we run a second simulation
with different random numbers to estimate the price. This allows us to be sure
that the optimization has not exploited the micro-structure of the random number
stream. A simple way to achieve the differing streams of numbers is to make sure
the generator skips a number of paths equal to the number used for the first simu-
lation. We therefore include a method which allows us to skip paths.

Finally, we may wish to copy a random number generator for which we do not
know the type. We therefore include a clone method to enable virtual construc-
tion.

One extra issue we have to think about is in what range a uniform should lie. The
uniform distribution is generally defined to be a density function on the interval
[0, 1] such that the probability that a draw X lies in an interval of length α is α.
The subtlety lies in whether we allow the values 0 and 1 to be taken. Since taking
either value is a probability zero event allowing or disallowing either value will
not effect the statistical properties of our simulation, but they can have practical
effects. For example, if we elect to convert the uniforms into Gaussians by using
the inverse cumulative normal function (which we will) then the numbers 0 and 1
cause us difficulties since the inverse cumulative normal function naturally maps
them to −∞ and +∞. To avoid these difficulties, we therefore require that our
uniform variates never take these values and thus lie in the open interval (0, 1).
The main side effect of this choice is that if we use random generators written by
others then we need to check that they satisfy the same convention, and if not, adapt
them appropriately.

86 A random numbers class

6.3 The base class

We specify the interface via a base class as follows, Random2.h,

Listing 6.1 (Random2.h)

#ifndef RANDOM2_H
#define RANDOM2_H

#include <Arrays.h>

class RandomBase
{
public:

RandomBase(unsigned long Dimensionality);

inline unsigned long GetDimensionality() const;

virtual RandomBase* clone() const=0;
virtual void GetUniforms(MJArray& variates)=0;
virtual void Skip(unsigned long numberOfPaths)=0;
virtual void SetSeed(unsigned long Seed) =0;
virtual void Reset()=0;

virtual void GetGaussians(MJArray& variates);
virtual void ResetDimensionality(unsigned long

NewDimensionality);

private:
unsigned long Dimensionality;

};

unsigned long RandomBase::GetDimensionality() const
{

return Dimensionality;
}
#endif

Whilst most of the methods of RandomBase are pure virtual, three are not. The
method GetGaussians transforms uniforms obtained from the GetUniforms
method into standard Gaussian distributions. It does this via an approximation to

6.3 The base class 87

the inverse cumulative normal function due to Moro, [21]. As this method only
uses one uniform to produce a Gaussian and enacts precisely the definition of the
Gaussian distribution it is very robust and works under all circumstances. Never-
theless, we make the method virtual to allow the possibility that for a particular
generator there is another preferred conversion method. Or even to allow the pos-
sibility that the generator provides normals which are then converted into uniforms
by the GetUniforms method.

The GetDimensionality method simply returns the dimensionality of the gen-
erator and there is no need for it to be virtual.

We also have the concrete virtual function ResetDimensionality. As the base
class stores dimensionality, it must be told when dimensionality changes: that is
the purpose of this function. However, the function is virtual because generally
if dimensionality changes, the random number generator will also need to know.
Suppose we have overriden this virtual function in an inherited class. Calling the
method thus only calls the inherited class method and the base class method is ig-
nored; however, we still need the base class method to be called; this has to be done
by the inherited class method. The syntax to do this is to prefix the method with
RandomBase::. The compiler then ignores the virtual function table and instead
knows to call the method associated to the base class.

Note that we define the interface for GetUniforms and GetGaussians via a ref-
erence to an array. The reason we do this is that we do not wish to waste time copy-
ing arrays. Also remember that arrays of dynamic size generally involve dynamic
memory allocation, i.e. new, and therefore are quite slow to create and to destroy.
We want to minimize unnecessary operations, and by passing the return values into
a pre-generated array we avoid all this. The array class used here is quite simple
and given in Appendix C. We assume that the array is of sufficient size. We could
check that it is big enough but that could result in substantial overhead. One solu-
tion would be to check the size only if a compiler flag was set, e.g. in debug mode.

Note that one disadvantage of this approach is that we are now bound to this
array class. How could we overcome that disadvantage? One solution would be to
simply pass in a pointer, and write to the memory locations pointed to. However,
the use of raw pointers tends to lead to code that is hard to debug, and is therefore
best avoided. Another solution is to templatize so that the array class is a template
argument and the code will then work with any array class which has the requisite
methods. A related solution is to use iterators. An iterator is a generalization of
a pointer and we could templatize the code to work off any iterator. We do not
explore these options here but the reader should bear them in mind if he wishes to
adapt the code.

The source code for the base class is quite simple as it does not do very much:

88 A random numbers class

Listing 6.2 (Random2.cpp)

#include <Random2.h>
#include <Normals.h>
#include <cstdlib>

// the basic math functions should be in namespace
// std but aren’t in VCPP6
#if !defined(_MSC_VER)
using namespace std;
#endif

void RandomBase::GetGaussians(MJArray& variates)
{

GetUniforms(variates);

for (unsigned long i=0; i < Dimensionality; i++)
{

double x=variates[i];
variates[i] = InverseCumulativeNormal(x);

}
}

void RandomBase::ResetDimensionality(unsigned long
NewDimensionality)

{
Dimensionality = NewDimensionality;

}

RandomBase::RandomBase(unsigned long Dimensionality_)
: Dimensionality(Dimensionality_)
{
}

The inverse cumulative normal function is included in the file Normals and is a
piece-wise rational approximation. See Appendix B.

6.4 A linear congruential generator and the adapter pattern

We now need to actually write a random number generator. A simple method
of generating random numbers is a linear congruential generator. We present a

6.4 A linear congruential generator and the adapter pattern 89

generator called by Park & Miller the minimal standard generator. In other words,
it is a generator that provides a minimum guaranteed level of statistical accuracy.
We refer the reader to [28] for further discussion of this and many other random
number generators.

We present the generator in two pieces. A small inner class that develops a ran-
dom generator that returns one integer (i.e., long) every time it is called, and a
larger class that turns the output into a vector of uniforms in the format desired. We
present the class definition in ParkMiller.h.

Listing 6.3 (ParkMiller.h)

#ifndef PARK_MILLER_H
#define PARK_MILLER_H
#include <Random2.h>

class ParkMiller
{
public:

ParkMiller(long Seed = 1);

long GetOneRandomInteger();
void SetSeed(long Seed);

static unsigned long Max();
static unsigned long Min();

private:
long Seed;

};

class RandomParkMiller : public RandomBase
{
public:

RandomParkMiller(unsigned long Dimensionality,
unsigned long Seed=1);

virtual RandomBase* clone() const;
virtual void GetUniforms(MJArray& variates);
virtual void Skip(unsigned long numberOfPaths);
virtual void SetSeed(unsigned long Seed);
virtual void Reset();

90 A random numbers class

virtual void ResetDimensionality(unsigned long
NewDimensionality);

private:
ParkMiller InnerGenerator;
unsigned long InitialSeed;
double Reciprocal;

};
#endif

The inner class is quite simple. It develops a sequence of uncorrelated longs. The
seed can be set either in the constructor or via a set seed method. We give two extra
methods which indicate the minimum and maximum values that the generator can
give out. Such information is crucial to a user who wishes to convert the output into
uniforms, as they will need to subtract the minimum and divide by the maximum
minus the minimum to get a number in the interval [0, 1].

The bigger class is inherited from RandomBase. It has all the methods that it re-
quires. Its main data member is a ParkMiller generator object. It also remembers
the initial seed, and the reciprocal of the maximum value plus one, to save time
then turning the output of the inner generator into uniforms.

Our pattern here is an example of the adapter pattern. We have a random gen-
erator which works and is effective, however its interface is not what the rest of
the code expects. We therefore write a class around it which adapts its interface
into what we want. Whenever we use old code or import libraries, it is rare for the
interfaces to fit precisely with what we have been using, and the adapter pattern
is then necessary. To use the adapter pattern simply means to use an intermediary
class which transforms one interface into another. It is the coding equivalent of a
plug adapter.

The implementation of these classes is straightforward. The generator relies on
modular arithmetic. The basic idea is that if you repeatedly multiply a number by
a large number, and then take the modulus with respect to another number, then
the successive remainders are effectively random. We refer the reader to [28] for
discussion of the mathematics and the choice of the constants.

Listing 6.4 (ParkMiller.cpp)

#include <ParkMiller.h>

const long a = 16807;
const long m = 2147483647;
const long q = 127773;
const long r = 2836;

6.4 A linear congruential generator and the adapter pattern 91

ParkMiller::ParkMiller(long Seed_) : Seed(Seed_)
{

if (Seed ==0)
Seed=1;

}

void ParkMiller::SetSeed(long Seed_)
{
Seed=Seed_;
if (Seed ==0)

Seed=1;
}

unsigned long ParkMiller::Max()
{

return m-1;
}

unsigned long ParkMiller::Min()
{

return 1;
}

long ParkMiller::GetOneRandomInteger()
{

long k;

k=Seed/q;

Seed=a*(Seed-k*q)-r*k;

if (Seed < 0)
Seed += m;

return Seed;
}

RandomParkMiller::RandomParkMiller(unsigned long Dimensionality,
unsigned long Seed)

: RandomBase(Dimensionality),
InnerGenerator(Seed),

92 A random numbers class

InitialSeed(Seed)
{

Reciprocal = 1/(1.0+InnerGenerator.Max());
}

RandomBase* RandomParkMiller::clone() const
{

return new RandomParkMiller(*this);
}

void RandomParkMiller::GetUniforms(MJArray& variates)
{

for (unsigned long j=0; j < GetDimensionality(); j++)
variates[j] =
InnerGenerator.GetOneRandomInteger()*Reciprocal;

}

void RandomParkMiller::Skip(unsigned long numberOfPaths)
{

MJArray tmp(GetDimensionality());
for (unsigned long j=0; j < numberOfPaths; j++)

GetUniforms(tmp);
}

void RandomParkMiller::SetSeed(unsigned long Seed)
{

InitialSeed = Seed;
InnerGenerator.SetSeed(Seed);

}

void RandomParkMiller::Reset()
{

InnerGenerator.SetSeed(InitialSeed);
}

void RandomParkMiller::ResetDimensionality(unsigned long
NewDimensionality)

{
RandomBase::ResetDimensionality(NewDimensionality);
InnerGenerator.SetSeed(InitialSeed);

}

6.5 Anti-thetic sampling via decoration 93

Note that we check whether the seed is zero. If it is we change it to 1. The reason
is that a zero seed yields a chain of zeros. Note the advantage of a class-based
implementation here. The seed is only inputted in the constructor and the set seed
method, which are called only rarely, so we can put in extra tests to make sure
the seed is correct with no real overhead. If the seed had to be checked every time
the random number generator was called, then the overhead would be substantial
indeed.

The implementation of the adapter class is quite straightforward. Note that we
divide the outputs of the inner class by the maximum plus 1, and so ensure that we
obtain random numbers on the open interval (0, 1) rather than the closed one; this
means that we will have no trouble with the inverse cumulative normal function.

6.5 Anti-thetic sampling via decoration

A standard method of improving the convergence of Monte Carlo simulations is
anti-thetic sampling. The idea is very simple, if a X is a draw from a standard
Gaussian distribution so is −X . This means that if we draw a vector (X1, . . . , Xn)

for one path then instead of drawing a new vector for the next path we simply
use (−X1, . . . , −Xn). This method guarantees that, for any even number of paths
drawn, all the odd moments of the sample of Gaussian variates drawn are zero,
and in particular the mean is correct. This generally, but not always, causes simula-
tions to converge faster. See [11] for discussion of the pros and cons of anti-thetic
sampling.

We wish to implement anti-thetic sampling in such a way that it can be used
with any random number generator and with any Monte Carlo simulation in such
a way that we only have to implement it once. The natural way to do this is the
decorator pattern. The decoration can be applied to any generator so it fulfills the
first criterion, and the fact that the interface is unchanged means that we can plug
the decorated class into any socket which the original class fitted. We implement
such a decorator class in AntiThetic.h and AntiThetic.cpp.

Listing 6.5 (AntiThetic.h)

#ifndef ANTITHETIC_H
#define ANTITHETIC_H

#include <Random2.h>
#include <wrapper.h>

class AntiThetic : public RandomBase
{

94 A random numbers class

public:
AntiThetic(const Wrapper<RandomBase>& innerGenerator);

virtual RandomBase* clone() const;

virtual void GetUniforms(MJArray& variates);

virtual void Skip(unsigned long numberOfPaths);

virtual void SetSeed(unsigned long Seed);

virtual void ResetDimensionality(unsigned long
NewDimensionality);

virtual void Reset();
private:

Wrapper<RandomBase> InnerGenerator;

bool OddEven;

MJArray NextVariates;
};
#endif

The decorator class is quite simple. It has an array as a data member to store the
last vector drawn, and a boolean to indicate whether the next draw should be drawn
from the inner generator, or be the anti-thetic of the last draw. A copy of the gen-
erator we are using is stored using the Wrapper template class and cloning, as
usual. Note that we are actually taking a copy of the generator here so that the se-
quence of draws from the original generator will not be affected by drawing from
the anti-thetic generator.

Listing 6.6 (AntiThetic.cpp)

#include <AntiThetic.h>

AntiThetic::AntiThetic(const Wrapper<RandomBase>&
innerGenerator)

: RandomBase(*innerGenerator),
InnerGenerator(innerGenerator)

{

6.5 Anti-thetic sampling via decoration 95

InnerGenerator->Reset();
OddEven =true;
NextVariates.resize(GetDimensionality());

}

RandomBase* AntiThetic::clone() const
{

return new AntiThetic(*this);
}

void AntiThetic::GetUniforms(MJArray& variates)
{

if (OddEven)
{

InnerGenerator->GetUniforms(variates);

for (unsigned long i =0; i < GetDimensionality(); i++)
NextVariates[i] = 1.0-variates[i];

OddEven = false;
}
else
{

variates = NextVariates;

OddEven = true;
}

}

void AntiThetic::SetSeed(unsigned long Seed)
{

InnerGenerator->SetSeed(Seed);
OddEven = true;

}

void AntiThetic::Skip(unsigned long numberOfPaths)
{

if (numberOfPaths ==0)
return;

if (OddEven)

96 A random numbers class

{
OddEven = false;
numberOfPaths--;

}

InnerGenerator->Skip(numberOfPaths / 2);

if (numberOfPaths % 2)
{

MJArray tmp(GetDimensionality());

GetUniforms(tmp);

}
}

void AntiThetic::ResetDimensionality(unsigned long
NewDimensionality)

{
RandomBase::ResetDimensionality(NewDimensionality);

NextVariates.resize(NewDimensionality);

InnerGenerator->ResetDimensionality(NewDimensionality);
}

void AntiThetic::Reset()
{

InnerGenerator->Reset();
OddEven =true;

}

The implementation of the class is quite straightforward. Most of the methods
consist of simply forwarding the request to the inner class, together with book-
keeping for odd and even paths. The main GetUniforms method, gets uniforms
from the inner generator for the odd draws, stores the results, X j , and returns
(1 − X1, . . . , 1 − Xn) for the even draws. Note that

N−1(1 − x) = −N−1(x), (6.1)

so this will yield the negative of the Gaussian variates if the GetGaussiansmethod
is used, as we wanted.

6.6 Using the random number generator class 97

Note the syntax for initialization in the constructor. We have RandomBase
(*innerGenerator). As innerGenerator is a wrapped pointer, * gives us the
value of the inner object which is a member of some inherited class. However,
we can always treat any inherited class object as a base class object so the call
to RandomBase invokes the base class copy constructor, copying the base class
data in innerGenerator, and thus ensuring that the new object has the correct
dimensionality stored.

6.6 Using the random number generator class

Now that we have a random number generator class, we need to adapt our Monte
Carlo code to work with it. We give an adapted vanilla option pricer in
SimpleMC8.h and SimpleMC8.cpp. The header file declares the new func-
tion.

Listing 6.7 (SimpleMC8.h)

#ifndef SIMPLEMC8_H
#define SIMPLEMC8_H

#include <Vanilla3.h>
#include <Parameters.h>
#include <Random2.h>
#include <MCStatistics.h>

void SimpleMonteCarlo6(const VanillaOption& TheOption,
double Spot,
const Parameters& Vol,
const Parameters& r,
unsigned long NumberOfPaths,
StatisticsMC& gatherer,
RandomBase& generator);

#endif

We have chosen to take the random number generator in as a non-const reference.
It cannot be a const reference as the act of drawing a random number changes the
generator and is therefore implemented by a non-const method. The effect of this
is that any random numbers drawn inside the function will not be produced outside
the function, but instead the generator will continue where the function left off.
If we wanted the generator to be totally unaffected by what happened inside the
function, we would change the function to take in the object by value instead. Or
alternatively, we could copy the object and pass in the copy to the function, which

98 A random numbers class

would have the same net effect. As usual, we use a reference to the base class in
order to allow the caller to decide how to implement the generator.

The implementation is as follows:

Listing 6.8 (SimpleMC8.cpp)

#include<SimpleMC8.h>
#include <cmath>
#include <Arrays.h>

// the basic math functions should be in
// namespace std but aren’t in VCPP6
#if !defined(_MSC_VER)
using namespace std;
#endif

void SimpleMonteCarlo6(const VanillaOption& TheOption,
double Spot,
const Parameters& Vol,
const Parameters& r,
unsigned long NumberOfPaths,
StatisticsMC& gatherer,
RandomBase& generator)

{
generator.ResetDimensionality(1);

double Expiry = TheOption.GetExpiry();
double variance = Vol.IntegralSquare(0,Expiry);
double rootVariance = sqrt(variance);
double itoCorrection = -0.5*variance;
double movedSpot = Spot*exp(r.Integral(0,Expiry)

+ itoCorrection);

double thisSpot;
double discounting = exp(-r.Integral(0,Expiry));

MJArray VariateArray(1);

for (unsigned long i=0; i < NumberOfPaths; i++)
{

6.6 Using the random number generator class 99

generator.GetGaussians(VariateArray);
thisSpot = movedSpot*exp(rootVariance*VariateArray[0]);
double thisPayOff = TheOption.OptionPayOff(thisSpot);
gatherer.DumpOneResult(thisPayOff*discounting);

}

return;
}

We only comment on the new aspects of the routine. We first reset the generator’s
dimensionality to 1 as pricing a vanilla option is a one-dimensional integral – we
just need the location of the final value of spot.

We set up the array in which to store the variate before we set up the main
loop, once and for all. This avoids any difficulties with speed in the allocation of
dynamically sized arrays. The GetGaussians method of the generator is used
to write the variates (in this case just one variate, of course) into the array. This
variate is then used as before to compute the final value of spot.

We give an example of using this routine with anti-thetic sampling in Random-
Main3.cpp.

Listing 6.9 (RandomMain3.cpp)

/*
uses source files
AntiThetic.cpp
Arrays.cpp,
ConvergenceTable.cpp,
MCStatistics.cpp
Normals.cpp
Parameters.cpp,
ParkMiller.cpp
PayOff3.cpp,
PayOffBridge.cpp,
Random2.cpp,
SimpleMC8.cpp
Vanilla3.cpp,

*/
#include<SimpleMC8.h>
#include<ParkMiller.h>
#include<iostream>

100 A random numbers class

using namespace std;
#include<Vanilla3.h>
#include<MCStatistics.h>
#include<ConvergenceTable.h>
#include<AntiThetic.h>

int main()
{

double Expiry;
double Strike;
double Spot;
double Vol;
double r;
unsigned long NumberOfPaths;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nStrike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

PayOffCall thePayOff(Strike);

VanillaOption theOption(thePayOff, Expiry);

ParametersConstant VolParam(Vol);
ParametersConstant rParam(r);

6.6 Using the random number generator class 101

StatisticsMean gatherer;
ConvergenceTable gathererTwo(gatherer);

RandomParkMiller generator(1);

AntiThetic GenTwo(generator);

SimpleMonteCarlo6(theOption,
Spot,
VolParam,
rParam,
NumberOfPaths,
gathererTwo,
GenTwo);

vector<vector<double> > results =
gathererTwo.GetResultsSoFar();

cout <<"\nFor the call price the results are \n";
for (unsigned long i=0; i < results.size(); i++)
{

for (unsigned long j=0; j < results[i].size(); j++)
cout << results[i][j] << " ";

cout << "\n";
}
double tmp;
cin >> tmp;

return 0;
}

We create a Park–Miller random number generator object and then wrap it with
an anti-thetic decorator. This decorated object is then passed into the new Monte
Carlo routine. As usual, the routine is not aware of the fact that the passed-in object
has been decorated but simply uses it in the same way as any other random number
generator.

The big difference between our new program and the old ones is that the results
are now compiler-independent. The numbers returned are now precisely the same
under Borland 5.5, Visual C++ 6.0 and MingW 2.95, since we have removed

102 A random numbers class

the dependency on the inbuilt rand() function which previously made our results
compiler-dependent. This gives us an extra robustness test; if our results are not
now compiler-independent we should be worried and find out why!

6.7 Key points

In this chapter, we developed a random number generator class and saw how anti-
thetic sampling could be implemented via decoration.

• rand is implementation-dependent.
• Results from rand() are not easily reproducible.
• We have to be sure that a random generator is capable of the dimensionality

necessary for a simulation.
• Using a random number class allows us to use decoration.
• The inverse cumulative normal function is the most robust way to turn uniform

variates from the open interval, (0, 1), into Gaussian variates.
• Using a random number class makes it easier to plug in low-discrepancy num-

bers.
• Anti-thetic sampling can be implemented via decoration.

6.8 Exercises

Exercise 6.1 For various cases compare convergence of Monte Carlo simulations
with and without anti-thetic sampling.

Exercise 6.2 Obtain another random number generator and fit it into the class hi-
erarchy given here. (See [28] or www.boost.org for other generators.)

Exercise 6.3 Code up a low-discrepancy number generator and integrate it into the
classes here. (See [28] or [11].)

7

An exotics engine and the template pattern

7.1 Introduction

We have now developed quite a few sets of components: random number gener-
ators, parameters classes, pay-off classes, statistics gatherers and a wrapper tem-
plate. Having developed all these components with the objective of reusability, we
examine in this chapter how to put them together to price path-dependent exotic op-
tions. Our objective is to develop a flexible Monte Carlo pricer for exotic options
which pay off at some future date according to the value of spot on a finite number
of dates. We will work within a deterministic interest rate world, and assume the
Black–Scholes model of stock price evolution.

We assume that our derivative is discrete, i.e. that it depends upon the value of
spot on a discrete set of times. Thus our derivative is associated to a set of times,
t1, t2, . . . , tn , and pays at some time T a function f (St1, . . . , Stn) of the value of
spot at those times. For example, a one-year Asian call option struck at K with
monthly resets would pay (

1

12

12∑
j=1

St j − K

)
+

,

where t j = j/12, at time 1.
More generally, the derivative could possibly pay cash-flows at more than

one time. For example, a discrete barrier knock-out option could pay an ordi-
nary vanilla pay-off at the time of expiry, and a rebate at the time of knock-out
otherwise.

We do not consider American or Bermudan options here as the techniques in-
volved are quite different. Note, however, that once an exercise strategy has been
chosen the option is really just a path-dependent derivative and so the option can
be evaluated by these techniques for any given fixed exercise strategy.

103

104 An exotics engine and the template pattern

7.2 Identifying components

Before designing our engine let’s identify what it will have to do. For each path,
we generate a discounted pay-off which is then averaged over all paths to obtain a
price. To generate a pay-off for a path, we have to know the path of stock prices at
the relevant times, plug this path into the pay-off function of the option to obtain
the cash-flows, and then discount these cash-flows back to the start to obtain the
price for that path.

We can therefore identify four distinct actions:

(i) the generation of the stock price path;
(ii) the generation of cash-flows given a stock price path;

(iii) the discounting and summing of cash-flows for a given path;
(iv) the averaging of the prices over all the paths.

We already have a suitable component for the last of these actions: the statistics
gatherer. We will just plug in the class we have already written at the appropriate
point. For the second action, we are purely using the definition of the derivative to
determine what its pay-off is, given a set of stock prices. An obvious component for
our model is therefore a path-dependent exotic option class which will encapsulate
the information which would be written in the term-sheet for the option.

Note that by defining the concept we model by the term-sheet, we make it clear
that the class will not involve interest rates nor knowledge of volatility nor any
aspect of the stock price process. A consequence of this is that the option class
can only ever say what cash-flows occur and when; it cannot say anything about
their discounted values because that would require knowledge of interest rates.
Note the general point here that, by defining the concept in real-world terms, it
becomes very easy to decide what should and should not be contained in the class.
Another consequence is that the component is more easily reusable; if we decide
to do jump-diffusion pricing or stochastic interest rates, this class will be reusable
without modification, and that would not be the case if we had included information
about interest rates or volatility.

There is more than one way to handle the two remaining tasks: path generation
and cash-flow accounting. The latter will be the same for any deterministic interest-
rate model and it is therefore natural to include it as part of our main engine class.
We can require path generation to be an input to our main class, and therefore
define it in terms of its own class hierarchy, or via a virtual method of the base
class. A third option, which we do not explore, would be to make it a template
parameter, which would avoid the small overhead of a virtual function call.

The option we will pursue here is to make path generation a virtual method of
the base class. This is an example of the template design pattern, which should not
be confused with templatized code. The idea here is that the base class sets up a
structure with methods that control everything – in this case it would be methods

7.3 Communication between the components 105

to run the simulation and account for each path – though the main work of actually
generating the path is not defined in the base class, but is instead called via a pure
virtual function. This pure virtual function must therefore be defined in an inherited
class. Thus as in templatized code, the code is set up more to define a structure than
to do the real work which is coded elsewhere.

7.3 Communication between the components

Having identified what our components will be, we still need to assess what infor-
mation has to be passed between them, and we need to decide how to carry out the
communication.

The product will take in a vector of spot values for its relevant times and spit out
the cash-flows generated. A couple of immediate consequences of this are that there
has to be a mechanism for the product to tell the path generator for which times it
needs the value of spot, and that we need to decide how to define a cash-flow object.

To deal with the first of these, we include a method GetLookAtTimes; this
passes back an array of times that are relevant to the pay-off function of the prod-
uct. For the definition of cash-flow objects, there are a couple of options. The first
obvious approach is to simply make a cash-flow a pair of doubles which define
the amount and the time of the cash-flow. This approach has the disadvantage that
if we have a complicated term structure of interest rates, the action of computing
the discount factor for the cash-flow time may be slow, and with the product being
allowed to pass back an arbitrary time, this discounting will have to be done on
every path. Whilst one could cache already-computed times, there is then still the
problem that searching the cache for the already-computed times will take time.

In practice, many products can only pay off at one time. This means that it would
be better to pre-compute the discount factor for that time. However, we would still
need to know in advance what that time is. We therefore require our product to
have another method, PossibleCashFlowTimes, which returns an array defining
the possible times. As the engine will know all the possible times in advance we
can return a cash-flow as a pair: an index and an amount. The index is now an
unsigned long instead of a double. The engine will now precompute all the
discount factors and then simply use the index to look up an array to get the dis-
counting for any given cash-flow.

We still have to decide the syntax for the main method CashFlows. The method
takes in an array defining spot values, and returns cash-flows. As we allow the
possibility of more than one cash-flow, we must use a container to pass them back.
We use the STL vector class. Whilst it would be tempting to make the return type
of the class vector<CashFlow>, this would have timing disadvantages. We would
have to create a new vector every time the method was called, and this could be time
consuming because any dynamically sized container class must involve memory

106 An exotics engine and the template pattern

allocation. We therefore take an argument of type vector<CashFlow>& into which
we write the cash-flows.

We still have the issue that the vector will need to be of the correct size. One
solution is for the method to resize it as necessary but this could be time consuming.
First, resizing can involve memory allocation though this is not a huge issue since
the memory allocated for an STL vector never shrinks so if the same vector is
used every time it will rapidly grab enough memory and then will need no more.
Second, some implementations of the STL explicitly destroy all the objects in the
vector during a resize, which means that every resize involves looping, and is
therefore unnecessarily slow even when no memory allocation is necessary.

The solution we adopt is to tell the outside engine how big the vector has to be,
and then each time the method is called, to return an unsigned long saying how
many cash-flows have been generated. Thus we have two pure virtual methods:

virtual unsigned long MaxNumberOfCashFlows() const=0;
virtual unsigned long CashFlows(const MJArray& SpotValues,

std::vector<CashFlow>&
GeneratedFlows) const=0;

So in summary our objects will communicate as follows:

(i) The path generator asks the product what times it needs spot for, and it passes
back an array.

(ii) The accounting part of the engine asks the product what cash-flow times are
possible, and it passes back an array. The engine then computes all the possi-
ble discount factors.

(iii) The accounting part of the engine asks the product the maximum number of
cash flows it can generate, and sets up a vector of that size.

(iv) For each path, the engine gets an array of spot values from the path generator.
(v) The array of spot values is passed into the product, which passes back the

number of cash-flows, and puts their values into the vector.
(vi) The cash-flows are discounted appropriately and summed, and the total value

is passed into the statistics gatherer.
(vii) After all the looping is done, the final results are obtained from the statistics

gatherer.

7.4 The base classes

Having discussed in previous sections what classes will be needed and how they
should communicate, in this section we give the implementations of the base
classes.

In PathDependent.h, we define the CashFlow and the PathDependent classes
which give our path-dependent exotic option.

7.4 The base classes 107

Listing 7.1 (PathDependent.h)

#ifndef PATH_DEPENDENT_H
#define PATH_DEPENDENT_H
#include <Arrays.h>
#include <vector>

class CashFlow
{
public:

double Amount;
unsigned long TimeIndex;

CashFlow(unsigned long TimeIndex_=0UL, double Amount_=0.0)
: TimeIndex(TimeIndex_),
Amount(Amount_){};

};

class PathDependent
{
public:

PathDependent(const MJArray& LookAtTimes);

const MJArray& GetLookAtTimes() const;

virtual unsigned long MaxNumberOfCashFlows() const=0;
virtual MJArray PossibleCashFlowTimes() const=0;
virtual unsigned long CashFlows(const MJArray& SpotValues,

std::vector<CashFlow>&
GeneratedFlows) const=0;

virtual PathDependent* clone() const=0;

virtual ~PathDependent(){}
private:

MJArray LookAtTimes;
};
#endif

The CashFlow class is really just a struct as it has public data members. Note
that we ensure that it has a default constructor by giving the constructor default
arguments, this is necessary in order to use it with STL containers which need

108 An exotics engine and the template pattern

a default constructor for certain operations such as creating a vector of arbitrary
size.

The base class for PathDependent really does not do much except define the
interface. We have made the base class store the LookAtTimes as every possi-
ble product will need these times, and provided the method GetLookAtTimes to
obtain them. As usual, we include a clone method for virtual copy construction,
and a virtual destructor to make sure that there are no memory leaks arising from
destroying base class objects instead of inherited ones.

The source code is suitably short:

Listing 7.2 (PathDependent.cpp)

#include <PathDependent.h>

PathDependent::PathDependent(const MJArray& LookAtTimes_)
: LookAtTimes(LookAtTimes_)

{}

const MJArray& PathDependent::GetLookAtTimes() const
{

return LookAtTimes;
}

There is a bit more to the base class for the engine as it will actually handle the
accounting for the cash-flows.

Listing 7.3 (ExoticEngine.h)

#ifndef EXOTIC_ENGINE_H
#define EXOTIC_ENGINE_H
#include <wrapper.h>
#include <Parameters.h>
#include <PathDependent.h>
#include <MCStatistics.h>
#include <vector>
class ExoticEngine
{
public:

ExoticEngine(const Wrapper<PathDependent>&
The Product_, const Parameters& r_);

virtual void GetOnePath(MJArray& SpotValues)=0;

7.4 The base classes 109

void DoSimulation(StatisticsMC& TheGatherer,
unsigned long NumberOfPaths);

virtual ~ExoticEngine(){}
double DoOnePath(const MJArray& SpotValues) const;

private:
Wrapper<PathDependent> TheProduct;
Parameters r;
MJArray Discounts;
mutable std::vector<CashFlow> TheseCashFlows;

};
#endif

The engine has four data members. The product is stored using the Wrapper tem-
plate as we do not know its type. The interest rates are stored using the Parameters
class which will allow us variable ones if we so desire. We also delegate computa-
tion of integrals to the Parameters class, and not have to worry about them here.

We have an array Discounts, which will be used to store the discount factors
in order for the possible cash-flow times. Finally we have a mutable data mem-
ber TheseCashFlows. This means that it can change value inside const member
functions. The idea is that the variable is not really a data member, but instead it is
a workspace variable: this it is faster to declare once and for all in the class defini-
tion. Remember that creating and destroying containers can be time-consuming so
we design the class so that the vector is created once and for all at the beginning.

Note that we split our main method; it has two auxiliary methods, DoOnePath
and GetOnePath. The second of these is pure virtual and therefore will be defined
in an inherited class which will involve a choice of stochastic process and model.
Note that this method is not constant as we will want a different set of spot values
every time, and so it will necessarily change something about the state of the object.
The other of the methods does everything necessary for one path given the spot
values. This is const as turning spot values into prices is a purely functional action
with no underlying changes. Both these methods pass arrays by reference in order
to avoid any memory allocation. Note the implicit assumption that the array passed
into GetOnePath is of the correct size.

The source code for implementing the base class is fairly simple and straightfor-
ward as all the hard work has been hived off into auxiliary classes.

