Thinking in C++ 2™ edition
Volume 2: Standard Libraries &
Advanced Topics

To beinformed of future releases of this document and other information about object-
oriented books, documents, seminars and CDs, subscribe to my free newsletter. Just send any
email to: join-eckel-oo-programming@earth.lyris.net

mailto:join-eckel-oo-programming@earth.lyris.net

“This book is atremendous achievement. Y ou owe it to yourself to have a
copy on your shelf. The chapter on iostreams is the most comprehensive and
understandable treatment of that subject I’ ve seen to date.”

Al Stevens
Contributing Editor, Doctor Dobbs Jour nal

“Eckel’ sbook is the only one to so clearly explain how to rethink program
construction for object orientation. That the book is also an excellent tutorial
on theins and outs of C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with hisinsight into C++, and Thinking in
C++ ishisbest collection of ideas yet. If you want clear answers to difficult
guestions about C++, buy this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of when and
how to useinlines, references, operator overloading, inheritance and dynamic
objects, as well as advanced topics such as the proper use of templates,
exceptions and multiple inheritance. The entire effort iswoven in afabric that
includes Eckel’ s own philosophy of object and program design. A must for
every C++ developer’s bookshelf, Thinking in C++ isthe one C++ book you
must have if you’ re doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine

Thinking
In
C++

2" Edition, Volume 2

Bruce Eckel
President, MindView Inc.

© 1999 by Bruce Eckel, MindView, Inc.

The information in this book is distributed on an “asis’ basis, without warranty. While
every precaution has been taken in the preparation of this book, neither the author nor the
publisher shall have any liability to any person or entitle with respect to any liability, loss or damage
caused or alleged to be caused directly or indirectly by instructions contained in this book or by the
computer software or hardware products described herein.

All rights reserved. No part of this book may be reproduced in any form or by any electronic or
mechanical means including information storage and retrieval systems without permission in writing
from the publisher or author, except by areviewer who may quote brief passagesin areview. Any of the
names used in the examples and text of this book are fictional; any relationship to persons living or dead
or tofictional charactersin other worksis purely coincidental.

dedication

To the scholar, the healer, and the muse

NMhat's Inside...

Thinking in C++ 2™ edition Volume 2: Standard Libraries & Advanced Topics Revision 1, xx 1999

.. 1
Preface 13
What's new in the second edition13
What'sin Volume 2 of thisbook 14
How to get Volume2..........ccccccenee 14
PrereqUiSItes.......coovvvvvveeeeeenn, 14
Learning CH+..cveevvveveceeeenn, 14
GOAS....cirtireee e 16
Chapters......ccoeeevenenenereeee 17
EXErCiSeS...coovenine e 18
Exercise solutions..........ccceeeeereienene 18
Source Code.......ooevnereenenienenn 18
Language standards.................... 20
Language SUPPOIt........c.cceeeerreerirnenne 20
The book’'s CD ROM 20
Seminars, CD Roms & consulting20
EIOrs...oooovieeeee e 21
Acknowledgements.................... 21
Part 1. The Standard C++ Library
Library overview...........ccccceeenee. 24
1: Strings 27
What'sinastring.......ccccoeeeeenee. 27
Creating and initializing C++ strings 29
Operating on strings.......c.ccoueee... 31
Appending, inserting and concatenating strings 32
Replacing string characters................ 34
Concatenation using non-member overloaded operators 37
Searching in strings.........cccc......
Findinginreverse...............
Finding first/last of a set
Removing characters from strings.....45
Comparing StriNgS........coeerereeerrenens 49

USING iterators........coeereerenvenerenieenes 53

A string application.................... 58
SUMMAY ..o 61
EXErCISES...covieeiriieresiee 62
2: lostreams 63
Why iostreams?..........ccocvevrueenen. 63
True WrappPiNg......ccoeeevererereeenereenes 65
lostreamsto the rescue............... 67
Sneak preview of operator overloading68
Inserters and extractors............cc.c.e.... 69
COMMON USBQE.c.veueveeenereereenenrenens 70
Line-oriented input.........c.cocceeevrennnne 72
Fileiostreams........cccocveeeeenennen. 74
OpPEN MOUESccoeveveirieicireseeines 76
lostream buffering........ccocceeveeene 76
Using get() with astreambuf............ 78
Seeking iniostreams.................. 78
Creating read/writefiles.........c.c....... 80
SNGSIreams......cccoeveereereeeeene
SUISLIEAMS. ...
User-allocated storage
Automatic storage allocation............. 84
Output stream formatting........... 87
Internal formatting data............c.c...... 88
An exhaustive example...........cccceeee 92
Formatting manipulators............ 95
Manipulators with arguments............ 96
Creating manipulators................ 99
Effectors......cccoveennncciineccne 100
lostream examples.................... 102
Code generationcceeeeveeenienens 102
A simpledataloggerc.cccceevueenne 110
Counting editorcoveeenricenenn 117
Breaking up big files........cccocevenne 118
SUMMAY ..o 120
EXErCISES. ..o 120

3: Templatesin depth 121

Nontype template arguments ... 121

Default template arguments..... 122
The typename keyword............ 122
Typedefing atypename................... 124
Using typename instead of class....124
Function templates................... 124
A string conversion system............. 125
A memory allocation system........... 126
Type induction in function templates 129

Taking the address of a generated function template 130

Chapter 2: Hiding the Implementation

Local classesintemplates........ 131

Applying afunctionto an STL sequence 131
Template-templates.................. 134
Member function templates...... 135
Why virtual member template functions are disallowed 137
Nested template classes..........cc.c.....
Template specializations
Full specialization.............
Partial Specialization..................
A practical example........c.ccccoeveene
Design & efficiency
Preventing template bloat..
Explicit instantiation................
Explicit specification of template functions 144
Controlling template instantiation144
The inclusion vs. separation models145
The export keywordccceueeee. 145
Template programming idioms 145
The “curiously-recurring template” . 145
4: STL Containers & Iterators1l47
Containers and iterators........... 147
STL reference documentation......... 149
The Standard Template Library 149
The basic concepts........ccc...... 151
Containers of strings................ 155
Inheriting from STL containers 157
A plethora of iterators.............. 159
Iteratorsin reversible containers.....161
Iterator categories.........oovvneerenenes 162
Predefined iterators..........coccccveneee 163
Basic sequences: vector, list & deque 169
Basic sequence operations
VECLON ..ooeviieeeveeeeeeeeeeeceeeeeeeeeeeees
Cost of overflowing allocated storagel73
Inserting and erasing elements........ 177
deque.....oovreeeeere e 179
Converting between sequences........ 181
Cost of overflowing allocated storagel82
Checked random-access
TS R
Special list operations.......c...c.c.....
Swapping al basic sequences..........
Robustness of lists..........ccccoeceenenee
Performance comparison ..
SEL e
Eliminating strtok()ccccoeeveunne
StreamTokenizer: amore flexible solution 201

Chapter 2: Hiding the Implementation

(5= o S 208
QUEUE......eeeeeeeeeeeeeeeseee e e 211
Priority queues........c..cceevevenenne 216
Holding bits........cccoovvivverieennne 226
DItSEt<n> ..o 226
VECLOr <b0O0I> ... 230
Associative containers 232
Generators and fillers for associative containers 236
The magic of Maps.......ccccceeevrenene. 239
Multimaps and duplicate keys......... 244
MUILISELS ..ot 247
Combining STL containers...... 250

Cleaning up containers of pointers253
Creating your own containers.. 255
Freely-available STL extensions257

SUMMAY ... 259
EXErCiSes. ...coovvevrieeenieieee 260
5: STL Algorithms 263
Function objects.........ccoceeeueeene 263

Classification of function objects....264
Automatic creation of function objects265
SGI eXtensions........coceeeeeeneeeniennns 279
A catalog of STL algorithms.... 285
Support tools for example creation..287

Filling & generating.........coceccevnenee.

Countingc.ocoeeeereeenereeenns .

Manipulating sequences

Searching & replacing.........

Comparing ranges...............

Removing ements..........cccccceveene

Sorting and operations on sorted ranges311

Heap operations.........ccceveeeeereeens 322

Applying an operation to each element in arange 323

Numeric algorithms...........cccccceenenee 331

General utilities........ccooveeinricnnene. 334
Creating your own STL-style algorithms 336
SUMMAY ... 337
EXErCiSeS....covvvreerrereerreenennens 337

Part 2: Advanced Topics 341

6: Multiple inheritance 342

Perspective.......cccoovvvvvceeciennnns 342
Duplicate subobjects................ 344
Ambiguous upcasting............... 345
virtual base classes..........ccc..... 346

Chapter 2: Hiding the Implementation

The "most derived” class and virtual base initialization 348
"Tying off" virtual bases with a default constructor 349
Overhead........cccooveneneneniennn. 351
UpPCastingcccceeeeeereenieneesiennnn 352
Persistenceoccoevvveeennecines 355
Avoiding Mlcccoovvveieecn 362
Repairing an interface.............. 362

7: Exception handling

Error handlinginC...................
Throwing an exception

Catching an exception..............
Thetry blocKccooeveeenercince.
Exception handlers.................. .
The exception specification
Better exception specifications?......377
Catching any exception...................
Rethrowing an exception .
Uncaught exceptions...........
Function-level try blocks

Cleaning up....cccccevevvevereeerieennn

Constructors........cocoeeveeeeeeenes
Making everything an object........... 386
Exception matching 388
Standard exceptions................. 390
Programming with exceptions . 391

When to avoid exceptions...............
Typical uses of exceptions

The “Shape” example............... 399
What iSRTTI?...ccccovvveieeen 400
Two syntaxesfor RTTIccceueeee. 400
Syntax specifiCs.......ovevrerenen. 404
typeid() with built-in types............ 404
Producing the proper type name......405
Nonpolymorphic types........c.ccceenne 405
Cadting to intermediate levels.......... 406
VOId POINEES ... 408
Using RTTI with templates............. 408
References.......ccoevvvceeee v, 409
EXCEPLiONS.......ceieeereeeeeieeee 410
Multiple inheritance................. 411

Chapter 2: Hiding the Implementation

Sensible usesfor RTTI............. 412

Revisiting the trash recycler 413
Mechanism & overhead of RTT1416
Creating your own RTTl........... 416
Explicit cast syntaX 420
SUMMAY ..o 421
EXEICISES. ..o 422
9: Building stable systems 423
Shared objects & reference counting 423

Reference-counted class hierarchies423
The canonical object & singly-rooted hierarchies 423

An extended canonical form............ 424
Design by contract 424
Integrated unit testing 424
Dynamic aggregation............... 424
EXErCISES. ..o 428

10: Design patterns 429
The pattern concept.................. 429

The Singleton.........ccoeerereeencnene. 430
Classifying patterns.................. 434

Features, idioms, patterns................ 435

Basic complexity hiding.................. 435
Factories. encapsulating object creation 436

Polymorphic factories

Abstract factories..........cce.....