Listing 7.4 (ExoticEngine.cpp)

#include <ExoticEngine.h>
#include <cmath>

110 An exotics engine and the template pattern

ExoticEngine::ExoticEngine(const Wrapper<PathDependent>&
TheProduct_,

const Parameters& r_)
:
TheProduct(TheProduct_),
r(r_),
Discounts(TheProduct_->PossibleCashFlowTimes())

{
for (unsigned long i=0; i < Discounts.size(); i++)

Discounts[i] = exp(-r.Integral(0.0, Discounts[i]));

TheseCashFlows.resize(TheProduct->MaxNumberOfCashFlows());
}

void ExoticEngine::DoSimulation(StatisticsMC& TheGatherer,
unsigned long NumberOfPaths)

{
MJArray SpotValues(TheProduct->GetLookAtTimes().size());

TheseCashFlows.resize(TheProduct->MaxNumberOfCashFlows());
double thisValue;

for (unsigned long i =0; i < NumberOfPaths; ++i)
{

GetOnePath(SpotValues);
thisValue = DoOnePath(SpotValues);
TheGatherer.DumpOneResult(thisValue);

}

return;
}

double ExoticEngine::DoOnePath(const MJArray&
SpotValues) const

{
unsigned long NumberFlows =

TheProduct->CashFlows(SpotValues,
TheseCashFlows);

double Value=0.0;

7.5 A Black–Scholes path generation engine 111

for (unsigned i =0; i < NumberFlows; ++i)
Value += TheseCashFlows[i].Amount *

Discounts[TheseCashFlows[i].TimeIndex];

return Value;
}

The constructor stores the inputs, computes the discount factors necessary, and
makes sure the cash-flows vector is of the correct size. The DoSimulation method
loops through all the paths, calling GetOnePath to get the array of spot value and
then passes them into DoOnePath to get the value for that set of spot values. This
value is then dumped into the statistics gatherer.
DoOnePath is only slightly more complicated. The array of spot values is passed

into the product to get the cash-flows. These cash-flows are then looped over and
discounted appropriately. The discounting is simplified by using the precomputed
discount factors.

We have now set up the structure for pricing path-dependent exotic derivatives
but we still have to actually define the classes which will do the path generation
and define the products.

7.5 A Black–Scholes path generation engine

The Black–Scholes engine will produce paths from the risk-neutral Black–Scholes
process. The paths will be an array of spot values at the times specified by the
product. We allow the possibility of variable interest rates and dividend rates, as
well as variable but deterministic volatility. The stock price therefore follows the
process

d St = (r(t) − d(t))St dt + σ(t)St dWt , (7.1)

with S0 given. To simulate this process at times t0, t1, . . . , tn−1, we need n
independent N (0, 1) variates W j and we set

log St0 = log S0 +
t0∫

0

(
r(s) − d(s) − 1

2
σ(s)2

)
ds +

√√√√√
t0∫

0

σ(s)2dsW0, (7.2)

and put

log St j = log St j−1 +
t j∫

t j−1

(
r(s) − d(s) − 1

2
σ(s)2

)
ds +

√√√√√√
t j∫

t j−1

σ(s)2dsW j . (7.3)

112 An exotics engine and the template pattern

We implement this procedure in ExoticBSEngine.h and ExoticBS-
Engine.cpp.

Listing 7.5 (ExoticBSEngine.h)

#ifndef EXOTIC_BS_ENGINE_H
#define EXOTIC_BS_ENGINE_H
#include <ExoticEngine.h>
#include <Random2.h>

class ExoticBSEngine : public ExoticEngine
{
public:

ExoticBSEngine(const Wrapper<PathDependent>& TheProduct_,
const Parameters& R_,
const Parameters& D_,
const Parameters& Vol_,
const Wrapper<RandomBase>& TheGenerator_,
double Spot_);

virtual void GetOnePath(MJArray& SpotValues);
virtual ~ExoticBSEngine(){}

private:
Wrapper<RandomBase> TheGenerator;
MJArray Drifts;
MJArray StandardDeviations;
double LogSpot;
unsigned long NumberOfTimes;
MJArray Variates;

};
#endif

Listing 7.6 (ExoticBSEngine.cpp)
#include <ExoticBSEngine.h>
#include <cmath>

void ExoticBSEngine::GetOnePath(MJArray& SpotValues)
{

TheGenerator->GetGaussians(Variates);

7.5 A Black–Scholes path generation engine 113

double CurrentLogSpot = LogSpot;

for (unsigned long j=0; j < NumberOfTimes; j++)
{

CurrentLogSpot += Drifts[j];
CurrentLogSpot += StandardDeviations[j]*Variates[j];
SpotValues[j] = exp(CurrentLogSpot);

}

return;
}

ExoticBSEngine::ExoticBSEngine(const Wrapper<PathDependent>&
TheProduct_,

const Parameters& R_,
const Parameters& D_,
const Parameters& Vol_,
const Wrapper<RandomBase>&

TheGenerator_,
double Spot_)
:
ExoticEngine(TheProduct_,R_),
TheGenerator(TheGenerator_)

{
MJArray Times(TheProduct_->GetLookAtTimes());
NumberOfTimes = Times.size();

TheGenerator->ResetDimensionality(NumberOfTimes);
Drifts.resize(NumberOfTimes);
StandardDeviations.resize(NumberOfTimes);

double Variance = Vol_.IntegralSquare(0,Times[0]);

Drifts[0] = R_.Integral(0.0,Times[0])
- D_.Integral(0.0,Times[0]) - 0.5 * Variance;

StandardDeviations[0] = sqrt(Variance);

for (unsigned long j=1; j < NumberOfTimes; ++j)
{

114 An exotics engine and the template pattern

double thisVariance =
Vol_.IntegralSquare(Times[j-1],Times[j]);

Drifts[j] = R_.Integral(Times[j-1],Times[j])
- D_.Integral(Times[j-1],Times[j])
- 0.5 * thisVariance;

StandardDeviations[j] = sqrt(thisVariance);
}

LogSpot = log(Spot_);
Variates.resize(NumberOfTimes);

}

The integrals and square-roots are the same for every path and so can be precom-
puted. The constructor therefore gets the times from the product, and uses them to
compute the integrals of the drifts and the standard deviations which are stored as
data members. Note that the class does not bother to store the times as it is only the
constructor which needs to know what they are. In any case, the product is passed
up to the base class and it could be retrieved from there if it were necessary.

The generation will of course require a random number generator and we pass
in a wrapped RandomBase object to allow us to plug in any one we want without
having to do any explicit memory handling. We have a data member Variates
so that the array can be defined once and for all at the beginning: once again this
is with the objective of avoiding unnecessary creation and deletion of objects. We
store the log of the initial value of spot as this is the most convenient for carrying
out the path generation.

As we have done a lot of precomputation in the constructor, the routine to actu-
ally generate a path is fairly simple. We simply get the variates from the generator
and loop through the times. For each time, we add the integrated drift to the log,
and then add the product of the random number and the standard deviation. To
minimize the number of calls to log and exp, we keep track of the log of the spot at
all times, and convert into spot values as necessary. We thus have NumberOfTimes
calls to exp each path and no calls to log. As we will have to exponentiate to change
our Gaussian into a log-normal variate at some point, this appears to be optimal for
this design. If we were really worried that too much time was being spent on com-
puting exponentials, one solution would be to change the design and pass the log of
the values of spot back, and then pass these log values into the product. The prod-
uct would then have the obligation to exponentiate them if necessary. For certain
products such as a geometric Asian option this might well be faster as it would only
involve one exponentiation instead of many. The main downside would be that for

7.6 An arithmetic Asian option 115

certain processes, such as a normal process or displaced diffusion, one might end
up having to take unnecessary logs.

7.6 An arithmetic Asian option

Before we can run our engine, we need one last thing, namely a concrete product
to put in it. One simple example is an arithmetic Asian option. Rather than define a
different class for each sort of pay-off, we use the already developed PayOff class
as a data member.

The header file for the class is quite simple:

Listing 7.7 (PathDependentAsian.h)

#ifndef PATH_DEPENDENT_ASIAN_H
#define PATH_DEPENDENT_ASIAN_H

#include <PathDependent.h>
#include <PayOffBridge.h>

class PathDependentAsian : public PathDependent
{
public:

PathDependentAsian(const MJArray& LookAtTimes_,
double DeliveryTime_,
const PayOffBridge& ThePayOff_);

virtual unsigned long MaxNumberOfCashFlows() const;
virtual MJArray PossibleCashFlowTimes() const;
virtual unsigned long CashFlows(const MJArray& SpotValues,

std::vector<CashFlow>& GeneratedFlows) const;
virtual ~PathDependentAsian(){}
virtual PathDependent* clone() const;

private:
double DeliveryTime;
PayOffBridge ThePayOff;
unsigned long NumberOfTimes;

};
#endif

The methods defined are just the ones required by the base class. We pass in the
averaging times as an array and we provide a separate delivery time to allow for the
possibility that the pay-off occurs at some time after the last averaging date. Note

116 An exotics engine and the template pattern

that the use of PayOffBridge class means that the memory handling is handled
internally, and this class does not need to worry about assignment, copying and
destruction.

The source file is fairly simple too.

Listing 7.8 (PathDependentAsian.cpp)

#include <PathDependentAsian.h>

PathDependentAsian::PathDependentAsian(const MJArray&
LookAtTimes_,

double DeliveryTime_,
const PayOffBridge&ThePayOff_)
:
PathDependent(LookAtTimes_),
DeliveryTime(DeliveryTime_),
ThePayOff(ThePayOff_),
NumberOfTimes(LookAtTimes_.size())

{
}

unsigned long PathDependentAsian::MaxNumberOfCashFlows() const
{

return 1UL;
}

MJArray PathDependentAsian::PossibleCashFlowTimes() const
{

MJArray tmp(1UL);
tmp[0] = DeliveryTime;
return tmp;

}

unsigned long PathDependentAsian::CashFlows(const MJArray&
SpotValues,

std::vector<CashFlow>& GeneratedFlows) const
{

double sum = SpotValues.sum();
double mean = sum/NumberOfTimes;

GeneratedFlows[0].TimeIndex = 0UL;

7.7 Putting it all together 117

GeneratedFlows[0].Amount = ThePayOff(mean);

return 1UL;
}

PathDependent* PathDependentAsian::clone() const
{

return new PathDependentAsian(*this);
}

Note that our option only ever returns one cash-flow so the maximum number
of cash-flows is 1. It only ever generates cash-flows at the delivery time so the
PossibleCashFlowTimesmethod is straightforward too. The CashFlowsmethod
takes the spot values, sums them, divides by the number of them and calls ThePay-
Off to find out what the pay-off is. The answer is then written into the Generated-
Flows array and we are done.

7.7 Putting it all together

We now have everything we need to price an Asian option. We give an example of
a simple interface program in EquityFXMain.cpp.

Listing 7.9 (EquityFXMain.cpp)

/*
uses source files
AntiThetic.cpp
Arrays.cpp,
ConvergenceTable.cpp,
ExoticBSEngine.cpp
ExoticEngine.cpp
MCStatistics.cpp
Normals.cpp
Parameters.cpp,
ParkMiller.cpp,
PathDependent.cpp
PathDependentAsian.cpp
PayOff3.cpp,
PayOffBridge.cpp,
Random2.cpp,

*/

118 An exotics engine and the template pattern

#include<ParkMiller.h>
#include<iostream>
using namespace std;
#include<MCStatistics.h>
#include<ConvergenceTable.h>
#include<AntiThetic.h>
#include<PathDependentAsian.h>
#include<ExoticBSEngine.h>
int main()
{

double Expiry;
double Strike;
double Spot;
double Vol;
double r;
double d;
unsigned long NumberOfPaths;
unsigned NumberOfDates;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nStrike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nd\n";
cin >> d;

cout << "Number of dates\n";
cin >> NumberOfDates;

7.7 Putting it all together 119

cout << "\nNumber of paths\n";
cin >> NumberOfPaths;

PayOffCall thePayOff(Strike);

MJArray times(NumberOfDates);

for (unsigned long i=0; i < NumberOfDates; i++)
times[i] = (i+1.0)*Expiry/NumberOfDates;

ParametersConstant VolParam(Vol);
ParametersConstant rParam(r);
ParametersConstant dParam(d);

PathDependentAsian theOption(times, Expiry, thePayOff);

StatisticsMean gatherer;
ConvergenceTable gathererTwo(gatherer);

RandomParkMiller generator(NumberOfDates);

AntiThetic GenTwo(generator);

ExoticBSEngine theEngine(theOption, rParam, dParam,
VolParam, GenTwo, Spot);

theEngine.DoSimulation(gathererTwo, NumberOfPaths);

vector<vector<double> > results =
gathererTwo.GetResultsSoFar();

cout <<"\nFor the Asian call price the results are \n";

{
for (unsigned long i=0; i < results.size(); i++)

{
for (unsigned long j=0; j < results[i].size(); j++)

cout << results[i][j] << " ";

cout << "\n";

120 An exotics engine and the template pattern

}}

double tmp;
cin >> tmp;

return 0;
}

7.8 Key points

In this chapter, we saw how we can put the ideas developed in the previous chapters
together to build a pricer for exotic options.

• An important part of the design process is identifying the necessary components
and specifying how they talk to each other.

• The template pattern involves deferring the implementation of an important part
of an algorithm to an inherited class.

• If an option class knows nothing that is not specified in the term-sheet then it is
much easier to reuse.

• We can reuse the PayOff class to simplify the coding of our more complicated
path-dependent derivatives.

7.9 Exercises

Exercise 7.1 Write a class to do geometric Asian options.

Exercise 7.2 Write a class to do discrete knock-out options that pay a rebate at the
time of rebate.

Exercise 7.3 Rewrite the classes here so that they pass the logs of spot values
around instead of the spot values. Show that the discrete barrier option and the
geometric Asian need fewer exponentiations.

Exercise 7.4 Implement an engine for pricing when the spot price is normal instead
of log-normal.

Exercise 7.5 Write a class that pays the difference in pay-offs of two arbitrary
path-dependent derivatives.

8

Trees

8.1 Introduction

We have studied Monte Carlo code in detail: now we examine how we can apply
similar techniques to pricing on trees. Before we can start designing the code, we
need to fix the underlying mathematics. The point of view we adopt is that a tree is
a method of approximating the risk-neutral expectation. In particular, we assume
that we are pricing a derivative on a stock following geometric Brownian motion
with a constant volatility σ . We let the continuously compounding interest rate be
r and the continuous dividend rate be d. The dynamics for the stock in the risk-
neutral measure are therefore

d S = (r − d)Sdt + σ SdWt . (8.1)

The value of a European option with expiry T is then

e−rT
E(C(S, T)), (8.2)

where C(S, T) is the final pay-off.
When we price on a binomial tree, we divide time into steps and across each step

we assume that the underlying Brownian motion can only move a fixed amount up
or down. The dynamics of the stock price under geometric Brownian motion are
such that

St = S0e(r−d− 1
2 σ 2)t+σ Wt . (8.3)

We wish to discretize Wt . We have N steps to get from 0 to T . Each time step is
therefore of length T/N . Across step l, we need to approximate

W(l+1)T/N − WlT/N =
√

T

N
N (0, 1). (8.4)

There is only one random variable taking precisely two values which has the same
mean and variance as N (0, 1), and this variable takes ±1 with probability 1/2. We

121

122 Trees

therefore take a set of N independent random variables X j with this distribution,
and approximate WlT/N by

Yl =
√

T

N

l∑
j=1

X j . (8.5)

The approximation for SlT/N is then

S0e(r−d− 1
2 σ 2)lT/N+σYl .

Note the crucial point here that since the value of St does not depend on the path
of Wt but solely upon its value at time t , it is only the value of Yl that matters not
the value of each individual X j . This is crucial because it means that our tree is
recombining; it does not matter whether we go down then up, or up then down.
This is not the case if we allow variable volatility, which is why we have assumed
its constancy.

The nature of martingale pricing means that the value at a given time-step is
equal to the discounted value at the next time-step, thus if we let Sl,k be the value
of the stock at time T l/N if Yl is k, we have that

C(Sl,k, T l/N) = e−rT/N
E(Sl+1(Yl+1|Yl = k)),

= 1

2
e−rT/N (

C
(
Sl,ke(r−d− 1

2 σ 2)T/N+σ
√

T/N , (l + 1)T/N
)

+ C
(
Sl,ke(r−d− 1

2 σ 2)T/N−σ
√

T/N , (l + 1)T/N
))

. (8.6)

Note that we are not doing true martingale pricing in the discrete world in that we
are not adjusting probabilities to make sure the assets are discrete martingales; we
are instead approximating the continuous martingales with discrete random vari-
ables which are almost, but not quite, martingales.

What does all this buy us? The value of C(SN ,k) is easy to compute for any value
of k: we just plug the stock price into the final pay-off. Since we have a formula
that expresses the value at step l into that at step l + 1, we can now just backwards
iterate through the tree in order to get the price at time zero.

However, the purpose of a tree is not to price a European option; there are lots of
better ways of doing that, including analytical solutions and numerical integration.
The reason trees were introduced was that they give an effective method for pricing
American options. The analysis for an American option is similar except that the
value at a point in the tree is the maximum of the exercise value at that point and
the discounted expected value at the next time. This corresponds to the optimal
strategy of exercise if and only if exercise gives more money than not exercising.

Our algorithm for pricing an American option is therefore as follows:

8.2 The design 123

(i) Create an array of final spot values which are of the form

S0e(r−d− 1
2 σ 2)T +σ

√
T/N j

where j ranges from −N to N .

(ii) For each of these spot values evaluate the pay-off and store it.
(iii) At the previous time-slice compute the possible values of spot: these will be

of the form

S0e(r−d− 1
2 σ 2)(N−1)T/N+σ

√
T/N j ,

where j ranges from −(N − 1) to N − 1.

(iv) For each of these values of spot, compute the pay-off and take the maximum
with the discounted pay-off of the two possible values of spot at the next time.

(v) Repeat 3,4 until time zero is reached.

What else could we price on a tree? We could do a barrier option or an Ameri-
can option that could only be exercised within certain time periods. For a knock-out
barrier option, the procedure would be the same as for the European, except that the
value at a point in the tree would be zero if it lay behind the barrier. For an Amer-
ican option with limited early exercise the procedure would be the same again,
except that we would only take the maximum at times at which early exercise was
allowed. So in each case, when we change the option, all that alters is the rule for
updating the value at a point in the tree.

Note that in our formulation, we have not used any no-arbitrage arguments. The
reason is that we have implicitly assumed that the no-arbitrage arguments have
been done in the continuous case before any discretization has been carried out.
This means that the completeness property of a binomial tree, i.e. that it generates
a unique no-arbitrage price, is not relevant. In particular, we could replace X j by
any random variable with mean 0 and variance 1. If we use X

′
j which takes values

−√
2, 0,

√
2 with probabilities 0.25, 0.5 and 0.25 respectively, then we obtain a

trinomial tree on which we could carry out a very similar analysis and algorithm.
We could in fact go much further and have as many values as we wanted as long as
we took care to make sure that the tree still recombined.

8.2 The design

Having re-examined the mathematics and the algorithms, we are now in a position
to think about the design. Here are some concepts that our discussion has thrown
up:

• the discretization;
• the final pay-off of the option;

124 Trees

• the rule for deciding the value of an option at a point in the tree given spot and
the discounted future value of the option.

The first of these concepts decides the shape of the tree, whereas the second
and third are properties of the option. There is thus an obvious orthogonalization:
we have a tree class which handles the discretization, and a second class which
deals with the final pay-off and the rule at previous times. In fact, we have already
developed a class, PayOff, to encapsulate vanilla option pay-offs and it is ideal for
reuse here.

There are a number of ways we could approach the second class. We could in-
herit from PayOffBridged since we could view our class as adding structure to an
existing class. Whilst this would work in code, I personally dislike it as an option
being priced on a tree is not a type of pay-off, and so the inheritance is not express-
ing an is a relationship. Another approach might be simply to define a second class
to do the calculation rule, and plug both the final pay-off and the calculation rule
into the tree. Since for American options the final pay-off is generally relevant at
all times, such an approach seems sub-optimal as it might require two copies of the
pay-off.

Ultimately, the pay-off is an aspect of the option, and it therefore makes more
sense to define it as data member of the class which can referenced via a final pay-
off method. Thus we define options on trees via an abstract base class which has
three defining methods:

• FinalTime indicates the expiry time of the option;
• FinalPayOff gives the final pay-off as a function of spot;
• PreFinalValue gives the value at a point in the tree as a function of spot, time

and the discounted future value of the option.

Note that by defining the option class in this fashion, we have not allowed it to
know anything about interest rates nor the process of the underlying. This means it
can be used in any tree-like structure provided the structure is always in a position
to let it know its own discounted future value. Note the difference here between the
option classes we are defining here and those we defined for Monte Carlo: whilst
we are trying to encapsulate similar concepts, the difference is in the information
we are able to feed in at a given time. For Monte Carlo, the entire history of spot
is easy but the discounted future value of an option is hard, whereas on a tree the
discounted future value is easy but the history is hard. However, both classes have
easy access to the pay-off which means we are able to share the pay-off class.

Our other concept is the tree itself. The tree really has two aspects: the placement
of the nodes of the tree and the computing of the option value at each of the nodes.
Whilst we could further orthogonalize and define separate classes for each of these,
we write a single class to do the binomial tree which takes in an option as an
argument. An important point to note is that as the placement of the nodes does

8.3 The TreeProduct class 125

not depend upon the option, we can save ourselves time if we want to price several
options by placing the nodes once and then pricing all the options on the same tree.

Given this fact, we design our tree class in such a way that the tree is built once,
and then any option can be valued on the tree via a separate method.

8.3 The TreeProduct class

As we have decided to model the tree and the product separately, we develop a
class hierarchy for the products we can value on trees. As usual, we use an ab-
stract base class to define an interface. We define the class, TreeProduct, in
TreeProducts.h.

Listing 8.1 (TreeProducts.h)

#ifndef TREE_PRODUCTS_H
#define TREE_PRODUCTS_H

class TreeProduct
{
public:

TreeProduct(double FinalTime_);
virtual double FinalPayOff(double Spot) const=0;
virtual double PreFinalValue(double Spot,

double Time,
double DiscountedFutureValue)

const=0;
virtual ~TreeProduct(){}
virtual TreeProduct* clone() const=0;
double GetFinalTime() const;

private:
double FinalTime;

};
#endif

The only data member for the base class is FinalTime, and we provide a
GetFinalTime to allow its value to be read. Note that this places the constraint
on our products that they actually have a time of expiry! Thus we are implicitly
disallowing perpetual options, however this is a good thing as it is not clear how
to go about valuing such an option using a tree. Ultimately, one would have to
approximate using a product with a finite expiry and it is probably better to do so
explicitly than implicitly.

126 Trees

We provide the usual clone method and a virtual destructor to allow virtual
copying, and to ensure the absence of memory leaks after virtual copying. The
remaining methods are pure virtual and specify the value of the product at expiry
and at previous times as we discussed above.

As most of the base class is abstract the source file is short:

Listing 8.2 (TreeProducts.cpp)

#include <TreeProducts.h>

TreeProduct::TreeProduct(double FinalTime_)
: FinalTime(FinalTime_)
{
}

double TreeProduct::GetFinalTime() const
{

return FinalTime;
}

We provide below two concrete implementations of tree products: the European
option and the American option. As we specify the pay-off using the PayOff-
Bridged class, we do not need to write separate classes for calls and puts. The
header files are straightforward, the only changes from the base class being the
addition of a data member to specify the pay-off and the fact that virtual methods
are now concrete instead of abstract. Note that everything to do with the expiry
time is taken care of by the base class; the constructors need only pass it on to the
base class.

Listing 8.3 (TreeAmerican.h)

#ifndef TREE_AMERICAN_H
#define TREE_AMERICAN_H

#include <TreeProducts.h>
#include <PayOffBridge.h>

class TreeAmerican : public TreeProduct
{

public:
TreeAmerican(double FinalTime,

const PayOffBridge& ThePayOff_);

8.3 The TreeProduct class 127

virtual TreeProduct* clone() const;
virtual double FinalPayOff(double Spot) const;
virtual double PreFinalValue(double Spot,

double Time,
double DiscountedFutureValue)

const;
virtual ~TreeAmerican(){}

private:
PayOffBridge ThePayOff;

};
#endif
The header for the European option is very similar:

Listing 8.4 (TreeEuropean.h)

#ifndef TREE_EUROPEAN_H
#define TREE_EUROPEAN_H

#include <TreeProducts.h>
#include <PayOffBridge.h>

class TreeEuropean : public TreeProduct
{

public:
TreeEuropean(double FinalTime,

const PayOffBridge& ThePayOff_);

virtual TreeProduct* clone() const;
virtual double FinalPayOff(double Spot) const;
virtual double PreFinalValue(double Spot,

double Time,
double DiscountedFutureValue)

const;
virtual ~TreeEuropean(){}

private:
PayOffBridge ThePayOff;

};
#endif

128 Trees

The source files are also straightforward.

Listing 8.5 (TreeAmerican.cpp)

#include <TreeAmerican.h>
#include <minmax.h>

TreeAmerican::TreeAmerican(double FinalTime,
const PayOffBridge& ThePayOff_)

: TreeProduct(FinalTime),
ThePayOff(ThePayOff_)

{
}

TreeProduct* TreeAmerican::clone() const
{

return new TreeAmerican(*this);
}

double TreeAmerican::FinalPayOff(double Spot) const
{

return ThePayOff(Spot);
}

double TreeAmerican::PreFinalValue(double Spot,
double ,

// Borland compiler doesnt like unused named variables
double DiscountedFutureValue) const

{
return max(ThePayOff(Spot), DiscountedFutureValue);

}

and

Listing 8.6 (TreeEuropean.cpp)

#include <TreeEuropean.h>
#include <minmax.h>

TreeEuropean::TreeEuropean(double FinalTime,
const PayOffBridge& ThePayOff_)

: TreeProduct(FinalTime),
ThePayOff(ThePayOff_)

8.4 A tree class 129

{
}

double TreeEuropean::FinalPayOff(double Spot) const
{

return ThePayOff(Spot);
}

double TreeEuropean::PreFinalValue(double,
//Spot, Borland compiler

double,
//Time, doesnt like unused named variables

double DiscountedFutureValue) const
{

return DiscountedFutureValue;
}

TreeProduct* TreeEuropean::clone() const
{

return new TreeEuropean(*this);
}

The implementations of the methods are very simple – all the pay-offs are sub-
contracted to the PayOffBridged class in any case. For the European option at
an interior node, the rule for computing the PreFinalValue is very simple: just
return the discounted future value that was input. For the American option, it is
only slightly harder; we take the maximum with the intrinsic value.

Note the slight oddity that we do not name the unused variables Spot and Time
in the PreFinalValue method. This is because some compilers issue a warning
if a variable is named but not used, to ensure that variables are not left unused
accidentally.

8.4 A tree class

We give a simple implementation of a binomial tree class in this section. We design
the tree to work in three pieces. The constructor does little except store the parame-
ters. The BuildTree method actually makes the tree. In particular, it computes the
locations of all the nodes, and the discounts needed to compute the expectations
backwards in the tree. As it is not intended that the BuildTree method should be
called from outside the class, we make it protected which allows the possibil-
ity that an inherited class may wish to use it without allowing any other external
access.

130 Trees

The method which does the actual pricing is GetThePrice. Note that it takes in
a TreeProduct by reference. As the argument is an abstract base class this means
that an object from an inherited class must be passed in. Note that since we not
need to store the object passed in, we do not need virtual constructors, wrappers or
bridges. This method builds the tree if necessary, checks that the product has the
right expiry time and then prices it. Our design is such that we can price multiple
products with the same expiry; we call the method multiple times and only build
the tree once. As we wish to be able to do this, we store the entire tree. Note
that this is not really necessary since for any given time slice, we only need the
next time slice and so we could easily save a lot of memory by only ever having
two arrays defined. However, unless one is doing an awful lot of steps, memory
will not be an issue, and this approach has the added benefit that if one wishes to
analyze certain aspects of the product, such as where the exercise boundary lies
for an American option, it is better to have the entire tree. We present the class in
BinomialTree.h.

Listing 8.7 (BinomialTree.h)

#pragma warning(disable : 4786)

#include <TreeProducts.h>
#include <vector>
#include <Parameters.h>
#include <Arrays.h>

class SimpleBinomialTree
{
public:

SimpleBinomialTree(double Spot_,
const Parameters& r_,
const Parameters& d_,
double Volatility_,
unsigned long Steps,
double Time);

double GetThePrice(const TreeProduct& TheProduct);

protected:
void BuildTree();

private:

8.4 A tree class 131

double Spot;
Parameters r;
Parameters d;
double Volatility;
unsigned long Steps;
double Time;
bool TreeBuilt;

std::vector<std::vector<std::pair<double, double> > >
TheTree;

MJArray Discounts;
};

Note that we store the tree as a vector of vectors of pairs of doubles. This is why
we have the #pragma at the start; without the pragma, we get a warning message
telling us that the debug info is too long (under Visual C++ 6.0).

A pair is a simple template class in the STL which simply gives a class with
two data members of the appropriate types. They are accessed as public members
as first and second. Note that an alternative implementation would be to have
two trees: one for the spot and another for option values. However, that would
require twice as much work when resizing, and more importantly one would then
have to be careful to ensure that spot and the associated option value were always
attached to the same indices. With the use of a pair, we get this for free.

We have allowed general Parameters for r and d: this is because variable in-
terest and dividend rates change little in the analysis or construction of the tree. If
we can add extra functionality with little cost, why not do so? We do not, however,
allow variable volatility as it greatly complicates node placement; we would lose
the property that the spot price is a simple function of the underlying Brownian
motion.

We use a bool to indicate whether the tree has been built yet. We store the
number of steps as an unsigned long and this is fixed in the constructor. One
could easily add an additional method to allow the number of steps to be changed;
however one would gain little over just instantiating a new object with a different
number of steps. We have a data member for the discount factors needed so that
they need only be computed once in BuildTree.

We present the source code in BinomialTree.cpp.

Listing 8.8 (BinomialTree.cpp)

#include <BinomialTree.h>
#include <Arrays.h>
#include <cmath>

132 Trees

// the basic math functions should be in namespace std
// but aren’t in VCPP6
#if !defined(_MSC_VER)
using namespace std;
#endif

SimpleBinomialTree::SimpleBinomialTree(double Spot_,
const Parameters& r_,
const Parameters& d_,
double Volatility_,
unsigned long Steps_,
double Time_)
: Spot(Spot_),
r(r_),
d(d_),
Volatility(Volatility_),
Steps(Steps_),
Time(Time_),
Discounts(Steps)

{
TreeBuilt=false;

}

void SimpleBinomialTree::BuildTree()
{
TreeBuilt = true;
TheTree.resize(Steps+1);

double InitialLogSpot = log(Spot);

for (unsigned long i=0; i <=Steps; i++)
{

TheTree[i].resize(i+1);

double thisTime = (i*Time)/Steps;

double movedLogSpot =
InitialLogSpot + r.Integral(0.0, thisTime)

- d.Integral(0.0, thisTime);

8.4 A tree class 133

movedLogSpot -=
0.5*Volatility*Volatility*thisTime;

double sd = Volatility*sqrt(Time/Steps);

for (long j = -static_cast<long>(i), k=0;
j <= static_cast<long>(i); j=j+2,k++)

TheTree[i][k].first = exp(movedLogSpot+ j*sd);
}

for (unsigned long l=0; l <Steps; l++)
{

Discounts[l] =
exp(- r.Integral(l*Time/Steps,(l+1)*Time/Steps));

}
}

double SimpleBinomialTree::GetThePrice(const TreeProduct&
TheProduct)

{
if (!TreeBuilt)

BuildTree();

if (TheProduct.GetFinalTime() != Time)
throw("mismatched product in SimpleBinomialTree");

for (long j = -static_cast<long>(Steps), k=0;
j <=static_cast<long>(Steps); j=j+2,k++)

TheTree[Steps][k].second =
TheProduct.FinalPayOff(TheTree[Steps][k].first);

for (unsigned long i=1; i <= Steps; i++)
{
unsigned long index = Steps-i;
double ThisTime = index*Time/Steps;

for (long j = -static_cast<long>(index), k=0;
j <= static_cast<long>(index); j=j+2,k++)
{
double Spot = TheTree[index][k].first;

134 Trees

double futureDiscountedValue = 0.5*Discounts[index]*
(TheTree[index+1][k].second +
TheTree[index+1][k+1].second);

TheTree[index][k].second =
TheProduct.PreFinalValue(Spot,ThisTime,

futureDiscountedValue);
}

}
return TheTree[0][0].second;

}

The code is fairly straightforward. The constructor initializes the basic class vari-
ables and does not do much else. The method BuildTree creates the tree. We
resize the vector describing all the layers first. We then resize each layer so that
it is of the correct size. Note that as the number of nodes in a layer grows with the
number of steps, these inner vectors are all of different sizes. We then compute a
basepoint for the layer in log-space which is just the zero Brownian motion point.
We then loop through the nodes in each layer writing in the appropriate value of
spot.

Note that as we are dealing with points in the tree corresponding to down moves
we count using a long. This long has to be compared to the unsigned long i
for the termination condition. We therefore have to be careful; if we simply com-
pare these numbers a likely effect is that the routine will conclude that −1 is bigger
than 1. Why? The compiler will implicitly convert the long into a large unsigned
long. Clearly this is not the desired effect so we convert the unsigned long into
a long before the comparison.

After setting up the tree, we also set up the array of Discounts which are
product-independent, and therefore only need to be done once.

The main routine for actually doing the pricing, GetThePrice, is also straight-
forward. We have put in a test to make sure that the tree and product are compatible.
This throws an error which is a simple string if they are not. Note that this means
the program will terminate unless we have written a catch which is capable of
catching the string.

We simply iterate backwards through the tree. First we compute the final layer
using the FinalPayOff and write the values into the second element of each pair
in the final layer. After this we simply iterate backwards, computing as we go. The
final value of the product is then simply the value of the option at the single node
in the first layer of the tree, and that is what we return.

8.5 Pricing on the tree 135

8.5 Pricing on the tree

Having written all the classes we need to actually put them together to price some-
thing. We give a simple interface in TreeMain.cpp.