Virtual constructors...........cccoeveveeene
Callbacks.......cccovireiririenn

Functor/Command.coccccenennee

ST (0)Y TR

(04157 41/ S
Multiple dispatching

Visitor, atype of multiple dispatching463
EfficienCy...ccceveneveiireeiene 466

Flyweight ..o 466
The composite........ccocevvrvenene 466
Evolving a design: the trash recycler 466
Improving the design................ 471

“Make more objects’.........ccceruenne. 471

A pattern for prototyping creation...476
Abstracting usage..........ccccc...... 488

Applying double dispatching ... 492
Implementing the double dispatch...492

Applying the visitor pattern..... 497
RTTI considered harmful?....... 503

Chapter 2: Hiding the Implementation

Abstract base class for debugging ...533
Tracking new/delete & malloc/free533

CGI programming in C++........ 539
Encoding datafor CGlccceue.. 540
The CGl Parser......cccoveeeenerereennenns 541
USINGg POSTcoeiniieenieinienee 548
Handling mailing lists..........ccccveu... 549

A general information-extraction CGI program 560
Parsing the datafiles.........cccveuene 566
SUMMAY ... 573
EXErCISES. ..o 573
A: Recommended reading 575
G 575
Genera CHt..eeeieccce 575
My own list of boOKS..........ccccevenenne 576
Depth & dark corners............... 576
TheSTL v, 576
Design Patterns..........cceeeecveenne 576

B:Compiler specifics 577
I ndex 580

Chapter 2: Hiding the Implementation

Preface

Like any human language, C++ provides away to express
concepts. If successful, this medium of expression will be
significantly easier and more flexible than the alternatives as
problems grow larger and more compl ex.

You can't just look at C++ as a collection of features; some of the features make no sensein
isolation. Y ou can only use the sum of the parts if you are thinking about design, not simply
coding. And to understand C++ in thisway, you must understand the problems with C and
with programming in general. This book discusses programming problems, why they are
problems, and the approach C++ has taken to solve such problems. Thus, the set of features|
explain in each chapter will be based on the way that | see a particular type of problem being
solved with the language. In thisway | hope to move you, alittle at atime, from
understanding C to the point where the C++ mindset becomes your native tongue.

Throughout, I'll be taking the attitude that you want to build a model in your head that allows
you to understand the language all the way down to the bare metal; if you encounter a puzzle
you'll be able to feed it to your model and deduce the answer. | will try to convey to you the
insights which have rearranged my brain to make me start “thinking in C++.”

What' s new in the second

This book is athorough rewrite of the first edition to reflect all the changes introduced in C++
by the finalization of the ANSI/ISO C++ Standard. The entire text present in the first edition
has been examined and rewritten, sometimes removing old examples, often changing existing
examples and adding new ones, and adding many new exercises. Significant rearrangement
and re-ordering of the material took place to reflect the availability of better tools and my
improved understanding of how people learn C++. A new chapter was added which isarapid
introduction to the C concepts and basic C++ features for those who haven’t been exposed.
The CD ROM bound into the back of the book contains a seminar which isan even gentler
introduction to the C concepts necessary to understand C++ (or Java). It was created by

Chuck Allison for my company (MindView, Inc.) and it's called “Thinking in C: Foundations
for Javaand C++.” It introduces you to the aspects of C that are necessary for you to move on

13

to C++ or Java (leaving out the nasty bits that C programmers must deal with on a day-to-day
basis but that the C++ and Java languages steer you away from).

So the short answer is: what isn’t brand new has been rewritten, sometimes to the point where
you wouldn’t recognize the original examples and material.

What’sin Volume 2 of this book

The completion of the C++ Standard also added a number of important new libraries such as
string and the Standard Template Library (STL) aswell as new complexity in templates.
These and other more advanced topics have been relegated to Volume 2 of this book,
including issues like multiple inheritance, exception handling, design patterns and topics
about building stable systems and debugging them.

How to get Volume 2

Just like the book that you currently hold, Thinking in C++, Volume 2 is freely downloadable
inits entirety from my web site at www.BruceEckel.com. The final version of Volume 2 will
be completed and printed in late 2000 or early 2001.

The web site also contains the source code for both the books, along with updates and
information about CD ROMs, public seminars, and in-house training, consulting, mentoring
and walk-throughs.

Prerequisites

In the first edition of thisbook, | decided to assume that someone else had taught you C and
that you have at least areading level of comfort with it. My primary focus was on simplifying
what | found difficult — the C++ language. In this edition | have added a chapter that isavery
rapid introduction to C, along with the Thinking in C seminar-on-CD, but still assuming that
you have some kind of programming experience already. In addition, just as you learn many
new words intuitively by seeing them in context in anovel, it's possible to learn a great deal
about C from the context in which it isused in the rest of the book.

Learning C++

| clawed my way into C++ from exactly the same position as | expect many of the readers of
this book will: As aprogrammer with a very no-nonsense, nuts-and-bolts attitude about
programming. Worse, my background and experience was in hardware-level embedded
programming, where C has often been considered a high-level language and an inefficient
overkill for pushing bits around. | discovered later that | wasn’t even avery good C
programmer, hiding my ignorance of structures, malloc() & free(), setjmp() & longjmp(),

Preface 14

http://www.bruceeckel.com/

and other “sophisticated” concepts, scuttling away in shame when the subjects came up in
conversation rather than reaching out for new knowledge.

When | began my struggle to understand C++, the only decent book was Stroustrup’s self-
professed “expert’s guide,1 ” so | was |eft to simplify the basic concepts on my own. This
resulted in my first C++ book,2 which was essentially a brain dump of my experience. That
was designed as a reader’ s guide, to bring programmersinto C and C++ at the same time.
Both editions3 of the book garnered an enthusiastic response.

At about the same time that Using C++ came out, | began teaching the languagein live
seminars and presentations. Teaching C++ (and later, Java) became my profession; |’ ve seen
nodding heads, blank faces, and puzzled expressionsin audiences all over the world since
1989. As| began giving in-house training with smaller groups of people, | discovered
something during the exercises. Even those people who were smiling and nodding were
confused about many issues. | found out, by creating and chairing the C++ and Java tracks at
the Software Development Conference for many years, that | and other speakers tended to
give the typical audience too many topics, too fast. So eventually, through both variety in the
audience level and the way that | presented the material, | would end up losing some portion
of the audience. Maybe it’s asking too much, but because | am one of those people resistant to
traditional lecturing (and for most people, | believe, such resistance results from boredom), |
wanted to try to keep everyone up to speed.

For atime, | was creating a number of different presentationsin fairly short order. Thus, |
ended up learning by experiment and iteration (a technique that also workswell in C++
program design). Eventually | developed a course using everything | had learned from my
teaching experience. It tackles the learning problem in discrete, easy-to-digest steps and for a
hands-on seminar (the ideal |earning situation), there are exercises following each of the
presentations.

Thefirst edition of this book developed over the course of two years, and the material in this
book has been road-tested in many forms in many different seminars. The feedback that I've
gotten from each seminar has helped me change and refocus the material until | feel it works
well as ateaching medium. But it isn't just a seminar handout — | tried to pack as much
information as | could within these pages, and structure it to draw you through, onto the next
subject. More than anything, the book is designed to serve the solitary reader, struggling with
anew programming language.

1 Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1986 (first edition).
2 Using C++, Osborne/McGraw-Hill 1989.

3 Using C++ and C++ Inside & Out, Osborne/McGraw-Hill 1993.

Preface 15

Goals

My goalsin this book are to:

1.

Present the material asimple step at atime, so the reader can easily digest
each concept before moving on.

Use examples that are as simple and short as possible. This sometimes
prevents me from tackling “real-world” problems, but I’ ve found that
beginners are usually happier when they can understand every detail of an
example rather than being impressed by the scope of the problem it solves.
Also, there's a severe limit to the amount of code that can be absorbed in a
classroom situation. For this| sometimes receive criticism for using “toy
examples,” but I'm willing to accept that in favor of producing something
pedagogically useful.

Carefully sequence the presentation of features so that you aren’t seeing
something you haven’t been exposed to. Of course, thisisn't always
possible; in those situations, a brief introductory description will be given.

Give you what | think isimportant for you to understand about the
language, rather than everything | know. | believe there is an “information
importance hierarchy,” and there are some facts that 95% of programmers
will never need to know, but that would just confuse people and add to their
perception of the complexity of the language. To take an example from C, if
you memorize the operator precedence table (I never did) you can write
clever code. But if you have to think about it, it will confuse the
reader/maintainer of that code. So forget about precedence, and use
parentheses when things aren’t clear. This same attitude will be taken with
some information in the C++ language, which | think is more important for
compiler writers than for programmers.

Keep each section focused enough so the lecture time — and the time
between exercise periods —is small. Not only does this keep the audience’
minds more active and involved during a hands-on seminar, but it givesthe
reader a greater sense of accomplishment.

Provide the reader with a solid foundation so they can understand the issues
well enough to move on to more difficult coursework and books (in
particular, Volume 2 of this book).

I’ ve endeavored not to use any particular vendor’s version of C++ because,
for learning the language, | don’t feel like the details of a particular

Preface

16

implementation are as important as the language itself. Most vendors
documentation concerning their own implementation specifics is adequate.

Chapters

C++ isalanguage where new and different features are built on top of an existing syntax.
(Because of thisit is referred to as a hybrid object-oriented programming language.) As more
people have passed through the learning curve, we've begun to get afeel for the way
programmers move through the stages of the C++ language features. Because it appearsto be
the natural progression of the procedurally-trained mind, | decided to understand and follow
this same path, and accel erate the process by posing and answering the questions that came to
me as | learned the language and that came from audiences as | taught it.

This course was designed with one thing in mind: to streamline the process of learning the
C++ language. Audience feedback helped me understand which parts were difficult and
needed extraillumination. In the areas where | got ambitious and included too many features
all at once, | came to know — through the process of presenting the material — that if you
include alot of new features, you have to explain them all, and the student’s confusion is
easily compounded. As aresult, I’ve taken a great deal of trouble to introduce the features as
few at atime as possible; ideally, only one major concept at atime per chapter.

The goal, then, isfor each chapter to teach a single concept, or a small group of associated
concepts, in such away that no additional features are relied upon. That way you can digest
each piece in the context of your current knowledge before moving on. To accomplish this, |
leave some C featuresin place for longer than | would prefer. The benefit is that you will not
be confused by seeing all the C++ features used before they are explained, so your
introduction to the language will be gentle and will mirror the way you will assimilate the
featuresif left to your own devices.

Here isabrief description of the chapters contained in this book:

(5) Introduction to iostreams. One of the origina C++ libraries— the one that provides the
essential 1/0 facility —is called iostreams. lostreams is intended to replace C's stdio.h with an
I/O library that is easier to use, more flexible, and extensible — you can adapt it to work with
your new classes. This chapter teaches you the ins and outs of how to make the best use of the
existing iostream library for standard 1/0, file 1/O, and in-memory formatting.

(15) Multiple inheritance. This sounds simple at first: A new classis inherited from more
than one existing class. However, you can end up with ambiguities and multiple copies of
base-class objects. That problem is solved with virtual base classes, but the bigger issue
remains. When do you use it? Multiple inheritance is only essential when you need to
manipulate an object through more than one common base class. This chapter explains the
syntax for multiple inheritance, and shows alternative approaches — in particular, how
templ ates solve one common problem. The use of multiple inheritance to repair a “ damaged”
classinterface is demonstrated as a genuinely valuable use of this feature.

Preface 17

(16) Exception handling. Error handling has always been a problem in programming. Even if
you dutifully return error information or set aflag, the function caller may simply ignore it.
Exception handling is a primary feature in C++ that solves this problem by allowing you to
“throw” an object out of your function when a critical error happens. Y ou throw different
types of objects for different errors, and the function caller “ catches’ these objects in separate
error handling routines. If you throw an exception, it cannot be ignored, so you can guarantee
that something will happen in response to your error.

(17) Run-time type identification. Run-time type identification (RTTI) lets you find the
exact type of an object when you only have a pointer or reference to the base type. Normally,
you' [l want to intentionally ignore the exact type of an object and let the virtual function
mechanism implement the correct behavior for that type. But occasionally it is very helpful to
know the exact type of an object for which you only have a base pointer; often this
information allows you to perform a special-case operation more efficiently. This chapter
explainswhat RTTI isfor and how to useit.

Exercises

I’ve discovered that simple exercises are exceptionally useful during a seminar to complete a
student’ s understanding, so you'll find a set at the end of each chapter.