Listing 8.9 (TreeMain.cpp)

/*
requires

Arrays.cpp
BinomialTree.cpp
BlackScholesFormulas.cpp
Normals.cpp
Parameters.cpp
PayOff3.cpp
PayOffBridge.cpp
PayOffForward.cpp
TreeAmerican.cpp
TreeEuropean.cpp
TreeProducts.cpp

*/
#include <BinomialTree.h>
#include <TreeAmerican.h>
#include <TreeEuropean.h>
#include <BlackScholesFormulas.h>
#include <PayOffForward.h>
#include <iostream>
using namespace std;
#include <cmath>
int main()
{

double Expiry;
double Strike;
double Spot;
double Vol;
double r;
double d;
unsigned long Steps;

136 Trees

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nStrike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter vol\n";
cin >> Vol;

cout << "\nr\n";
cin >> r;

cout << "\nd\n";
cin >> d;

cout << "\nNumber of steps\n";
cin >> Steps;

PayOffCall thePayOff(Strike);

ParametersConstant rParam(r);
ParametersConstant dParam(d);

TreeEuropean europeanOption(Expiry,thePayOff);
TreeAmerican americanOption(Expiry,thePayOff);

SimpleBinomialTree theTree(Spot,rParam,dParam,Vol,Steps,
Expiry);

double euroPrice = theTree.GetThePrice(europeanOption);
double americanPrice = theTree.GetThePrice(americanOption);
cout << "euro price" << euroPrice << "amer price"

<< americanPrice << "\n";

double BSPrice = BlackScholesCall(Spot,Strike,r,d,
Vol,Expiry);

cout << "BS formula euro price" << BSPrice << "\n";

8.5 Pricing on the tree 137

PayOffForward forwardPayOff(Strike);
TreeEuropean forward(Expiry,forwardPayOff);

double forwardPrice = theTree.GetThePrice(forward);
cout << "forward price by tree" << forwardPrice << "\n";

double actualForwardPrice =
exp(-r*Expiry)*(Spot*exp((r-d)*Expiry)-Strike);

cout << "forward price" << actualForwardPrice << "\n";

Steps++; // now redo the trees with one more step
SimpleBinomialTree theNewTree(Spot,rParam,dParam,Vol,

Steps,Expiry);

double euroNewPrice =
theNewTree.GetThePrice(europeanOption);

double americanNewPrice =
theNewTree.GetThePrice(americanOption);

cout << "euro new price" << euroNewPrice
<< "amer new price" << americanNewPrice << "\n";

double forwardNewPrice = theNewTree.GetThePrice(forward);

cout << "forward price by new tree" << forwardNewPrice
<< "\n";

double averageEuro = 0.5*(euroPrice+euroNewPrice);
double averageAmer = 0.5*(americanPrice+americanNewPrice);
double averageForward = 0.5*(forwardPrice+forwardNewPrice);

cout << "euro av price" << averageEuro << "amer av price"
<< averageAmer << "\n";

cout << "av forward" << averageForward << "\n";

double tmp;
cin >> tmp;

return 0;
}

138 Trees

To illustrate certain aspects of tree pricing, we price the European call, the Amer-
ican call and the forward. We then reprice them using one extra step. The rea-
son we do this is that often pricing on trees gives rise to a zig-zag behaviour as
nodes go above and below the money. The average of the price for two succes-
sive steps is therefore often a lot more accurate than a single price. We give the
comparison Black–Scholes price for the European option as an assessment of ac-
curacy. The code for the Black–Scholes price is in BlackScholesFormulas.h
and BlackScholesFormulas.cpp; we discuss it in Appendix A.

A standard way of improving the accuracy of American option pricing is to use
the European price as a control. As we know the true price of the European and
we know the tree price also, we can assume that the American option has the same
amount of error as the European and adjust its price accordingly. The principle here
is the same as that for a control variate in Monte Carlo simulation.

We also give the price of a forward. Note that if we had required the discounted
discretized process to be a martingale, then the forward would be priced absolutely
correctly; however as it is only an approximation to a martingale rather than actu-
ally being one, the forward need not be precise.

As we have not defined a class for the forward’s pay-off before, we define one
in PayOffForward.h and PayOffForward.cpp.

Listing 8.10 (PayOffForward.h)

#ifndef PAY_OFF_FORWARD_H
#define PAY_OFF_FORWARD_H

#include <PayOff3.h>
class PayOffForward : public PayOff
{
public:

PayOffForward(double Strike_);

virtual double operator()(double Spot) const;
virtual ~PayOffForward(){}
virtual PayOff* clone() const;

private:
double Strike;

};
#endif

8.7 Exercises 139

Listing 8.11 (PayOffForward.cpp)

#include <PayOffForward.h>

double PayOffForward::operator () (double Spot) const
{

return Spot-Strike;
}

PayOffForward::PayOffForward(double Strike_) : Strike(Strike_)
{
}

PayOff* PayOffForward::clone() const
{

return new PayOffForward(*this);
}

The class is straightforward and the only difference from the class defined for
the call is that we take spot minus strike, instead of the call pay-off.

8.6 Key points

In this chapter we have used the patterns developed earlier in the book to develop
routines for pricing on trees.

• Tree pricing is based on the discretization of a Brownian motion.
• Trees are a natural way to price American options.
• On a tree, knowledge of discounted future values is natural but knowing about

the past is not.
• We can re-use the pay-off class when defining products on trees.
• By having a separate class encapsulating the definition of a derivative on a tree,

we can re-use the products for more general structures.
• European options can be used as controls for American options.

8.7 Exercises

We have developed a very simple tree and treated a couple of simple products.
The approach here can easily be extended to many more cases. We suggest a few
possibilities for the reader to try.

140 Trees

Exercise 8.1 Find a class that does barrier options in the same TreeProduct class
hierarchy. Try it out. How stable is the price? How might you improve the stability?

Exercise 8.2 Develop a binomial tree for which the memory requirements grow
linearly with the number of steps. How do the memory requirements grow for the
class here?

Exercise 8.3 Write a trinomial tree class.

Exercise 8.4 Modify the code so that it will work under variable volatility. The key
is to ensure that the integral of the square of the vol across each time step is the
same. This means that the time steps will be of unequal length.

Exercise 8.5 Modify the tree so the implied stock price process makes the dis-
counted price a martingale. Compare convergence for calls, puts and forwards.

Exercise 8.6 Implement an American knock-in option pricer on a tree. (Use an
additional auxiliary variable to indicate whether or not the option has knocked-in,
and compute the value at each node in both cases.)

9

Solvers, templates, and implied volatilities

9.1 The problem

Whatever model one is using to compute vanilla options’ prices, it is traditional to
quote prices in terms of the Black–Scholes implied volatility. The implied volatility
is by definition the number to plug into the Black–Scholes formula to get the price
desired. Thus we have the problem that we must solve the problem of finding the
value σ such that

BS(S, K , r, d, T, σ) = quoted price.

In other words, we must invert the map

σ
→ BS(S, K , r, d, T, σ)

with the other parameters fixed.
The Black–Scholes formula is sufficiently complicated that there is no analytic

inverse and this inversion must be carried out numerically. There are many algo-
rithms for implementing such inversions; we shall study two of the simplest: bisec-
tion and Newton–Raphson. Our objective, as usual, is to illustrate the programming
techniques for defining the interfaces in a reusable fashion rather than to implement
the most efficient algorithms available. Indeed, we hope that the reader will com-
bine the techniques here with algorithms found elsewhere, in for example [28], to
produce robust and efficient reusable code.

Before proceeding to the coding and design issues, we recall the details of the
aforementioned algorithms. Given a function, f , of one variable we wish to solve
the equation

f (x) = y. (9.1)

In the above, f is the Black–Scholes formula, x is volatility and y is the price. If

141

142 Solvers, templates, and implied volatilities

the function f is continuous, and for some a and b we have

f (a) < y, (9.2)

f (b) > y, (9.3)

then there must exist some c in the interval (a, b) such that f (c) = x . Bisection is
one technique to find c. The idea is straightforward: we simply take the midpoint,
m, of the interval, then one of three things must occur:

• f (m) = y and we are done;
• f (m) < y in which case there must be a solution in (m, b);
• f (m) > y in which case there must be a solution in (a, m).

Thus by taking the midpoint, we either find the solution, or halve the size of the
interval in which the solution exists. Repeating we must narrow in on the solution.
In practice, we would terminate when we achieve

| f (m) − y| < ε, (9.4)

for some pre-decided tolerance, ε.
Bisection is robust but is not particularly fast. When we have a well-behaved

function with an analytic derivative then Newton–Raphson can be much faster. The
idea of Newton–Raphson is that we pretend the function is linear and look for the
solution where the linear function predicts it to be. Thus we take a starting point,
x0, and approximate f by

g0(x) = f (x0) + (x − x0) f ′(x0). (9.5)

We have that g0(x) is equal to zero if and only if

x = y − f (x0)

f ′(x0)
+ x0. (9.6)

We therefore take this value as our new guess x1. We now repeat until we find that
f (xn) is within ε of y.

Newton–Raphson is much faster than bisection provided we have an easily eval-
uated derivative. This is certainly the case for the Black–Scholes function. Indeed,
for a call option the vega is easier to compute than the price is. However, as it in-
volves passing two functions rather than one to a solver routine, it requires more
sophisticated programming techniques to implement re-usably.

9.2 Function objects

We want to implement the bisection algorithm in a re-usable way; this means that
we will need a way to pass the function f into the bisection routine. Since f may
well be defined, as it is in our case, in terms of the value of a more complicated

9.2 Function objects 143

function with many parameters fixed, we will also need somehow to pass in the
values of those auxiliary parameters.

There are, in fact, many different ways to tackle this problem. One method we
have already studied is the engine template. With this approach, we define a base
class for which the main method is to carry out the bisection. The main method
calls a pure virtual method to get the value of f (x). For any specific problem,
we then define an inherited class which implements f appropriately. Whilst this
method can work effectively, there are a couple of disadvantages. The first is that
the function call is virtual which can lead to efficiency problems. There are two
causes: the first is that to call a virtual function, the processor has to look up a
virtual function table each time the function is called, and then jump to a location
specified by the table. Clearly, it would be slightly faster not to have to look up
the table. A more subtle and serious speed issue is that it is not possible to inline
virtual functions. If the function is known beforehand, the compiler can inline it and
eliminate the mechanics of the function call altogether. In addition, the compiler
may be able to make additional optimizations as it sees all the code together at
once. Whilst these speed issues are not particularly important whilst designing a
solver, they are more critical when writing a class for other numerical routines such
as numeric integration where often a large of calls are made to a function which is
fast to evaluate. We therefore wish to develop a pattern which can be used in those
contexts too.

The second disadvantage of inheriting from a solver base class is that it inhibits
other inheritance. If we wish to inherit the class defining our function from some
other class, we cannot inherit from the solver class as well without using multiple
inheritance. Of course, one could use multiple inheritance but it tends to be tricky
to get it to work in a bug-free fashion and I therefore tend to avoid it.

Having decided that we want to be able to input a function to our routine with-
out using virtual functions, what other options do we have? One solution would
be to use a function pointer but this would buy us little (if anything) over virtual
functions. Another approach is templatization. The crucial point is that with tem-
platization the type of the function being used in the optimization is decided at
compile time rather than at runtime. This means that the compiler can carry out
optimizations and inlining that depend on the type of the function since that infor-
mation is now available to it.

The approach we adopt for specifying the function we wish to optimize uses
the function object. We first encountered function objects in Section 2.1 when
defining pay-offs. Recall that a function object is by definition an object for which
operator() is defined. So if we have an object f of a class T for which

const operator()(double x) const

144 Solvers, templates, and implied volatilities

has been defined it is then legitimate to write f(y) for a double y, and this is
equivalent to

f.operator()(y).

Thus our object f can be used with function-like syntax. However, as f is an object
it can contain extra information. Thus if we want to solve for the implied volatility,
the function object will take the volatility as an argument, but will also have, as
extra parameters already stored, the values of r, d, T, S and K .

We thus obtain the class defined in BSCallClass.h:

Listing 9.1

//
// BSCallClass.h
//

#ifndef BS_CALL_CLASS_H
#define BS_CALL_CLASS_H
class BSCall
{

public:

BSCall(double r_, double d_,
double T, double Spot_,
double Strike_);

double operator()(double Vol) const;

private:

double r;
double d;
double T;
double Spot;
double Strike;

};
#endif

The source file is simple:

9.3 Bisecting with a template 145

Listing 9.2

//
// BSCallClass.cpp
//

#include <BSCallClass.h>
#include <BlackScholesFormulas.h>

BSCall::BSCall(double r_, double d_,
double T_, double Spot_,
double Strike_)
:
r(r_),d(d_),
T(T_),Spot(Spot_),
Strike(Strike_)

{}

double BSCall::operator()(double Vol) const
{

return BlackScholesCall(Spot,Strike,r,d,Vol,T);
}

The constructor simply initializes the class data members, which are the parame-
ters needed to price a call option under Black–Scholes except the volatility. The
operator() takes in the volatility and then invokes the Black–Scholes formula.

This is the simplest possible implementation of the class. If we were truly wor-
ried about efficiency considerations, we could code the formula directly and pre-
compute as much of it as possible in the constructor. We could have for example a
class data member, Moneyness, set to the log of Spot divided by Strike, and then
we would not have to compute it every time.

9.3 Bisecting with a template

In the previous section, we showed how we could define a class for which the syn-
tax f(x) makes sense when f was an object of the class, and x was a double. We
still need to get the object f into our solver routine, however. We do so via templa-
tization. The basic idea of templatization is that you can write code that works for
many classes simultaneously provided they are required to have certain operations
defined with the same syntax. In this case, our requirement is that the class should
have

double operator()(double) const

146 Solvers, templates, and implied volatilities

defined, and thus that the syntax f(y) is well-defined for class objects as we dis-
cussed above.

We present the Bisection function in Bisection.h:

Listing 9.3 (Bisection.h)

template<class T>
double Bisection(double Target,

double Low,
double High,
double Tolerance,
T TheFunction)

{
double x=0.5*(Low+High);
double y=TheFunction(x);

do
{

if (y < Target)
Low = x;

if (y > Target)
High = x;

x = 0.5*(Low+High);

y = TheFunction(x);
}
while

((fabs(y-Target) > Tolerance));

return x;
}

We only present a header file, since for template code we cannot precompile in a
source file – we do not know the type of the object T. The function is quite simple.
We specify that it is templatized via the template<class T> at the top. If we
invoke the function with the template argument BSCall via Bisection<BSCall>
then every T will be converted into a BSCall before the function is compiled.
Once we have fixed the type of the template argument, there is really very little to
the function. We take the midpoint of the interval evaluate the function there, and

9.3 Bisecting with a template 147

switch to the left or right side of the interval by redefining Low and High until the
value at the midpoint is close enough to the target, and we then return.

Note that we have defined the type of the function object passed in as T The-
Function: we could equally well have put const T& TheFunction. The syntax
we have adopted involves copying the function object, and is therefore arguably
less good than the alternative. The reason I have done it this way is to highlight
the fact that the standard template library always uses the former syntax. A conse-
quence of this is that one needs to be careful when using function objects with the
STL not to define function objects which are expensive to copy (or, even worse,
impossible to copy.)

We now give a simple example of an implied volatility function:

Listing 9.4 (SolveMain1.cpp)

/*
Needs

BlackScholesFormulas.cpp
BSCallClass.cpp
Normals.cpp

*/
#include <Bisection.h>
#include <cmath>
#include <iostream>
#include <BSCallClass.h>
#include <BlackScholesFormulas.h>

using namespace std;

int main()
{

double Expiry;
double Strike;
double Spot;
double r;
double d;
double Price;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nStrike\n";

148 Solvers, templates, and implied volatilities

cin >> Strike;
cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter price\n";
cin >> Price;

cout << "\nr\n";
cin >> r;

cout << "\nd\n";
cin >> d;

double low,high;

cout << "\nlower guess\n";
cin >> low;

cout << "\nhigh guess\n";
cin >> high;

double tolerance;

cout << "\nTolerance\n";
cin >> tolerance;

BSCall theCall(r,d,Expiry,Spot,Strike);

double vol =
Bisection(Price,low,high,tolerance,theCall);

double PriceTwo =
BlackScholesCall(Spot,Strike,r,d,vol,Expiry);

cout << "\n vol " << vol << " pricetwo "
<< PriceTwo << "\n";

double tmp;
cin >> tmp;

return 0;
}

9.4 Newton–Raphson and function template arguments 149

As usual, we input all the necessary parameters. We then put them together to
create a BSCall object. We then call the Bisection function to find the volatility.
Note that we have not put Bisection<BSCall>. The compiler deduces the type of
the template argument from the fact that our final argument in the function call is
theCall. We only have to specify the template argument when the compiler does
not have a sufficient amount of other information to deduce it.

Our function finishes by getting the price via the Black–Scholes functions for
the implied volatility that was found. If everything is working correctly then this
will give the original price inputted.

9.4 Newton–Raphson and function template arguments

We now want to adapt the pattern we have presented to work for Newton–Raphson
as well as for bisection. The fundamental difference from a design viewpoint is that
Newton–Raphson involves two functions, the value and the derivative, whereas bi-
section involves just one. One solution would be simply to pass in two function
objects: one for the value and another for the derivative. This is unappealing, how-
ever, in that we would then need to initialize a set of parameters for each object and
we would have to be careful to make sure they are the same. More fundamentally,
the value and the derivative are really two aspects of the same thing rather than two
separate functions and so having two objects does not express well our conceptual
model of them.

A second solution is to assume a name for the derivative function. After all, that
is essentially what we did for the value function; it was a special name with special
syntax but ultimately it was just assuming a name. Thus we could assume that the
class had a method

double Derivative(double) const

defined and at appropriate points in our function we would then put

TheFunction.Derivative(x).

This would certainly work. However, it is a little ugly and if our class already had
a derivative defined under a different name, it would be annoying.

Fortunately, there is a way of specifying which class member function to call
at compile time using templatization. The key to this is a pointer to a member
function. A pointer to a member function is similar in syntax and idea to a function
pointer, but it is restricted to methods of a single class. The difference in syntax is
that the class name with a :: must be attached to the * when it is declared. Thus
to declare a function pointer called Derivative which must point to a method of

150 Solvers, templates, and implied volatilities

the class T, we have

double (T::*Derivative)(double) const

The function Derivative is a const member function which takes in a double
as argument and outputs a double as return value. If we have an object of class T
called TheObject and y is a double, then the function pointed to can be invoked
by

TheObject.*Derivative(y)

Whilst the syntax is a little cumbersome, the key is to realise that it is the same for
ordinary function pointers except that T:: must be added to the * for declarations
and TheObject. must be added for invocations.

We can now use a function pointer to specify both the derivative and the value.
As we would like to avoid the time spent on evaluating the pointers, we can make
them template parameters rather than arguments to our function. This means that
the compiler can treat them just like any other function call, and as their types are
decided at compile time they can be inlined.

Our Newton–Raphson routine is therefore as follows:

Listing 9.5 (NewtonRaphson.h)

template<class T, double (T::*Value)(double) const,
double (T::*Derivative)(double) const >
double NewtonRaphson(double Target,

double Start,
double Tolerance,
const T& TheObject)

{
double y = (TheObject.*Value)(Start);

double x=Start;

while (fabs(y - Target) > Tolerance)
{

double d = (TheObject.*Derivative)(x);

x+= (Target-y)/d;

y = (TheObject.*Value)(x);
}
return x;

}

9.5 Using Newton–Raphson to do implied volatilities 151

We have three template parameters: the class, the pointer to the value function for
that class, and the pointer to the derivative function for that class. The routine is
short and simple, now that we have the right structure. As usual, we keep repeating
until close enough to the root. We have not included the checks required to ensure
that the loop does not repeat endlessly if the sequence fails to converge to a root,
but such additions are easily put in.

9.5 Using Newton–Raphson to do implied volatilities

Now that we have developed a Newton–Raphson routine, we want to use it to
compute implied volatilities. Our class will therefore have to support pricing as a
function of volatility and the vega as a function of volatility. As before, the other
parameters will be class data members which are not inputted in the constructor
rather than via these methods. We present a suitable class in BSCallTwo.h and
BSCallTwo.cpp.

Listing 9.6 (BSCallTwo.h)

#ifndef BS_CALL_TWO_H
#define BS_CALL_TWO_H

class BSCallTwo
{

public:
BSCallTwo(double r_, double d_,

double T, double Spot_,
double Strike_);

double Price(double Vol) const;
double Vega(double Vol) const;

private:
double r;
double d;
double T;
double Spot;
double Strike;

};
#endif

152 Solvers, templates, and implied volatilities

The methods just call the relevant functions. As before, we could optimize by pre-
computing as much as possible, and inlining the methods.

Listing 9.7 (BSCallTwo.cpp)

#include <BSCallTwo.h>
#include <BlackScholesFormulas.h>

BSCallTwo::BSCallTwo(double r_, double d_,
double T_, double Spot_,
double Strike_)
:
r(r_),d(d_),
T(T_),Spot(Spot_),
Strike(Strike_)

{}

double BSCallTwo::Price(double Vol) const
{

return BlackScholesCall(Spot,Strike,r,d,Vol,T);
}

double BSCallTwo::Vega(double Vol) const
{

return BlackScholesCallVega(Spot,Strike,r,d,Vol,T);
}

We present an example of using the combination of NewtonRaphson and
BSCallTwo in SolveMain2.cpp.

Listing 9.8 (SolveMain2.cpp)

/*
Needs

BlackScholesFormulas.cpp
BSCallTwo.cpp
Normals.cpp

*/
#include <NewtonRaphson.h>
#include <cmath>
#include <iostream>
#include <BSCallTwo.h>
#include <BlackScholesFormulas.h>

9.5 Using Newton–Raphson to do implied volatilities 153

using namespace std;

int main()
{

double Expiry;
double Strike;
double Spot;
double r;
double d;
double Price;

cout << "\nEnter expiry\n";
cin >> Expiry;

cout << "\nStrike\n";
cin >> Strike;

cout << "\nEnter spot\n";
cin >> Spot;

cout << "\nEnter price\n";
cin >> Price;

cout << "\nr\n";
cin >> r;

cout << "\nd\n";
cin >> d;

double start;

cout << "\nstart guess\n";
cin >> start;

double tolerance;

cout << "\nTolerance\n";
cin >> tolerance;

BSCallTwo theCall(r,d,Expiry,Spot,Strike);

154 Solvers, templates, and implied volatilities

double vol=NewtonRaphson<BSCallTwo, &BSCallTwo::Price,
&BSCallTwo::Vega>(Price, start,

tolerance, theCall);

double PriceTwo =
BlackScholesCall(Spot,Strike,r,d,vol,Expiry);

cout << "\n vol " << vol << " \nprice two:" << PriceTwo
<< "\n";

double tmp;
cin >> tmp;

return 0;
}

Our new main program is very similar to the one we had before. The main change
is that this time we specify the template parameters for our NewtonRaphson func-
tion, whereas for the Bisection function we did not bother. The reason for the
change is that there is not sufficient information for the compiler to deduce the
types of the parameters. There is nothing to indicate which member functions of
the class are to be used. Even for our class which only has two member functions,
these two functions could equally well be the other way round as far the compiler
knows.

9.6 The pros and cons of templatization

In this chapter, we have used template arguments to achieve re-usability whereas
in other chapters, we have used virtual functions and polymorphism. There are
advantages and disadvantages to each approach. The principal difference is that
for templates argument types are decided at the time of compilation, whereas for
virtual functions the type is not determined until runtime.

What consequences does this difference have? The first is speed. No time is
spent on deciding which code to run when the code is actually running. In addition,
the fact that the compiler knows which code will be run allows it to make extra
optimizations which would be hard if not impossible when the decision is made at
run time.

A second consequence is size. As the code is compiled for each template argu-
ment used separately, we have multiple copies of very similar code. For a simple

9.6 The pros and cons of templatization 155

routine such as a solver this is not really an issue but for a complicated routine, this
could result in a very large executable. Another aspect of this is slower compiler
times since much more code would have to be compiled. If we had several tem-
plate parameters the size could multiply out of control. For example, suppose when
designing our Monte Carlo path-dependent exotic pricer, we had templatized both
the random number generator and the product. If we had six random number gen-
erators and ten products, and we wished to allow any combination then we would
have sixty times as much code.

A third consequence is that it becomes harder for the user of the code to make
choices. In the example of the exotics pricer, if the user was allowed to choose the
number generator and the product via outside input, we would have to write code
that branched into each of the sixty cases and within each branch called the engine
and gathered results.

As well as the run time versus compile time decision, there are other issues with
using templatized code. A simple one is that it is harder to debug. Some debuggers
get confused by template code and, for example, refuse to set breakpoints within
templates (or else set and ignore them.) Related to this is the fact that compilers
will often not actually compile lines of template code that are not used. Thus if a
templatized class has a method that is not called anywhere, the code will compile
even if it has syntax errors. Only when a line is added that calls the particular
method will the compiler errors appear. This can be infuriating as the error may
show up a long time afterwards.

One way of avoiding these problems is first to write non-template code for a
particular choice of the template parameter. This code can be thoroughly tested and
debugged, and then afterwards the code can be rewritten by changing the particular
parameter into a template parameter.

So when should one use templates and when use virtual functions? My prefer-
ence is not to use templates unless certain conditions are met. These are that the
routine should be short, and potentially re-usable in totally unrelated contexts. So
for example, I would use templates for a numerical integration routine and a solver.
I would also use templates for a container class; in fact I would generally use the
templates given in the standard template library. I would not, however, use tem-
plates for an option pricing engine since the code would probably be long and is
only relevant to a quite specific context.

The general trend in C++ is towards templates. The principal reason is that
they are the way to achieve the same speed as lower-level languages. In general,
languages exhibit a trade-off between abstraction and efficiency; C++ has always
striven to achieve both. Templates are ultimately a way of achieving abstraction
without sacrificing efficiency.

156 Solvers, templates, and implied volatilities

9.7 Key points

In this chapter we have looked at how to implement solvers using template code.

• Templates are an alternative to inheritance for coding without knowing an ob-
ject’s precise type.

• Template code can be faster as function calls are determined at compile time.
• Extensive use of template code can lead to very large executables.
• Pointers to member functions can be a useful way of obtaining generic behaviour.
• Implied volatility can only be computed numerically.

9.8 Exercises

Exercise 9.1 Modify the Newton–Raphson routine so that it does not endlessly
loop if a root is not found.

Exercise 9.2 Take your favourite numerical integration routine, e.g. the trapezium
rule, and write a template routine to carry it out.

Exercise 9.3 Write a routine to price a vanilla option by Monte Carlo or trees where
the pay-off is passed in as a template parameter expressed via a function object.

10

The factory

10.1 The problem

Suppose we wish to design an interface which is a little more sophisticated than
those we have used so far. The user will input the name of a pay-off and a strike,
and the program will then price a vanilla option with that pay-off. We therefore
need a conversion routine from strings and strikes to pay-offs. How might we write
this?

One simple solution is to write a function that takes in the string and the strike,
checks against all known types of pay-offs and when it comes across the right one,
creates a pay-off of the right type. We would probably implement this via a switch
statement. Our conversion routine would then have to include the header files for
all possible forms of pay-off, and every time we added a new pay-off we would
have to modify the switch statement. Clearly, this solution violates the open-closed
principle as any addition involves modification.

In this chapter, we present a solution that allows us to add new pay-offs without
changing any of the existing files. We simply add new files to the project. Our
solution is a design pattern known as the factory pattern. It is so called because it
can be used to manufacture objects. Whilst we restrict attention to a simple factory
which manufactures pay-offs, the basic pattern can be used in much wider contexts.

10.2 The basic idea

Our solution requires each type of pay-off to tell the factory that it exists, and to
give the factory a blueprint for its manufacture. In this context a blueprint means
an identity string to distinguish that class and a pointer to a function that will create
objects of that class.

How can we get the class to communicate with the factory, without explicitly
calling anything from the main routine? The key lies in global variables. Every
global variable is initialized when the program commences before anything else

157

158 The factory

happens. If we define a class in such a way that initializing a global variable of
that class registers a pay-off class with the factory, then we have achieved what we
wanted. This is possible because the initialization involves a call to a constructor,
and we can make the constructor do whatever we want.

So for each pay-off class, we write an auxiliary class whose constructor registers
the pay-off class with our factory, and we declare a global variable of the auxiliary
class. In fact, as these auxiliary classes will all be very similar to each other, we
adopt a template solution for defining these classes.

We also need a factory object for these auxiliary classes to talk to. We cannot
make this factory object a global variable, as we have no control over the order in
which the global variables are initialized. We need it to exist before the other glob-
als are defined as they refer to it. Fortunately, there is a type of variable guaranteed
to come into existence at the moment it is first referred to: the static variable.

Thus if the registration function contains a static variable which is the factory,
then on the first call to the registration function the factory comes into existence.
Recall that a static variable defined in a function persists from one call to the
next, and only disappears when the program exits. So all the registration function
calls will register the pay-off blueprints with the same factory.

However, we are not yet done because the creator function will need to have
access to the same factory object as the registration function, and if the factory is
hidden inside the registration function this will not be possible. The solution to this
problem is known as the singleton pattern.

10.3 The singleton pattern

We saw in the last section that we need to define a factory via a static variable
since it must come into existence as soon as it is referred to when registering the
blueprints. We also saw that the same factory must be referred to by every regis-
tration, and that the same factory will be needed when creating the pay-offs from
strings.

So what we need is a factory class for which an object exists as soon as it is
required, and for this object to exist until the end of the program. We also do not
want any other factory objects to exist as they will just confuse matters; everything
must be registered with and built by the same factory.

The singleton pattern gives a way of creating a class with these properties. The
first thing is that all constructors and assignment operators are made private. This
means that factories can only be created from inside methods of the class this
gives us firm control over the existence of factory objects. In order to get the one
class object that we need, we define a very simple method that defines a class ob-
ject as a static variable. Thus if our class is called PayOffFactory, we define a
class method Instance as follows:

10.4 Coding the factory 159

PayOffFactory& PayOffFactory::Instance()
{

static PayOffFactory theFactory;
return theFactory;

}

The first time that Instance is called, it creates the static data member the-
Factory. As it is a member function, it can do this by using the private default
constructor. Every subsequent time the Instance is called, the address of the
already-existing static variable theFactory is returned. Thus Instance cre-
ates precisely one PayOffFactory object which can be accessed from anywhere
by calling PayOffFactory::Instance().

Note that Instance will have to be a static method of PayOffFactory, as
the whole point is that it provides you with a PayOffFactory object, and it would
be useless if you had to access it from an existing object. Note also that the mean-
ing of static here for a function is quite different from the meaning above for
a variable; for a function it means that the function can be called directly with-
out any attachment to an object. One still has to prefix with the name of class,
however.

We have now achieved what we needed: we have a way of creating a single
factory which can be referenced from anywhere at any time in the program. Note
that the name singleton pattern was chosen because precisely one object from the
class exists.

10.4 Coding the factory

In the last section, we saw how the singleton pattern could be used to create a single
factory accessible in any place at any time. We now use this pattern to implement
the factory. As well as the instance method discussed above, we will need a method
for registering pay-off classes and a method for creating then.

How will registration work? Upon registration, we need to know the string iden-
tifier for the specific pay-off class and the pointer to the function which actually
creates the object in question. These will therefore be the arguments for the regis-
tration method. The factory will need to store this information for when the create
pay-off method is called. This will require a container class.

Fortunately, there is a container in the standard template library which is de-
signed for associating identifiers to objects. This container is called the map class.
We therefore need a data member which is a map with template arguments std::
string and pointers to create functions.

Finally, we need a method which turns a string plus a strike into a PayOff object.
Our header file is therefore as follows:

160 The factory

Listing 10.1 (PayOffFactory.h)

#ifndef PAYOFF_FACTORY_H
#define PAYOFF_FACTORY_H
#include <PayOff3.h>

#if defined(_MSC_VER)
#pragma warning(disable : 4786)
#endif

#include <map>
#include <string>

class PayOffFactory
{
public:

typedef PayOff* (*CreatePayOffFunction)(double);

static PayOffFactory& Instance();
void RegisterPayOff(std::string, CreatePayOffFunction);
PayOff* CreatePayOff(std::string PayOffId,double Strike);
~PayOffFactory(){};

private:
std::map<std::string, CreatePayOffFunction>

TheCreatorFunctions;
PayOffFactory(){}
PayOffFactory(const PayOffFactory&){}
PayOffFactory& operator=

(const PayOffFactory&){ return *this;}
};
#endif

Note the typedef: this allows us to refer to pointers to functions which take
in a double and spit out a PayOff* as CreatePayOffFunction. Without this
typedef, the syntax would quickly become unmanageable. Note also that we make
the CreatePayOff method return a pointer to a PayOff. The reason for this is that
it allows the possibility of returning a null pointer if the identity string was not
found; otherwise we would have to throw an error or return a default sort of pay-
off.

We present the source code in PayOffFactory.cpp:

10.4 Coding the factory 161

Listing 10.2 (PayOffFactory.cpp)

#if defined(_MSC_VER)
#pragma warning(disable : 4786)
#endif

#include <PayOffFactory.h>
#include <iostream>
using namespace std;

void PayOffFactory::RegisterPayOff(string PayOffId,
CreatePayOffFunction CreatorFunction)

{
TheCreatorFunctions.insert(pair<string,CreatePayOffFunction>

(PayOffId,CreatorFunction));
}

PayOff* PayOffFactory::CreatePayOff(string PayOffId,
double Strike)

{
map<string, CreatePayOffFunction>::const_iterator

i = TheCreatorFunctions.find(PayOffId);

if (i == TheCreatorFunctions.end())
{

std::cout << PayOffId
<< " is an unknown payoff" << std::endl;
return NULL;

}

return (i->second)(Strike);
}

PayOffFactory& PayOffFactory::Instance()
{
static PayOffFactory theFactory;
return theFactory;

}

Other than for the Instance() method, which we have already discussed, the
methods are really just wrappers for the inner map object.

In case the reader is not familiar with the STL map container, we discuss a little
how it works. A map is a collection of pairs. We used the pair class to store

162 The factory

the nodes of a tree in Chapter 8. Recall that a pair is a simple class consisting
of two public data members known as first and second. The types of these
data members are template parameters. When working with a map, first is the
key or identifier used to look up the object we wish to find which is stored in
second.

For us this means that the type of the map is

map<std::string, CreatePayOffFunction>

and every pair that we use will be of the same type. The insert method is
used to place pairs of strings and CreatePayOffFunctions into the map. A
map has the property that each key is unique so if you insert two pairs with the
same key then the second one is ignored. For us, this means that if we give two
PayOff classes the same string identifier only one will be registered. It is possi-
ble to examine the return type of the insert to determine whether the insertion
was successful. The method RegisterPayOff carries out this insertion for our
factory.

The retrieval is carried out in CreatePayOff: a string is passed in and the
find method of map is used. This method returns a const iterator pointing to
the pair which has the correct key (i.e. first element) if such a pair exists, and
otherwise the iterator points to the end of the map. For the reader who is not familiar
with iterators, an iterator is an abstraction of a pointer and works in similar fashion.
Just like pointers, they can be dereferenced via * or ->. A const iterator is
similar to a non-const pointer to const objects. That is, the iterator’s value can
be changed, but the value of the thing it points to cannot.

Our method therefore uses find to get an iterator. This iterator is then checked to
see if the look-up succeeded. If it failed we print an error message and return a null
pointer. If is succeeded, we take the second element of the pair pointed to, which
is a function pointer, dereference it and call it with argument Strike. Since this
function’s job is to create a PayOff object of the relevant type and return a pointer
to it, we have achieved our objective; objects of any class previously registered can
be created by entering the appropriate string and strike.

Whilst we certainly could have programmed our factory without using the STL
map class, its existence certainly made the task much easier. We refer the reader to
Stroustrup, [31], Section 17.4, Josuttis, [12], and Meyers, [20], for further informa-
tion on the map class.

10.5 Automatic registration

We discussed above how we could manage registration of PayOff classes by using
global variables. Here we look at how to carry out this out. As we mentioned above,

10.5 Automatic registration 163

the code is the same except for class names for each registration so it makes sense to
use a template class. We present this template code in PayOffConstructible.h:

Listing 10.3 (PayOffConstructible.h)

#ifndef PAYOFF_CONSTRUCTIBLE_H
#define PAYOFF_CONSTRUCTIBLE_H

#if defined(_MSC_VER)
#pragma warning(disable : 4786)
#endif

#include <iostream>
#include <PayOff3.h>
#include <PayOffFactory.h>
#include <string>

template <class T>
class PayOffHelper
{
public:

PayOffHelper(std::string);
static PayOff* Create(double);

};

template <class T>
PayOff* PayOffHelper<T>::Create(double Strike)
{

return new T(Strike);
}

template <class T>
PayOffHelper<T>::PayOffHelper(std::string id)
{

PayOffFactory& thePayOffFactory = PayOffFactory::Instance();
thePayOffFactory.RegisterPayOff(id,PayOffHelper<T>::Create);

}
#endif

The helper class we define here has to do two things. It must define a constructor
that carries out the registration of the class defined by the template parameters, and

164 The factory

it must define a function which will carry out the creation so we have something to
use in the registration process!

The constructor takes in a string as an argument; this string will be needed to
identify the class being registered. The constructor simply first calls Instance to
get the address of the factory object, and then calls the RegisterPayOff method
of the factory to carry out the registration. Note that the constructor does not actu-
ally do anything as regards the actual object being created! In fact, the class has no
data members so it would not be possible to do anything.

The method Create defines the function used to create the pay-off object on
demand. Note that it is static as it should not be associated to any particular
class object. The function simply calls the constructor for objects of type T with
argument Strike. Of course, there is something slightly subtle here in that the
specification of the template parameter, T, is making the choice of which object
to construct. Note that we use new as we want the created object to persist after
the function is finished. One consequence of this is that the object will have to be
properly deleted at some point.
PayOffRegistration.cpp includes an example of using the PayOff

Helper class.

Listing 10.4 (PayOffRegistration.cpp)

#include <PayOffConstructible.h>

namespace
{
PayOffHelper<PayOffCall> RegisterCall("call");

PayOffHelper<PayOffPut> RegisterPut("put");
}

Note that if we were defining a new class, we would probably put this registra-
tion in the source file for the class but as we have already defined the call and
put classes, we do not do so here. The registration file is quite short. We de-
fine two global variables, RegisterCall and RegisterPut. These are of type
PayOffHelper<Call> and PayOffHelper<Put>. As global variables, they are
initialized at the start of the program. This initialization carries out the registration
as required. Note that we have put a namespace command around the declaration.
This means that the variables are in an unnamed namespace and as such are invisi-
ble to the rest of the program. So the variables are both global and invisible. Why
do we want them invisible? Their purpose is purely to perform the registration, and
once that has been done we have no further use for them so it is best to put them
out of sight and out of temptation’s reach.

10.6 Using the factory 165

10.6 Using the factory

Now we have done all the set-up work, how do we use the factory? We give a very
simple example in PayFactoryMain.cpp.

Listing 10.5 (PayFactoryMain.cpp)

/*
Uses

PayOff3.cpp
PayOffBridge.cpp
PayOffFactory.cpp
PayOffRegistration.cpp

*/

#include <PayOff3.h>
#include <PayOffConstructible.h>
#include <PayOffBridge.h>
#include <PayOffFactory.h>
#include <string>
#include <iostream>
using namespace std;

int main()
{

double Strike;
std::string name;

cout << "Enter strike\n";
cin >> Strike;

cout << "\npay-off name\n";
cin >> name;

PayOff* PayOffPtr =
PayOffFactory::Instance().CreatePayOff(name,Strike);

if (PayOffPtr != NULL)
{

double Spot;

cout << "\nspot\n";
cin >> Spot;

166 The factory

cout << "\n" << PayOffPtr->operator ()(Spot) << "\n";
delete PayOffPtr;

}

double tmp;
cin >> tmp;
return 0;

}

This routine is very simple but illustrates the important points. The user inputs spot,
strike and the name of the option. If an option with that name has been registered
then the pay-off is computed, and the object is then deleted.

The important point here is that the name definitions are carried out in the file
PayOffRegistration.cpp, and this file is not seen directly by any of the other
files including the main routine. If we wanted to add another PayOff, say the
forward, we could so without modifying any of the existing files. In fact, all we
would have to do is add the header and source file for the forward, and in a new file
PayOffForwardRegistration.cpp add the declaration

PayOffHelper<PayOffForward> RegisterForward("forward");

As we originally required, this would not require recompilation of any of the orig-
inal files. We have therefore achieved our original objective of an open-closed pat-
tern.

10.7 Key points

In this chapter we have developed the factory pattern and the singleton pattern
in order to give a method of adding new pay-off classes to an interface without
modifying existing files.

• The singleton pattern allows us to create a unique global object from a class and
provide a way of accessing it.

• The factory pattern allows us to add extra inherited classes to be accessed from
an interface without changing any existing files.

• The factory pattern can be implemented using the singleton pattern.
• The standard template library map class is a convenient way to associate objects

with string identifiers.
• Placing objects in an unnamed namespace is a way of ensuring that they are not

accessed elsewhere.
• We can achieve automatic registration of classes by making their registration a

side-effect of the creation of global variables from a helper class.

10.8 Exercises 167

We will return to the factory pattern in Chapter 14; there we will see how to imple-
ment it in a generic way so that one implementation will do forever.

10.8 Exercises

Exercise 10.1 Write a straddle class and register it with the factory.

Exercise 10.2 Our class cannot handle a double digital as it needs two strikes. Work
out a solution that will handle options with multiple parameters.

Exercise 10.3 Integrate the factory with a Monte Carlo routine.

11

Design patterns revisited

11.1 Introduction

In this chapter, we revisit and catalogue the design patterns from earlier chapters.
We also mention a few other patterns we have not studied which the reader may find
helpful. Finally, we discuss further reading on the topic of design
patterns.

The design patterns we have studied are a small subset of those in the classic
book on the topic: Design Patterns, [7], which is often referred to as the ‘Gang
of Four’ book. As well as listing the patterns, the authors attempt to classify the
patterns according to the contexts in which they are used. In this final chapter,
we revisit the patterns the we have studied in the context of that classification.
We also mention some patterns discussed there which we have not examined
here.

11.2 Creational patterns

A creational pattern is a pattern that deals primarily with the creation of new ob-
jects. Their purpose is to abstract the creation process which helps the system to be
developed independently of the types of individual objects. In fact, sometimes all
we can be sure of about these objects, is what class they are inherited from, or in
other terms what interface they implement.

11.2.1 Virtual copy constructor

We have extensively used the concept of cloning. We need a copy of an object, we
do not know its type so we cannot use the copy constructor so we ask the object to
provide a copy of itself. Note the general philosophy here is that the object knows
more about itself than we do so we ask it to help us out. Note we could easily

168

11.3 Structural patterns 169

modify this pattern to ask the object to make a default object from its class, as once
again it knows its class type and we do not. In [7] virtual constructors are known
as the ‘Factory Method’.

11.2.2 The factory

This is called the ‘abstract factory’ in [7]. The purpose of this pattern is to allow
us to have an object that spits out objects as and when we need them. This means
in particular that responsibility for creating objects of the relevant type lies with a
single object. We thus gain greater control over their creation, which yields greater
flexibility in changing the objects used. We principally used this pattern to give an
easily extended interface. In particular, we saw that the pattern allows the addition
of new classes to an interface without the rewriting of any code.

11.2.3 Singleton

We used the singleton pattern to implement our factory. The big advantage of the
singleton pattern is that there is a single copy of the object which is accessible
from everywhere, without introducing global variables and all the difficulties they
imply. Note that if for some reason we wanted more than one copy of the object to
exist then we could easily modify the pattern to given us a doubleton or a tripleton
and so on. For example, we could define more than one method that performed
similarly to our Instance method.

11.2.4 Monostate

We have not examined the monostate pattern nor is it covered in Design Patterns,
however, it is a useful alternative to the singleton pattern. Rather than only allowing
one object from the class to exist, we allow an unlimited number but make them
all have the same member variables. Thus all the objects from the class act as one.
The way we do this is by making all the data members static. This approach
allows us to treat each object from the class like any other, although they are all
really the same object. Our factory could easily have been implemented using this
pattern.

11.3 Structural patterns

A structural pattern is one that deals mainly with how classes are composed to
define more intricate structures. They allow us to design code that has extra func-
tionality without having to rewrite existing code.

170 Design patterns revisited

11.3.1 Adapter

The adapter is a class that translates an interface into a form that other classes
expect. It is most useful when we wish to fit code into a structure for which it was
not originally designed, either because we have changed our way of doing things
or because the code originates elsewhere. For example, if we download a library
from the web, its interface is unlikely to conform to what we have been using. By
adapting the interface, we can seamlessly integrate it into existing code. We gave
an example of the adapter when implementing random number generators.

11.3.2 Bridge

The bridge is similar to the adapter in that it defines an interface, and acts as an in-
termediary between a client class and the classes implementing the interface. Thus
the implementing class can easily be changed without the client class being aware
of the change. The main difference between the bridge and the adapter is that the
bridge is intended to define an intermediary interface from the start, whereas the
adapter is introduced a later stage in order to solve incompatibilities. We used
the bridge to create the PayOff and Parameters objects.

11.3.3 Decorator

The decorator patterns allows us to change the behaviour of a class at run-time
without changing its interface. We add a wrapper class that processes incoming
or outgoing messages and then passes them on. We saw that a decorator could be
used to implement anti-thetic sampling when studying random number generation.
We also saw that it could be used to create convergence tables of statistics when
designing statistics gatherers. An attractive aspect of decoration is that we can dec-
orate as many times as we like since the interface after decoration is the same as
the interface before.

11.4 Behavioural patterns

Behavioural patterns are used for the implementation of algorithms. They allow
us to vary aspects of algorithms interchangeably. They can also allow us to re-use
algorithms in wildly unrelated contexts.

11.4.1 Strategy

In the strategy pattern, we defer an important part of algorithm to an inputted
object. This allows us to easily change how this particular part of the algorithm

11.5 Why design patterns? 171

behaves. We have used this pattern implicitly and explicitly all through the book.
By making the PayOff or VanillaOption an input to our pricer, we are using
this pattern. Less trivially, we made the random number generator an input to our
Monte Carlo, and the generator is a key part of the algorithm.

11.4.2 Template

In the template pattern, rather than inputting an aspect of the algorithm, we defer
part of the algorithm’s implementation to an inherited class. The base class thus
provides the structure of how the different parts of the algorithm fit together, but
does not specify all the details of the implementation. We adopted this approach
when designing our exotics Monte Carlo pricer; there we defined the process for the
stock price evolution in an inherited class. This allowed the possibility of pricing
exotics using a different model in the future.

11.4.3 Iterator

We have only briefly mentioned iterators; however, they are an important compo-
nent of the standard template library. An iterator is essentially an abstraction of a
pointer. As such it should be possible to dereference it, i.e. look at what it points to,
increment and decrement it. The idea of iterators is that one can be defined for any
sort of data structure, and so if an algorithm is defined in terms of iterators it can
be applied to any sort of data structure. In the STL, algorithms take the type of the
iterator as a template argument, which allows this generality to be implemented.

11.5 Why design patterns?

Why think in terms of design patterns? What has this classification bought us? The
first simple thing is that it becomes much easier to explain our code to someone
else; remember that re-use is ultimately defined socially not analytically. When
describing our code to someone else, if we can describe a class by saying this is
such and such standard pattern then they immediately have a mental model of how
it works from their previous familiarity with that pattern.

A second advantage is that by having familarity with a collection of standard
design patterns, we gain an immediate toolbox for solving any problem put in front
of us. Thus when confronted with a programming problem, we can approach it by
thinking “what design pattern is appropriate here?” rather than by attempting to
solve it from scratch. Even if none of the known patterns are appropriate, exami-
nation of the problem through the lens of design patterns will help us to solve it.
In particular, the knowledge of why the patterns are inappropriate will aid us in
developing a solution.

172 Design patterns revisited

Of course, most programmers have patterns they implicitly use regularly. Indeed,
many experienced programmers reading this book may feel they are only learning
a formalization of what they did in any case. The advantage for them in using
patterns is that it will help them to think more clearly about what they do and
why.

11.6 Further reading

There are now many books on the topic of design patterns. We mention a few
that the author has found useful. One good and straightforward book which was
deliberately written as an easier companion to Design Patterns is Design Pat-
terns Explained by Shalloway & Trott. The authors carefully go through many
patterns explaining in simple language the concepts introduced in the original
book.

C++ Programming: with Design Patterns Revealed by Muldner is another in-
troductory book which is accessible, and takes the point of view that C++ should
be learnt from the start in terms of design patterns.

Modern C++ Design by Alexandrescu is a more advanced book. It covers many
more intricate ideas using templates than we have had the opportunity to cover
here.

As well as books explicitly on design patterns, a C++ programmer needs many
other standard texts. Some favourites of the author are

Effective C++, More Effective C++ and Effective STL by Scott Meyers. These
books are collections of programming gems by a C++ expert.

The C++ Programming Language by Bjarne Stroustrup. This is the ultimate
reference book on C++ by the man who invented the language.

The C++ Standard Library by Nicolai Josuttis. This is a comprehensive de-
scription of the standard library that ships with any C++ compiler.

My favourite introductory book on object-oriented programming is
The Tao of Objects by Gary Entsminger. It’s an easy read and concentrates on

introducing the basic ideas of OO design.
There are now a number of books on C++ and numerical techniques in finance.

Of all of these, the one closest in style and approach to this book is the forthcoming:
Quantitative Finance: An Object-oriented Approach + C++ by Eric Schlögl.
The books by Daniel Duffy are also worthwhile but take a different tack with

more emphasis on templates and less on virtual functions.

11.7 Key points

• Design patterns can be classified into behavioural, structural and creational pat-
terns.

11.8 Exercise 173

• Behavioural patterns are used for the implementation of algorithms.
• Structural patterns deal with how classes are composed to create more intricate

designs.
• A creational pattern deals primarily with the creation of new objects.

11.8 Exercise

Exercise 11.1 Implement the factory from Chapter 10 using the monostate pattern
instead of the singleton pattern.

12

The situation in 2007

12.1 Introduction

The first eleven chapters of this book were written in the summer of 2002. In-
evitably, both C++ and quantitative finance have moved on in the last five years,
and, in addition, my view of the two subjects has evolved. In this brief chap-
ter, I want to discuss some of the changes and set the stage for the newly added
chapters.

12.2 Compilers and the standard library

In 2002, the most popular compiler for C++ was Visual Studio 6.0. Other pop-
ular compilers were g++ 2.95 and Borland 5.5. I therefore targeted the book
and the code at those three compilers. Today, Visual Studio has gone through
a couple of versions and the most popular version is 8.0. In addition, the up-
grade process has been faster than usual in that Microsoft decided to make the
“Express” version free. This version contains the full optimizing compiler and
IDE (integrated development environment) but omits various added features which
are not particularly important to the lone developer. The open source compiler
g++ has also evolved and the most recently released version is as part of gcc
4.2.0. In addition, the standard libraries that ship with the compilers have been
updated.

What difference does this make? The biggest difference for the programmer is
that the compilers and libraries are much closer to the C++ ANSI/ISO standard,
which was ratified in 1997. They are still not fully compatible in that they do not
implement the export keyword. In fact, the only compiler that does is the Comeau
Compiler (www.comeaucomputing.com), which is the only fully compatible com-
piler. If you are wondering what the export keyword is; don’t. (If you must know,
it gives an alternate way of implementing templates that does not require all the
code to be in the header file.)

174

12.2 Compilers and the standard library 175

Most of the advantages relate to complicated template code, which we do not
attempt to discuss in this book, but refer the reader to [35] for how to make a
Turing machine run at compile time using template code.

However, some of the advantages are more mundane and are definitely worth
mentioning. One example is that for loops variables are now properly scoped.
If you declare

for (int i =0; i < 10; ++i)
{
// do stuff
}

i =0;

then you will get a compilation error unless you have declared i before the for
loop; this was not true in 6.0. On the other hand, the following code did not compile
in 6.0

for (int i =0; i < 10; ++i)
{
// do stuff
}

for (int i =0; i < 10; ++i)
{
// do more stuff
}

as the variable i is declared twice in the same scope. This can be quite annoying if
you are writing for cross-platform compatibility! One solution is to put {,} around
the first for loop forcing the correct behaviour in 6.0 without affecting behaviour
on the other compilers.

Another relevant improvement is that changing the return type of inherited class
pointers is supported in 8.0. So we can now make our clone method return a
pointer of an inherited class type. That is we can code

class Base
{
public:

virtual Base* clone() const=0;

// etc

};

176 The situation in 2007

class Inherited : public Base
{
public:

virtual Inherited* clone() const;

// etc

};

and not get an error about the fact that the return type has changed. This is mainly
useful if we have 3 level hierarchies. For example, suppose we decided to imple-
ment pay-off type via inheritance (I don’t recommend this, but it serves to illustrate
the point), so we have a base class EquityOption, we inherit VanillaOption
from this, and CallOption from VanillaOption.

Now suppose we declare clone in EquityOption, it will return a pointer of
type EquityOption*. Under the old rules, the clone method of CallOption
would have had to return a pointer of type EquityOption. This would have made
it impossible to use Wrapper<VanillaOption>, which would be rather inconve-
nient.

Under the new rules, we return a pointer of the most derived type and it can
always be treated as a pointer to a class further up the hierarchy so we have no
problems.

Another big change that is very convenient is that the standard template library
has range-checking in Debug mode in Visual C++ 8.0. With previous versions
of the library, this was always a big disadvantage when working with the STL
vector in that one either used .at all the time and suffered a performance penalty
in Release mode, or spent ages trying to track down out-of-range errors which
were not reported. Note that if you are using another compiler, you can get an
alternative implementation of the standard library from www.stlport.org which
does feature range-checking.

12.3 Boost

The Boost project is an open source library designed to extend the C++ standard
library. It can be found at www.boost.org. The code is heavily peer-reviewed
and required to work across multiple compilers. The intention is that the libraries
incorporated in Boost will become part of the C++ Standard in the future, and,
indeed, it is already planned to incorporate many of them. Because of this, the
licence is very unrestrictive and allows the user basically to do whatever they want
with the code. This is different from the GNU licence, which restricts use of the
code to applications that distribute source code and allow the user to do the same.
From the Boost website, here are some of the requirements met by the licence:

www.boost.org

12.5 xlw 177

• Must grant permission without fee to copy, use and modify the software for any
use (commercial and non-commercial).

• Must require that the license appear with all copies [including redistributions] of
the software source code.

• Must not require that the license appear with executables or other binary uses of
the library.

• Must not require that the source code be available for execution or other binary
uses of the library.

What all this means is that you can use code from Boost in your work without
ever having to worry about licensing issues.

The main downside of Boost used to be that the installation process was an-
noying, they had their own customized routines for installation that you had to use.
However, there is now an installer that gives you the pre-compiled binaries for the
libraries if you use Visual C++ 7.1 or Visual C++ 8.0.

There are far too many libraries to attempt to discuss them here. However, two
of particular interest to quantitative analysts are the random number library, and the
multi-dimensional array library. We will discuss the smart pointers library a little
in Chapter 13. Books are now being written on Boost and a useful one is Beyond
the C++ Standard Library by Karlsson. Boost is used heavily by the Quantlib
project.

12.4 QuantLib

QuantLib is the biggest and most successful open-source project for quantitative
finance. It is a large repository of C++ code and can be found at quantlib.org.
Similarly to Boost, the license is very unrestrictive, allowing free use in commer-
cial software. The objective is to provide a large pricing library for derivatives that
can used for many purposes. The code is very much structured as one library, and
whilst individual routines can be cut out, it is not designed to facilitate this. Famil-
iarity with QuantLib will certainly be an important skill in the future. The author
of this book is now a developer on the project.

As well as providing a C++ library, QuantLib comes with code for building
interfaces to various applications, particularly EXCEL. The main difficulty with
QuantLib is that requires a certain amount of sophistication to make sense of the
library, so once you are comfortable with C++ start learning, but wait until you
are.

12.5 xlw

Although in the first part of this book, we concentrated on writing console appli-
cations, it is actually rare for quants to work in that way. One of the most common

www.quantlib.org

178 The situation in 2007

modes of working is to write EXCEL plug-ins, known as xlls. These add extra
functions to EXCEL, which can be called from the spread-sheet. These work via
the C API, which was never very well documented. In order to make interfacing
easier, Jerome Lecomte wrote a C++ wrapper called xlw. This made the whole
process much simpler but still involved writing a lot of repetitive code. Ferdinando
Ametrano took over the project and ported it to sourceforge.net. The author
of this book then took over the project and made various changes. The biggest of
these is that the interfacing code is now automatically generated; this means that
the user has to do very little. Another important aspect of the package is that it
works with the free MingW g++ compiler as well as Visual C++ 6.0, 7.1, and
8.0. We will discuss using examples from xlw in the rest of the book, particularly
in Chapter 14 where we develop a generic factory using the implementation in xlw
as an example. We discuss how to use the xlw project in detail in Chapter 15.

The code for xlw can be obtained from xlw.sourceforge.net.

12.6 Key points

• The most popular compilers are now Visual Studio 8.0 and gcc 4.2.0.
• The new compilers are closer to being compliant with the C++ standard.
• Boost is a high-quality free library of C++ code.
• QuantLib is the largest library of open source C++ code for quantitative finance.
• Most work in quantitative finance is done via interfacing with EXCEL.
• xlw provides an easy way to interface with EXCEL.

12.7 Exercises

Exercise 12.1 Install Boost on your computer.

Exercise 12.2 Interface the Boost random number classes with the path-dependent
exotic option pricer developed here.

Exercise 12.3 Download and build Quantlib!

www.sourceforge.net

13

Exceptions

13.1 Introduction

Up till now we have focussed on clarity and code reusability, we have not consid-
ered how to cope with things going wrong at run time. The mechanism in C++
designed for coping with errors is throwing an exception. Writing code that func-
tions well in the presence of exceptions raises a host of issues that did not exist
before. We will look at some of these and see how most of them can be avoided by
following some simple rules.

Exceptions are raised by the throw command. We specify as an argument an
object, X, of any type Y. Execution then immediately moves to the end of the current
scope and objects going out of scope are destroyed. If there is a catch command
at the end of the scope, which catches objects of type Y, then control passes to the
scope of the catch command. If not, then control passes to the end of the enclosing
scope, and this keeps happening until the exception is caught, or the enclosing
scope is the end of the program and execution terminates, i.e. your program crashes.
Note that we can always do a catch-all statement with catch(...).

The great virtue of this approach is that we do not have to test the return value of
every function or method call to ensure that the last call did not generate an error.
The great downside is that code execution order becomes a lot less predictable, and
this can cause problems. In particular, if we write code for cleaning up at the end
of a scope it may be bypassed by a throw, resulting in things being left in a poor
state.

This is particularly a problem when memory allocation is in use. Consider the
following code snippet with the PayOff class as in Chapter 4.

double evaluate(const PayOff& p,
double y)

{
PayOff* payOffPtr = p.clone();

179

180 Exceptions

double x = (*payOffPtr)(y);
delete payOffPtr;
return x;

}

This is a little artificial in that no useful purpose is served by making a copy, but
if operator() were non-const, this could be useful. In any case, it serves to il-
lustrate a point: it is possible that calling operator() will throw an exception.
This will be caught somewhere outside the function. The catcher will have no idea
that payOffPtr needs to be deleted. The effect will be that the memory allocated
by the clone will never be deallocated. If this happens enough times, your appli-
cation will run out of memory and crash. If we are writing a stand-alone program
that does not bother to catch exceptions, this is not such an issue but as soon as we
are working in a system which is not supposed to die every time an exception is
thrown, it is a real problem.

Given that any piece of code we call may throw an exception, to be sure that our
code is correct and remains correct (for the code called may change its implemen-
tation), we are forced to program defensively as if an exception could be thrown at
any time.

13.2 Safety guarantees

There are two standard safety guarantees:

• The weak guarantee: the object and program are left in a valid state, and no
resources have been leaked.

• The strong guarantee: if an exception is thrown during an operation (e.g. a call
to a method or a function), then the program is left in the state it was at entry to
the operation.

The essential difference here is that with the weak guarantee an object’s state can
change even though the operation failed, whereas with the strong guarantee the
class is promising to undo all changes before throwing.

Clearly, the strong guarantee is harder to implement than the weak one. However,
it is important to realize that code that is not written with exception safety in
mind will satisfy neither. The weak guarantee is also sometimes called the basic
guarantee.

13.3 The use of smart pointers

Consider again the example of the introduction. What we want to happen is that
when the function is exited the memory allocated by the clone command is

13.3 The use of smart pointers 181

deallocated by a call to delete. Exiting can occur either in the conventional way
via the return statement, or by the exception being thrown. For both of these, all
automatic (i.e. ordinary local) variables are destroyed at the end of the scope. So
the solution is to make the deletion a side-effect of these destructions.

We have already looked at one smart pointer Wrapper<T>. If we use it here, the
code snippet becomes

double evaluate(const PayOff& p,
double y)

{

Wrapper<PayOff> payOffPtr(p);
double x = (*payOffPtr)(y);
return x;

}

Recall that the Wrapper class will call the clone method internally. The delete
command is no longer necessary because the destructor of Wrapper calls it auto-
matically.

As written, Wrapper<T> cannot be used to take ownership of a raw pointer since
it has no constructors that take pointers. However, we can easily add to the file
Wrapper.h (see Listing 5.6) an extra constructor in the public section of the class

Wrapper(T* DataPtr_)
{

DataPtr =DataPtr_;
}

and then it would be legitimate to code

double evaluate(const PayOff& p,
double y)

{
PayOff* payPtr1 = p.clone();
Wrapper<PayOff> payOffPtr(payPtr1);
double x = (*payOffPtr)(y);
return x;

}

and retain the automatic deletion of the allocated memory.
The Wrapper<T> class is just one example of a smart pointer. There are many

examples both in Boost and the standard library. These generally vary according
to what happens on copying the pointer.

There are four obvious solutions to copying:

182 Exceptions

(1) Copy the pointed-to object.
(2) Make copying illegal.
(3) Have the pointers share ownership of the object.
(4) Transfer ownership of the pointer to the new object.

The first of these is the approach adopted by the Wrapper<T> class. The main
downsides of this approach are that copying may be slow and that it relies heavily
on the writer of the pointed-to class having provided a clone() method.

With the second, we make the copy constructor and the assignment operator
of the object private. Whenever a coder attempts to copy (or assign) the smart
pointer, an error message saying that the copy constructor is not available is gen-
erated and the user is forced to find an alternate approach. If you want this sort of
pointer, use the scoped ptr class from Boost defined in boost/scoped ptr.
hpp. Note that the error is generated at compile time rather than run time, since it
arises from access permissions to class methods – these are checked only at com-
pile time.

An alternate implementation would be to make the copy constructor and as-
signment operator throw. This would be less desirable, however, in that the error
would only be generated whilst the code was running, and if the code was rarely
used, might take a long time to show up.

The third of these approaches is adopted by the boost shared pointer class:
shared ptr defined in boost/shared ptr.hpp . We then essentially have a
reference-counted pointer class (cf. Exercise 5.6). Every time the shared ptr is
copied, a count of how many pointers there are to the object is increased by one,
and every time one is destroyed the count is decreased by one. When the count
hits zero the pointed-to object is destroyed. We again do not have to worry about
exception safety since when the last shared ptr goes out of scope the object is
deleted.

The main downside of shared ptr is that there is only ever one copy of the
object. This means that if one piece of code changes the object, then the object
pointed to by all the copied pointers also changes since it is the same object. This
means that the programmer has to think a little more than with the scoped ptr or
the Wrapper since you have linkage between not obviously connected things.

The last of these alternatives is used by the auto ptr class in the standard library
defined in the file memory. As with all the other smart pointers, when it goes out of
scope the pointed-to object is deleted. However, suppose we code the following

double evaluate(const PayOff& p,
double y)

{
std::auto_ptr<PayOff> payPtr1 = p.clone();

13.4 The rule of almost zero 183

double z = (*payPtr1)(y);
std::auto_ptr<PayOff> payPtr2(payPtr1);
double x = (*payPtr1)(y);
return x+z;

}

We will get a nasty run-time crash at the line where x is declared. Why? The copy-
ing of the object payPtr1 into payPtr2 changes the object payPtr1. This is very
counter intuitive – we ordinarily expect copying an object to have no effect on the
original object, but with auto ptrs a great deal changes. All ownership is trans-
ferred to the new object and the first pointer becomes a null pointer.

This behaviour is occasionally useful when creating an object in a function or
method and wishing to return a pointer to it. We want the client to take ownership of
the object immediately without further copying and without having to use an unsafe
raw pointer, and auto ptr provides this facility. However, so does shared ptr
without the strange behaviour.

Ultimately, which smart pointer to use is a matter of personal style. The im-
portant thing is always to use one and to stay away from raw pointers. I person-
ally almost always use the Wrapper, and very occasionally use shared ptr and
auto ptr. The reason for preferring Wrapper is that it requires least thought: all
deletions occur naturally, and all objects have intuitive copying behaviour. Its only
real downside is that it makes object copying slower, but in numerical code you
should avoid all copying within tight loops in any case, so this actually has little
impact.

13.4 The rule of almost zero

The use of smart pointers brings us to a rule of programming. We previously stud-
ied the “rule of three”; this said that if you define one of copy constructor, assign-
ment operator, and destructor for a class, then you should define all three. The “rule
of almost zero” does not contradict this rule but supersedes it by saying that you
should always be in the case of not defining any of them.

How do we avoid the shallow copy problem discussed in Chapter 4? We use
smart pointers to ensure that a shallow copy is sufficient. Every data member will
be either an ordinary object which can be copied, or a smart pointer which is copied
and assigned in the fashion we have chosen. So if we want objects to be shared
between copies, we use shared ptr; if we want to make copying illegal, we use
scoped ptr; and if we want the pointed-to objects to be cloned, we use Wrapper.

There will be no memory leak issues because the smart pointers delete the
pointed-to objects when the compiler-generated destructor is called. We do not
waste time writing copy constructors or assignment operators, and we do not have

184 Exceptions

to remember to update them when we change the data members of the class – for-
getting to keep them in line with the class data members is a common source of
bugs.

Why have we named it the “rule of almost zero” instead of the “rule of zero”?
There is one case in which we must declare a destructor but only an empty one!
Every time we have a class with abstract methods it is likely to be deleted via
pointers to the base class and so we must declare a virtual destructor as discussed
in Section 3.5.

13.5 Commands to never use

Some commands to never use are:

malloc
free
delete
new []
delete []

The first two of these are C commands not C++, and have been superseded by the
versions of new and delete. You will get bizarre effects (i.e. crashes) if you try to
mix the two sets of commands.

The delete command is never necessary because of smart pointers. As long as
you ensure that anything created by new is owned by a smart pointer, you need
never code delete. The only time I therefore use the delete command is when I
am writing a smart pointer. However, with the advent of Boost, you should never
need to do this – if a pointer doing what you want exists there, use that instead.

If I want to create an array of objects, I use the standard library container classes.
So if I want n objects of class Option, I just put

std::vector<Option> v(n);

The memory will then be deleted automatically when necessary; in addition, copy-
ing and assignment are done for me by the std::vector class. In fact, we can
think of a vector as a smart pointer owning an array of objects.

Since I never use new [], I never need delete [], and that allows the avoid-
ance of nasty bugs caused by accidentally using the wrong version of the delete
command.

In the unlikely event of needing to write a new container class, we can just use
the vector class as a data member to handle the memory for us. Why is it unlikely
you will need to write a container class? The standard library and Boost contain

13.6 Making the wrapper class exception safe 185

enough such classes to cover any reasonable case that is likely to arise in quant
work.