These are fairly simple, so they can be finished in areasonable amount of time in a classroom
situation while the instructor observes, making sure all the students are absorbing the material.
Some exercises are a bit more challenging to keep advanced students entertained. They're all
designed to be solved in a short time and are only there to test and polish your knowledge
rather than present major challenges (presumably, you'll find those on your own — or more
likely they'Il find you).

Exercise solutions

Solutions to exercises can be found in the electronic document The C++ Annotated Solution
Guide, Volume 2 by Chuck Allison, available for a small fee from www.BruceEckel.com. [[
Note thisis not yet available]]

Source code

The source code for this book is copyrighted freeware, distributed via the web site
http://mww.BruceEckel .com. The copyright prevents you from republishing the code in print
media without permission.

Although the code is available in a zipped file on the above web site, you can also unpack the
code yourself by downloading the text version of the book and running the program
ExtractCode (from Volume 2 of this book), the source for which is also provided on the Web

Preface 18

http://www.bruceeckel.com/

site. The program will create a directory for each chapter and unpack the code into those
directories. In the starting directory where you unpacked the code you will find the following
copyright notice:

/1:1 :CopyRi ght.txt

Copyright (c) Bruce Eckel, 1999

Source code file fromthe book "Thinking in C++"
Al rights reserved EXCEPT as al |l owed by the
follow ng statenents: You can freely use this file
for your own work (personal or commercial),

i ncluding nodifications and distribution in
executable formonly. Perm ssion is granted to use
this file in classroomsituations, including its
use in presentation materials, as long as the book
"Thinking in C++" is cited as the source.

Except in classroomsituations, you cannot copy
and distribute this code; instead, the sole

di stribution point is http://ww.BruceEckel.com
(and official mrror sites) where it is

freely avail able. You cannot renove this

copyright and notice. You cannot distribute
nodi fi ed versions of the source code in this
package. You cannot use this file in printed

medi a wi thout the express permission of the

aut hor. Bruce Eckel nmkes no representation about
the suitability of this software for any purpose.
It is provided "as is" without express or inplied
warranty of any kind, including any inplied
warranty of merchantability, fitness for a
particul ar purpose or non-infringenent. The entire
risk as to the quality and performance of the
software is with you. Bruce Eckel and the
publ i sher shall not be liable for any danages
suffered by you or any third party as a result of
using or distributing software. In no event wll
Bruce Eckel or the publisher be liable for any

| ost revenue, profit, or data, or for direct,
indirect, special, consequential, incidental, or
puni ti ve damages, however caused and regardl ess of
the theory of liability, arising out of the use of
or inability to use software, even if Bruce Eckel
and the publisher have been advised of the
possibility of such damages. Should the software
prove defective, you assume the cost of al

Preface 19

necessary servicing, repair, or correction. If you
think you've found an error, please subnit the
correction using the formyou will find at

www. BruceEckel . com (Pl ease use the sane

formfor non-code errors found in the book.)

I~

Y ou may use the code in your projects and in the classroom as long as the copyright notice is
retained.

L anguage standards

Throughout this book, when referring to conformance to the ANSI/ISO C standard, | will
generally just say ‘C.’ Only if it is necessary to distinguish between Standard C and older,
pre-Standard versions of C will | make the distinction.

At thiswriting the ANSI/ISO C++ committee was finished working on the language. Thus, |
will use theterm Standard C++ to refer to the standardized language. If | simply refer to C++
you should assume | mean “Standard C++.”

L anguage support
Y our compiler may not support all the features discussed in this book, especialy if you don’t
have the newest version of your compiler. Implementing a language like C++ isaHerculean
task, and you can expect that the features will appear in pieces rather than all at once. But if
you attempt one of the examplesin the book and get alot of errors from the compiler, it's not
necessarily a bug in the code or the compiler — it may simply not be implemented in your
particular compiler yet.

The book’s CD ROM

Seminars, CD Roms &
consulting

My company, MindView, Inc., provides public hands-on training seminars based on the
material in this book, and also for advanced topics. Selected material from each chapter
represents alesson, which is followed by a monitored exercise period so each student receives
personal attention. We also provide on-site training, consulting, mentoring, and design & code

Preface 20

walkthroughs. Information and sign-up forms for upcoming seminars and other contact
information can be found at http://www.BruceEckel.com.

Errors

No matter how many tricks awriter uses to detect errors, some always creep in and these
often leap off the page for a fresh reader. If you discover anything you believe to be an error,
please use the correction form you will find at http://www.BruceEckel.com. Your helpis
appreciated.

Acknowledgements

Theideas and understanding in this book have come from many sources: friends like Chuck
Allison, Andrea Provaglio, Dan Saks, Scott Meyers, Charles Petzold, and Michael Wilk;
pioneers of the language like Bjarne Stroustrup, Andrew Koenig, and Rob Murray; members
of the C++ Standards Committee like Nathan Myers (who was particularly helpful and
generous with hisinsights), Tom Plum, Reg Charney, Tom Penello, Sam Druker, and Uwe
Steinmueller; people who have spoken in my C++ track at the Software Devel opment
Conference; and very often studentsin my seminars, who ask the questions | need to hear in
order to make the material clearer.

| have been presenting this material on tours produced by Miller Freeman Inc. with my friend
Richard Hale Shaw. Richard’ s insights and support have been very helpful (and Kim's, too).
Thanks also to KoAnn Vikoren, Eric Faurot, Jennifer Jessup, Nicole Freeman, Barbara
Hanscome, Regina Ridley, Alex Dunne, and the rest of the cast and crew at MFI.

The book design, cover design, and cover photo were created by my friend Daniel Will-
Harris, noted author and designer, who used to play with rub-on lettersin junior high school
while he awaited the invention of computers and desktop publishing. However, | produced the
camera-ready pages myself, so the typesetting errors are mine. Microsoft® Word for Windows
97 was used to write the book and to create camera-ready pages. The body typefaceis[Times
for the electronic distribution] and the headlines are in [Times for the electronic distribution].

A special thanksto all my teachers, and all my students (who are my teachers as well).

Personal thanks to my friends Gen Kiyooka and Kraig Brockschmidt. The supporting cast of
friends includes, but is not limited to: Zack Urlocker, Andrew Binstock, Neil Rubenking,
Steve Sinofsky, JD Hildebrandt, Brian McElhinney, Brinkley Barr, Larry O’ Brien, Bill Gates
at Midnight Engineering Magazine, Larry Constantine & Lucy Lockwood, Tom Keffer, Greg
Perry, Dan Putterman, Christi Westphal, Gene Wang, Dave Mayer, David Intersimone, Claire
Sawyers, Claire Jones, The Italians (Andrea Provaglio, Laura Fallai, Marco Cantu, Corrado,
Ilsaand Christina Giustozzi), Chris & Laura Strand, The Almquists, Brad Jerbic, Marilyn
Cvitanic, The Mabrys, The Haflingers, The Pollocks, Peter Vinci, The Robbins Families, The
Moelter Families (& the McMillans), The Wilks, Dave Stoner, Laurie Adams, The Penneys,

Preface 21

The Cranstons, Larry Fogg, Mike & Karen Sequeira, Gary Entsminger & Allison Brody,
Chester Andersen, Joe Lordi, Dave & Brenda Bartlett, The Rentschlers, The Sudeks, Lynn &
Todd, and their families. And of course, Mom & Dad.

Preface 22

Part 1: The
Standard C++
Library

Standard C++ not only incorporates all the Standard C
libraries, with small additions and changes to support type
safety, it also adds libraries of itsown. These libraries are far
more powerful than those in Standard C; the leverage you
get from them is analogous to the leverage you get from
changing from C to C++.

This section of the book gives you an in-depth introduction to the most important portions of
the Standard C++ library.

The most complete and al so the most obscure reference to the full librariesis the Standard
itself. Somewhat more readable (and yet still a self-described “expert’s guide”) is Bjarne
Stroustrup’s 3" Edition of The C++ Programming Language (Addison-Wesley, 1997).
Another valuable reference is the 3" edition of C++ Primer, by Lippman & Lajoie. The goal
of the chapters in this book that cover the librariesisto provide you with an encyclopedia of
descriptions and examples so you' [l have a good starting point for solving any problem that
requires the use of the Standard libraries. However, there are some techniques and topics that
are used rarely enough that they are not covered here, so if you can't find it in these chapters
you should reach for the other two books; this book is not intended to replace those but rather
to complement them. In particular, | hope that after going through the material in the
following chapters you'll have a much easier time understanding those books.

Y ou will notice that this section does not contain exhaustive documentation describing every
function and classin the Standard C++ library. I ve left the full descriptionsto others; in
particular there a particularly good on-line sources of standard library documentation in

HTML format that you can keep resident on your computer and view with a Web browser
whenever you need to look something up. Thisis PJ Plauger’s Dinkumware C/C++ Library
reference at http://www.dinkumware.com. Y ou can view this on-line, and purchase it for local

23

viewing. It contains complete reference pages for the both the C and C++ libraries (soit’s
good to use for all your Standard C/C++ programming questions). | am particularly fond of
electronic documentation not only because you can aways have it with you, but also because
you can do an electronic search for what you’ re seeking.

When you're actively programming, these resources should adequately satisfy your reference
needs (and you can use them to look up anything in this chapter that isn't clear to you).
Appendix XX lists additional references.

Library overview

[[Still needswork 1]

The first chapter in this section introduces the Standard C++ string class, which is a powerful
tool that simplifies most of the text processing chores you might have to do. The string class
may be the most thorough string manipulation tool you've ever seen. Chances are, anything
you' ve done to character strings with lines of code in C can be done with a member function
call in the string class, including append(), assign(), insert(), remove(), replace(),
resize(), copy(), find(), rfind(), find_first_of(), find_last_of(), find_first_not_of(),
find_last_not_of(), substr(), and compare(). The operators =, +=, and [] are al'so
overloaded to perform the intuitive operations. In addition, there's a“wide” wstring class
designed to support international character sets. Both string and wstring (declared in
<string>, not to be confused with C's <string.h>, which is, in strict C++, <cstring>) are
created from a common template class called basic_string. Note that the string classes are
seamlessly integrated with iostreams, virtually eliminating the need for you to ever use
strstream.

The next chapter coverstheiostream library.

L anguage Support. Elements inherent to the language itself, like implementation limitsin
<climits> and <cfloat>; dynamic memory declarationsin <new> like bad_alloc (the
exception thrown when you' re out of memory) and set_new_handler; the <typeinfo> header
for RTTI and the <exception> header that declares the terminate() and unexpected()
functions.

Diagnostics Library. Components C++ programs can use to detect and report errors. The
<exception> header declares the standard exception classes and <cassert> declares the same
thing as C's assert.h.

General Utilities Library. These components are used by other parts of the Standard C++
library, but you can also use them in your own programs. Included are templatized versions of
operators |=, >, <=, and >= (to prevent redundant definitions), a pair template classwith a
tuple-making template function, a set of function objects for support of the STL, and storage
allocation functions for use with the STL so you can easily modify the storage allocation
mechanism.

Chapter 14: Templates & Container Classes
24

Localization Library. This allows you to localize stringsin your program to adapt to usage
in different countries, including money, numbers, date, time, and so on.

ContainersLibrary. Thisincludes the Standard Template Library (described in the next
section of this appendix) and also the bits and bit_string classesin <bits> and <bitstring>,
respectively. Both bits and bit_string are more complete implementations of the bitvector
concept introduced in Chapter XX. The bits template creates a fixed-sized array of bits that
can be manipulated with all the bitwise operators, as well as member functions like set(),
reset(), count(), length(), test(), any(), and none(). There are also conversion operators
to_ushort(), to_ulong(), and to_string().