Note that if we pass vector s by reference, it will be just as fast as passing
pointers. The compiler inlines the data access operator, [], so we do not lose any
speed on deferencing either.

Another plus of using the standard library containers over direct memory alloca-
tion is that modern versions of the standard library include range-checking in debug
mode. So if you accidentally wander off the end of an array, you immediately get
an exception, alerting you to a logical error instead of wondering where the silly
numbers came from. Such a range-checked library ships with Visual Studio 8.0,
and you can get range-checked libraries for other compilers from

http://www.stlport.org

Of course, the memory allocation commands have their uses but if you find them
becoming part of your regular usage, one of the following is the case:

• you are a hard-core developer and should not be wasting your time reading a
low-level book like this one;

• you have lost sight of what you should be doing, and should start focussing on
numerical modelling instead.

13.6 Making the wrapper class exception safe

We have argued that we should use smart pointers since they make exception safety
easy. However, we must also make sure that the smart pointers we write for our-
selves are exception safe. In fact, the Wrapper class as we originally wrote it is not
exception safe. Consider the assignment operator

Wrapper& operator=(const Wrapper<T>& original)
{

if (this != &original)
{

if (DataPtr!=0)
delete DataPtr;

DataPtr = (original.DataPtr !=0)
? original.DataPtr->clone() : 0;

}

return *this;
}

186 Exceptions

If the call to the clone method of the original object passed in throws, we
have a problem. We have already deleted DataPtr so the strong guarantee is vi-
olated. But worse, any attempt to access the underlying object will be an attempt
to access a dead object, and we can expect a crash. This will happen when the
Wrapper goes out of scope and a second attempt is made to delete DataPtr, if not
before. Thus not even the weak guarantee is satisfied.

We therefore need to recode the assignment operator in Wrapper to avoid this
problem

Wrapper& operator=(const Wrapper<T>& original)
{
if (this != &original)
{

T* newPtr = (original.DataPtr !=0) ?
original.DataPtr->clone() : 0;

if (DataPtr!=0)
delete DataPtr;

DataPtr = newPtr;
}

return *this;
}

If the cloning throws, then the object has not been changed, so with the new design,
the strong guarantee is satisfied.

13.7 Throwing in special functions

As well as throwing in ordinary code, there is the issue of what to do when an error
occurs in a constructor or destructor. In this section, we look at the issues. The short
version is, “it’s ok to throw in a constructor but never throw in a destructor.”

We examine constructors first. The main danger of throwing in a constructor is
that resources acquired may not be released. The important fact to know here is
that destructors are only called for fully constructed objects. So if an exception
is thrown in the main body of the constructor, the destructors for all the data mem-
bers are called but the destructor for the object being created is not.

So if the destructor carries out some non-trivial operations such as calling
delete, we have a problem. This can be tackled in two ways. The first is simply
to do any tidying up that the destructor would have done before calling throw. The

13.8 Floating point exceptions 187

second is to follow the rule of almost zero and have a trivial destructor. The second
approach is much safer in that exceptions could arise in unexpected
places.

One subtlety to be aware of is that the constructor of one of the data members
of the class could also throw. These constructors are all called before the main
routine is entered. They are called in the order that they are declared in the class
declaration. On the throw, the destructors for all the objects already created will
be called in reverse order. So we must also design our class data members so they
will automatically delete any memory they have allocated.

What about destructors? Suppose we write a destructor for a class A that throws
when it’s unhappy. We let B have a data member of type A. Now consider the
following snippet

bool flag = true;
try
{

{
B testObject;

if (flag)
throw("flag is true");

}
}
catch(...)
{
}

When the throw is called, the stack is unwound and the object of type B is de-
stroyed. As part of this is destruction, its data-member of type A is destroyed. If
the destructor of A throws, the application terminates, i.e. crashes. This is speci-
fied in the C++ standard; the reason being that the compiler will not know which
exception to deal with.

So never ever throw in a destructor.

13.8 Floating point exceptions

Our discussion so far has looked at C++ exceptions. There is, however, an addi-
tional source of exceptions when working with numerical code: the floating point
exception. This section although important lies outside the C++ standard, and I
am therefore going to restrict to discussing purely what happens with Visual Stu-
dio 8.0. For example, consider the following code

188 Exceptions

double x=0;
double y=1e6;
double z = y/x;
std::cout << z;

The default behaviour with Visual Studio is to output 1#INF. However, it would be
nice to have an exception thrown at the moment such a problematic operation oc-
curs rather than realizing at some point much later on that the computation became
garbage halfway through.

It is possible to enable floating point exceptions. In this section, we discuss how
to do this and how to catch them. Enabling floating point exceptions is in fact rather
easy, one simply includes Float.h and the line of code

_controlfp(_EM_INEXACT,_MCW_EM);

Note that this is a run-time command so you can decide at run time whether you
want floating point exceptions to be thrown. For example, it can be useful to switch
them off when “float underflow” errors are being generated – these generally result
from numbers being too small; however, too small numbers often have zero impact
on the final result.

The only problem with the controlfp command is that a “structured excep-
tion” is generated not a C++ exception. The effect of this is that you get an un-
handled exception error even if you put a catch-all statement immediately after the
offending line, and the program crashes.

To get a C++ exception, we have to call another command
set se translator defined in Windows.h. This tells the compiler how to trans-

late structured expections into C++ exceptions. It takes as argument a function to
be called when a structured exception is thrown. Note that the file Windows.h
does not ship with Visual Studio Express 8.0 and you will have to install the free
Microsoft Platform SDK to use it.

We illustrate its use in FPSetup.h and FPSetup.cpp.

Listing 13.1 (FPSetup.h)

#ifndef FP_SETUP_H
#define FP_SETUP_H

#include <Windows.h>
#include <stdexcept>

class float_exception : public std::exception {};
class fe_denormal_operand : public float_exception {};

13.8 Floating point exceptions 189

class fe_divide_by_zero : public float_exception {};
class fe_inexact_result : public float_exception {};
class fe_invalid_operation : public float_exception {};
class fe_overflow : public float_exception {};
class fe_stack_check : public float_exception {};
class fe_underflow : public float_exception {};

void se_fe_trans_func(
unsigned int u, EXCEPTION_POINTERS* pExp);

void EnableFloatingPointExceptions();

#endif

As well as declaring two functions, one that enables the exceptions and the other
that declares the translation function, we declare a number of classes expressing the
different sorts of exceptions that can be thrown. We do a two-level inheritance hi-
erarchy off the standard library exception class std::exception. First we inherit
the class float exception and then we inherit all the different types of excep-
tions from it. Note that all these classes are simply empty classes – the information
is conveyed simply by the type of object thrown rather than data contained within
the object.

The upshot of this is that we can have a generic command catch-all standard li-
brary of exceptions, including floating point exceptions with catch(std::
exception), or just catch floating point exceptions with catch
(float exception), or just catch one specific type of floating point exception
of choice. For example, we can use catch(fe divide by zero) just to get divi-
sion by zeros.

We implement these functions in FPSetup.cpp.

Listing 13.2 (FPSetup.cpp)

#include"FPSetup.h"
#include <Float.h>
void se_fe_trans_func(unsigned int u,

EXCEPTION_POINTERS* pExp)
{

switch (u)
{

case STATUS_FLOAT_DENORMAL_OPERAND:
throw fe_denormal_operand();

190 Exceptions

case STATUS_FLOAT_DIVIDE_BY_ZERO:
throw fe_divide_by_zero();

case STATUS_FLOAT_INEXACT_RESULT:
throw fe_inexact_result();

case STATUS_FLOAT_INVALID_OPERATION:
throw fe_invalid_operation();

case STATUS_FLOAT_OVERFLOW:
throw fe_overflow();

case STATUS_FLOAT_UNDERFLOW:
throw fe_underflow();

case STATUS_FLOAT_STACK_CHECK:
throw fe_stack_check();

};

throw float_exception();
}

void EnableFloatingPointExceptions()
{

_set_se_translator(se_fe_trans_func);
_controlfp(_EM_INEXACT,_MCW_EM);

}

The implementation of se fe trans func is not particularly interesting – just a
switch through the different possible types of exception. One subtlety, however, is
that you must change to the compiler flags to get all this to work. In particular,
the /EHa flag must be set. This can be set via project properties, C/C++, code
generation, enable exceptions, and should be set to “Enable C++ exceptions with
SEH.”

We give a simple illustration of its use in FPMain.cpp.

Listing 13.3 (FPMain.cpp)

#include "FPSetup.h"
#include <iostream>
#include <cmath>
int main()
{

13.8 Floating point exceptions 191

EnableFloatingPointExceptions();

try
{

double x;
double y;
std::cin >> x;
std::cin >> y;

double z = y/x;
double t= exp(z);
std::cout

<< z << " " << t << "\n";

}
catch (fe_divide_by_zero&)
{

std::cout << "div by zero\n";
}
catch (float_exception&)
{

std::cout << "other floating point exception\n";
}
catch(...)
{

std::cout << "exception caught\n";
};

char c;
std::cin >> c;

return 0;
};

If we run this and enter 0 and 1, we get a division by zero exception. If we enter
1 and 1E6, a float overflow occurs and we get the output “other floating point
exception.” If you try it without the correct flags set, the exceptions will not be
caught.

192 Exceptions

Note that this code also illustrates that we can catch an object as a member of
its base class as well as a member of its own class. The rules are that an object is
caught if

• the catch argument matches the type of the object thrown;
• the catch argument type is a public base class of the object thrown;
• the catch argument is a pointer and the thrown pointer can be converted to this

pointer type according to the ordinary rules of pointer conversion.

Although the exception will be thrown and we may know the type of the floating
point failure, we still have the issue that we want to know where it was thrown. One
way to find this out is to use the debugger. In Visual Studio, in the “debug” menu
there is an “exceptions” menu that allows the user to specify that execution halt in
the debugger on various sorts of exceptions. By ticking these boxes, we can cause
it to stop at the precise instant the problem occurs and examine the computation.
Note that we can also use the call stack to go and up and down nested function calls
to see where the problem arises.

13.9 Key points

In this chapter, we have looked at various issues related to making code function
well in the presence of exceptions:

• Exceptions can cause memory leaks.
• The weak or basic exception safety guarantee says that a program will be in a

valid state after an exception is thrown.
• The strong exception safety guarantee says that if an exception is thrown during

an operation, then the program will be left in the state it was in at the start of the
operation.

• Memory leaks can be avoided by the use of smart pointers.
• The rule of almost zero advises never to write code that requires non-trivial copy

constructors, assignment operators, and destructors.
• Avoid the new [], delete and delete [] commands.
• We have to take care when writing the assignment operators of smart pointers to

avoid memory leaks when new fails.
• Floating point errors do not by default cause C++ exceptions but they can be

made to do so.

13A The new wrapper class

We have made some changes to the Wrapper class. In particular, we have added a
new constructor and rewritten the assignment operator. Here is the revised code

13A The new wrapper class 193

Listing 13.4 (wrapper2.h)

#ifndef WRAPPER_H
#define WRAPPER_H

template< class T>
class Wrapper
{
public:

Wrapper()
{

DataPtr =0;
}

Wrapper(const T& inner)
{

DataPtr = inner.clone();
}

Wrapper(T* DataPtr_)
{

DataPtr =DataPtr_;
}

~Wrapper()
{

if (DataPtr !=0)
delete DataPtr;

}

Wrapper(const Wrapper<T>& original)
{

if (original.DataPtr !=0)
DataPtr = original.DataPtr->clone();

else
DataPtr=0;

}

Wrapper& operator=(const Wrapper<T>& original)

194 Exceptions

{

if (this != &original)
{

T* newPtr = (original.DataPtr !=0) ?
original.DataPtr->clone() : 0;

if (DataPtr!=0)
delete DataPtr;

DataPtr = newPtr;
}
return *this;

}

T& operator*()
{

return *DataPtr;
}

const T& operator*() const
{

return *DataPtr;
}

const T* const operator->() const
{

return DataPtr;
}

T* operator->()
{

return DataPtr;
}

private:
T* DataPtr;

};
#endif

13A The new wrapper class 195

We illustrate its use in WrapperMain.cpp.

Listing 13.5 (WrapperMain.cpp)

//
// requires PayOff3.cpp

#include <iostream>
#include <Wrapper2.h>
#include <PayOff3.h>

int main()
{

double S;
double K1,K2,K3;

std::cout << " spot\n";
std::cin >> S;

std::cout << "strike1\n";
std::cin >> K1;

std::cout << "strike2\n";
std::cin >> K2;

PayOffCall one(K1);
PayOffPut two(K2);

PayOff* p = one.clone();
Wrapper<PayOff> four = p;

{
PayOff* q = two.clone();
Wrapper<PayOff> five = q;

std::cout << "four :";
std::cout << (*four)(S)

<< " five :"
<< (*five)(S) << "\n";

four = five;

196 Exceptions

}
std::cout << " four :" << (*four)(S) << "\n";

char c;
std::cin >> c;
return 0;

}

14

Templatizing the factory

14.1 Introduction

The factory pattern discussed in Chapter 10 allowed us a method of turning inputs
into objects from a generalized hierarchy. It also allowed us to add extra objects
without modifying any files. This is such a useful pattern that I use it all the time
in all sorts of contexts. As such it is a natural candidate for templatization. The
objective in this chapter is to develop such a templatized factory. This will raise
additional problems regarding reusability, and we will develop new techniques to
solve them.

14.2 Using inheritance to add structure

A key part of our factory was the singleton, and a key part of the singleton was the
fact that it could not be copied. We achieved this by making all the constructors
including the copy constructor private. Whilst a class will inevitably own its
own constructors, there is a way of implementing a general solution to the copying
problem. This will have the main virtue that a user of the class can immediately
see that it cannot be copied rather than having to be told by the compiler or by
inspecting to see whether a private copy constructor has been declared.

The key observation that makes this technique work is that if a class has a
private copy constructor or assignment operator, then any class inherited from
it cannot be copied or assigned either, since the inherited class implicitly holds a
base class object.

Here’s the important part of the relevant file from Boost,
“boost/noncopyable.hpp”.

class noncopyable
{
protected:

197

198 Templatizing the factory

noncopyable() {}
~noncopyable() {}

private: // emphasize the following members are private
noncopyable(const noncopyable&);
const noncopyable& operator=(const noncopyable&);

};

The class is very small and has no data members. Its constructor and destructor are
protected to ensure that it can only be constructed by an inherited class. The copy
constructor and assignment operator are, of course, private to ensure that even
inherited classes cannot make a copy.

To use this class we simply inherit our new class from it. For example, a typical
use would be

class MySingleton : private noncopyable
{

...

};

Note that here we have used private inheritance for the first time. Whereas
public inheritance express the “is a” relationship, private inheritance is said
to express “implemented in terms of a.” The main difference is that the inherited
class’s public interface does not contain the public part of the base class with
private inheritance. In our example, of course, the base class does not contain
any public methods, so the difference is purely in how we communicate our in-
tentions to clients of Singleton.

Note that private inheritance and object composition are very similar. Indeed,
if we had a data-member of type noncopyable (which is not possible unless we
modify the class to have a public constructor), then Singleton would not be
copyable either. However, the clear statement at the start of the class is more trans-
parent to users.

There is also a subtlety relating to object size. If we take sizeof a class with no
data members, what do we get? With good reason, the standard requires the number
to be greater than zero. Much code implicitly assumes that this is the case. For ex-
ample, suppose we created a vector of objects from a class with no data-members.
The implementer may well have decided to multiply and divide by sizeof when
working out an offset in memory; if zero size objects were allowed, this would
cause serious trouble.

So an object of type noncopyable has positive size. This means that having
a data member of its type will increase the size of an object; this is certainly a

14.3 The curiously recurring template pattern 199

disincentive to using this pattern. The reader is probably now saying, “ah but the
same applies to inheritance.” Generally, an object contains an instance of the base
class so inheriting off something simply adds to the size of the base class. However,
this is not true when the base class is empty. In that case, the standard allows the
compiler to optimize away the dummy space. So the private inheritance model has
no overhead and the virtue of clarity.

14.3 The curiously recurring template pattern

Now suppose we decide to implement a reusable singleton via inheritance. All
our singleton classes will inherit off a class called Singleton. We can inherit a
Singleton class off noncopyable and make the constructor private to ensure
that only methods of the class can create objects from it.

The trickier problem is how to implement the method that returns the sole in-
stance of the class. Our previous solution was to have a method that contained a
static data declaration of the class type. But the class does not know the type of
the inherited class – information flows downwards not upwards with inheritance.

One solution to this problem called the “curiously recurring template pattern” is
to templatize on the type of the inherited class. A little surprisingly, this is legal
C++. Our singleton therefore takes the form

template<class T>
class Singleton : private noncopyable
{
public:

static T& Instance()
{

static T one;
return one;

}

protected:
Singleton() {}

};

To create a new class which is a singleton class called MyFactory, we then code

class MyFactory : public Singleton<MyFactory>
{

...

200 Templatizing the factory

private:

...

MyFactory(){}
friend class Singleton<MyFactory>;

};

Note the friend declaration, the constructor for MyFactory is private so we need
this to allow the Singleton class to create the one object from MyFactory.

14.4 Using argument lists

Did you try Exercise 10.2? If not, think about it for a little while before continuing.
In fact, let’s consider a harder problem. Suppose we want to be able to specify
lots of different numbers of arguments of varying types. Our first exotic option
might require two arrays, a double, and three strings. Our second might require
one array, a boolean, a matrix, and one string. This could happen, and if we want
to implement a generic factory, then we have to cope not just with objects from the
same inheritance hierarchy requiring such varying arguments, but also with pieces
of code that have totally different requirements.

We could templatize on the argument type but would then still have the problem
of variable numbers of arguments. We would therefore have to have a template for
each possible number of arguments. This would be tiresome at best. An alternative
approach is to have one class that encapsulates all reasonable sorts of arguments.
Such a class is generally called an argument list. (There is a mechanism in C for
functions to have variable numbers of arguments, but this is rarely if ever used in
C++.)

We present such a class in ArgList.h from the xlw project. (For further discus-
sion of xlw see Chapter 15.)

Listing 14.1 (ArgList.h)

#ifndef ARG_LIST_H
#define ARG_LIST_H

#include <xlw/port.h>
#include "CellMatrix.h"
#include "MyContainers.h"
#include <map>

14.4 Using argument lists 201

#include <string>
#include <vector>

void MakeLowerCase(std::string& input);

class ArgumentList
{
public:

ArgumentList(CellMatrix cells,
std::string ErrorIdentifier);

ArgumentList(std::string name);

enum ArgumentType
{

string, number, vector, matrix,
boolean, list, cells

};

std::string GetStructureName() const;

const std::vector<std::pair<std::string, ArgumentType> >&
GetArgumentNamesAndTypes()
const;

std::string GetStringArgumentValue(
const std::string&
ArgumentName);

unsigned long GetULArgumentValue(
const std::string&
ArgumentName);

double GetDoubleArgumentValue(const std::string&
ArgumentName);

MyArray GetArrayArgumentValue(const std::string&
ArgumentName);

202 Templatizing the factory

MyMatrix GetMatrixArgumentValue(const std::string&
ArgumentName);

bool GetBoolArgumentValue(const std::string&
ArgumentName);

CellMatrix GetCellsArgumentValue(const std::string&
ArgumentName);

ArgumentList GetArgumentListArgumentValue(
const std::string&
ArgumentName);

// bool indicates whether the argument was found
bool GetIfPresent(const std::string& ArgumentName,

unsigned long& ArgumentValue);
bool GetIfPresent(const std::string& ArgumentName,

double& ArgumentValue);
bool GetIfPresent(const std::string& ArgumentName,

MyArray& ArgumentValue);
bool GetIfPresent(const std::string& ArgumentName,

MyMatrix& ArgumentValue);
bool GetIfPresent(const std::string& ArgumentName,

bool& ArgumentValue);
bool GetIfPresent(const std::string& ArgumentName,

CellMatrix& ArgumentValue);
bool GetIfPresent(const std::string& ArgumentName,

ArgumentList& ArgumentValue);

bool IsArgumentPresent(const std::string&
ArgumentName) const;

void CheckAllUsed(const std::string& ErrorId) const;
CellMatrix AllData() const;

// data insertions

void add(const std::string& ArgumentName,
const std::string& value);

void add(const std::string& ArgumentName,
double value);

14.4 Using argument lists 203

void add(const std::string& ArgumentName,
const MyArray& value);

void add(const std::string& ArgumentName,
const MyMatrix& value);

void add(const std::string& ArgumentName,
bool value);

void add(const std::string& ArgumentName,
const CellMatrix& values);

void add(const std::string& ArgumentName,
const ArgumentList& values);

void addList(const std::string& ArgumentName,
const CellMatrix& values);

private:

std::string StructureName;

std::vector<std::pair<std::string,
ArgumentType> > ArgumentNames;

std::map<std::string,double> DoubleArguments;
std::map<std::string,MyArray> ArrayArguments;
std::map<std::string,MyMatrix> MatrixArguments;
std::map<std::string,std::string> StringArguments;
std::map<std::string,CellMatrix> ListArguments;
std::map<std::string,CellMatrix> CellArguments;
std::map<std::string,bool> BoolArguments;
std::map<std::string,ArgumentType> Names;
std::map<std::string,bool> ArgumentsUsed;
void GenerateThrow(std::string message,

unsigned long row,
unsigned long column);

void UseArgumentName(const std::string& ArgumentName);
// private as no error checking performed

void RegisterName(const std::string& ArgumentName,
ArgumentType type);

};
#endif

204 Templatizing the factory

The class allows data from seven different types: string, number, vector, ma-
trix, boolean, list, and cells. An arbitrarily large amount of data from each of these
types is allowed. Data are retrieved by using a string as key. Most of these types
are self-explanatory, but we discuss the others. The type number is essentially
a double but could be interpreted in others ways, e.g. an int or an unsigned
long.

The type cells expresses the notion of a table of values that can be of multiple
types: string, number, boolean, error, or empty. The idea here is to abstract the no-
tion of values contained in cells in a spreadsheet, since ultimately xlw is a package
for interfacing C++ with Excel.

The type list says that the argument is an ArgList itself. This turns out to be
very useful. For example, suppose we wish to implement a random number gen-
erator factory with the arguments and type of generator specified via an ArgList.
Now suppose we want to do a class that does anti-thetic sampling of an arbitrary
generator. We make the constructor of the anti-thetic sampling decorator class (see
Chapter 6) take in an ArgList with an argument of type list called “InnerGen-
erator” and use this to create the object to be decorated.

The idea is that the user of a factory should pass in an argument list that contains
all the data necessary to identify the object to be created and to create it. These data
will vary from class to class both in amount and type. The argument list has a name
that expresses the base class type, e.g. “payoff,” rather than the specific inherited
class. The factory will retrieve the identifier key by asking the argument list for a
string argument called “name.”

The argument list is then passed by the factory to the constructor for the inherited
class identified. It then queries the argument list for each piece of data it needs to
create the object. Often a constructor will have to deal with optional data, so the
argument list will have to provide facilities for checking if arguments are present
and also for obtaining a list of the arguments’ names and types. One big problem
that can arise with optional arguments is that the user misspells an optional name
and the constructor thinks it is not there, so we also have to introduce a mechanism
for checking that all arguments have been used.

The methods of the class are in a number of types. We include two constructors,
a few methods for retreiving general information, a large number of methods for
retreiving information of each type, and methods for adding information of each
type. We discuss these individually.

The method

std::string GetStructureName() const;

returns the type of the structure. This will always be in lower case, as will all
strings returned by the structure.

14.4 Using argument lists 205

The ability to get a complete list of all arguments by name and type is given by

const std::vector<std::pair<std::string, ArgumentType> >&
GetArgumentNamesAndTypes() const;

For each type we provide a method for retrieving arguments of that type. For ex-
ample, to get an argument we use

MyArray GetArrayArgumentValue(const std::string& ArgumentName);

The ArgumentName is turned into lower case before being matched to the list of
arguments. The ArgList class will throw an error if the argument requested is not
present.

Note that we provide two ways of retrieving arguments of type number

unsigned long GetULArgumentValue(
const std::string& ArgumentName);

double GetDoubleArgumentValue(
const std::string& ArgumentName);

The idea here is that, whilst the data passed in from a spreadsheet will not make
a distinction, it is sometimes convenient to have the data already cast to the right
type before use.

To cope with optional arguments, we include

bool GetIfPresent(const std::string& ArgumentName,
MyArray& ArgumentValue);

Note that these methods all have the same name, since the argument type is part of
the function signature. If the argument is present, ArgumentValue is overwritten,
otherwise it is left alone. The return value indicates whether the argument was
found.

We also include

bool IsArgumentPresent(const std::string& ArgumentName) const;

for testing whether an argument has been included.
To make sure no arguments have been accidentally ignored, we also include the

method

void CheckAllUsed(const std::string& ErrorId) const;

which throws if there is an unused argument and attaches the ErrorId to the error
message which also identifies the name of the unused argument. Clearly, we could
alternatively have this method return a bool and then decide what to do if there is

206 Templatizing the factory

an unused argument. The reason for simply having a throw is to avoid the necessity
of writing the same code saying to throw if there is an unused argument each time.
Note that the reason that the data retrieval mechanisms are non-const is that they
record whether an argument has been used.

We provide two ways of creating ArgumentLists

ArgumentList(std::string name);

ArgumentList(CellMatrix cells,
std::string ErrorIdentifier);

The first of these simply creates an empty object with nothing but a name. The
second is intended to be used when creating argument lists from a spreadsheet.
The user will put the data in a table of cells in the sheet, and pass this table to a
function. The function will then create an argument list from it; this list can then be
used to create objects from a factory. We defer further discussion of this constructor
to Section 14.8 where we discuss the CellMatrix class.

Clearly, an empty argument list is not much use so we have the ability to add
arguments using the add methods. These are pretty self-explanatory. Note that we
have an extra one addList which allows the addition of a list argument ex-
pressed by a CellMatrix instead of as an ArgumentList – we discuss the reason
for this below.

An additional advantage of the add method is that when working with a function
in a spreadsheet, we often want to run many cases varying one parameter. We
can then use a CellMatrix, which describes all arguments except one, which is
inputted separately and varies from cell to cell. Note that both name and value
could be inputted independently allowing extra flexibility.

Our remaining public method is

CellMatrix AllData() const;

which converts the argument list into a CellMatrix, which can then be used to
construct the list again if so desired. This can be useful for returning large amounts
of data to a spreadsheet, or simply for checking whether the class is working cor-
rectly.

14.5 The private part of the ArgumentList class

How do we implement the ArgumentList class? We have a std::string that
represents the structure name as a data member. We have a data member for each
type which is implemented using the std::map class from the Standard Template
Library.

14.5 The private part of the ArgumentList class 207

This stores each data member together with its key. We store the key in lower
case and will convert any keys to lower case before querying the map. Note that
for all types except list the type stored in the map is the same as the type to be
returned.

For list, we store a CellMatrix instead. The reason for this is that the alter-
native is to have type ArgumentList as a template argument for a map which is a
data member of type ArgumentList. Whilst some compilers can cope with this,
some cannot. And coping is largely dependent on the particular implementation of
the standard library in use. So to avoid trouble we store lists as a CellMatrix;
since we have methods to convert to and from CellMatrix, this is easy.

Note that there would be an inefficiency here if the ArgumentList was being
queried repeatedly in a tight loop, but the class is not designed for efficiency in
a numerical situation. Instead, it should be used for setting up objects before nu-
merical work starts, and returning data when it is finished. Note that this is why
we have included a method addList for adding a CellMatrix describing a list;
this allows us to add a list without doing all these conversions.

We have two further maps. The data member

std::map<std::string,ArgumentType> Names;

stores all the names in a map to allow the retrieval of the type of each argument.
The data member

std::map<std::string,bool> ArgumentsUsed;

is initially set to have all bools false. Each time an argument is queried, we can
then set the relevant bool to true.

We have one more data member

std::vector<std::pair<std::string, ArgumentType> >
ArgumentNames;

This is simply used for storing all the names and types of arguments.
We also have three private methods. These are private since they are only to

be used internally by the class.

void GenerateThrow(std::string message,
unsigned long row,
unsigned long column);

is used by the constructor that takes in a CellMatrix. It throws a message that
identifies where the problem was in the inputted CellMatrix. This is to avoid
code duplication between methods.

The method

208 Templatizing the factory

void UseArgumentName(const std::string& ArgumentName);

is to set the relevant bool in the ArgumentsUsed map to true. Once again, we
use a method here to avoid duplication.

The method

void RegisterName(const std::string& ArgumentName,
ArgumentType type);

updates the ArgumentNames and ArgumentUsed. This will be used by each of the
add methods. It also checks that the same name has not been inserted twice.

14.6 The implementation of the ArgumentList

We present the source file for the ArgumentList, excluding the parts for conver-
sion to and from CellMatrix, which we defer to Section 14.8.

Listing 14.2 (ArgList.cpp)

#include "ArgList.h"
#include <algorithm>
#include <sstream>

namespace
{

template<class T>
T maxi(T i, T j)
{
return i > j ? i : j;

}
}

void MakeLowerCase(std::string& input)
{

std::transform(input.begin(),input.end(),input.begin(),
tolower);

}

std::string ConvertToString(double Number)
{

std::ostringstream os;
os << Number;

14.6 The implementation of the ArgumentList 209

return os.str();

}

std::string ConvertToString(unsigned long Number)
{

std::ostringstream os;
os << Number;
return os.str();

}

void ArgumentList::add(const std::string& ArgumentName,
const std::string& value)

{
ArgumentType thisOne = string;
std::pair<std::string, ArgumentType> thisPair(ArgumentName,

thisOne);
ArgumentNames.push_back(thisPair);

std::pair<std::string,std::string> valuePair(ArgumentName,
value);

StringArguments.insert(valuePair);

RegisterName(ArgumentName, thisOne);
}

void ArgumentList::add(const std::string& ArgumentName,
double value)

{
ArgumentType thisOne = number;
std::pair<std::string, ArgumentType>

thisPair(ArgumentName,
thisOne);

ArgumentNames.push_back(thisPair);

std::pair<std::string,double> valuePair(ArgumentName,
value);

DoubleArguments.insert(valuePair);

210 Templatizing the factory

RegisterName(ArgumentName, thisOne);

}

void ArgumentList::add(const std::string& ArgumentName,
const MyArray& value)

{
ArgumentType thisOne = vector;
std::pair<std::string,

ArgumentType> thisPair(ArgumentName,thisOne);

ArgumentNames.push_back(thisPair);
ArrayArguments.insert(std::make_pair(ArgumentName,value));

RegisterName(ArgumentName, thisOne);
}

void ArgumentList::add(const std::string& ArgumentName,
const MyMatrix& value)

{
ArgumentType thisOne = matrix;
std::pair<std::string, ArgumentType>

thisPair(ArgumentName,
thisOne);

ArgumentNames.push_back(thisPair);
MatrixArguments.insert(std::make_pair(ArgumentName,

value));

RegisterName(ArgumentName, thisOne);
}
void ArgumentList::add(const std::string& ArgumentName,

bool value)
{

ArgumentType thisOne = boolean;
std::pair<std::string, ArgumentType>

thisPair(ArgumentName,
thisOne);

ArgumentNames.push_back(thisPair);

14.6 The implementation of the ArgumentList 211

BoolArguments.insert(std::make_pair(ArgumentName,value));

RegisterName(ArgumentName, thisOne);
}

void ArgumentList::add(const std::string& ArgumentName,
const CellMatrix& values)

{
ArgumentType thisOne = cells;
std::pair<std::string, ArgumentType>

thisPair(ArgumentName,
thisOne);

ArgumentNames.push_back(thisPair);
CellArguments.insert(std::make_pair(ArgumentName,

values));

RegisterName(ArgumentName, thisOne);

}

void ArgumentList::addList(const std::string& ArgumentName,
const CellMatrix& values)

{
ArgumentType thisOne = list;
std::pair<std::string, ArgumentType>

thisPair(ArgumentName,thisOne);
ArgumentNames.push_back(thisPair);
ListArguments.insert(std::make_pair(ArgumentName,values));

RegisterName(ArgumentName, thisOne);
}

void ArgumentList::add(const std::string& ArgumentName,
const ArgumentList& values)

{
CellMatrix cellValues(values.AllData());
addList(ArgumentName,cellValues);

}

212 Templatizing the factory

void ArgumentList::RegisterName(const std::string&
ArgumentName,ArgumentType type)

{
ArgumentNames.push_back(std::make_pair(ArgumentName,type));

if (!(Names.insert(*ArgumentNames.rbegin()).second))
throw("Same argument name used twice"+ArgumentName);

ArgumentsUsed.insert(std::pair<std::string,bool>
(ArgumentName,false));

}

std::string ArgumentList::GetStructureName() const
{

return StructureName;
}

const std::vector<std::pair<std::string,
ArgumentList::ArgumentType> >&

ArgumentList::GetArgumentNamesAndTypes() const
{

return ArgumentNames;
}

void ArgumentList::UseArgumentName(const std::string&
ArgumentName)

{
std::map<std::string,bool>::iterator it=

ArgumentsUsed.find(ArgumentName);
it->second =true;

}

std::string ArgumentList::GetStringArgumentValue(const
std::string& ArgumentName_)

{
std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
std::map<std::string, std::string>::const_iterator

it = StringArguments.find(ArgumentName);

14.6 The implementation of the ArgumentList 213

if (it == StringArguments.end())
throw(StructureName+std::string(" unknown string"

"argument asked for :")+ArgumentName);

UseArgumentName(ArgumentName);

return it->second;

}

unsigned long ArgumentList::GetULArgumentValue(const
std::string& ArgumentName_)

{
std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
std::map<std::string, double>::const_iterator

it = DoubleArguments.find(ArgumentName);

if (it == DoubleArguments.end())
throw(StructureName+std::string(

" unknown unsigned long argument asked for :")
+ArgumentName);

UseArgumentName(ArgumentName);

return static_cast<unsigned long>(it->second);
}

double ArgumentList::GetDoubleArgumentValue(const
std::string& ArgumentName_)

{
std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
std::map<std::string, double>::const_iterator

it = DoubleArguments.find(ArgumentName);

if (it == DoubleArguments.end())
throw(StructureName+std::string(

" unknown double argument asked for :")
+ArgumentName);

214 Templatizing the factory

UseArgumentName(ArgumentName);
return it->second;

}

MyArray ArgumentList::GetArrayArgumentValue(const
std::string& ArgumentName_)

{
std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
std::map<std::string, MyArray>::const_iterator

it = ArrayArguments.find(ArgumentName);

if (it == ArrayArguments.end())
throw(StructureName+std::string(

" unknown array argument asked for :")
+ArgumentName);

UseArgumentName(ArgumentName);
return it->second;

}

MJMatrix ArgumentList::GetMatrixArgumentValue(const
std::string& ArgumentName_)

{

std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
std::map<std::string, MJMatrix>::const_iterator

it = MatrixArguments.find(ArgumentName);

if (it == MatrixArguments.end())
throw(StructureName+std::string(

" unknown matrix argument asked for :")
+ArgumentName);

UseArgumentName(ArgumentName);
return it->second;

14.6 The implementation of the ArgumentList 215

}
bool ArgumentList::GetBoolArgumentValue(const

std::string& ArgumentName_)
{

std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
std::map<std::string, bool>::const_iterator it =

BoolArguments.find(ArgumentName);

if (it == BoolArguments.end())
throw(StructureName+std::string(
" unknown bool argument asked for :")+ArgumentName);

UseArgumentName(ArgumentName);
return it->second;

}

ArgumentList ArgumentList::GetArgumentListArgumentValue(
const std::string& ArgumentName_)

{
std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
std::map<std::string, CellMatrix>::const_iterator

it = ListArguments.find(ArgumentName);

if (it == ListArguments.end())
throw(StructureName+std::string(

" unknown ArgList argument asked for :")
+ArgumentName);

UseArgumentName(ArgumentName);
return ArgumentList(it->second,ArgumentName);

}

CellMatrix ArgumentList::GetCellsArgumentValue(
const std::string& ArgumentName_)

{
std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
std::map<std::string, CellMatrix>::const_iterator

it = CellArguments.find(ArgumentName);

216 Templatizing the factory

if (it == CellArguments.end())
throw(StructureName+std::string(
" unknown Cells argument asked for :")+ArgumentName);

UseArgumentName(ArgumentName);
return it->second;

}

bool ArgumentList::IsArgumentPresent(
const std::string& ArgumentName_) const

{
std::string ArgumentName(ArgumentName_);
MakeLowerCase(ArgumentName);
return (Names.find(ArgumentName) != Names.end());

}

void ArgumentList::CheckAllUsed(
const std::string& ErrorId) const

{
std::string unusedList;

for (std::map<std::string,bool>::const_iterator it
= ArgumentsUsed.begin(); it != ArgumentsUsed.end(); it++)

{
if (!it->second)

unusedList+=it->first + std::string(", ");
}

if (unusedList !="")
throw("Unused arguments in "+ErrorId+" "+StructureName

+" "+unusedList);

}

void ArgumentList::GenerateThrow(std::string message,
unsigned long row,
unsigned long column)

{
throw(StructureName

+" "+message

14.6 The implementation of the ArgumentList 217

+" row:"
+ConvertToString(row)
+"; column:"+ConvertToString(column)+".");

}

ArgumentList::ArgumentList(std::string name)
: StructureName(name)

{

}

bool ArgumentList::GetIfPresent(
const std::string& ArgumentName,

unsigned long& ArgumentValue)
{

if (!IsArgumentPresent(ArgumentName))
return false;

ArgumentValue = GetULArgumentValue(ArgumentName);
return true;

}

bool ArgumentList::GetIfPresent(
const std::string& ArgumentName,

double& ArgumentValue)
{

if (!IsArgumentPresent(ArgumentName))
return false;

ArgumentValue = GetDoubleArgumentValue(ArgumentName);
return true;

}

bool ArgumentList::GetIfPresent(
const std::string& ArgumentName,

MyArray& ArgumentValue)
{

if (!IsArgumentPresent(ArgumentName))
return false;

ArgumentValue = GetArrayArgumentValue(ArgumentName);

218 Templatizing the factory

return true;
}

bool ArgumentList::GetIfPresent(
const std::string& ArgumentName,

MyMatrix& ArgumentValue)
{

if (!IsArgumentPresent(ArgumentName))
return false;

ArgumentValue = GetMatrixArgumentValue(ArgumentName);
return true;

}

bool ArgumentList::GetIfPresent(
const std::string& ArgumentName,

bool& ArgumentValue)
{

if (!IsArgumentPresent(ArgumentName))
return false;

ArgumentValue = GetBoolArgumentValue(ArgumentName);
return true;

}

bool ArgumentList::GetIfPresent(
const std::string& ArgumentName,

CellMatrix& ArgumentValue)
{

if (!IsArgumentPresent(ArgumentName))
return false;

ArgumentValue = GetCellsArgumentValue(ArgumentName);
return true;

}

bool ArgumentList::GetIfPresent(
const std::string& ArgumentName,

ArgumentList& ArgumentValue)
{

14.6 The implementation of the ArgumentList 219

if (!IsArgumentPresent(ArgumentName))
return false;

ArgumentValue = GetArgumentListArgumentValue(ArgumentName);
return true;

}

We start with a simple implementation of the maximum function: maxi. Note
that the correct thing to do here is actually use the std::max function from the
standard template library; however, some implementations “forgot” to include it
(notably Visual Studio 6.0), so in the interests of cross-platform compatibility, we
use an alternative.

We have three functions for manipulating strings.

void MakeLowerCase(std::string& input);

simply takes a string and using the tolower function from the C Standard Li-
brary, converts its elements to lower case. Note the use of the transform algo-
rithm from the standard template library which is neater than looping through the
elements of the string.

The two ConvertToString functions take in numbers and spit out strings.
This is acheived by using the sstream class. This works similarly to iostreams.
The difference being that the objective is to create a string rather than an in-out
buffer. We include these functions since they will be useful when creating error
messages that say that a certain element of a CellMatrix is incorrect, which is
very useful when debugging spreadsheets.

We have an add method for each argument type. Almost all of these do the same
things: add the argument name and type to ArgumentNames, insert the name and
value into the map for this argument type, and call RegisterName. The method
addList takes the same form.

The one add method that is different is the one for adding lists. This converts
the input ArgumentList into a CellMatrix and calls the addList method, thus
avoiding the issue of having ArgumentList data members.

The “get” methods are also very similar to each other. For each one, we copy the
input string, convert it to lower case, and look up the map to see if it is present. If
it is not present, we throw, and if it is, we store the fact that it has been used, and
return the value.

Once again it is the list method that has an additional step. Here we get
a CellMatrix from the map and convert it to an ArgumentList on final re-
turn. A subtlety worth mentioning is that with the current design, it is only at
this point that the CellMatrix is checked for validity. So if the CellMatrix
contains errors, then a throw will occur. Note that we could create a dummy

220 Templatizing the factory

variable of type ArgumentList to be discarded in the addList method from the
CellMatrix in order to check the argument’s validity at the time of addition to the
object.

We also include the GetIfPresent methods to make it easy for the user to
deal with optional arguments. These simply test if the argument is present and
if it is, overwrite the parameter passed by value. A bool is returned indicating
if the argument was found. These were included to save the user from having to
repeatedly write code to test if an argument were present and then do one thing it
it was and another if it was not.

The remaining methods are self-explanatory and we do not comment on the
implementation further.

14.7 Cell matrices

Suppose we are interfacing a function with EXCEL or another spreadsheet. The
most general form of input will be a table of values from the sheet. The ob-
ject of the CellMatrix is to abstractize this concept. We can use this class as
a facade between the spreadsheet’s internal data types and our numerical code’s
objects.

The class is presented in <xlw/CellMatrix.h>

Listing 14.3 (CellMatrix.h)

#ifndef CELL_MATRIX_H
#define CELL_MATRIX_H

#include <xlw/port.h>
#include <string>
#include <vector>
#include <xlw/MyContainers.h>

class CellValue
{

public:
bool IsAString() const;
bool IsANumber() const;
bool IsBoolean() const;
bool IsError() const;
bool IsEmpty() const;

14.7 Cell matrices 221

CellValue(const std::string&);
CellValue(double Number);
CellValue(unsigned long Code, bool Error);

//Error = true if you want an error code

CellValue(bool TrueFalse);
CellValue(const char* values);
CellValue(int i);

CellValue();

const std::string& StringValue() const;
double NumericValue() const;
bool BooleanValue() const;
unsigned long ErrorValue() const;

std::string StringValueLowerCase() const;

enum ValueType
{

string, number, boolean, error, empty
};

operator std::string() const;
operator bool() const;
operator double() const;
operator unsigned long() const;

void clear();
private:

ValueType Type;
std::string ValueAsString;
double ValueAsNumeric;
bool ValueAsBool;
unsigned long ValueAsErrorCode;

};

class CellMatrix
{

222 Templatizing the factory

public:

CellMatrix(unsigned long rows, unsigned long columns);
CellMatrix();
CellMatrix(double x);
CellMatrix(std::string x);
CellMatrix(const char* x);
CellMatrix(const MyArray& data);
CellMatrix(const MyMatrix& data);
CellMatrix(unsigned long i);
CellMatrix(int i);

const CellValue& operator()(
unsigned long i, unsigned long j) const;

CellValue& operator()(unsigned long i, unsigned long j);

unsigned long RowsInStructure() const;
unsigned long ColumnsInStructure() const;

void PushBottom(const CellMatrix& newRows);

private:

std::vector<std::vector<CellValue> > Cells;
unsigned long Rows;
unsigned long Columns;

};
CellMatrix MergeCellMatrices(const CellMatrix& Top,

const CellMatrix& Bottom);
#endif

The implementation of the class is largely as a table of objects of type CellValue.
We therefore discuss the CellValue class first. This is intended to represent the
possible values a cell can hold. Thus we have 5 types of values:

enum ValueType
{

string, number, boolean, error, empty
};

14.7 Cell matrices 223

giving the possibilities of it holding a string, a double, a bool, an error code,
or simply being empty. The error codes are represented by unsigned longs, in
accordance with the practice in EXCEL.

The methods

bool IsAString() const;
bool IsANumber() const;
bool IsBoolean() const;
bool IsError() const;
bool IsEmpty() const;

allow us to test if a CellValue is of a given type. Once we know it is of that type,
then we can get it via the methods

const std::string& StringValue() const;
double NumericValue() const;
bool BooleanValue() const;
unsigned long ErrorValue() const;
std::string StringValueLowerCase() const;

with the obvious effects. Note that a CellValue can be of at most one type and
attempting to use it as another will yield a throw.

Note that we also have the methods

operator std::string() const;
operator bool() const;
operator double() const;
operator unsigned long() const;

which may appear a little confusing to the reader. These are implicit conversion
operators. For example, suppose a routine, f, expects a double and we have a
CellValue called x holding a double. We can use our original methods to code

f(x.NumericValue());

but it would be nice if we could just put

f(x);

Implicit conversion operators allow us to do this. The declaration

operator double() const;

says that the CellValue can be treated as a double and, when this is done, the
method

224 Templatizing the factory

CellValue::operator double() const

is called to give the requisite value. Note that with conversion to user-defined
classes an alternative is simply to write a new constructor that takes in a
CellValue, but this is not an option for inbuilt types such as doubles.

We also provide constructors for various types to make it easy to create
CellValues. In addition, we provide a method for clearing the value: clear().

The implementation of this class is straightforward and the details can be found
in the file CellMatrix.cpp in the xlw project.

The CellMatrix class itself is just a table of values implemented as a vector of
vectors for simplicity. Note that using a vector of vectors is not recommended
for numerical code for efficiency reasons – it may result in data in the same matrix
being in rather different parts of the memory and switching memory locations is
time consuming. Here, however, we are purely interested in convenience and the
design is adequate.

The main thing to remark on in the class is the number of constructors. This
is because we will want to write functions returning lots of different types to the
spreadsheet. By making the CellMatrix constructors take in all of these, we can
simply write routines that return them and convert to a CellMatrix automatically
and via that to a spreadsheet data-type. Otherwise the user will be perpetually writ-
ing code at the end of routines to convert data to the correct type.

Note we include a couple of routines for merging CellMatrix objects.
PushBottom simply adds some new rows to the bottom of the CellMatrix, widen-
ing the object if necessary. MergeCellMatrices does essentially the same thing
but with a non-member function interface.

The implementation of this class is straightforward and can be found in
CellMatrix.cpp.

14.8 Cells and the ArgumentLists

We now return to our discussion of the ArgumentList, and in particular look at its
methods relating to cells. The most important of these is the constructor that takes
in a CellMatrix

ArgumentList(CellMatrix cells,
std::string ErrorIdentifier);

The idea is that the user in a spreadsheet enters a table of values and these are
then used to construct an argument list, which can then be used to create on object
from the factory. The constructor takes in an additional string to make it easy to
identify where the problem occurred in the event of an error being thrown.

14.8 Cells and the ArgumentLists 225

The constructor uses an auxiliary routine ExtractCells. The implementation
is fairly straightforward and we only comment on the unusual parts.

CellMatrix ExtractCells(CellMatrix& cells,
unsigned long row,
unsigned long column,
std::string ErrorId,
std::string thisName,
bool nonNumeric)

{
if (!cells(row,column).IsANumber())

throw(ErrorId+" "+thisName+
"rows and columns expected.");

if (cells.ColumnsInStructure() <= column+1)
throw(ErrorId+" "+thisName+

"rows and columns expected.");
if (!cells(row,column+1).IsANumber())

throw(ErrorId+" "+thisName+
"rows and columns expected.");

unsigned long numberRows = cells(row,column);
unsigned long numberColumns = cells(row,column+1);

cells(row,column).clear();
cells(row,column+1).clear();

CellMatrix result(numberRows,numberColumns);

if (numberRows +row+1>cells.RowsInStructure())
throw(ErrorId+" "+thisName+

"insufficient rows in structure");

if (numberColumns +column>cells.ColumnsInStructure())
throw(ErrorId+" "+thisName+

"insufficient columns in structure");

for (unsigned long i=0; i < numberRows; i++)
for (unsigned long j=0; j < numberColumns; j++)
{

result(i,j) = cells(row+1+i,column+j);

226 Templatizing the factory

cells(row+1+i,column+j).clear();

if (!result(i,j).IsANumber())
nonNumeric = true;

}

return result;

}

ArgumentList::ArgumentList(CellMatrix cells,
std::string ErrorId)

{
CellValue empty;
unsigned long rows = cells.RowsInStructure();
unsigned long columns = cells.ColumnsInStructure();

if (rows == 0)
throw(std::string(

"Argument List requires non empty cell matix")
+ErrorId);

if (!cells(0,0).IsAString())
throw(

std::string("a structure name must be specified"
"for argument list class ")+ErrorId);

else
{

StructureName = cells(0,0).StringValueLowerCase();
cells(0,0) = empty;

}
{for (unsigned long i=1; i < columns; i++)

if (!cells(0,i).IsEmpty())
throw("An argument list should only"

"have the structure name"
"on the first line: "
+StructureName+ " " + ErrorId);

14.8 Cells and the ArgumentLists 227

}

ErrorId +=" "+StructureName;
{for (unsigned long i=1; i < rows; i++)

for (unsigned long j=0; j < columns; j++)
if (cells(i,j).IsError())

GenerateThrow("Error Cell passed in ",i,j);}

unsigned long row=1UL;

while (row < rows)
{

unsigned long rowsDown=1;
unsigned column = 0;

while (column < columns)
{

if (cells(row,column).IsEmpty())
{
// check nothing else in row

while (column< columns)
{

if (!cells(row,column).IsEmpty())
GenerateThrow("data or value where"

" unexpected."
,row, column);

++column;
}

}
else // we have data
{

if (!cells(row,column).IsAString())
GenerateThrow(

"data where name expected.",
row, column);

std::string thisName(
cells(row,

column).StringValueLowerCase());

228 Templatizing the factory

if (thisName =="")
GenerateThrow(

"empty name not permissible.",
row, column);

if (rows == row+1)
GenerateThrow("No space where data"

"expected below name",
row, column);

cells(row,column).clear();
// weird syntax to satisfy VC6

CellValue* belowPtr = &cells(row+1,column);
CellValue& cellBelow = *belowPtr;

if (cellBelow.IsEmpty())
GenerateThrow(

"Data expected below name",
row, column);

if (cellBelow.IsANumber())
{

add(thisName, cellBelow.NumericValue());
column++;
cellBelow=empty;

}
else

if (cellBelow.IsBoolean())
{

add(thisName,
cellBelow.BooleanValue());

column++;
cellBelow=empty;

}
else // ok its a string
{

std::string stringVal
= cellBelow.

StringValueLowerCase();

14.8 Cells and the ArgumentLists 229

if ((cellBelow.StringValueLowerCase()
== "list") ||

(cellBelow.StringValueLowerCase()
== "matrix") ||

(cellBelow.StringValueLowerCase()
== "cells"))

{
bool nonNumeric = false;
CellMatrix extracted(

ExtractCells(cells,
row+2,
column,
ErrorId,
thisName,
nonNumeric));

if (cellBelow.StringValueLowerCase()
== "list")

{
ArgumentList value(extracted,

ErrorId+":"
+thisName);

addList(thisName,
extracted);
//note not value

}

if (cellBelow.StringValueLowerCase()
== "cells")

{
add(thisName,extracted);

}

if (cellBelow.StringValueLowerCase()
== "matrix")

{

230 Templatizing the factory

if (nonNumeric)
throw("Non numerical value"

" in matrix argument :"
+thisName+ " "+ErrorId);

MJMatrix value(
extracted.RowsInStructure(),
extracted.ColumnsInStructure());

for (unsigned long i=0;
i < extracted.

RowsInStructure(); i++)
for (unsigned long j=0;
j < extracted.

ColumnsInStructure(); j++)
ChangingElement(value,i,j) =

extracted(i,j);
add(thisName,value);

}

cellBelow = empty;
rowsDown = maxi(rowsDown,

extracted.RowsInStructure()+2);
column+= extracted.

ColumnsInStructure();
}
else // ok its an array or boring string
{

if (cellBelow.StringValueLowerCase()
== "array"

|| cellBelow.StringValueLowerCase()
== "vector")

{
cellBelow.clear();

if (row+2>= rows)
throw(ErrorId

+" data expected below"
"array "+thisName);

14.8 Cells and the ArgumentLists 231

unsigned long size =
cells(row+2,column);

cells(row+2,column).clear();

if (row+2+size>=rows)
throw(ErrorId

+" more data expected"
"below array"+thisName);

MyArray theArray(size);

for (unsigned long i=0; i < size;
i++)

{
theArray[i] =

cells(row+3+i,column);
cells(row+3+i,column).clear();

}

add(thisName,theArray);

rowsDown = maxi(rowsDown,size+2);

column+=1;
}
else
{

std::string value =
cellBelow.StringValueLowerCase();

add(thisName,value);
column++;
cellBelow=empty;

}
}

}
}

}
row+=rowsDown+1;

232 Templatizing the factory

}

{for (unsigned long i=0; i < rows; i++)
for (unsigned long j=0; j < columns; j++)

if (!cells(i,j).IsEmpty())
{
GenerateThrow("extraneous data "+ErrorId,i,j);

}}
}

The constructor takes the name for the structure the string in the top left corner
of the CellMatrix. In the event, that this is not a string, it throws. It also throws
if the rest of the line is non-empty.

Throughout, every time a cell is used, its value is set to empty. This means that,
at the end, we can check that every value has been used simply by checking that
all cells are empty; if one is not, we throw. We also check to ensure that no error
values have been passed in, and return an error message if they have.

We then scan through each row looking for identifier tags. If we find a string,
then we look for data below it. Either there is data immediately below, or there is
a tag specifying type of data: “cells, list, matrix, array, vector.” The types “vector”
and “array” both specify an “array.” If there is a tag, we look below again for the di-
mension of the data, and then extract out the table of data using the ExtractCells
function.

Note that if the argument is of type “list”, we convert it to an ArgumentList and
then discard the result. This allows us to be sure that no errors will be generated by
the conversion to an ArgumentList at a later stage when the object is queried for
this argument.

If there is no tag, then the argument is a number, boolean or string and we iden-
tify the type from the CellValue and add it to the ArgumentList.

Whenever an error is found, we call the GenerateThrow method which attaches
the row and column of the problem to the error message to make it easier for the
user to spot the problem.

14.9 The template factory

We have seen how to code an argument list class and how to create objects of the
class from a spreadsheet input. This solves the factory problem of having to cope
with many types of arguments, since we just encapsulate them all in the new class.
We are now in a position to develop the template factory advertised at the start of
the chapter.

Here is the factory from xlw

14.9 The template factory 233

Listing 14.4 (ArgListFactory.h)

#ifndef ARG_LIST_FACTORY_H
#define ARG_LIST_FACTORY_H
#ifdef _MSC_VER
#if _MSC_VER < 1250
#pragma warning(disable:4786)
#define VC6
#endif
#endif

#include <xlw/ArgList.h>
#include <map>
#include <string>

template<class T>
class ArgListFactory;

// friend rather than method to avoid bug in VC6.0
// with static data in member template functions
template<class T>
ArgListFactory<T>& FactoryInstance()
{

static ArgListFactory<T> object;
return object;

}

template<typename T>
class ArgListFactory
{
public:
#ifndef VC6

friend ArgListFactory<T>& FactoryInstance<>();
#else

friend ArgListFactory<T>& FactoryInstance();
#endif

typedef T* (*CreateTFunction)(const ArgumentList&);
void RegisterClass(std::string ClassId, CreateTFunction);
T* CreateT(ArgumentList args);
~ArgListFactory(){};

234 Templatizing the factory

private:
std::map<std::string, CreateTFunction> TheCreatorFunctions;
std::string KnownTypes;
ArgListFactory(){}
ArgListFactory(const ArgListFactory&){}
ArgListFactory& operator=(

const ArgListFactory&){ return *this;}
};

template<typename T>
void ArgListFactory<T>::RegisterClass(std::string ClassId,

CreateTFunction CreatorFunction)
{

MakeLowerCase(ClassId);
TheCreatorFunctions.insert(

std::pair<std::string,
CreateTFunction>(ClassId,CreatorFunction));

KnownTypes+=" "+ClassId;
}

template<typename T>
T* ArgListFactory<T>::CreateT(ArgumentList args)
{

std::string Id = args.GetStringArgumentValue("name");

if (TheCreatorFunctions.find(Id) ==
TheCreatorFunctions.end())

{
throw(Id+" is an unknown class. Known types are"

+KnownTypes);
}

return (TheCreatorFunctions.find(Id)->second)(args);
}

// easy access function
template<class T>
T* GetFromFactory(const ArgumentList& args)

14.9 The template factory 235

{
return FactoryInstance<T>().CreateT(args);

}
#endif

The factory is templatized on a type T, which, is the type of the base class. After
studying how to do generic singletons at the start of the chapter, you will note
that this is not how the factory has been done. The reason is that the curiously
recurring template pattern singleton is too smart for some compilers (e.g. VC6.0);
when optimizing they get confused about how many copies there are of a static
variable declared in a method of a template class.

Instead, we therefore work with a friend function called FactoryInstance
which can access the private constructor. This has a static variable of type
ArgListFactory<T>, and so plays the same role as the static member function
Instance in our previous factory. Note the syntax for the friend declaration:

#ifndef VC6
friend ArgListFactory<T>& FactoryInstance<>();

#else
friend ArgListFactory<T>& FactoryInstance();

#endif

In up-to-date compilers, we have to include <> at the end of the method name.
The rest of the template class is very similar to our non-template factory. Note

that we make the names lower case to avoid confusion, and we store a list of all
names registered to make it easy to guide the user when an invalid name is passed
in. The CreateT method only takes in an ArgumentList and does not take in
a separate key; instead the key is queried from the ArgumentList with the tag
“name.”

We include the extra function

T* GetFromFactory(const ArgumentList& args)

to make calling the factory particularly easy.
We also need the helper class to register classes inherited from T with the factory.

This is done in the file xlw/ArgListFactoryHelper.h

#ifndef ARG_LIST_FACTORY_HELPER_H
#define ARG_LIST_FACTORY_HELPER_H
#include <xlw/ArgListFactory.h>
#include <string>

template<class TBase, class TDerived>

236 Templatizing the factory

class FactoryHelper
{
public:
FactoryHelper(std::string);
static TBase* create(const ArgumentList&);
~FactoryHelper(){}

};

template<class TBase, class TDerived>
FactoryHelper<TBase,TDerived>::FactoryHelper(std::string id)
{

MakeLowerCase(id);
FactoryInstance<TBase >().RegisterClass(id,

FactoryHelper<TBase,
TDerived>::create);

}

template<class TBase, class TDerived>
TBase*
FactoryHelper<TBase,TDerived>::create(

const ArgumentList& Input)
{

return new TDerived(Input);
}

#endif

Here everything has been templatized on both the base class and the derived class.
The derived class will be the class being registered and the base class will specify
the factory to be registered with. Otherwise, our helper class is very much the same
as the non-template one.

Note that we have written our class to only work with the ArgumentList; we
could go further and templatize on the argument type, then having two template pa-
rameters for the factory and three for the helper class. However, the ArgumentList
class is sufficiently general that the extra flexibility would seem to gain us little at
the cost of opaque syntax.

14.10 Using the templatized factory 237

14.10 Using the templatized factory

We have now achieved our objective; we have a general template factory, which
will take in multiple arguments. We return to our original motivating example:
coding a factory for a pay-off class that takes in multiple arguments. An example
of this is given in the “TestFiles” folder in xlw.

The PayOff class there is very simple

Listing 14.5 (PayOff.h)

#ifndef PAYOFF_H
#define PAYOFF_H
class PayOff
{
public:

PayOff();
virtual double operator()(double Spot) const=0;
virtual ~PayOff();
virtual PayOff* clone() const=0;

private:

};
#endif

The trivial implementations of the constructor and destructor are in PayOff.cpp.
Inherited from this class, we have three examples given in PayOffConcrete.cpp.

Listing 14.6 (PayOffConcrete.h)

#ifndef PAYOFF_CONCRETE_H
#define PAYOFF_CONCRETE_H

#include "PayOff.h"
#include <xlw/ArgList.h>
#include <xlw/Wrapper.h>
#include <xlw/ArgListFactory.h>

class PayOffCall : public PayOff
{
public:

238 Templatizing the factory

PayOffCall(ArgumentList args);
virtual double operator()(double Spot) const;
virtual ~PayOffCall(){}
virtual PayOff* clone() const;

private:
double Strike;

};

class PayOffPut : public PayOff
{
public:

PayOffPut(ArgumentList args);
virtual double operator()(double Spot) const;
virtual ~PayOffPut(){}
virtual PayOff* clone() const;

private:
double Strike;

};

class PayOffSpread : public PayOff
{
public:

PayOffSpread(ArgumentList args);
virtual double operator()(double Spot) const;
virtual ~PayOffSpread(){}
virtual PayOff* clone() const;

private:
Wrapper<PayOff> OptionOne;
Wrapper<PayOff> OptionTwo;
double Volume1;
double Volume2;

14.10 Using the templatized factory 239

};

#endif

We have classes for the put, the call, and a spread, which is a linear multiple of
two other pay-offs. In all three cases, the sole constructor takes an ArgumentList,
so the factory is directly usable. The class PayOffSpread can be viewed as an
example of the composite pattern, which is similar to decorator; the difference
being that more than one underlying class is involved.

The classes are implemented in PayOffConcrete.cpp.

Listing 14.7 (PayOffConcrete.cpp)

#include <xlw/port.h>
#include "PayOffConcrete.h"

PayOffCall::PayOffCall(ArgumentList args)
{

if (args.GetStructureName() != "payoff")
// must be lower case here throw("payoff structure expected

in PayOffCall class");

if (args.GetStringArgumentValue("name") != "call")
throw("payoff list not for call passed to PayOffCall"

" : got "+args.GetStringArgumentValue("name"));

Strike = args.GetDoubleArgumentValue("strike");
args.CheckAllUsed("PayOffCall");

}

double PayOffCall::operator () (double Spot) const
{

return Spot-Strike > 0.0 ? Spot-Strike :0.0;
}

PayOff* PayOffCall::clone() const
{

return new PayOffCall(*this);
}
double PayOffPut::operator () (double Spot) const

240 Templatizing the factory

{
return Strike-Spot > 0.0 ? Strike-Spot :0.0;

}

PayOffPut::PayOffPut(ArgumentList args)
{
if (args.GetStructureName() != "payoff")

// must be lower case here throw("payoff structure expected"
"in PayOffCall class");

if (args.GetStringArgumentValue("name") != "put")
throw("payoff list not for put passed to PayOffPut : got "

+args.GetStringArgumentValue("name"));

Strike = args.GetDoubleArgumentValue("strike");
args.CheckAllUsed("PayOffPut");

}

PayOff* PayOffPut::clone() const
{

return new PayOffPut(*this);
}

double PayOffSpread::operator()(double Spot) const
{

return Volume1*(*OptionOne)(Spot)+
Volume2*(*OptionTwo)(Spot);

}
PayOffSpread::PayOffSpread(ArgumentList args)
{

if (args.GetStructureName() != "payoff")
// must be lower case here throw("payoff structure expected"

"in PayOffCall class");

if (args.GetStringArgumentValue("name") != "spread")
throw("payoff list not for spread passed to"

"payoffspread : got"+args.GetStringArgumentValue(
"name"));

14.10 Using the templatized factory 241

if (!args.GetIfPresent("Volume1",Volume1))
Volume1= 1.0;

if (!args.GetIfPresent("Volume2",Volume2))
Volume2= -1.0;

OptionOne = Wrapper<PayOff>(GetFromFactory<PayOff>(
args.GetArgumentListArgumentValue(

"optionone")));

OptionTwo = Wrapper<PayOff>(GetFromFactory<PayOff>(
args.GetArgumentListArgumentValue(

"optiontwo")));

args.CheckAllUsed("PayOffSpread");
}

PayOff* PayOffSpread::clone() const
{

return new PayOffSpread(*this);
}

The implementation of these classes are straightforward, with the only interest
being in how the ArgumentList class is used. For the PayOffPut class, we first
check that the ArgumentList class has been tagged with “payoff.” Note that all
data passed in have been put into lower case so we must use lower case when
checking. We then check that the name argument is indeed “put.” In each case, we
throw if there is a problem.

We get the strike by calling GetDoubleArgumentValue("strike") and put it
into the relevant data member. Finally, we make sure that the user has not supplied
extra irrelevant arguments using the CheckAllUsed method.

The constructor for PayOffSpread is more interesting. The first part is the same
as before. We then check to see if the notionals of the two underlying options have
been specified and otherwise set default values.

To get the underlying options themselves, we use list arguments from the
ArgumentList passed in and call the same factory. Note that the factory returns
raw pointers, but these are immediately taken over by the Wrapper class, which
ensures that they are properly memory managed.

Note the important synergies here between the composite pattern and the
ArgumentList class. We are able to bring our composite into the factory because

242 Templatizing the factory

it is legitimate to have data stored in the ArgumentList class, which is of the same
type, and can therefore be used to create more objects from the factory. Note that
we could even specify the inner class to be another PayOffSpread. The process
has to end somewhere, since the number of cells used to make each successive
CellMatrix gets smaller each time.

We still have to register these classes with the factory, this is done in
PayOffRegistration.cpp

Listing 14.8 (PayOffRegistration.cpp)

#include <xlw/ArgListFactoryHelper.h>
#include "PayOffConcrete.h"

namespace
{

FactoryHelper<PayOff,PayOffCall> callHelper("call");
FactoryHelper<PayOff,PayOffPut> putHelper("put");
FactoryHelper<PayOff,PayOffSpread> spreadHelper("spread");

}

Why do this is in a separate file? The reason is that if we decide to place the PayOff
classes in a static library, then we cannot put the registrations in the library. The
reason is that if we do, then they will be ignored! Material in a static library is only
included when linking if it is referenced somewhere; a global variable declaration
not mentioned anywhere will not be referenced and so not included.

14.11 Key points

In this chapter, we have seen how to create a templatized factory and met a few
techniques along the way.

• Private inheritance can be used to express “implemented in terms of.”
• The curiously recurring template pattern can be used to make the return type of

a base class method equal to the type of the inherited class.
• The singleton can be implemented using the curiously recurring template pattern.
• We can use an argument list class to encapsulate a variable number of arguments

of varying types.
• Some compilers have problems with the curiously recurring template pattern

implementation of the singleton.
• The argument list class allows us to create a templatized factory without worry-

ing about the types of arguments.
• The CellMatrix class gives us a way of transferring data to and from spread-

sheets without having to deal with the particulars of the spreadsheet’s data types.

14.12 Exercises 243

14.12 Exercises

Exercise 14.1 Modify the random number classes to work with the ArgumentList
factory. Include anti-thetic sampling and moment matching with arbitrary underly-
ing classes amongst the classes to register.

Exercise 14.2 Modify the xlw factory so it uses the Singleton class developed
here.

Exercise 14.3 Create a static library containing the pay-off classes from xlw and
check how the registration works.

15

Interfacing with EXCEL

15.1 Introduction

The xlw package consists of a set of routines for building xlls. An xll is a dynamic
link library (dll) that contains some special functions that allow the user to register
functions with EXCEL. Once the xll has been created we simply open it from
EXCEL, and some new functions appear that can be used just like ordinary inbuilt
functions.

Our focus in this chapter is on how to use xlw. We do not address how it works.
Indeed the philosophy of the current version is that using it should be similar to
using a compiler – we wish to understand how to use all the features, but not how
it works internally. The source code is fully available for those who are curious,
however.