The bit_string classis, by contrast, a dynamically sized array of bits, with similar operations
to bits, but also with additional operations that make it act somewhat like astring. There'sa
fundamental difference in bit weighting: With bits, the right-most bit (bit zero) is the |least
significant bit, but with bit_string, the right-most bit is the most significant bit. There are no
conversions between bits and bit_string. You'll use bits for a space-efficient set of on-off
flags and bit_string for manipulating arrays of binary values (like pixels).

IteratorsLibrary. Includesiterators that are tools for the STL (described in the next section
of this appendix), streams, and stream buffers.

AlgorithmsLibrary. These are the template functions that perform operations on the STL
containers using iterators. The algorithms include: adjacent_find, prev_per mutation,
binary_search, push_heap, copy, random_shuffle, copy_backward, remove, count,
remove_copy, count_if, remove_copy_if, equal, remove_if, equal_range, replace, fill,
replace _copy, fill_n, replace copy _if, find, replace_if, find_if, reverse, for_each,
reverse_copy, gener ate, rotate, generate n, rotate _copy, includes, search,
inplace_merge, set_difference, lexicographical_compare, set_inter section, lower_bound,
set_symmetric_difference, make_heap, set_union, max, sort, max_element, sort_heap,
mer ge, stable_partition, min, stable_sort, min_element, swap, mismatch, swap_ranges,
next_permutation, transform, nth_element, unique, partial_sort, unique_copy,
partial_sort_copy, upper_bound, and partition.

NumericsLibrary. The goal of thislibrary isto allow the compiler implementer to take
advantage of the architecture of the underlying machine when used for numerical operations.
Thisway, creators of higher level numerical libraries can write to the numerics library and
produce efficient algorithms without having to customize to every possible machine. The
numerics library also includes the complex number class (which appeared in the first version
of C++ as an example, and has become an expected part of the library) in float, double, and
long double forms.

Chapter 14: Templates & Container Classes
25

1: Strings

40ne of the biggest time-wastersin C is character arrays:
keeping track of the difference between static quoted strings
and arrays created on the stack and the heap, and the fact
that sometimes you' re passing around a char* and
sometimes you must copy the whole array.

(Thisisthe general problem of shallow copy vs. deep copy.) Especially because string
manipulation is so common, character arrays are a great source of misunderstandings and
bugs.

Despite this, creating string classes remained a common exercise for beginning C++
programmers for many years. The Standard C++ library string class solves the problem of
character array manipulation once and for all, keeping track of memory even during
assignments and copy-constructions. Y ou simply don't need to think about it.

This chapter examines the Standard C++ string class, beginning with alook at what
congtitutes a C++ string and how the C++ version differs from atraditional C character array.
You'll learn about operations and manipulations using string objects, and see how C++
strings accommodate variation in character sets and string data conversion.

Handling text is perhaps one of the oldest of all programming applications, so it's not
surprising that the C++ string draws heavily on the ideas and terminology that have long been
used for this purpose in C and other languages. As you begin to acquaint yourself with C++
strings this fact should be reassuring, in the respect that no matter what programming idiom
you choosg, there are really only about three things you can do with a string: create or modify
the sequence of characters stored in the string, detect the presence or absence of elements
within the string, and translate between various schemes for representing string characters.

You'll see how each of these jobsis accomplished using C++ string objects.

What'sin a string

In C, astringissimply an array of characters that always includes a binary zero (often called
the null terminator) asitsfina array element. There are two significant differences between

4 Much of the material in this chapter was originally created by Nancy Nicolaisen

27

C++ strings and their C progenitors. First, C++ string objects associate the array of
characters which constitute the string with methods useful for managing and operating on it.
A string also contains certain “housekeeping” information about the size and storage location
of itsdata. Specifically, a C++ string object knowsiits starting location in memory, its
content, its length in characters, and the length in charactersto which it can grow before the
string object must resize itsinternal data buffer. This givesrise to the second big difference
between C char arrays and C++ strings. C++ strings do not include a null terminator, nor do
the C++ string handling member functions rely on the existence of a null terminator to
perform their jobs. C++ strings greatly reduce the likelihood of making three of the most
common and destructive C programming errors: overwriting array bounds, trying to access
arrays through uninitialized or incorrectly valued pointers, and leaving pointers “ dangling”
after an array ceases to occupy the storage that was once allocated to it.

The exact implementation of memory layout for the string classis not defined by the C++
Standard. This architecture is intended to be flexible enough to allow differing
implementations by compiler vendors, yet guarantee predictable behavior for users. In
particular, the exact conditions under which storage is allocated to hold data for a string object
are not defined. String allocation rules were formulated to allow but not require a reference-
counted implementation, but whether or not the implementation uses reference counting, the
semantics must be the same. To put this abit differently, in C, every char array occupies a
unique physical region of memory. In C++, individual string objects may or may not occupy
unique physical regions of memory, but if reference counting is used to avoid storing
duplicate copies of data, the individual objects must look and act as though they do
exclusively own unique regions of storage. For example:

/1: CO1l:StringStorage.cpp
#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng namespace std;

int main() {
string s1("12345");
/1 Set the iterator indicate the first el ement
string::iterator it = sl.begin();
/1 This may copy the first to the second or
/1 use reference counting to sinulate a copy
string s2 = si;
/1 Either way, this statenment may ONLY nodify first
it ='0";
cout << "sl " << sl << endl
cout << "s2 " << s2 << endl
Y I~

Reference counting may serve to make an implementation more memory efficient, but it is
transparent to users of the string class.

Chapter 14: Templates & Container Classes
28

Creating and initializing C++ strings
Creating and initializing stringsis a straightforward proposition, and fairly flexible aswell. In
the example shown below, the first string, imBlank, is declared but contains no initial value.
Unlike a C char array, which would contain a random and meaningless bit pattern until
initialization, imBlank does contain meaningful information. This string object has been
initialized to hold “no characters,” and can properly report its O length and absence of data
elements through the use of class member functions.

The next string, heyM om, isinitialized by the literal argument "Where are my socks?". This
form of initialization uses a quoted character array as a parameter to the string constructor.
By contrast, standar dReply is simply initialized with an assignment. The last string of the
group, useT hisOneAgain, isinitialized using an existing C++ string object. Put another way,
this example illustrates that string objects let you:

» Create an empty string and defer initializing it with character data

* Initidlizeastring by passing aliteral, quoted character array as an argument to the
constructor

» Initidlizeastring using ‘="
* Useonestring toinitialize another

//: CO1l:Small String.cpp
#i ncl ude <string>
usi ng namespace std;

int main() {
string inBl ank;
string heyMom("Were are nmy socks?");
string standardReply = "Beaned into deep "
"space on w de angl e di spersion?”;
string useThi sOneAgai n(st andar dRepl y) ;
Y I~

These are the simplest forms of string initialization, but there are other variations which offer
more flexibility and control. You can:

* Useaportion of either aC char array or aC++ string
* Combine different sources of initialization data using operator +
* Usethestring object’s substr () member function to create a substring

//: CO1l:Small String2.cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng namespace std;

Chapter 14: Templates & Container Classes
29

int main() {

string sl
("What is the sound of one clam nappi ng?");
string s2
("Anyt hing worth doing is worth overdoing.");

string s3("l saw Elvis in a UFQO");
/1l Copy the first 8 chars
string s4(sl, 0, 8);
/1 Copy 6 chars fromthe middle of the source
string s5(s2, 15, 6);
/1 Copy frommddle to end
string s6(s3, 6, 15);
/1 Copy all sorts of stuff
string quoteMe = s4 + "that" +
/1 substr() copies 10 chars at elenent 20
sl.substr (20, 10) + s5 +
/1 substr() copies up to either 100 char
/1 or eos starting at elenment 5
"with" + s3.substr(5, 100) +
/1 OKto copy a single char this way
sl.substr (37, 1);
cout << quoteMe << endl

Y I~

The string member function substr () takes a starting position as its first argument and the
number of charactersto select as the second argument. Both of these arguments have default
values and if you say substr (') with an empty argument list you produce a copy of the entire
string, so thisis aconvenient way to duplicate astring.

Here'swhat the string quoteM e contains after the initialization shown above :
"What is that one clamdoing with Elvis in a UFQ ?"

Notice the final line of example above. C++ alows string initialization techniques to be
mixed in asingle statement, a flexible and convenient feature. Also note that the last
initializer copies just one character from the source string.

Another slightly more subtle initialization technique involves the use of the string iterators
string.begin() and string.end(). Thistreats astring like a container object (which you've
seen primarily in the form of vector so far in this book — you' [l see many more containers
soon) which hasiteratorsindicating the start and end of the “container.” Thisway you can
hand a string constructor two iterators and it will copy from one to the other into the new
string:

| //: C01:Stringlterators.cpp

Chapter 14: Templates & Container Classes
30

#i ncl ude <string>
#i ncl ude <i ostreanp
usi ng namespace std;

int main() {
string source("xxx");
string s(source.begin(), source.end());
cout << s << endl

Y I~

The iterators are not restricted to begin() and end(), so you can choose a subset of characters
from the source string.

Initialization limitations
C++ strings may not be initialized with single characters or with ASCI| or other integer
values.

//: COl: UhCh. cpp
#i ncl ude <string>
usi ng namespace std;

int main() {
/1 Error: no single char inits
/1! string nothingDoingl('a');
/1 Error: no integer inits
/1! string nothingDoi ng2(0x37);
Y I~

Thisistrue both for initialization by assignment and by copy constructor.

Operating on strings

If you've programmed in C, you are accustomed to the convenience of a large family of
functions for writing, searching, rearranging, and copying char arrays. However, there are
two unfortunate aspects of the Standard C library functions for handling char arrays. First,
there are three loosely organized families of them: the “plain” group, the group that

manipul ates the characters without respect to case, and the ones which require you to supply a
count of the number of characters to be considered in the operation at hand. The roster of
function names in the C char array handling library literally runs to several pages, and though
the kind and number of arguments to the functions are somewhat consistent within each of the
three groups, to use them properly you must be very attentive to details of function naming
and parameter passing.

Chapter 14: Templates & Container Classes
31

The second inherent trap of the standard C char array toolsisthat they al rely explicitly on
the assumption that the character array includes a null terminator. If by oversight or error the
null is omitted or overwritten, there’ s very little to keep the C char array handling functions
from manipulating the memory beyond the limits of the allocated space, sometimes with
disastrous results.

C++ provides avast improvement in the convenience and safety of string objects. For
purposes of actual string handling operations, there are a modest two or three dozen member
function names. It’s worth your while to become acquainted with these. Each function is
overloaded, so you don't have to learn a new string member function name simply because of
small differencesin their parameters.

Appending, inserting and concatenating
strings

One of the most valuable and convenient aspects of C++ stringsis that they grow as needed,
without intervention on the part of the programmer. Not only does this make string handling
code inherently more trustworthy, it also amost entirely eliminates a tedious “housekeeping”
chore — keeping track of the bounds of the storage in which your strings live. For example, if
you create a string object and initialize it with a string of 50 copies of ‘X', and later storein it
50 copies of “Zowie”, the object itself will reall ocate sufficient storage to accommodate the
growth of the data. Perhaps nowhere is this property more appreciated than when the strings
manipulated in your code change in size, and you don’t know how big the changeiis.
Appending, concatenating, and inserting strings often give rise to this circumstance, but the
string member functions append() and insert() transparently reall ocate storage when a string
grows.