In this chapter, we will restrict our discussion to xlw 2.1. The package can be
obtain from xlw.sourceforge.net. There is also an xlw-users mailing list
which you can subscribe to for further discussion. The essential difference between
the series 2 releases of xlw, which the author of this book wrote, and previous
releases due to Jerome Lecomte and Ferdinando Ametrano is that the interfacing
code is written automatically, so the user needs to know nothing about special data
types or registration code.

The package comes with project files for 4 four different IDES: Visual Studio
6.0, 7.1, and 8.0, and for DevCpp. The DevCpp IDE is an open source IDE, which
uses the MingW g++ compiler, so in particular this allows production of xlls using
that compiler.

The xlw 2.1 package comes in three pieces:

• a console application run from the command line called InterfaceGenerator;
• a static library called xlwLib;
• and an example project with the name varying with compiler.

The user first has to build the InterfaceGenerator and xlwLib. Interfacing is

244

www.klw.sourceforge.net
www.klw-users

15.2 Usage 245

done by applying InterfaceGenerator to header files at the command line. This
then produces a C++ source file, which contains the code to interface the functions
declared in that header file to EXCEL. A project then has to be built that links
against xlwLib and includes the new source file.

The main trickinesses in the use of xlw are to do with how to set up projects and
build for the first time; no actual interface coding is done by the user.

15.2 Usage

Before using xlw 2.1, we first have to build the xlw 2.1 library and the interface
generator. The interface generator project can be found in the directory appropriate
for your compiler:

• For DevCpp look in the folder xlwDevCpp, and the project is called
InterfaceGenerator.dev.

• For Visual Studio 8.0, open the solution in the folder xlwVisio8, and the project
is called InterfaceGenerator.

• For Visual Studio 7.1, open the solution in the folder xlwVisio7, and the project
is called InterfaceGenerator.

• For Visual Studio 6.0, open the workspace in the folder xlwVisio6, and the
project is called InterfaceGenerator.

This project should be built and will produce a console application called
InterfaceGenerator.exe. Note that we can use the version of this application built
with any one compiler with any other compiler without trouble.

Second we need to build the xlw 2.1 library to link against. The project files are
in the same place as for the console application.

• For DevCpp the project file is called DevCppLibXl.dev, and the library file is
called DevCppLibXl.a, and is built in to the same folder.

• For Visual Studio 8.0, the project is called xlwLib. The built libraries are
xlwLib-Debug.lib and xlwLib.lib, and will be built into xlwLib/Release and
xlwLib/Debug, respectively.

• For Visual Studio 7.1, the project is called xlwLib. The built libraries are
xlwLib-Debug.lib and xlwLib.lib, and will be built into xlwLib7/Release and
xlwLib7/Debug, respectively.

• For Visual Studio 6.0, the project is called xlwLib. The built libraries are
xlwLib-Debug.lib and xlwLib.lib, and will be built into xlwLib6/Release and
xlwLib6/Debug, respectively.

For each compiler, an example project is given of functions to be exported to the
xll. These are called: DevCppXll.dev and xlwVisio. Each project contains a header

246 Interfacing with EXCEL

file Test.h, a source file Test.cpp and an interface file xlwTest.cpp; these are
contained in the folder TestFiles. Some files for payoffs can also be found there,
and example spreadsheets.

It is the interface file xlwTest.cpp that has been automatically generated. To
re-generate it, simply ensure that InterfaceGenerator.exe is in the path or in the
same directory as Test.h and then at a command prompt type “InterfaceGenerator
Test.h.”

Simply building the xll project will then produce an xll, which can be opened in
EXCEL and produces extra functions in a library called “MyTestLibrary.”

To use xlw 2.1 for your own functions, you must first write a C++ function
which compiles and builds except for the interfacing code. The functions to be ex-
ported to EXCEL should be contained in header files which contain nothing else.
The InterfaceGenerator should then be applied to them. If the header file is called
MyFile.h, the new file will be called xlwMyFile.cpp. The new file should then
be added to the project. Note InterfaceGenerator will ignore any preprocessor com-
mands, and will throw an error if the header file contains any classes or function
definitions. It will also protest if any unknown data types are found; we discuss
what data types are acceptable in Section 15.3.

The information for the function wizard in EXCEL is taken from comments and
the names of argument variables in the header file. This means that arguments must
be named. A comment should follow each argument name and this will appear in
the function wizard when that argument is being entered. The general description
of the function should be in a comment between the type of the function and its
name.

Arguments can be passed by reference or by value, and can be const or non-
const. (In fact, these have no effect on the coding of the interface file.)

Once the interface file has been added to the project, we simply build the project
and then the output xll file should be openable by EXCEL. Note that we can have
any number of interface files in the same xll project.

If you wish to create a new xll project, this can be done. The things to do are:

• The folder containing the xlw folder must be on the include path.
• The folder containing the xlw library file must be on the linking path.
• The xlw library file must be on the list of files to link against (i.e. for Visual

studio, xlwLib.lib in release mode and xlwLib-Debug.lib in debug mode).
• The project must be a dll project in DevCpp. (Create a dll project, remove the

file created by DevCpp, and then add your files.)
• The project must use multi-threaded dll code generation in Visual Studio. This

means that you should create a dll project, or create a “Win32” application and
then use “Application settings” to switch its type to a dll.

15.3 Basic data types 247

• Change the name of the output file to MyName.xll.

Note if you are working with Visual Studio 8.0 Express, in addition, you must
do the following:

• Install the Microsoft Platform SDK; this can be downloaded from the Microsoft
website.

• The include directory for the SDK must be on the include path; this should hap-
pen automatically when you install the SDK.

• Link against the following libraries in debug mode: odbc32.lib odbccp32.lib,
User32.lib, xlwLib-Debug.lib.

• Link against the following libraries in release mode: odbc32.lib, odbccp32.lib,
User32.lib, xlwlib.lib

• Make sure the SDK library directory is included on the list of directories to
search for library directories.

• When creating a new project, you must use create new project from existing
code, and then later on say that it is a dll project. (This is not an option when
creating new projects from new code.)

15.3 Basic data types

The function to be exported to EXCEL can only use data types supported by the in-
terface generator. These are divisible into basic data types and extended types. The
basic types are double, short, NEMatrix, MyMatrix, MyArray, CellMatrix,
string, std::string, and bool. The extended data types are: int, unsigned
long, ArgumentList, DoubleOrNothing, and PayOff.

The reason that int and unsigned long are extended types rather than basic
types is that the type used by xlw to communicate with EXCEL is the XLOPER.
This is a polymorphic data type with two numeric data types that are essentially
short and double, so other numeric types go via double.

The class MyMatrix is defined via a typedef in MyContainers.h to MJMatrix.
You can change this to your favourite matrix type. The matrix class must support
the following: it should have .rows() and .columns() defined, a constructor
that takes number of rows and columns, and elements should be accessible via
a[i][j]. If your matrix class only supports element access via round brackets,
you should define the macro USE PARENTHESESES.

The class NEMatrix is a typedef for MyMatrix, but if you declare an argument
to be of this type, then the function will not be called unless the argument is a non-
empty matrix of numbers. (Otherwise, you get #VALUE.) If you are working with
very large matrices, it should be more stable as the data type is much simpler and

248 Interfacing with EXCEL

uses a different mechanism for transmitting the data to and from EXCEL. (For xll
experts, it uses type “K” rather than type “P.”)

The class MyArray is also defined via a typedef in MyContainers.h. The de-
fault is to typedef to std::vector. It must have .size(), a constructor taking
the size, and operator[] defined.

We discussed the CellMatrix class at length in Section 14.8. The fact that this
class allows a table of cells of arbitrary values including errors means that the
conversion of EXCEL data to it should virtually never fail, since it allows error
codes.

The types std::string and string are both allowed. These are the same class
and the difference is simply in whether the namespace std has already been de-
clared via using.

15.4 Extended data types

The xlw 2.1 package has been designed to make it easy to work with your own data
types. The only constraint is that a function (or method) must exist that takes in a
data type that is already constructible from basic types and creates the new type. We
require the construction to be from a single previous type: argument specification
would get rather complicated if multiple types were allowed. For this purpose, a
constructor is equivalent to a function.

To add in extra types, we have to modify the InterfaceGenerator project. We
simply add a declaration in the file TypeRegistrations.cpp. Note that the new
classes themselves should not be included in the InterfaceGenerator project,
since this project’s role is to write C++ code and not to create executables.

For example

TypeRegistry::Helper
arglistreg("ArgumentList", // new type

"CellMatrix", // old type
"ArgumentList", // converter name
false, // is a method
true, // takes identifier
"", // no key
"<xlw/ArgList.h>" // force inclusion

// of this file
);

TypeRegistry::Helper
payoffreg("Wrapper<PayOff>", // new type

"ArgumentList", // old type

15.4 Extended data types 249

"GetFromFactory<PayOff>",
// converter name

false, // is a method
false, // takes identifier
"" , // no key
"<xlw/ArgListFactory.h>"
);

The first argument is the identifier for the new type.
The type to convert from is specified by the second argument.
The third is the function or method used to construct the new type from the old

one.
The first bool is to specify whether the conversion function is a method of the

old class, or simply a function or constructor that takes in an object of the old class.
The second bool indicates whether the converter method or function takes in a

second argument that is a string expressing an identifier in case of error – this is
very handy when trying to work out which argument in your complicated function
is dubious.

For the curious only, the key is to tell EXCEL the type, this is generally only
used when defining a basic type. This is typically “R” or “P.” Doubles are passed
as type “B” and non-empty matrices as “K.” The types “R” and “P” indicate that the
data are passed using the very useful but slightly painful data type XLOPER, which
xlw then turns into an XlfOper. The type “K” means to pass using a floating point
array, and “B” means pass directly as a double.

The last argument allows the forcing of extra #includes in our .cpp interface
file. This allows us to ensure that the conversion function is available.

We can define new types from other new types. The maximum depth is 26, at
which point the parser concludes that we have accidentally created a loop.

The three main data types that have been added for illustration are the
DoubleOrNothing, ArgumentList and Wrapper<PayOff>. The ArgumentList
we discussed at length in Chapter 14.

The DoubleOrNothing class allows us distinguish between a number passed in
or an empty argument. We can therefore choose between a number passed in, and
a default value if the argument is empty.

We illustrate using an argument list factory with EXCEL using the PayOff class.
The factory returns a raw pointer to the base class, so this should be immediately
converted to a smart pointer as we discussed in Section 13.3. Our new data type is
therefore

Wrapper< PayOff >

which takes ownership and ensures deletion at the appropriate time. Note the point

250 Interfacing with EXCEL

here that although the factory returns a raw pointer, the registration simply specifies
the Wrapper, which silently takes ownership of the pointer.

We discuss briefly how this is implemented in the InterfaceGenerator project.
The mechanism here is similar to that used for the factory. Every declaration of
a TypeRegistry::Helper registers the new type with the IncludeRegistry
class. This class is implemented using a singleton defined via the curiously recur-
ring template pattern from Section 14.2.

15.5 xlw commands

When we look for your new functions in the function wizard in EXCEL, we will
find that there is a new set of commands called “MyTestFile”: the default name of
the library in EXCEL is the name of the header file. We can change this by inserting
the line

//<xlw:libraryname=MyTestLibrary

in the header file. Note that all functions in the header file will have the same library
name, which will be that specified by the last libraryname command.

Some functions in EXCEL have the property of giving a different value each
time they are called; for example, the time or the RAND() function. These functions
are said to be volatile. If we want a volatile function, then this can be done
as follows

double // system clock
//<xlw:volatile
SystemTime(DoubleOrNothing ticksPerSecond
// number to divide by

);

We can also time functions by inserting

//<xlw:time

in the same place. This causes two cells to be added below the function’s re-
sults containing “time taken” and the time taken in seconds. It is possible to time
volatile functions; the order of the two commands is not important.

15.6 The interface file

The interface generator creates the file xlwMyTestFile.cpp; it is not necessary
to ever look at this interface file. However, it can be edited directly if so desired.
It first has a DummyFunction declared in an unnamed namespace. This function

15.6 The interface file 251

references the functions xlAutoOpen and xlAutoClose and thus forces their in-
clusion in the xll. These functions carry out the registration of the other functions
with EXCEL and are therefore essential.

There is a line

const char* LibraryName = "MyTestLibrary";

This specifies the name of the library in the EXCEL function wizard. This is en-
closed in an anonymous namespace, so we can have multiple interface files in the
same xll.

For each function, there are two parts. The first is the registration informa-
tion. The second is the wrapper function called between EXCEL and the function
chosen.

An example of the registration information is

namespace
{
XLRegistration::Arg
ConcatArgs[]=
{
{ "str1"," first string "},
{ "str2","second string "}
};

XLRegistration::XLFunctionRegistrationHelper
registerConcat("xlConcat",
"Concat",
" Concatenates two strings ",
LibraryName,
ConcatArgs,
"RR");
}

The code is placed in an unknown namespace to ensure it does not affect any
linkage. The arguments are declared in the first part, with the name of each fol-
lowed by its description.

In the second part, a global variable is declared. The creation of this global vari-
able registers the function with a global singleton, which ensures that it is registered
with EXCEL. This approach allows the registration to be split across many files.
The information passed to the constructor is the name of the function in C++ in
the interface file, the name of the function in EXCEL, the function description, the

252 Interfacing with EXCEL

name of the library in EXCEL, the arguments declared above, and the types of the
arguments. The types are expressed via a code, e.g.:

• R – LPXLOPER by reference
• P – LPXLOPER by value
• B – double
• K – floating point array

In xlw 2.1, only the types P, B, K, and R are used. P is used for CellMatrix
and MyMatrix. K is used for NEMatrix. B for double. R is used for all other basic
types. Types such as bool are therefore first passed in as LPXLOPERs and then
transformed into the right data type.

An example of the interface function definition is

extern "C"
{
LPXLOPER EXCEL_EXPORT
xlConcat(
LPXLOPER xlstr1_,
LPXLOPER xlstr2_)
{
EXCEL_BEGIN;

if (XlfEXCEL::Instance().IsCalledByFuncWiz())
return XlfOper(true);

XlfOper xlstr1(xlstr1_);
std::string str1(xlstr1.AsString("str1"));

XlfOper xlstr2(xlstr2_);
std::string str2(xlstr2.AsString("str2"));

std::string result(
Concat(

str1,
str2)

);
return XlfOper(result);
EXCEL_END
}
}

15.7 The interface generator 253

The extern ‘C’ command is necessary as we are using the C API and therefore
must use C linkage.

The return type of the function is always LPXLOPER, but since this is a polymor-
phic data type, this is not a hindrance. EXCEL EXPORT is a macro

#define EXCEL_EXPORT __declspec(dllexport)

This ensures that the function is a dll export, and so can be dynamically linked
against.

Note that types are passed in as LPXLOPERs not XlfOpers or other types.
XlfOpers are not used since they cause a crash with the MinGW compiler as they
are not POD (plain old data) objects.

The macros EXCEL BEGIN and EXCEL END contain starting and finishing infor-
mation common to all functions. In particular, EXCEL END contains catches for
common data types to return information to EXCEL.

The routine then checks if it is being called from the function wizard. If it is,
then it immediately returns to EXCEL. This avoids time-consuming computations
being called whilst data are being entered.

Each argument is then converted. First to an XlfOper, and then using the .As
methods to the correct type. Note a string is passed into the .As method, this
allows a throw to identify the offending argument. If you use extended types, there
will be a string of conversions here.

Once the arguments have been converted, the original function is called and the
result stored. For return to EXCEL, it is converted into an XlfOper and this is
returned as an LPXLOPER.

15.7 The interface generator

The interface generator is written as a simple C++ routine. It is a console applica-
tion that takes in one argument. The output file name is an optional argument and
it defaults to adding “xlw” on the front and “.cpp” at the end.

The routine first reads in the file and places it in a vector of chars for conve-
nience. It is then turned into tokens. Each token will be an identifier, preprocessor
directive, comment, or delimiter.

Tokens corresponding to consts and ampersands are then removed, since they
will not affect the coding of the interface routine. At this stage, unsigned identifiers
are also dealt with.

Once this has been done, the file is turned into a list of functions, with each
function having a list of arguments with names and types.

The next operation is to identify all the types and find the conversion routines.

254 Interfacing with EXCEL

Once this has been done, the output file is written into a vector, and then written
to a file.

15.8 Troubleshooting

If you find that you can build the xll but that the functions do not register, here are
some common problems with xlls in general.

If absolutely nothing happens, then check security settings for macros. The de-
fault setting is to ignore files containing macros. Note for a reasonable level of
security setting, you will get asked whether to enable macros; if this does not hap-
pen then security levels are too high or possibly too low.

If you get an error saying that the file is in an “unrecognizable format,” possibil-
ities are

• Missing dlls on your machine. This often occurs if you compile in VC7 on one
machine and then move the xll to another one. This can be cured either by work-
ing out how to get the compiler not to need the dlls, or by copying the required
dlls to the new machine (or switch to using DevCpp.) Another solution is to
download “Microsoft Visual C++ 2005 Redistributable Package (x86)” which
is designed to solve this sort of problem but needs to be installed on the new
machine.

• Failure to export the auto open and auto close functions.

The dumpbin utility can be used to check whether the right functions are being
exported. If you have followed the instructions here, this should not be an issue.

15.9 Debugging with xlls

Suppose you have managed to build and run the xll. Now you want to debug it. It
is still possible to use the Visual Studio debugger. Here are the precise instructions
for Visual C++ 8.0. The approach is similar for the other Visual Studios. DevCpp
does have an inbuilt debugger, GDB, but it seems painful to use it.

• In the project properties, go to the “Debugging” part of the “Configuration” prop-
erties . In the “Command” entry select “Browse” and then browse for the EXCEL
executable.

• Below this, look for “command arguments.” In here we want the xll. To get this
go to the “Linker” part of “Configuration” properties and look for the value of
“output file.” Copy this and paste it into “command arguments.”

• Hit the F5 key.

The debugger should now stop on breakpoints in your C++ code, as usual, when
your functions are used.

15.11 Exercises 255

You can now exit in two ways: either by using the “stop debugging” command
in the “debug” menu, or by exiting EXCEL in the ordinary way. The first method
causes EXCEL to think that it crashed, and it will ask you about file recovery on
next being run. It is therefore best avoided.

15.10 Key points

• Quants generally don’t use console applications.
• xlls are a standard way of interfacing with EXCEL.
• xlw gives an easy way to create xlls.
• All interfacing code is generated automatically by xlw.

15.11 Exercises

Exercise 15.1 Download and build xlw.

Exercise 15.2 Create an xll that prices a Black–Scholes option using the analytic
formula from the appendix.

Exercise 15.3 Set up a new xlw project.

Exercise 15.4 Modify the InterfaceGenerator project so that it interfaces random
number generators.

16

Decoupling

16.1 Introduction
Have you ever worked on a library that you were scared to rebuild because it would
take too long? Or have you been afraid to change the contents of a file because of
the knock-on effects making everything recompile? Have you ever included a file in
your project and discovered that this made you include a large number of seemingly
irrelevant files in your project to get rid of unresolved symbol linker errors?

We have focussed in this book on issues relating to logical design and code
reuse. These examples are, however, not problems with logical design; for example,
adding an extra data member to a class forces every client to recompile but will not
cause any of them to have compilation errors. All these are examples of physical
design problems. Encapsulation, which we have discussed and illustrated at length,
assists with logical design but not physical design.

Physical design problems indicate pieces of code that are more tightly coupled
than they should be. In this chapter, we study physical design practice, and, in
particular, examine the concept of insulation. This is a much stronger requirement
than encapsulation, the difference being that if class A is insulated from class B, then
changes to A do not cause B to recompile. Whereas encapsulation merely guaran-
tees that B will not have to be recoded.

16.2 Header files
The fundamental difference between header files and source files is that header
files are included by other files both header and source via #include, whereas
source files should not be. The first consequence of this is that every time you use
#include in a header file, you are including a file not just into that header file but
also into every file that includes it both directly and indirectly.

Unnecessary header file inclusions therefore slow compile times in two ways,
first by causing the compiler to look at much more code for each compiled source
file, and second by causing more source files to require compilations. How can we
reduce the numbers of #includes?

256

16.2 Header files 257

The first and most important method is simply by being aware of the issue. If
you are ever tempted to #include a file just because your client might need it,
don’t! If your client needs it, he will include it for himself.

A second method which can make a large difference is to use forward declara-
tions. Often in a header file we simply need to know that a class exists, we don’t
need to know anything more about it. For example, suppose we have declared a
function f in our header file that takes in a CellMatrix and returns a double. We
could code this in two ways

Listing 16.1 (ExampleFile1.h)

#ifndef EXAMPLE_FILE1_H
#define EXAMPLE_FILE1_H

#include "CellMatrix.h"

double f(const CellMatrix& cells);

#endif

or by

Listing 16.2 (ExampleFile2.h)

#ifndef EXAMPLE_FILE2_H
#define EXAMPLE_FILE2_H

class CellMatrix;

double f(const CellMatrix& cells);

#endif

The first method forces any file that includes ExampleFile1.h to recompile
every time a change is made to CellMatrix.h or to a file included by it. The
second does not. Here is a non-trivial example of this technique taken from xlw:

#ifndef DOUBLE_OR_NOTHING_H
#define DOUBLE_OR_NOTHING_H
class CellMatrix;
#include <xlw/port.h>
#include <string>

258 Decoupling

class DoubleOrNothing
{
public:

DoubleOrNothing(const CellMatrix& cells,
const std::string& identifier);

bool IsEmpty() const;
double GetValueOrDefault(double defaultValue) const;

private:
bool Empty;
double Value;

};

#endif

The DoubleOrNothing class uses the CellMatrix in its constructor only so it
does not have to include the file from its header file. Of course, the source file does
include it

Listing 16.3 (DoubleOrNothing.cpp)

#include "DoubleOrNothing.h"
#include "CellMatrix.h"

DoubleOrNothing::DoubleOrNothing(const CellMatrix& cells,
const std::string& identifier)

{
if (cells.ColumnsInStructure() != 1

|| cells.RowsInStructure() != 1)
throw("Multiple values given "

"where one expected for DoubleOrNothing "
+identifier);

if (!cells(0,0).IsEmpty() && !cells(0,0).IsANumber())
throw("expected a double or nothing, got something else "

+identifier);

Empty = cells(0,0).IsEmpty();

16.3 Splitting files 259

Value = Empty ? 0.0 : cells(0,0).NumericValue();

}

bool DoubleOrNothing::IsEmpty() const
{

return Empty;
}

double DoubleOrNothing::GetValueOrDefault(double defaultValue)
const

{
return Empty ? defaultValue : Value;

}

If you get the error “undefined class” when compiling, this means that you have for-
ward declared a class but not included it when it is really needed. Note that clients
passed a DoubleOrNothing generally will not need to include CellMatrix.h,
since this is only needed for the constructor.

When can we use this technique? As long as we have no variables of the type of
the class, and we attempt to call no methods of the class, then a forward declaration
is sufficient. This means that if we have data members of type CellMatrix, then
we must include CellMatrix.h, but we can have pointers of type CellMatrix* if
we wish without inclusion. We can also use forward-declared classes as arguments
of functions and as return types.

One thing we cannot do is forward declare identifiers that are typedefed. So if
we have defined MyArray by typedef, then we must always include the file with
the typedef. Note the unpleasant consequence of this is that if we have forward
declared our array class everywhere and then decide that we want to switch to an-
other class, then we will get compilation errors everywhere if we decide to achieve
the change via typedef.

16.3 Splitting files

An important physical design issue is how to divide up code. The simplest form of
this question is “how many classes do I put in one file?” An easy answer is one. The
only problem with this is that you will find that you very quickly have hundreds of
files, which you may or may not find annoying.

An important rule to follow is that abstract base classes should have their own
files. Most clients will only ever need to see the declaration of the base class, since

260 Decoupling

they will work with references to the base class or (smart) pointers to base class
objects. Since most base classes have no data members, this can mean no implied
inclusions.

This effect is multiplied when we use factories – in that case, even the file that
instantiates the object of type X never needs to include the class declaration of
X, and, in fact, it never even needs to know that X exists. For an example of this
approach, see the files PayOff.h and PayOffConcrete.h in the xlw project. The
inherited class, which are concrete rather than abstract, are in PayOffConcrete.h,
but PayOff.h is almost empty but it is all that clients need to see

Listing 16.4 (PayOff.h)

#ifndef PAYOFF_H
#define PAYOFF_H
class PayOff
{
public:

PayOff();

virtual double operator()(double Spot) const=0;
virtual ~PayOff();
virtual PayOff* clone() const=0;

private:

};
#endif

In addition, the files Test.h and Test.cpp, which use the PayOff classes, never
include PayOffConcrete.h. Try this: make a small change to PayOffConcrete.h,
and hit build; the only files that recompile are PayOffConcrete.cpp and
PayOffRegistration.cpp.

A secondary rule worth following is to split files when classes require quite
different inclusions. The inclusions required give a good indicator of similarity
and they are the aspect of the class that has the biggest knock-on effect.

16.4 Direction of information flow and levelization

When implementing two related classes X and Y, we need to think about what we
really need to know about the other. For example, consider the issue of interfac-
ing with EXCEL. We want to be able to input matrices of type MyMatrix from

16.4 Direction of information flow and levelization 261

EXCEL; we also want to be able to return them to EXCEL via the XlfOper data
type.

How can we implement this functionality? There are a number of solutions:

(i) Give MyMatrix a constructor that takes in an XlfOper and a method
.AsXlfOper() that turns it into an XlfOper.

(ii) Give XlfOper a constructor that takes in a MyMatrix and a method
.AsMatrix() that converts back.

(iii) Do both (i) and (ii).
(iv) Write functions

MyMatrix ConvertToMatrix(const XlfOper& inputOper);
XlfOper ConvertToXlfOper(const MyMatrix& inputMatrix);

and put them in a file on their own.

If we adopt solution (i), then every time we use the MyMatrix class we must in-
clude the XlfOper class and everything that XlfOper requires; this is true in both
compile and link senses. However, we can create matrices and convert them to
XlfOpers with little coding. Whereas if we adopt solution (ii), then we have the
opposite dependency, and conversion back and forwards is still easy to write.

Solution (iii) means that we have dependencies both ways, and choices on how
to do the conversion. Choice is not necessarily good, since it always raises the
question of which way to do it.

Solution (iv) creates no dependencies between the two classes. We can use matri-
ces without worrying about EXCEL interfacing and vice versa. The main downside
is that it is a little clunky syntactically.

In order to decide which is best, we need to consider what direction information
flows in, and what dependencies we are happy with. Solution (i) means all our
numerical code is dependent on our EXCEL interfacing code. If we decide that we
want to use a different spreadsheet package, we are stuck with including the xlw
files. This is clearly a bad idea; this rules out solutions (i) and consequently (iii) as
well.

Solution (ii) has the opposite dependency: the xlw code has to know about the
matrix class. This is not so bad, since if we change the matrix class, we will still
want to be able to interface the new class with EXCEL; changing the matrix class
will force recompilation of some of the xlw files but not have other drastic effects.
It is very unlikely that we will ever want to get rid of matrices altogether.

We have already ruled out solution (iii), but we discuss the consequences a little
further. Suppose we had gone down this route. This would mean that it was im-
possible to use the matrix class without the EXCEL interfacing code, and it would
be impossible to use the EXCEL interfacing code without the matrix class. At that
point, we might as well put them in the same file, since each one requires the other.

262 Decoupling

Solution (iv) is nice in that we have fully decoupled the two classes; we simply
have an extra file that depends on both of them. On the other hand, the syntax is a
little non-obvious, and we will spend a certain amount of time having to look it up
each time we do the conversion.

The xlw package uses solution (ii) on the grounds that the extra decoupling does
not buy us anything in this particular case and, given the natural dependencies
between classes, the additional dependency is not an issue. Note that the entire
package does this for all conversions.

In general, think about which direction information flows naturally, and whether
you really want users of class X to be forced to deal with Y and vice versa. If in
doubt, use solution (iv), since this gives the maximum amount of decoupling.

Another way to think about this is in terms of fundamental types: a type should
only depend on types that are more fundamental than it. So in xlw, the PayOff
classes depend on ArgumentLists, which depend on the CellMatrix class but
not the other way round. This means that we should avoid solution (iii) as much as
possible. If it seems that two classes are at a similar level of fundamentalism, then
you should probably be using solution (iv).

This leads to the idea of levelization. We assign a level number to each class; the
more fundamental a class is, the lower its level is. A class or file should only depend
on classes and files that are on strictly lower levels. We should therefore never have
a pair of classes that both depend on each other, either directly or indirectly.

16.5 Classes as insulators

Consider the CellMatrix class, this was introduced to insulate EXCEL from the
numerical code. It encapsulates the notion of an input table of cells from any
spreadsheet. It can therefore carry any information that can be input from a spread-
sheet, which can then be converted into any class as desired via argument lists.

However, the CellMatrix class itself does not depend in any way on the code
for interfacing with EXCEL. It therefore acts as a messenger between EXCEL and
the numerical code without creating dependencies: both the numerical code and
the EXCEL code depend on CellMatrix, but it depends on neither.

In fact, the CellMatrix class depends only on basic container classes and the
standard library. We can therefore view it as being on a very low level. Note the
general technique here: we can achieve decoupling by using a low-level class to
communicate between disparate pieces of code.

16.6 inlining

The keyword inline is often used for optimization. What does it do? It gives the
compiler the option of replacing a function call with the actual code defining the

16.7 Template code 263

function. This eliminates a function call, thus saving a little time. In addition, the
fact that the code is being considered at the same time as the surrounding code
allows an optimizing compiler to make additional optimizations.

A typical use for inline is for data access operations. For example, when defin-
ing an array class, it is common to make operator[] an inline method. Thus
encapsulation of private data is preserved with no speed cost at run-time.

The first point to be aware of is that the inline only gives the compiler an
option; it can be happily ignore the suggestion if it wants to.

A second more important point is that whilst we have preserved encapsulation
at no run-time cost, we have lost a lot of insulation at plenty of compile- and link-
time cost. For inline to work, the function must be provided in the header file;
thus we now have dependency on the implementation of the function or method. If
we change the function’s implementation, all clients must recompile. With a non-
inline function defined in the source file, the impact would be minimal. Note also
that defining a function in a header file may also require extra #includes, creating
further dependencies.

Another aspect of inlining to consider is that if the function is non-trivial and
heavily used, there will be a lot of copies of the function sprinkled throughout the
code, which will increase executable size.

In conclusion, whilst inlining is useful for avoiding performance overheads with
private data, be aware of the downsides and do not overuse it.

16.7 Template code

The standard way to work with template code is to first declare the template class
or function in a header file, and then in the same header file provide the method or
function definitions.

We therefore have no insulation between the class and its clients. Any change
to any aspect of a template class will force recompilation of all its clients. This
is quite different from non-template code, where changing the implementation of
functions and methods has no compile-time effects on clients.

The gains and losses of template code are really very similar to those with
inline. We gain on run-time speed and reusability, but lose on compile time.

The reader is probably wondering why template code has to be done this way.
Why can’t we have template code defined in a source file? The answer is that we
can, but that most modern compilers are not yet up to it. The keyword for doing this
is export and only one compiler, the Comeau compiler, currently supports it. It is
sufficiently controversial that there were motions to remove it from the next C++
standard; however, these were defeated so export will remain in the standard at
least, for a while.

264 Decoupling

16.8 Functional interfaces

When we discussed the conversion between matrices and XlfOpers, one solution
was to simply use two functions contained in a separate file. This can be viewed
as a functional interface approach to decoupling. By introducing functions in a
third file we can convert between disparate objects without them knowing anything
about each other.

Another example of functional interface decoupling is the EXCEL C API. Com-
municating via a simple functional gateway with C linkage allows both sides of the
gate to change dramatically without forcing changes on the other side. If we build
an xll for one version of EXCEL and then up-grade to a new version, then the xll
will still work. Similarly, EXCEL knows nothing about the interiors of our xlls.

The key here is that two quite different components have had their method of
communication restricted to occur in a quite precise way. As long as this remains
true, the two pieces can vary without knock-on effects.

16.9 Pimpls

In this section, I want to briefly mention an idiom that I do not use personally;
however, it represents the ideas in this chapter pushed as far as they will go, so the
reader should be aware of it.

The essential difference between encapsulation and insulation is that when we
change the private section of the class then we do not affect classes that are
protected by encapsulation, but we do fail the insulation test because all client
classes have to recompile.

If we could move all the private section into the source file, then this problem
would disappear. The PIMPL idiom is one way to achieve this. PIMPL stands for
“Private Implementation.” The essence of the approach is to have the class that is
visible to clients, A, contain no data except a pointer to an undefined class, B, which
is defined in the source file. In addition, we place B in an unnamed namespace so
it has internal linkage and can have no compile- or link-time effects on other files.

It is B that contains all the data, so when we change the class data members there
is no knock-on effects. We have thus achieved perfect insulation.

What are the consequences of this approach? The first point to note is that the
data member of A is a pointer, so all memory allocation has to be dynamic; that
is, we must use new to create objects of type B and then manage their copying
and destruction as well. Whilst the coding pain can be minimized by using an
appropriate smart pointer, it is still some extra fiddliness.

We also have the issue that new is slow. This means that we really do not want
to do this when speed is important. This not a huge issue in that it is rarely wise
to create and destroy objects of any non-trivial class in the core part of numerical

16.11 Exercises 265

routines where all the time is taken, in any case; this criticism equally applies to
any class that has a container as a data member.

There is also a memory cost; we need an extra pointer for each object from the
class. This is not a real problem; if you are using many objects from this class and
the size of a pointer is noticeable, you should probably not be using this idiom for
other reasons such as speed.

The main downside for me with PIMPL is that the additional clunkiness out-
weighs the gains in insulation. It is therefore not a great idea for numerical coding.
However, if you ever need to work on a large system that has heavy amounts of non-
numerical code, it is worth considering. See [32] for an enthusiastic exposition of
the technique, and also for some discussion of how to avoid the time consumption
issues with memory allocation.

16.10 Key points

In this chapter, we have examined how to reduce, compile, and link dependencies
using the concept of insulation.

• Physical design relates to how files depend on each other.
• Encapsulation stops us from having to rewrite code.
• Insulation saves us from having to recompile code.
• Being careful with #include can speed up compile times.
• Levelization yields a natural way to eliminate excess dependencies.
• Inlining has costs in terms of physical design as well as gains in terms of run

speed.
• Template code increases coupling.
• PIMPL is a powerful methodology for minimizing dependencies.

This chapter has been greatly influenced by Lakos’s book, Large Scale C++
Software Design, [16]. Whilst it is now a little dated, there is still a wealth of useful
discussion and techniques. Sutter’s “Exceptional” books, [32, 33, 34] also discuss
similar issues at length, but are more recent.

16.11 Exercises

Exercise 16.1 Take the most recent project you have completed and time a “rebuild
all.” Now see how many #includes you can eliminate via forward declaration and
time again. Repeat after splitting out abstract base classes.

Exercise 16.2 Implement a class using the PIMPL idiom.

Appendix A

Black–Scholes formulas

In Chapter 9, we developed an implied volatility function; this function necessarily
meant we needed formulas for the Black–Scholes price and vega of a call option.
We present code for the pricing of calls, puts, digital calls and digital puts, and
for the vega of a call option in BlackScholesFormulas.h and BlackScholes-
Formulas.cpp. We do not present the formulas here as they can be found in
just about any book on derivatives pricing, e.g. [13]. The code is a straightfor-
ward implementation of formulas. Note that we rely heavily on having an imple-
mentation of the cumulative normal function. We give such an implementation in
Appendix B.

Listing A.1 (BlackScholesFormulas.h)

#ifndef BLACK_SCHOLES_FORMULAS_H
#define BLACK_SCHOLES_FORMULAS_H

double BlackScholesCall(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry);

double BlackScholesPut(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry);

266

Black–Scholes formulas 267

double BlackScholesDigitalCall(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry);

double BlackScholesCallVega(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry);

#endif

Listing A.2 (BlackScholesFormulas.cpp)

#include <BlackScholesFormulas.h>
#include <Normals.h>
#include <cmath>

#if !defined(_MSC_VER)
using namespace std;
#endif

double BlackScholesCall(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry)

{
double standardDeviation = Vol*sqrt(Expiry);
double moneyness = log(Spot/Strike);
double d1 =(moneyness + (r-d)*Expiry +
0.5* standardDeviation*standardDeviation)/standardDeviation;
double d2 = d1 - standardDeviation;
return Spot*exp(-d*Expiry) * CumulativeNormal(d1) -
Strike*exp(-r*Expiry)*CumulativeNormal(d2);

}

268 Appendix A

double BlackScholesPut(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry)

{
double standardDeviation = Vol*sqrt(Expiry);
double moneyness = log(Spot/Strike);
double d1 =(moneyness + (r-d)*Expiry +
0.5* standardDeviation*standardDeviation)/standardDeviation;
double d2 = d1 - standardDeviation;
return Strike*exp(-r*Expiry)*(1.0-CumulativeNormal(d2)) -
Spot*exp(-d*Expiry) * (1-CumulativeNormal(d1));

}

double BlackScholesDigitalCall(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry)

{
double standardDeviation = Vol*sqrt(Expiry);
double moneyness = log(Spot/Strike);
double d2 =(moneyness + (r-d)*Expiry -
0.5* standardDeviation*standardDeviation)/standardDeviation;
return exp(-r*Expiry)*CumulativeNormal(d2);

}

double BlackScholesDigitalPut(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry)

{
double standardDeviation = Vol*sqrt(Expiry);
double moneyness = log(Spot/Strike);
double d2 =(moneyness + (r-d)*Expiry -

Black–Scholes formulas 269

0.5* standardDeviation*standardDeviation)/standardDeviation;
return exp(-r*Expiry)*(1.0-CumulativeNormal(d2));

}

double BlackScholesCallVega(double Spot,
double Strike,
double r,
double d,
double Vol,
double Expiry)

{
double standardDeviation = Vol*sqrt(Expiry);
double moneyness = log(Spot/Strike);
double d1 =(moneyness + (r-d)*Expiry +
0.5* standardDeviation*standardDeviation)/standardDeviation;
return Spot*exp(-d*Expiry) * sqrt(Expiry)*NormalDensity(d1);

}

Appendix B

Distribution functions

We have repeatedly used the cumulative normal distribution function for a standard
normal random variable and its inverse. We give an implementation of rational
approximations for these functions in Normals.h and Normals.cpp. For further
discussion of these approximations see [5], [21] and [10].

Listing B.1 (Normals.h)

#ifndef NORMALS_H
#define NORMALS_H

double NormalDensity(double x);

double CumulativeNormal(double x);

double InverseCumulativeNormal(double x);

#endif

Listing B.2 (Normals.cpp)

/*
code to implement the basic distribution functions necessary
inmathematical finance via rational approximations
*/

#include <cmath>
#include <Normals.h>

// the basic math functions should be in namespace std but
// aren’t in VCPP6

270

Distribution functions 271

#if !defined(_MSC_VER)
using namespace std;
#endif

const double OneOverRootTwoPi = 0.398942280401433;

// probability density for a standard Gaussian distribution
double NormalDensity(double x)
{

return OneOverRootTwoPi*exp(-x*x/2);
}

// the InverseCumulativeNormal function via the
// Beasley-Springer/Moro approximation
double InverseCumulativeNormal(double u)
{

static double a[4]={ 2.50662823884,
-18.61500062529,
41.39119773534,

-25.44106049637};

static double b[4]={-8.47351093090,
23.08336743743,

-21.06224101826,
3.13082909833};

static double c[9]={0.3374754822726147,
0.9761690190917186,
0.1607979714918209,
0.0276438810333863,
0.0038405729373609,
0.0003951896511919,
0.0000321767881768,
0.0000002888167364,
0.0000003960315187};

double x=u-0.5;
double r;

272 Appendix B

if (fabs(x)<0.42) // Beasley-Springer
{

double y=x*x;

r=x*(((a[3]*y+a[2])*y+a[1])*y+a[0])/
((((b[3]*y+b[2])*y+b[1])*y+b[0])*y+1.0);

}
else // Moro
{

r=u;

if (x>0.0)
r=1.0-u;

r=log(-log(r));

r=c[0]+r*(c[1]+r*(c[2]+r*(c[3]+r*(c[4]+r*(c[5]+
r*(c[6]+r*(c[7]+r*c[8])))))));

if (x<0.0)
r=-r;

}

return r;
}

// standard normal cumulative distribution function
double CumulativeNormal(double x)
{

static double a[5] = { 0.319381530,
-0.356563782,
1.781477937,

-1.821255978,
1.330274429};

double result;

Distribution functions 273

if (x<-7.0)
result = NormalDensity(x)/sqrt(1.+x*x);

else
{

if (x>7.0)
result = 1.0 - CumulativeNormal(-x);

else
{

double tmp = 1.0/(1.0+0.2316419*fabs(x));

result=1-NormalDensity(x)*
(tmp*(a[0]+tmp*(a[1]+tmp*(a[2]+
tmp*(a[3]+tmp*a[4])))));

if (x<=0.0)
result=1.0-result;

}
}
return result;

}

Appendix C

A simple array class

C.1 Choosing an array class

To do any serious numerical work, we need the concept of an array. In C++
this translates into the need for an array class. There are any number of array
classes available on the web, and the coder can easily write his own. Indeed most
learners of C++ develop their own array class as an exercise sometime early in
their study. In fact, the C++ standard library includes an array class which is de-
signed to be optimized for high-speed numerical computation. This template array
class is called valarray and has different emphases from the standard library’s
vector class. Where vector was designed to be efficient for resizing and insert-
ing elements, the assumption in valarray is that the array’s size will not often
vary. Instead valarray is designed for speed, and it provides many numerical op-
erations. For a discussion of the valarray class see [12] or [31].

There is, however, a downside to using valarray: there is no range checking. So
if your index goes off the end of the array, you do not receive a nice error message,
but instead you just get garbage or a crash. The reason that range checking is not
provided is that it is time consuming, and logically correct code will, by definition,
not need it. However, it is an extremely useful debugging tool, and so ideally it
should be easy to switch on and off.

Our solution is therefore to provide our own array class which is modelled on
valarray<double> and provides a subset of its operations. This means that we
can use a typedef to replace our class with valarray<double> when we are
confident in our code. This allows us to take advantage of all the optimizations
in valarray, whilst retaining an easy-to-use class for debugging. Our class pro-
vides range-checking if and only if the macro RANGE CHECKING is defined. Thus
by changing one project setting, we can quickly shift between safe and fast modes.
We also provide the facility to shift between valarray<double> and our class via
defining the macro USE VAL ARRAY.

274

A simple array class 275

It is important to be careful when choosing an array class. Once a class interface
has been chosen, you are stuck with it. You can always gut the insides of your
class to make it more efficient but once the class has been used throughout your
code, a lot of time has been invested in the interface, and to change it is a difficult
proposition.

C.2 The header file

We present the class, called MJArray to avoid the likelihood of name clashes, in
Arrays.h.

Listing C.1 (Arrays.h)

#ifndef MJARRAYS_H
#define MJARRAYS_H

#ifdef USE_VAL_ARRAY

#include <valarray>

typedef std::valarray<double> MJArray;

#else // ifdef USE_VAL_ARRAY

class MJArray
{

public:
explicit MJArray(unsigned long size=0);
MJArray(const MJArray& original);

~MJArray();

MJArray& operator=(const MJArray& original);
MJArray& operator=(const double& val);

MJArray& operator+=(const MJArray& operand);
MJArray& operator-=(const MJArray& operand);
MJArray& operator/=(const MJArray& operand);
MJArray& operator*=(const MJArray& operand);

276 Appendix C

MJArray& operator+=(const double& operand);
MJArray& operator-=(const double& operand);
MJArray& operator/=(const double& operand);
MJArray& operator*=(const double& operand);

MJArray apply(double f(double)) const;

inline double operator[](unsigned long i) const;
inline double& operator[](unsigned long i);

inline unsigned long size() const;

void resize(unsigned long newSize);

double sum() const;
double min() const;
double max() const;

private:
double* ValuesPtr;
double* EndPtr;

unsigned long Size;
unsigned long Capacity;

};

inline double MJArray::operator[](unsigned long i) const
{
#ifdef RANGE_CHECKING

if (i >= Size)
{

throw("Index out of bounds");
}

#endif

return ValuesPtr[i];
}

inline double& MJArray::operator[](unsigned long i)
{
#ifdef RANGE_CHECKING

A simple array class 277

if (i >= Size)
{

throw("Index out of bounds");
}

#endif

return ValuesPtr[i];
}

inline unsigned long MJArray::size() const
{

return Size;
}
#endif // ifdef USE_VAL_ARRAY
#endif // ifndef MJARRAYS_H

We have provided the standard class operations: constructor, copy constructor,
assignment operator, and destructor. We can carry out simple numerical operations,
such as addition or multiplication, both by doubles, which are applied to each
element, and by arrays, which are applied pointwise.

We have overloaded operator[]. It is provided in const and non-const ver-
sions. The former can be used to read elements of const arrays, whereas the latter
can be used to modify elements of non-const arrays. Note that these operators
have been inlined. This means that when the compiler encounters the operator, it
reproduces the code inside the function instead of setting up a call to the function.
This ensures that no extra overhead is caused by going via the class interface. (An
alternative would have been to make the data pointer public and use C style array
access, but this would have badly violated one of our basic rules that the class data
members should be private.)

We also include the apply method. This takes in a function object, f, and applies
it to each element of the array and outputs a new array consisting of the results.

We can take the size of our array, and we can resize it. We follow the
valarray class in not requiring the resize operation to preserve the underlying
data.

Finally, we also include the self-explanatory operations sum, min, and max.
Valarray contains many more operations which could be added to our class as
and when necessary.

Our implementation has four data members. We have pointers to express the
beginning and end of the array. We also have two different size members. The
member Size expresses the number of elements currently in the array, whereas the
member Capacity expresses the amount of memory that has been allocated. So

278 Appendix C

we should always have that Size is less than or equal to Capacity, and that Size
is equal to EndPtr minus StartPtr.

C.3 The source code

We present the source code for our array class in Arrays.cpp.

Listing C.2 (Arrays.cpp)

#include <Arrays.h>
#include<algorithm>
#include<numeric>

MJArray::MJArray(unsigned long size)
: Size(size), Capacity(size)
{

if (Size >0)
{

ValuesPtr = new double[size];
EndPtr = ValuesPtr;
EndPtr += size;

}
else
{

ValuesPtr=0;
EndPtr=0;

}
}

MJArray::MJArray(const MJArray& original)
:

Size(original.Size), Capacity(original.Size)
{

if (Size > 0)
{

ValuesPtr = new double[Size];

EndPtr = ValuesPtr;

EndPtr += Size;

std::copy(original.ValuesPtr, original.EndPtr, ValuesPtr);

A simple array class 279

}
else
{

ValuesPtr = EndPtr =0;
}

}

MJArray::~MJArray()
{

if (ValuesPtr >0)
delete [] ValuesPtr;

}

MJArray& MJArray::operator=(const MJArray& original)
{

if (&original == this)
return *this;

if (original.Size > Capacity)
{

if (Capacity > 0)
delete [] ValuesPtr;

ValuesPtr = new double[original.Size];

Capacity = original.Size;
}

Size=original.Size;

EndPtr = ValuesPtr;
EndPtr += Size;

std::copy(original.ValuesPtr, original.EndPtr, ValuesPtr);

return *this;
}

void MJArray::resize(unsigned long newSize)
{
if (newSize > Capacity)

280 Appendix C

{
if (Capacity > 0)

delete [] ValuesPtr;

ValuesPtr = new double[newSize];

Capacity = newSize;
}
Size = newSize;

EndPtr = ValuesPtr + Size;
}

MJArray& MJArray::operator+=(const MJArray& operand)
{
#ifdef RANGE_CHECKING

if (Size != operand.size())
{

throw("to apply += two arrays must be of same size");
}

#endif

for (unsigned long i =0; i < Size; i++)
ValuesPtr[i]+=operand[i];

return *this;
}
MJArray& MJArray::operator-=(const MJArray& operand)
{
#ifdef RANGE_CHECKING

if (Size != operand.size())
{

throw("to apply -= two arrays must be of same size");
}

#endif

for (unsigned long i =0; i < Size; i++)
ValuesPtr[i]-=operand[i];

return *this;
}

A simple array class 281

MJArray& MJArray::operator/=(const MJArray& operand)
{
#ifdef RANGE_CHECKING

if (Size != operand.size())
{

throw("to apply /= two arrays must be of same size");
}

#endif

for (unsigned long i =0; i < Size; i++)
ValuesPtr[i]/=operand[i];

return *this;
}

MJArray& MJArray::operator*=(const MJArray& operand)
{
#ifdef RANGE_CHECKING

if (Size != operand.size())
{

throw("to apply *= two arrays must be of same size");
}

#endif

for (unsigned long i =0; i < Size; i++)
ValuesPtr[i]*=operand[i];

return *this;
}

/////////////////////////////

MJArray& MJArray::operator+=(const double& operand)
{

for (unsigned long i =0; i < Size; i++)
ValuesPtr[i]+=operand;

return *this;
}

MJArray& MJArray::operator-=(const double& operand)

282 Appendix C

{
for (unsigned long i =0; i < Size; i++)

ValuesPtr[i]-=operand;

return *this;
}

MJArray& MJArray::operator/=(const double& operand)
{

for (unsigned long i =0; i < Size; i++)
ValuesPtr[i]/=operand;

return *this;
}

MJArray& MJArray::operator*=(const double& operand)
{

for (unsigned long i =0; i < Size; i++)
ValuesPtr[i]*=operand;

return *this;
}

MJArray& MJArray::operator=(const double& val)
{

for (unsigned long i =0; i < Size; i++)
ValuesPtr[i]=val;

return *this;
}

double MJArray::sum() const
{

return std::accumulate(ValuesPtr,EndPtr,0.0);
}

double MJArray::min() const
{
#ifdef RANGE_CHECKING

if (Size==0)
{

A simple array class 283

throw("cannot take min of empty array");
}

#endif RANGE_CHECKING
double* tmp = ValuesPtr;
double* endTmp = EndPtr;

return *std::min_element(tmp,endTmp);
}

double MJArray::max() const
{
#ifdef RANGE_CHECKING

if (Size==0)
{

throw("cannot take max of empty array");
}

#endif RANGE_CHECKING
double* tmp = ValuesPtr;
double* endTmp = EndPtr;

return *std::max_element(tmp,endTmp);
}

MJArray MJArray::apply(double f(double)) const
{

MJArray result(size());

std::transform(ValuesPtr,EndPtr,result.ValuesPtr,f);

return result;
}

The code here is quite straightforward. Some points to note: we only reallocate
memory when the size becomes greater than the capacity so operator= and
resize check size against capacity. This reduces the number of memory alloca-
tions necessary. The data member EndPtr is optional in that its value is determined
by ValuesPtr and size. However, having a pointer for the start of the array and
the end of the array leaves us very well placed to use the STL algorithms. These
generally take in two (or more) iterators which point to the start of the sequence,
and to the element after the end of a sequence, which is precisely what ValuesPtr
and EndPtr respectively do.

284 Appendix C

We therefore use the STL algorithms to perform mundane tasks such as copying,
taking the min and taking the max, and soon, rather than writing loops to do them
ourselves. As well as saving us coding time, the general principle that we should
use pre-defined routines rather than user-defined ones is a good one; pre-defined
routines are generally close to optimal and we have the advantage that, as part of
the standard library, another C++ programmer should recognize and understand
them instantly.

Appendix D

The code

D.1 Using the code

The source code is downloadable from www.markjoshi.com/design. The code has
been been placed in three directories: C/include, C/source, and C/main. Each
main program indicates the source files that must be included in the same project
for the code to link. The include files are included using < > so the directory
C/include must be included in the list of places your compiler looks for include
files. In Visual C++, the directories for include files can be changed via the menus
tools, options, directories.

Makefiles, project files, etc. are not included as they are highly compiler depen-
dent.

D.2 Compilers

The code has been tested under three compilers: MingW 2.95, Borland 5.5, and
Visual C++ 6.0. The first two of these are available for free so you should have
no trouble finding a compiler that the code works for. In addition, MingW is the
Windows port of the GNU compiler, gcc, so the code should work with that com-
piler too. Visual C++ is not free but is popular in the City and the introductory
version is not very expensive. In addition, I have strived to use only ANSI/ISO
code so the code should work under any compiler. In any case, it does not use any
cutting-edge language features so if it is not compatible with your compiler, fixing
the problems should not be hard.

D.3 License

The code is released under an artistic license. This means that you can do what you
like with it, provided that if you redistribute the source code you allow the receiver
to do what they like with it too.

285

Appendix E

Glossary

anti-thetic sampling – a method of improving convergence in Monte Carlo sim-
ulations by following each sample by its negative.

class – a user-defined type.
constructor – a member function that has the same name as its class. It provides

a way to create objects from the class.
container – a class with the main purpose of holding other objects.
decoration – the act of wrapping a class around another class in such a way that

the interface does not change.
encapsulation – the process of representing a concept atomically in terms of a

single class.
function – a routine inside a program to which information may be passed and/or

returned.
inheritance – defining classes in such a way that they take on the attributes of an

existing class plus additional characteristics.
iterator – a class that is similar to a pointer and, in particular, it can be incremented

and dereferenced.
member function – a function associated with objects of a particular class.
method – another name for a member function.
object – a variable that comes from a class.
pattern – a code design.
pointer – a variable that points to a location in memory.
standard template library – a collection of header files with properties defined

by the standard which provide a collection of container classes and algo-
rithms.

STL – shorthand for standard template library.
template – a piece of code which is written to work with any class that defines

certain chosen methods.
variable – a quantity that is stored within a program and can change in value.
wrapper – a smart pointer class that handles memory allocation and deallocation.

286

Bibliography

[1] A. Alexandrescu, Modern C++ Design, Addison-Wesley, 2001.
[2] M. Baxter & A. Rennie, Financial Calculus, Cambridge University Press, 1999.
[3] T. Björk, Arbitrage Theory in Continuous Time, Oxford University Press, 1998.
[4] S. Dalton, Financial Applications using Excel Add-in Development in C/C++ ,

Second Edition, Wiley, 2007.
[5] B. Dupire, Monte Carlo: Methodologies and Applications for Pricing and Risk

Management, Risk Books, 1998.
[6] G. Entsminger, The Tao of Objects, Hungry Minds Inc., 1995.
[7] E. Gamma, R. Helm, R. Johnson & J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1995.
[8] G. Grimmett & D. Stirzaker, Probability and Random Processes, second edition,

Oxford University Press, 1992.
[9] E. Haug, The Complete Guide to Option Pricing Formulas, Irwin Professional,

1997.
[10] J. Hull, Options, Futures, and Other Derivatives, fifth edition, Prentice Hall, 2002.
[11] P. Jäckel, Monte Carlo Methods in Finance, Wiley, 2002.
[12] N. Josuttis, The C++ Standard Library, Addison-Wesley, 1999.
[13] M. S. Joshi, The Concepts and Practice of Mathematical Finance, Cambridge

University Press, 2003.
[14] I. Karatzas & S. Shreve, Brownian Motion and Stochastic Calculus, second edition,

Berlin: Springer-Verlag, 1997
[15] I. Karatzas & S. Shreve, Methods of Mathematical Finance, Springer-Verlag, 1998.
[16] J. Lakos, Large Scale C++ Software Design, Addison–Wesley, 1996.
[17] A. L. Lewis, Option Valuation under Stochastic Volatility, Finance Press, 2001.
[18] S. Meyers, Effective C++, second edition, Addison-Wesley, 1997.
[19] S. Meyers, More Effective C++, Addison-Wesley, 1995.
[20] S. Meyers, Effective STL, Addison-Wesley, 2001.
[21] B. Moro, The full monte, Risk 8(2), 1995, 53–57.
[22] R. Merton, Continuous-Time Finance, Blackwell, 1998.
[23] R. Merton, Option pricing when underlying stock returns are discontinuous, Journal

of Financial Economics 3, 1976, 125–144.
[24] T. Muldner, C++ Programming: with Design Patterns Revealed, Addison-Wesley,

2001.
[25] M. Musiela, M. Rutowski, Martingale Methods in Financial Modelling, Berlin:

Springer-Verlag, 1997.

287

288 Bibliography

[26] B. Oksendal, Stochastic Differential Equations, Springer-Verlag, 1998.
[27] S. K. Park & K. W. Miller, Random number generators: good ones are hard to find,

Comm. ACM 31, 1988, 1192–1201.
[28] W. H. Press, S. A. Teutolsky, W. T. Vetterling & B. P. Flannery, Numerical Recipes in

C, second edition, Cambridge University Press, 1992.
[29] L. C. G. Rogers, Monte Carlo Valuation of American Options. Preprint, University

of Bath, 2001.
[30] A. Shalloway & J. R. Trott, Design Patterns Explained: A New Perspective on

Object-Oriented Design, Addison-Wesley, 2001.
[31] B. Stroustrup, The C++ Programming Language, third edition, Addison–Wesley,

2000.
[32] H. Sutter, Exceptional C++, Addison–Wesley, 2000.
[33] H. Sutter, More Exceptional C++, Addison–Wesley 2001.
[34] H. Sutter, Exceptional C++ style, Addison–Wesley 2004.
[35] D. Vandevoorde and N. M. Josuttis, C++ Templates: The Complete Guide,

Addison–Wesley, 2002.

Index

abstract base class, 259
abstract factory, 169
adapter pattern, 90, 170
American option

on a tree, 122, 126
Ametrano

Ferdinando, 178
ANSI/ISO standard, 174
anti-thetic sampling, 84, 93–97, 204
AntiThetic class, 93
AntiThetic.cpp, 94
AntiThetic.h, 93
ArgList.cpp, 208
ArgList.h, 200
ArgListFactory.h, 233
argument list, 200–220, 224–242
ArgumentList, 247, 249
array, 87, 274
Arrays.cpp, 278
Arrays.h, 275
Asian option

arithmetic, 115
geometric, 114

assignment operator, 52, 183
auto pointer, 182
automatic registration, 162
automatic variable, 32, 181

base class, 23
basic guarantee, 180
behavioural patterns, 170–171
binomial tree, 129
BinomialTree.cpp, 131
BinomialTree.h, 130
bisection, 141, 142
Bisection template function, 146, 154
Bisection.h, 146
Black–Scholes formula, 141

implementation of, 266
Black–Scholes model, 1, 111
BlackScholesFormulas.cpp, 267
BlackScholesFormulas.h, 266
Boost, 176–177

boost, 181
Boost, 184, 197
Borland, 174
Box–Muller, 6, 9
bridge pattern, 53–57, 59, 170
Brownian motion, 2
BSCall class, 144, 149
BSCallTwo class, 151
BSCallTwo.cpp, 152
BSCallTwo.h, 151

C API, 253, 264
CashFlow class, 106
catch, 179, 189, 192
CellMatrix, 206, 220–232, 248, 252, 257, 259, 262
CellMatrix.h, 220
class, 9
clone, 44, 168, 175, 180, 182
Comeau, 174
compilers, 174–176
completeness, 123
concrete, 260
const, 14, 53, 77, 97, 147, 180
constructor, 197
contract, 16
control variate

on a tree, 138
ConvergenceTable class, 77
ConvergenceTable.cpp, 78
ConvergenceTable.h, 78
copy constructor, 29, 51, 182, 183, 197
creational patterns, 168–169
cumulative normal function, 266, 270
curiously recurring template pattern, 199–200, 250

data type, 247–250
basic, 247–248
extended, 248–250
polymorphic, 253

debuggers
and template code, 155

debugging, 176
an xll, 254

289

290 Index

decorator pattern, 80, 170
and anti-thetic sampling, 93

decoupling, 256–265
deep copy, 51
delete, 180, 181, 184
delete command, 33, 43
delete[], 184
dereference, 74
destructor, 33, 52, 183
DevCpp, 244, 245, 254
dimension

of a Monte Carlo simulation, 84
displaced diffusion, 115
dll, 244, 246

missing, 254
DoubleDigital.cpp, 34
DoubleDigital.h, 34
DoubleOrNothing, 247, 249, 257
DoubleOrNothing.cpp, 258
dumpbin, 254
dynamic link library, see dll

elegance, 7
encapsulation, 10, 13–20
enum statement, 8
EquityFXMain.cpp, 117
European option

on a tree, 126
ExampleFile1.h, 257
ExampleFile2.h, 257
Excel, 204
EXCEL, 244–255, 262, 264
exception

floating point, 187–192
exceptions, 179–192

safety guarantees, 180
exotic option

path-dependent, 103, 104, 111
ExoticBSEngine class, 111
ExoticBSEngine.cpp, 112
ExoticBSEngine.h, 112
ExoticEngine class, 108
ExoticEngine.cpp, 109
ExoticEngine.h, 108
export, 174, 263
extern C, 253

factory, 204, 260
factory method, 169
factory pattern, 37, 157, 169, 199

and templatization, 197–242
float underflow, 188
floating point exceptions, see exception, floating point
for loop, 175
forward declaration, 257
FPMain.cpp, 190
FPSetup.cpp, 189
FPSetup.h, 188
free, 184
function objects, 14, 142–144
function pointer, 8, 21
function wizard, 250

functional interface, 264
functor, see function object

g++, 174
Gaussian random variable

generation of, 85
gcc, 174
geometric Brownian motion

discretization of, 121
global variables, 157

header files
and decoupling, 256–260

heap, 57

IDE, 174
implied volatility, 141, 151
include, 257
inheritance, 23–34

private, 197–199
public, 24, 198

inherited class, 23
inline, 262–263
insulation, 256–265
interface, 10
interface generator, see InterfaceGenerator
InterfaceGenerator, 244, 245, 248
inverse cumulative normal function, 85, 87, 93,

270
iterator, 87, 162, 171

law of large numbers, 2
Lecomte

Jerome, 178
levelization, 260–262
linear congruential generator, 88
log-normal, 114
logical design, 256
low-discrepancy numbers, 77, 84
LPXLOPER, 252, 253

malloc, 184
map, 207
map class, 159, 161
max, 219
MCStatistics.cpp, 68
MCStatistics.h, 67
memory allocation, 179
memory leak, 183
Microsoft Platform SDK, 188, 247
minimal standard generator, 89
MJMatrix, 247
moment matching, 85
monostate pattern, 169
Monte Carlo, 1, 6, 58
Moro approximation to inverse cumulative normal

function, 87
MyMatrix, 247, 252, 261

namespace, 164
NEMatrix, 247, 252
new, 184

Index 291

new command, 33, 43, 44, 57–58
Newton–Raphson, 141, 142, 149–154
NewtonRaphson template function, 150, 152,

154
NewtonRaphson.h, 150
new[], 184
noncopyable, 197
normal process, 115
Normals.cpp, 270
Normals.h, 270

open-closed principle, 20–21, 157, 166
operator overloading, 14
operator(), 14

pair class, 131, 162
Parameters class, 58–62, 131
Parameters.cpp, 61
Parameters.h, 59
ParkMiller class, 90
ParkMiller.cpp, 90
ParkMiller.h, 89
path-dependent exotic option, see exotic option,

path-dependent
PathDependent class, 106
PathDependent.cpp, 108
PathDependent.h, 107
PathDependentAsian class, 115
PathDependentAsian.cpp, 116
PathDependentAsian.h, 115
PayFactoryMain.cpp, 165
PayOff, 179, 247, 260
PayOff class, 9, 13–20, 23, 24, 34, 44,

159
PayOff.h, 237, 260
PayOff1.cpp, 15
PayOff1.h, 13
PayOff2.cpp, 25
PayOff2.h, 24
PayOff3.cpp, 45
PayOff3.h, 44
PayOffBridge.cpp, 54
PayOffBridge.h, 54
PayOffBridged class, 129
PayOffConcrete.cpp, 239
PayOffConcrete.h, 237
PayOffConstructible.h, 163
PayOffFactory class, 160
PayOffFactory.cpp, 161
PayOffFactory.h, 160
PayOffForward class, 138
PayOffForward.cpp, 139
PayOffForward.h, 138
PayOffHelper template class, 163
PayOffRegistration.cpp, 164, 242
physical design, 256–265
PIMPL idiom, 264–265
POD, 253
pointer to a member function, 149
pragma, 131
private, 15–16, 24, 182, 207, 263
protected keyword, 24

public inheritance, see inheritance, public
pure virtual function, 27, 29

QuantLib, 177
quasi-random numbers, 84

rand command, 83
random number generator, 9, 83, 89, 177
Random1.cpp, 5
Random1.h, 4
Random2.cpp, 88
Random2.h, 86
RandomBase class, 86
RandomMain3.cpp, 99
RandomParkMiller class, 90
range-checking, 176, 185, 274
raw pointer, 183
reference, 40, 43
reference-counted pointer, 182
reusability, 7
root mean square, 62
rule of almost zero, 183–184
rule of three, 51, 183

scoped pointer, 182, 183
shallow copy, 51, 183
shared pointer, 182, 183
SimpleBinomialTree class, 130
SimpleMC.cpp, 16
SimpleMC.h, 16
SimpleMC3.cpp, 40
SimpleMC3.h, 40
SimpleMC4.cpp, 48
SimpleMC4.h, 48
SimpleMC6.cpp, 63
SimpleMC6.h, 63
SimpleMC7.cpp, 70
SimpleMC7.h, 69
SimpleMC8.cpp, 98
SimpleMC8.h, 97
SimpleMCMain1.cpp, 2
SimpleMCMain2.cpp, 18
SimpleMCMain3.cpp, 27
SimpleMCMain4.cpp, 30
SimpleMCMain5.cpp, 35
singleton, 197, 198, 199–200, 250, 251
singleton pattern, 158–159, 169
sizeof, 198
smart pointer, 177, 180–184
SolveMain1.cpp, 147
SolveMain2.cpp, 152
sstream, 219
stack, 57
standard library, 181, 184
standard template library, 219
static, 158, 159, 164
statistics gatherer class, 66
StatisticsMC class, 68
StatsMain1.cpp, 71
stlport, 176, 185
stock price evolution

model for, 1

292 Index

strategy pattern, 66, 170
strong guarantee, 180, 186
structural patterns, 169–170
structured exception, 188
switch, 19
switch statement, 8, 157

template pattern, 104, 120, 171
templates, 73–77, 154–155, 158, 175, 263
throw, 179, 180

in a constructor, 186–187
in a destructor, 186–187

time
to execute, 250

transform, 219
TreeAmerican class, 126
TreeAmerican.cpp, 128
TreeAmerican.h, 126
TreeEuropean class, 127
TreeEuropean.cpp, 128
TreeEuropean.h, 127
TreeMain.cpp, 135
TreeProduct class, 125, 130
TreeProducts.cpp, 126
TreeProducts.h, 125
trees

mathematics of, 121–123
trinomial tree, 123
Turing machine, 175
typedef, 160, 259, 274

undefined class, 259
unrecognizable format, 254

valarray class, 274
Vanilla1.cpp, 39
Vanilla1.h, 39
Vanilla2.cpp, 47
Vanilla2.h, 46
Vanilla3.cpp, 56
Vanilla3.h, 55
VanillaMain1.cpp, 41
VanillaMain2.cpp, 49
VanillaOption class, 39
vector, 184, 224
vector class, 134, 274

in standard template library, 106
virtual copy constructor, 44, 168
virtual destructor, 33
virtual function, 24–29, 155
virtual function table, 26, 30
virtual method, see virtual function
Visual Studio, 174, 185, 244, 245, 254
volatile, 250

weak guarantee, 180, 186
wrapper class, 249
wrapper template class, 53, 73–77, 181, 185–186
Wrapper.h, 74
wrapper2.h, 193
WrapperMain.cpp, 195

XlfOper, 253, 261
xll, 244–255, 264
XLOPER, 247
xlw, 177–178, 200, 232, 244–255, 257,

261