//: CO1l:StrSize.cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng nanmespace std;

int main() {
string bigNews("l saw Elvis in a UFO. ");
cout << bigNews << endl;
/! How rmuch data have we actually got?
cout << "Size = " << bigNews.size() << endl;
/1 How rmuch can we store w thout reallocating
cout << "Capacity ="
<< bi gNews. capacity() << endl;
/1 Insert this string in bigNews inmediately
/1 before bigNews[1]
bi gNews. i nsert (1, " thought I ");
cout << bigNews << endl;

Chapter 14: Templates & Container Classes
32

cout << "Size = " << bigNews.size() << endl;
cout << "Capacity ="

<< bi gNews. capacity() << endl;
/1 Make sure that there will be this nuch space
bi gNews. r eser ve(500) ;
/1 Add this to the end of the string
bi gNews. append("1' ve been working too hard.");
cout << higNews << endl;
cout << "Size = " << bigNews.size() << endl;
cout << "Capacity ="

<< bi gNews. capacity() << endl;

Y I~

Here is the output:

| saw Elvis in a UFQ

Size = 21

Capacity = 31

| thought | saw Elvis in a UFQ

Size = 32

Capacity = 63

| thought | saw Elvis in a UFO. 1've been
wor ki ng too hard.

Size = 66

Capacity = 511

This example demonstrates that even though you can safely relinquish much of the
responsibility for allocating and managing the memory your strings occupy, C++ strings
provide you with several tools to monitor and manage their size. The size(), resize(),
capacity(), and reserve() member functions can be very useful when its necessary to work
back and forth between data contained in C++ style strings and traditional null terminated C
char arrays. Note the ease with which we changed the size of the storage allocated to the
string.

The exact fashion in which the string member functions will allocate space for your datais
dependent on the implementation of the library. When one implementation was tested with
the example above, it appeared that reall ocations occurred on even word boundaries, with one
byte held back. The architects of the string class have endeavored to make it possible to mix
the use of C char arrays and C++ string objects, so it islikely that figures reported by

Str Size.cpp for capacity reflect that in this particular implementation, a byteis set aside to
easily accommodate the insertion of anull terminator.

Chapter 14: Templates & Container Classes
33

Replacing string characters

insert() is particularly nice because it absolves you of making sure the insertion of characters
in astring won't overrun the storage space or overwrite the charactersimmediately following
the insertion point. Space grows and existing characters politely move over to accommodate
the new elements. Sometimes, however, this might not be what you want to happen. If the
datain string needs to retain the ordering of the original characters relative to one another or
must be a specific constant size, use the replace() function to overwrite a particular sequence
of characters with another group of characters. There are quite a number of overloaded
versions of replace(), but the simplest one takes three arguments: an integer telling where to
start in the string, an integer telling how many characters to eliminate from the original string,
and the replacement string (which can be a different number of characters than the eliminated
guantity). Here's avery simple example:

//: CO1l: StringRepl ace. cpp

/1 Sinple find-and-replace in strings
#i ncl ude <string>

#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
string s("A piece of text");
string tag("tag");
s.insert(8, tag + ' ');
cout << s << endl;
int start = s.find(tag);
cout << "start = " << start << endl;
cout << "size = " << tag.size() << endl;
s.replace(start, tag.size(), "hello there");
cout << s << endl;

Y 110~

Thetag isfirst inserted into s (notice that the insert happens before the value indicating the
insert point, and that an extra space was added after tag), then it is found and replaced.

Y ou should actually check to seeif you' ve found anything before you perform areplace().
The above example replaces with a char*, but there's an overloaded version that replaces
with astring. Here's a more complete demonstration replace()

//: CO1l: Repl ace. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng nanmespace std;

voi d repl aceChars(string& nodifyMe,

Chapter 14: Templates & Container Classes
34

string findMe, string newChars){
/1 Look in nodifyMe for the "find string"
/1 starting at position O

int i = nodifyMe.find(findMe, 0);
/1 Did we find the string to replace?
if(i !'= string::npos)

/1 Replace the find string with newChars
nodi f yMe. repl ace(i, newChars. si ze(), newChars) ;

}

int main() {
string bigNews =
"I thought | saw Elvis in a UFQ
"I have been working too hard.";
string replacenent("w g");
string findMe("UFQ");
/1 Find "UFO" in bigNews and overwite it:
repl aceChar s(bi gNews, findMe, replacenent);
cout << higNews << endl;
Y I~

Now the last line of output from replace.cpp looks like this:

| thought | saw Elvis in a wig. | have been
wor ki ng too hard.

If replace doesn't find the search string, it returns npos. nposis a static constant member of
thebasic_string class.

Unlikeinsert(), replace() won't grow the string’ s storage space if you copy new characters
into the middle of an existing series of array elements. However, it will grow the storage
space if you make a “replacement” that writes beyond the end of an existing array. Here'san
example:

/1: CO1l: Repl aceAndG ow. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
string bigNews("l saw Elvis in a UFQ
"I have been working too hard.");
string replacenent ("w g");
/1 The first arg says "replace chars
/1 beyond the end of the existing string":
bi gNews. r epl ace(bi gNews. si ze(),

Chapter 14: Templates & Container Classes
35

repl acenent.size(), replacenent);
cout << higNews << endl;
Y I~

The call to replace() begins “replacing” beyond the end of the existing array. The output
looks like this:

| saw Elvis in a UFO | have
been working too hard.w g

Notice that replace() expands the array to accommodate the growth of the string due to
“replacement” beyond the bounds of the existing array.

Simple character replacement using the STL
replace() algorithm

Y ou may have been hunting through this chapter trying to do something relatively simple like
replace al the instances of one character with a different character. Upon finding the above
section on replacing, you thought you found the answer but then you started seeing groups of
characters and counts and other things that looked a bit too complex. Doesn't string have a
way to just replace one character with another everywhere?

The string class by itself doesn’t solve al possible problems. The remainder are relegated to
the STL algorithms, because the string class can look just like an STL container (the STL
algorithms work with anything that looks like an STL container). All the STL algorithms
work on a*“range” of elements within a container. Usually that rangeisjust “from the
beginning of the container to the end.” A string object looks like a container of characters: to
get the beginning of the range you use string::begin() and to get the end of the range you use
string::end(). The following example shows the use of the STL replace() algorithm to
replace al the instances of ‘X’ with *Y":

/1: CO1: StringCharRepl ace. cpp
#i ncl ude <string>

#i ncl ude <al gorithne

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
string s("aaaXaaaXXaaXXXaXXXXaaa") ;
cout << s << endl;
repl ace(s. begin(), s.end(), "X, 'Y);
cout << s << endl;

Y I~

Notice that thisreplace() is not called as a member function of string. Also, unlike the
string::replace() functions which only perform one replacement, the STL replaceis
replacing all instances of one character with another.

Chapter 14: Templates & Container Classes
36

The STL replace() agorithm only works with single objects (in this case, char objects), and
will not perform replacements of quoted char arrays or of string objects.

Since astring looks like an STL container, there are a number of other STL algorithms that
can be applied to it, which may solve other problems you have that are not directly addressed
by the string member functions. See Chapter XX for more information on the STL
algorithms.

Concatenation using non-member
overloaded operators

One of the most delightful discoveries awaiting a C programmer learning about C++ string
handling is how simply strings can be combined and appended using operator + and

oper ator +=. These operators make combining strings syntactically equivalent to adding
numeric data.

//: CO1l: AddStri ngs. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng nanmespace std;

int main() {
string s1("This ");
string s2("That ");
string s3("The other ");
/1 operator+ concatenates strings
sl = sl + s2;
cout << sl << endl;
/1 Another way to concatenates strings
sl += s3;
cout << sl << endl;
/1 You can index the string on the right
sl += s3 + s3[4] + "oh lala";
cout << sl << endl;
Y I~

he output looks like this:

Thi s

Thi s That

Thi s That The ot her

This That The other ooh lala

—

Chapter 14: Templates & Container Classes
37

oper ator + and oper ator += are a very flexible and convenient means of combining string
data. On the right hand side of the statement, you can use almost any type that evaluatesto a

group of one or more characters.

Searching in strings

The find family of string member functions allows you to locate a character or group of
characters within a given string. Here are the members of the find family and their general

usage:

string find member function

What/how it finds

find()

Searches a string for a specified character or
group of characters and returns the starting
position of the first occurrence found or npos
if no matchisfound. (nposisaconst of -1
and indicates that a search failed.)

find_first_of()

Searches atarget string and returns the
position of the first match of any character in
a specified group. If no match isfound, it
returns npos.

find_last_of()

Searches atarget string and returns the
position of the last match of any character in
a specified group. If no match isfound, it
returns npos.

find_first_not_of()

Searches atarget string and returns the
position of the first element that doesn’t
match any character in a specified group. If
no such element is found, it returns npos.

find_last_not_of()

Searches atarget string and returns the
position of the element with the largest
subscript that doesn’t match of any character
in aspecified group. If no such element is
found, it returns npos.

rfind()

Searches a string from end to beginning for a
specified character or group of characters and
returns the starting position of the match if
oneisfound. If no match isfound, it returns
npos.

String searching member functionsand their general uses

Chapter 14: Templates & Container Classes

38

The simplest use of find() searches for one or more charactersin astring. This overloaded
version of find() takes a parameter that specifies the character(s) for which to search, and
optionally one that tells it where in the string to begin searching for the occurrence of a
substring. (The default position at which to begin searching is 0.) By setting the call to find
inside aloop, you can easily move through a string, repeating a search in order to find all of
the occurrences of a given character or group of characters within the string.

Notice that we define the string object sieveChar s using a constructor idiom which sets the
initial size of the character array and writesthe value ‘P’ to each of its member.

/1: COl:Sieve.cpp
#i ncl ude <string>
#i ncl ude <i ostreanp
usi ng nanmespace std;

int main() {
/1l Create a 50 char string and set each
/1 element to 'P for Prine
string sieveChars(50, 'P);
/1 By definition neither O nor 1 is prinme.
/1 Change these elenments to "N' for Not Prinme
sieveChars.replace(0, 2, "NN');
/1 Wal k through the array:
for(int i = 2;
i <= (sieveChars.size() / 2) - 1; i++)
/1 Find all the factors:
for(int factor = 2;
factor * i < sieveChars.size();factor++)
sieveChars[factor * i] ="'N;
cout << "Prime:" << endl
/1 Return the index of the first 'P elenent:

int j = sieveChars.find('P);
/1 While not at the end of the string:
while(j !'= sieveChars.npos) {

/1 1f the elenent is P, the index is a prine
cout << j << " "y
/! Move past the last prinme
j ++;
/1 Find the next prime
j = sieveChars.find('P, j);
}

cout << "\n Not prine:" << endl;
/1 Find the first el enent value not equal P:

Chapter 14: Templates & Container Classes
39

j = sieveChars.find first_not_of (' P);

whil e(j != sieveChars. npos) {
cout << j << " "y
j++
j = sieveChars.find first not of ("P, j);
}
Yy I~
The output from Sieve.cpp looks like this:
Prime:
2357 11 13 17 19 23 29 31 37 41 43 47
Not pri me:

014689 10 12 14 15 16 18 20 21 22
24 25 26 27 28 30 32 33 34 35 36 38 39
40 42 44 45 46 48 49

find() alowsyou to walk forward through a string, detecting multiple occurrences of a
character or group of characters, while find_first_not_of() allows you to test for the absence
of acharacter or group.

The find member is also useful for detecting the occurrence of a sequence of charactersin a
string:

//: CO1: Find.cpp

/1 Find a group of characters in a string
#i ncl ude <string>

#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
string chooseOne("Eenie, neenie, mney, no");
int i = chooseOne.find("een");
while(i !'= string::npos) {
cout << i << endl;
i ++;
i = chooseOne.find("een", i);
}
Y I~

Find.cpp produces a single line of output :
| 8
Thistellsusthat thefirst ‘€’ of the search group “een” was found in the word “meenie,” and

is the eighth element in the string. Notice that find passed over the “Een” group of characters
inthe word “Eeni€”. The find member function performs a case sensitive search.

Chapter 14: Templates & Container Classes
40

There are no functionsin the string class to change the case of a string, but these functions
can be easily created using the Standard C library functions toupper () and tolower (), which
change the case of one character at atime. A few small changes will make Find.cpp perform
a case insensitive search:

//: CO1l: NewFi nd. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng nanmespace std;

/1 Make an uppercase copy of s:
string upperCase(string& s) {

char* buf = new char[s.length()];

s.copy(buf, s.length());

for(int i =0; i <s.length(); i++)

buf [i] = toupper(buf[i]);

string r(buf, s.length());

del ete buf;

return r;

}

/1 Make a | owercase copy of s:
string | owerCase(string& s) {
char* buf = new char[s.length()];
s.copy(buf, s.length());
for(int i =0; i <s.length(); i++)
buf[i] = tol ower(buf[i]);
string r(buf, s.length());
del ete buf;
return r;

}

int main() {

string chooseOne("Eenie, neenie, mney, no");
cout << chooseOne << endl;
cout << upperCase(chooseOne) << endl;
cout << | ower Case(chooseOne) << endl;
/] Case sensitive search
int i = chooseOne.find("een");
while(i !'= string::npos) {

cout << i << endl;

i ++;

i = chooseOne.find("een", i);

Chapter 14: Templates & Container Classes
41

/1 Search | owercase:

string | case = | ower Case(chooseOne) ;
cout << |case << endl;

i = lcase.find("een");

while(i != Icase.npos) {
cout << i << endl;
i ++;
i = lcase.find("een", i);
}

/1 Search uppercase:

string ucase = upper Case(chooseOne);
cout << ucase << endl;

i = ucase.find("EEN");

whil e(i != ucase. npos) {
cout << i << endl;
i ++;
i = ucase.find("EEN', i);
}
Y I~

Both the upper Case() and lower Case() functions follow the same form: they allocate
storage to hold the data in the argument string, copy the data and change the case. Then they
create anew string with the new data, release the buffer and return the result string. The
c_str () function cannot be used to produce a pointer to directly manipulate the datain the
string because c_str (') returns a pointer to const. That is, you' re not alowed to manipul ate
string data with a pointer, only with member functions. If you need to use the more primitive
char array manipulation, you should use the technique shown above.

The output looks like this:

Eeni e, neenie, mney, no
EENIE, MEENIE, M NEY, MO
eeni e, neenie, niney, no
8
eeni e, neenie, niney, no
0
8
EENIE, MEENIE, M NEY, MO
0
8

The case insensitive searches found both occurrences on the “een” group.

NewFind.cpp isn't the best solution to the case sensitivity problem, so we'll revisit it when
we examine string comparisons.

Chapter 14: Templates & Container Classes
42

Finding in reverse
Sometimes it’s necessary to search through a string from end to beginning, if you need to find
thedatain “lastin/ first out “ order. The string member function rfind() handlesthisjob.

/1: COl: Rparse. cpp

/1l Reverse the order of words in a string
#i ncl ude <string>

#i ncl ude <i ostreanp

#i ncl ude <vector>

usi ng nanmespace std;

int main() {
/1 The ';' characters will be delimters
string s("now. ;sense; make;to; going;is; This");
cout << s << endl
/1 To store the words:
vector<string> strings;
/1 The last element of the string:
int last = s.size();
/1 The begi nning of the current word:
int current = s.rfind(';");
/1 Wal k backward through the string:
whil e(current != string::npos){
/1 Push each word into the vector
/1 Current is increnented before copying to
/1 avoid copying the delimter
strings. push_back(
Ss.substr(++current,last - current));
/1 Back over the delimter we just found,
/1 and set last to the end of the next word
current -= 2;
[ast = current;
/1 Find the next deliniter
current = s.rfind(';', current);
}
/1 Pick up the first word - it's not
/1 preceded by a delinmter
strings. push_back(s.substr(0, last - current));
[l Print themin the new order:

for(int j = 0; j < strings.size(); j++)
cout << strings[j] << " ";
Y I~

Chapter 14: Templates & Container Classes
43

Here's how the output from Rpar se.cpp looks:

now. ; sense; nake;to; going;is; This
This is going to nake sense now.

rfind() backs through the string looking for tokens, reporting the array index of matching
charactersor string::nposif it is unsuccessful.

Finding first/last of a set

Thefind_first_of() and find_last_of() member functions can be conveniently put to work to
create alittle utility that will strip whitespace characters off of both ends of a string. Notice it
doesn’t touch the original string, but instead returns a new string:

[1: Ql:trimh
#i f ndef TRIMH
#define TRIMH
#i ncl ude <string>
/1 General tool to strip spaces from both ends:
inline std::string trimconst std::string& s) {
if(s.length() == 0)
return s;
int b =s.find first_not_of (" \t");
int e =s.find_last_not_of (" \t");

if(b ==-1) // No non-spaces
return ""
return std::string(s, b, e - b + 1);

}
#endif // TRIMH///:~

The first test checks for an empty string; in that case no tests are made and a copy is returned.
Notice that once the end points are found, the string constructor is used to build anew string
from the old one, giving the starting count and the length. This form also utilizes the “return
value optimization” (see the index for more details).

Testing such a general -purpose tool needs to be thorough:

/1: COL1l: Triniest.cpp
#include "trimh"

#i ncl ude <i ostreanp

usi ng namespace std;

string s[] = {
"\t abcdefghijklmop \t ",
"abcdef ghi j kl mop \t ",
" \'t abcdef ghij kl mop",

Chapter 14: Templates & Container Classes
44

"a", "ab", "abc", "a b c",
"\t abc\t ", "\t alt b\t c\t ",
"" /l Must also test the empty string

}s

void test(string s) {
cout << "[" << trims) << "]" << endl;

}

int main() {
for(int i =0; i < sizeof s/ sizeof *s; i++)
test(s[i]);
Y I~
Inthe array of string s, you can see that the character arrays are automatically converted to

string objects. This array provides casesto check the removal of spaces and tabs from both
ends, as well as ensuring that spaces and tabs do not get removed from the middle of astring.

Removing characters from strings

My word processor/page layout program (Microsoft Word) will save adocument in HTML,
but it doesn’t recognize that the code listings in this book should be tagged with the HTML
“preformatted” tag (<PRE>), and it puts paragraph marks (<P> and </P>) around every listing
line. This means that all the indentation in the code listingsis lost. In addition, Word saves
HTML with reduced font sizes for body text, which makesit hard to read.

To convert the book to HTML form®, then, the original output must be reprocessed, watching
for the tags that mark the start and end of code listings, inserting the <PRE> and </PRE> tags
at the appropriate places, removing all the <P> and </P> tags within the listings, and adjusting
the font sizes. Removal is accomplished with the erase() member function, but you must
correctly determine the starting and ending points of the substring you wish to erase. Here's
the program that reprocesses the generated HTML file:

//: COl1l: ReprocessHTM.. cpp

/1 Take Word's htm output and fix up
/1 the code listings and htm tags
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <string>

usi ng nanmespace std;

5| subsequently found better tools to accomplish this task, but the program is still interesting.

Chapter 14: Templates & Container Classes
45

/1 Produce a new string which is the origina
/1 string with the htm paragraph break nmarks
/1 stripped off:
string stripPBreaks(string s) {
int br;
while((br = s.find("<P>")) != string::npos)
s.erase(br, strlen("<P>"));
while((br = s.find("</P>")) !'= string::npos)
s.erase(br, strlen("</P>"));
return s;

}

/1 After the beginning of a code listing is
/1 detected, this function cleans up the listing
/1 until the end marker is found. The first line
/1 of the listing is passed in by the caller
/1 which detects the start marker in the |ine.
voi d fixupCodelLi sting(istream& in,
ostream& out, string& line, int tag) {
out << line.substr(0, tag)
<< "<PRE>" // Means "preformatted” in htn
<< stripPBreaks(line.substr(tag)) << endl

string s;
whil e(getline(in, s)) {
int endtag = s.find("/""/""/"":~");
if(endtag != string::npos) {
endtag += strlen("/""/""/"":~");

string before = s.substr(0, endtag);
string after = s.substr(endtag);
out << stripPBreaks(before) << "</ PRE>"
<< after << endl

return;

}

out << stripPBreaks(s) << endl

}
}

string renoval s[] = {
"",
"",
"",
"",

Chapter 14: Templates & Container Classes
46

"",
"SIl ZE=1", // Elimnate all other '1" & '2' size
" Sl ZE=2",
b .
const int rmez =
si zeof (renoval s)/ si zeof (*renoval s) ;

int main(int argc, char* argv[]) {
requi reArgs(argc, 2);
ifstreamin(argv[1]);
assure(in, argv[1]);
of stream out (argv[2]);
string |line;
whil e(getline(in, line)) {
/1 The "Body" tag only appears once:
if(line.find("<BODY") != string::npos) {
out << "<BODY BGCOLOR=\"#FFFFFF\ "
" TEXT=\"#000000\ ">" << endl;
continue; // Get next line
}
/1 Elimnate each of the renovals strings:
for(int i =0; i < rmsz; i++) {
int find = line.find(renovals[i]);
if(find !'= string::npos)
line.erase(find, renoval s[i].size());
}

int tagl line.find("/""/"":");
int tag2 line.find("/""*"":");
if(tagl !'= string::npos)

fi xupCodeLi sting(in, out, line, tagl);
el se if(tag2 != string::npos)

fi xupCodeLi sting(in, out, line, tag2);
el se

out << line << endl;

}
Y 11~

Notice the lines that detect the start and end listing tags by indicating them with each
character in quotes. These tags are treated in a special way by the logic in the
Extractcode.cpp tool for extracting code listings. To present the code for the tool in the text
of the book, the tag sequence itself must not occur in the listing. This was accomplished by
taking advantage of a C++ preprocessor feature that causes text strings delimited by adjacent
pairs of double quotes to be merged into a single string during the preprocessor pass of the
build.

Chapter 14: Templates & Container Classes
47

| int tagl = line. find("/""/"":");
The effect of the sequence of char arraysis to produce the starting tag for code listings.

Stripping HTML tags

Sometimes it’s useful to take an HTML file and strip its tags so you have something
approximating the text that would be displayed in the Web browser, only as an ASCI| text
file. The string class once again comes in handy. The following has some variation on the
theme of the previous example:

/1: COl: HTM.Stri pper.cpp

/1l Filter to remove html tags and narkers
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng namespace std;

string replaceAll(string s, string f, string r) {
unsigned int found = s.find(f);
whi l e(found != string::npos) {
s.replace(found, f.length(), r);
found = s.find(f);
}

return s;

}

string stripHTM.Tags(string s) {
while(true) {
unsigned int left = s.find('<");
unsigned int right = s.find('>");
if(left==string::npos || right==string::npos)

br eak;
s = s.erase(left, right - left + 1);
}
s = replaceAl (s, "&t;", "<");
s = replaceAl (s, ">", ">");
s = replaceAl (s, "&m;", "&");
s = replaceAl |l (s, " ", " ");
/1 Etc...
return s;

}

int main(int argc, char* argv[]) {

Chapter 14: Templates & Container Classes
48

requi reArgs(argc, 1,
"usage: HTM.Stripper InputFile");
ifstreamin(argv[1]);
assure(in, argv[1]);
const int sz = 4096;
char buf[sz];
whi I e(in.getline(buf, sz)) {
string s(buf);
cout << stripHTM.Tags(s) << endl;

}
Y 11~

The string class can replace one string with another but there's no facility for replacing al the
strings of one type with another, so the replaceAll() function does this for you, inside awhile
loop that keeps finding the next instance of the find string f. That function is used inside
stripHTM L Tags after it uses erase() to remove everything that appears inside angle braces
(‘<" and ‘>'). Note that | probably haven't gotten all the necessary replacement values, but
you can see what to do (you might even put al the find-replace pairsin atable...). In main()
the arguments are checked, and the fileis read and converted. It is sent to standard output so
you must redirect it with ‘> if you want to write it to afile.

Comparing strings
Comparing strings is inherently different than comparing numbers. Numbers have constant,
universally meaningful values. To evaluate the relationship between the magnitude of two
strings, you must make alexical comparison. Lexical comparison means that when you test a
character to seeif it is“greater than” or “lessthan” another character, you are actually
comparing the numeric representation of those characters as specified in the collating
sequence of the character set being used. Most often, thiswill be the ASCII collating
sequence, which assigns the printable characters for the English language numbers in the
range from 32 to 127 decimal. In the ASCI| collating sequence, the first “character” in the list
isthe space, followed by several common punctuation marks, and then uppercase and
lowercase letters. With respect to the alphabet, this means that the letters nearer the front have
lower ASCII values than those nearer the end. With these details in mind, it becomes easier to
remember that when alexical comparison that reports sl is “greater than” s2, it Simply means
that when the two were compared, the first differing character in s1 came later in the a phabet
than the character in that same position in s2.

C++ provides several waysto compare strings, and each has their advantages. The simplest to
use are the non member overloaded operator functions operator ==, operator != operator >,
operator <, operator >=, and operator <=.

//: CO1l: ConpStr.cpp
#i ncl ude <string>
#i ncl ude <i ostreanp

Chapter 14: Templates & Container Classes
49

usi ng namespace std;

int main() {
/1 Strings to conpare
string s1("This ");
string s2("That ");
for(int i =0; i< sl.size() &&
i < s2.size(); i++)
/1 See if the string elenents are the sane:
if(sl[i] == s2[i])
cout << slf[i] << " " <<i << endl
/1 Use the string inequality operators
if(sl !'=5s2) {
cout << "Strings aren't the sane:" << " ";

if(sl > s2)
cout << "sl is > s2" << endl;
el se
cout << "s2 is > sl1" << endl;
}
Y I~
Here's the output from CompStr.cpp:
TO
h 1
4

Strings aren’t the same: sl is > s2

The overloaded comparison operators are useful for comparing both full strings and
individual string elements.

Notice in the code fragment below the flexibility of argument types on both the left and right
hand side of the comparison operators. The overloaded operator set allows the direct
comparison of string objects, quoted literals, and pointersto C style strings.

/1 The lvalue is a quoted literal and
/1 the rvalue is a string
if("That " == s2)

cout << "A match" << endl;
/1 The lvalue is a string and the rvalue is a
/1 pointer to a c style null term nated string
if(sl !'=s2.c_str())

cout << "No match" << endl;

Y ou won't find the logical not (!) or the logical comparison operators (& & and ||) among
operators for string. (Neither will you find overloaded versions of the bitwise C operators &, |,

Chapter 14: Templates & Container Classes
50

A, or ~.) The overloaded non member comparison operators for the string class are limited to
the subset which has clear, unambiguous application to single characters or groups of
characters.

The compare() member function offers you a great deal more sophisticated and precise
comparison than the non member operator set, because it returns alexical comparison value,
and provides for comparisons that consider subsets of the string data. It provides overloaded
versions that allow you to compare two complete strings, part of either string to a complete
string, and subsets of two strings. This example compares complete strings:

//: CO1l: Conpare.cpp

/1 Denonstrates conpare(), swap()
#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
string first("This");
string second("That");
/1 Which is lexically greater?
switch(first.conmpare(second)) {
case 0: // The sane
cout << first <<

and << second <<
are lexically equal" << endl;
br eak;
case -1: // Less than
first.swap(second);
/1 Fall through this case...
case 1. // Greater than
cout << first <<
"is lexically greater than " <<
second << endl ;

}
Y 110~

The output from Compar e.cpp looks like this:
| This is lexically greater than That

To compare a subset of the charactersin one or both strings, you add arguments that define
where to start the comparison and how many charactersto consider. For example, we can use
the overloaded version of compare():

sl.compar e(slStartPos, siINumber Chars, s2, s2StartPos, s2Number Char s);

If we substitute the above version of compare() in the previous program so that it only looks
at the first two characters of each string, the program becomes:

Chapter 14: Templates & Container Classes
51

/1: CO1: Conpare?2.cpp

/1 Overl oaded conpare()
#i ncl ude <string>

#i ncl ude <i ostreane
usi ng namespace std;

int main() {
string first("This");
string second("That");
/1 Conpare first two characters of each string:
switch(first.conpare(0, 2, second, 0, 2)) {
case 0: // The same
cout << first << " and " << second <<
are lexically equal" << endl
br eak;
case -1: // Less than
first.swap(second);
/1 Fall through this case..
case 1: // Greater than
cout << first <<
is lexically greater than " <<
second << endl

}
Y 11~

The output is:

| This and That are lexically equal

which istrue, for the first two characters of “This’ and “That.”

Indexing with [] vs. at()

In the examples so far, we have used C style array indexing syntax to refer to an individual
character in astring. C++ strings provide an alternative to the §[n] notation: the at() member.
These two idioms produce the same result in C++ if al goes well:

//: CO1: Stringl ndexing. cpp
#i ncl ude <string>
#i ncl ude <i ostreane
usi ng nanmespace std;
int main(){
string s("1234");
cout << s[1] << "
cout << s.at (1) << endl
Y I~

Chapter 14: Templates & Container Classes
52

The output from this code looks like this:
22

However, there is one important difference between [] and at(). When you try to reference
an array element that is out of bounds, at() will do you the kindness of throwing an
exception, while ordinary [] subscripting syntax will leave you to your own devices:

//: CO1l: BadStri ngl ndexi ng. cpp
#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main(){
string s("1234");
/1 Runtinme problem goes beyond array bounds:
cout << s[5] << endl;
/1 Saves you by throw ng an exception:
cout << s.at(5) << endl;
Y I~

Using at() in place of [] will give you a chance to gracefully recover from references to array
elements that don't exist. at() throws an object of classout_of_range. By catching this object
in an exception handler, you can take appropriate remedial actions such as recalculating the
offending subscript or growing the array. (Y ou can read more about Exception Handling in
Chapter XX)

Using iterators

In the example program NewFind.cpp, we used alot of messy and rather tedious C char
array handling code to change the case of the charactersin a string and then search for the
occurrence of matches to a substring. Sometimes the “quick and dirty” method isjustifiable,
but in general, you won't want to sacrifice the advantages of having your string data safely
and securely encapsulated in the C++ object whereit lives.

Here is a better, safer way to handle case insensitive comparison of two C++ string objects.
Because no datais copied out of the objects and into C style strings, you don’t have to use
pointers and you don’t have to risk overwriting the bounds of an ordinary character array. In
this example, we use the string iter ator . Iterators are themsel ves objects which move through
acollection or container of other objects, selecting them one at atime, but never providing
direct accessto the implementation of the container. Iterators are not pointers, but they are
useful for many of the same jobs.

//: COl:Cnplter.cpp
/1 Find a group of characters in a string
#i ncl ude <string>

Chapter 14: Templates & Container Classes
53

#i ncl ude <i ostreanp
usi ng namespace std;

/1 Case insensitive conpare function
i nt
stringCnpi (const string& s1, const string& s2) {
/1 Select the first elenent of each string:
string::const_iterator
pl = sl1.begin(), p2 = s2.begin();
/1 Don’t run past the end:
while(pl '=sl.end() && p2 !'= s2.end()) {
/1 Conpare upper-cased chars:
i f(toupper(*pl) != toupper(*p2))
/1 Report which was lexically greater
return (toupper(*pl)<toupper(*p2))? -1 : 1
plt++;
p2++;
}
/1 1f they match up to the detected eos, say
/1 which was longer. Return 0 if the sane.
return(s2.size() - sl.size());

}

int main() {

string si1("Mzart");

string s2("Mdigliani");

cout << stringCnpi(sl, s2) << endl;
Y I~

Notice that the iterators p1 and p2 use the same syntax as C pointers —the **’ operator makes
the value of element at the location given by the iterators available to the toupper () function.
toupper () doesn’t actually change the content of the element in the string. In fact, it can't.
This definition of p1 tells usthat we can only use the elements p1 pointsto as constants.

| string::const_iterator pl = sl1.begin();

The way toupper () and the iterators are used in this exampleis called a case preserving case
insensitive comparison. This means that the string didn’t have to be copied or rewritten to
accommodate case insensitive comparison. Both of the strings retain their original data,
unmodified.

Iterating in reverse

Just as the standard C pointer gives us the increment (++) and decrement (--) operatorsto
make pointer arithmetic a bit more convenient, C++ string iterators come in two basic

Chapter 14: Templates & Container Classes
54

varieties. You've seen end() and begin(), which are the tools for moving forward through a
string one element at atime. The reverseiteratorsrend() and rbegin() allow you to step
backwards through a string. Here’s how they work:

/1: COl:RevStr.cpp

/1l Print a string in reverse

#i ncl ude <string>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
string s("987654321");
/1 Use this iterator to wal k backwards:
string::reverse_iterator rev;
/1 "lncrementing"” the reverse iterator noves
/] it to successively |lower string el ements:

for(rev = s.rbegin(); rev !'=s.rend(); rev++)
cout << *rev << " "
Y I~

The output from RevStr.cpp looks like this:
| 1234567809

Reverse iterators act like pointers to elements of the string’ s character array, except that when
you apply the increment operator to them, they move backward rather than forward. rbegin()
and rend() supply string locations that are consistent with this behavior, to wit, rbegin()
locates the position just beyond the end of the string, and rend() locates the beginning. Aside
from this, the main thing to remember about reverse iterators isthat they aren’t type
equivalent to ordinary iterators. For example, if amember function parameter list includes an
iterator as an argument, you can’t substitute a reverse iterator to get the function to perform
it's job walking backward through the string. Here's an illustration:

/1 The conpiler won't accept this
string sBackwards(s.rbegin(), s.rend());

The string constructor won't accept reverse iteratorsin place of forward iteratorsin its
parameter list. Thisis also true of string members such as copy(), insert(), and assign().

Strings and character traits

We seem to have worked our way around the margins of case insensitive string comparisons
using C++ string objects, so maybe it’'s time to ask the obvious question: “Why isn’t case-
insensitive comparison part of the standard string class 7’ The answer provides interesting
background on the true nature of C++ string objects.

Consider what it means for a character to have “case.” Written Hebrew, Farsi, and Kanji don’t
use the concept of upper and lower case, so for those languages this idea has no meaning at

Chapter 14: Templates & Container Classes
55

all. Thisthe first impediment to built-in C++ support for case-insensitive character search and
comparison: the idea of case sensitivity is not universal, and therefore not portable.

It would seem that if there were away of designating that some languages were “all
uppercase” or “al lowercase” we could design a generalized solution. However, some
languages which employ the concept of “case” also change the meaning of particular
characters with diacritical marks: the cedillain Spanish, the circumflex in French, and the
umlaut in German. For this reason, any case-sensitive collating scheme that attempts to be
comprehensive will be nightmarishly complex to use.

Although we usually treat the C++ string as aclass, thisisreally not the case. stringisa
typedef of amore general congtituent, the basic_string< > template. Observe how string is
declared in the standard C++ header file:

t ypedef basic_string<char> string;

To really understand the nature of strings, it’s helpful to delve a bit deeper and look at the
template on which it is based. Here' s the declaration of the basic_string< > template:

t empl at e<cl ass charT,
class traits = char _traits<charT>,
class allocator = allocator<charT> >
cl ass basic_string;

Earlier in this book, templates were examined in a great deal of detail. The main thing to
notice about the two declarations above are that the string type is created when the
basic_string template isinstantiated with char. Inside the basic_string< > template
declaration, the line

class traits = char_traits<charT>,

tells us that the behavior of the class made from the basic_string< > template is specified by
aclass based on the template char_traits< >. Thus, the basic_string< > template provides for
cases where you need string oriented classes that manipul ate types other than char (wide
characters or unicode, for example). To do this, the char _traits< > template controls the
content and collating behaviors of avariety of character sets using the character comparison
functions eq() (equa), ne() (not equal), and It() (less than) upon which the basic_string< >
string comparison functions rely.

Thisiswhy the string class doesn’t include case insensitive member functions: That’s not in
its job description. To change the way the string class treats character comparison, you must
supply adifferent char_traits< > template, because that defines the behavior of the individual
character comparison member functions.

Thisinformation can be used to make a new type of string class that ignores case. First, we'll
define anew case insensitive char _traits< > template that inherits the existing one. Next,
we'll override only the members we need to change in order to make character-by-character
comparison case insensitive. (In addition to the three lexical character comparison members
mentioned above, we'll aso have to supply new implementation of find() and compare().)

Chapter 14: Templates & Container Classes
56

Finally, we'll typedef anew class based on basic_string, but using the case insensitive
ichar_traitstemplate for its second argument.

/1: COl:ichar _traits.h

/1 Creating your own character traits
#i f ndef | CHAR _TRAITS_H

#define | CHAR TRAITS_H

#i ncl ude <string>

#i ncl ude <cctype>

struct ichar _traits : std::char_traits<char> {
/1 We'll only change character by
/1 character conparison functions
static bool eq(char clst, char c2nd) {

return
std::toupper(clst) == std::toupper(c2nd);
}
static bool ne(char clst, char c2nd) {
return
std::toupper(clst) !'= std::toupper(c2nd);
}
static bool It(char clst, char c2nd) {
return
std::toupper(clst) < std::toupper(c2nd);
}

static int conpare(const char* strl
const char* str2, size t n) {

for(int i =0; i <n; i++) {
if(std::tolower(*strl)>std::tol ower(*str2))
return 1,
if(std::tolower(*strl)<std::tolower(*str2))
return -1;
if(*strl == 0 || *str2 == 0)
return O;
strl++; str2++; // Conpare the other chars
}
return O;

}

static const char* find(const char* si,
int n, char c) {
while(n-- > 0 &%
std::toupper(*sl) != std::toupper(c))
S1++;
return si;

Chapter 14: Templates & Container Classes
57

}
b
#endif // ICHAR TRAITS H ///:~
If wetypedef anistring classlike this:

t ypedef basic_string<char, ichar_traits,
al | ocat or <char> > istring;

Then thisistring will act like an ordinary string in every way, except that it will make all
comparisons without respect to case. Here's an example:

//: CO1:1 Conpare.cpp
#include "ichar _traits.h"
#i ncl ude <string>

#i ncl ude <i ostreanp
usi ng namespace std;

t ypedef basic_string<char, ichar_traits,
al l ocator<char> > istring;

int main() {
/1 The same letters except for case:
istring first = "tHi s";
istring second = "ThlS";
cout << first.conpare(second) << endl;
Y I~

The output from the program is “0”, indicating that the strings compare as equal. Thisisjust a
simple example —in order to make istring fully equivalent to string, we' d have to create the
other functions necessary to support the new istring type.

A string application

My friend Daniel (who designed the cover and page layout for this book) does alot of work
with Web pages. One tool he uses creates a“site map” consisting of a Java applet to display
the map and an HTML tag that invoked the applet and provided it with the necessary datato
create the map. Daniel wanted to use this data to create an ordinary HTML page (sans applet)
that would contain regular links as the site map. The resulting program turns out to be anice
practical application of the string class, so it is presented here.

Theinput isan HTML file that contains the usual stuff along with an applet tag with a
parameter that beginslike this:

<param nane="source_file" val ue="

Chapter 14: Templates & Container Classes
58

Therest of the line contains encoded information about the site map, al combined into a
single line (it's rather long, but fortunately string objects don’t care). Each entry may or may
not begin with a number of ‘# signs; each of these indicates one level of depth. If no ‘# sign
is present the entry will be considered to be at level one. After the ‘#' isthe text to be
displayed on the page, followed by a‘* %’ and the URL to use asthe link. Each entry is
terminated by a‘*’. Thus, asingle entry in the line might look like this:

| ###| Useful Art % /Build/useful _art.htni*
The ‘[at the beginning is an artifact that needs to be removed.

My solution was to create an | tem class whose constructor would take input text and create an
object that contains the text to be displayed, the URL and the level. The objects essentially
parse themselves, and at that point you can read any value you want. In main(), the input file
is opened and read until the line contains the parameter that we're interested in. Everything
but the site map codes are stripped away from this string, and then it is parsed into | tem
objects:

//: CO1l: SiteMapConvert.cpp

/1 Using strings to create a custom conversion
/1 programthat generates HTM. out put

#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <string>

#i ncl ude <cstdlib>

usi ng nanmespace std;

class Item{
string id, url;

i nt dept h;
string renoveBar(string s) {
if(s[0] =="]")

return s.substr(1);
el se return s;

}
publi c:
[tem(string in, int& index) : depth(0) {
while(in[index] =="# && index < in.size()){
dept h++;
i ndex++;
}

// 0 nmeans no '#' nmarks were found:
i f(depth == 0) depth = 1;
while(in[index] '= "% && index < in.size())

Chapter 14: Templates & Container Classes
59

id += in[index++];
id = renoveBar (id)
i ndex++; // Move past '%

while(in[index] !'="*" && index < in.size())
url += in[index++];
url = renoveBar (url)

i ndex++; // To nobve past '*'
}
string identifier() { returnid; }
string path() { return url; }
int level () { return depth; }

};

int main(int argc, char* argv[]) {
requi reArgs(argc, 1,
"usage: SiteMapConvert inputfilename");
ifstreamin(argv[1]);
assure(in, argv[1]);
of stream out (" pl ai nmap. htm ") ;
string |ine;
whil e(getline(in, line)) {
if(line.find("<param nane=\"source file\"")
= string::npos) {
/1l Extract data fromstart of sequence
/1 until the term nating quote nmark

line = line.substr(line.find("value=\"")
+ string("value=\"").size());
line = line.substr(O,

line.find last_of ("\""));
int index = 0;
whi l e(index < line.size()) {
Itemiten(line, index);
string startlLevel, endLevel;
if(itemlevel () == 1) {

startLevel = "<hl>";
endLevel = "</ hl>";
} else
for(int i =0; i <itemlevel(); i++)

for(int j =0; j <5; j+4)
out << " ";
string htmLine = "<a href=\""
+ itempath() + "\">"
+ itemidentifier() + "
"

Chapter 14: Templates & Container Classes
60

out << startlLevel << htnlLine
<< endLevel << endl;

}
break; // Qut of while |oop

}
}
Y 11~

Item contains a private member function removeBar () that is used internally to strip off the
leading bars, if they appear.

The constructor for Item initializes depth to O to indicate that no ‘# signs were found yet; if
none are found then it is assumed the I tem should be displayed at level one. Each character in
the string is examined using operator|] to find the depth, id and url values. The other
member functions simply return these values.

After opening the files, main() uses string::find() to locate the line containing the site map
data. At this point, substr() is used in order to strip off the information before and after the
site map data. The subsequent while loop performs the parsing, but notice that the value index
is passed by reference into the Item constructor, and that constructor incrementsindex as it
parses each new | tem, thus moving forward in the sequence.

If an Itemisat level one, then an HTML h1 tag is used, otherwise the elements are indented
using HTML non-breaking spaces. Note in theinitialization of htmlLine how easy it isto
construct a string — you can just combine quoted character arrays and other string objects
using oper ator +.

When the output is written to the destination file, startL evel and endL evel will only produce
results if they have been given any value other than their default initialization values.

Summary

C++ string objects provide devel opers with a number of great advantages over their C
counterparts. For the most part, the string class makes referring to strings through the use of
character pointers unnecessary. This eliminates an entire class of software defects that arise
from the use of uninitialized and incorrectly valued pointers. C++ strings dynamically and
transparently grow their internal data storage space to accommodate increases in the size of
the string data. This means that when the datain a string grows beyond the limits of the
memory initially alocated to it, the string object will make the memory management calls that
take space from and return space to the heap. Consistent allocation schemes prevent memory
leaks and have the potential to be much more efficient than “roll your own” memory
management.

The string class member functions provide afairly comprehensive set of tools for creating,
modifying, and searching in strings. string comparisons are always case sensitive, but you
can work around this by copying string datato C style null terminated strings and using case

Chapter 14: Templates & Container Classes
61

insensitive string comparison functions, temporarily converting the data held in sting objects
to asingle case, or by creating a case insensitive string class which overrides the character
traits used to create the basic_string object.

Exercises

1 A palindrome is aword or group of words that read the same forward and
backward. For example “madam” or “wow”. Write a program that takes a
string argument from the command line and returns TRUE if the string was
apalindrome.

2. Sometimes the input from afile stream contains a two character sequence to
represent a newline. These two characters (0x0a 0x0d) produce extra blank
lines when the stream is printed to standard out. Write a program that finds
the character 0x0d (ASCI| carriage return) and deletes it from the string.

3. Write a program that reverses the order of the charactersin a string.

Chapter 14: Templates & Container Classes
62

2. |ostreams

There’ s much more you can do with the general 1/0 problem
than just take standard 1/O and turn it into a class.

Wouldn't it be nice if you could make all the usual “receptacles’ — standard 1/0, files and
even blocks of memory —look the same, so you need to remember only one interface? That’s
the idea behind iostreams. They’ re much easier, safer, and often more efficient than the
assorted functions from the Standard C stdio library.

lostream is usually the first class library that new C++ programmers learn to use. This chapter
explores the use of iostreams, so they can replace the C /O functions through the rest of the

book. In future chapters, you'll see how to set up your own classes so they’ re compatible with
iostreams.

Why 1ostreams?

Y ou may wonder what' s wrong with the good old C library. And why not “wrap” the C

library in a class and be done with it? Indeed, there are situations when this is the perfect thing
to do, when you want to make a C library a bit safer and easier to use. For example, suppose
you want to make sure a stdio file is always safely opened and properly closed, without
relying on the user to remember to call the close() function:

/1: CO2:Filedass.h

/1 Stdio files wapped
#i f ndef FI LECLAS_H
#defi ne FI LECLAS H

#i ncl ude <cstdi o>

class FileC ass {
std:: FILE* f;

public:

Fil eCl ass(const char* fname, const char* node="r");
~Fil ed ass();

std:: FILE* fp();
b
#endif // FILECLAS H///:~

63

In C when you perform file 1/0, you work with a naked pointer to a FILE struct, but this class
wraps around the pointer and guarantees it is properly initialized and cleaned up using the
constructor and destructor. The second constructor argument is the file mode, which defaults
to“r” for “read.”

To fetch the value of the pointer to use in the file I/O functions, you use the fp() access
function. Here are the member function definitions:

/1: CO2:Filedass.cpp {O
/1 1nmplenmentation

#i nclude "Fil ed ass. h"

#i ncl ude <cstdlib>

usi ng nanmespace std;

FileC ass:: Fil ed ass(const char* fnane, const char* node){
f = fopen(fname, node);
if(f == NULL) {
printf("%: file not found\n", fnane);
exit(1l);
}
}

FileC ass::~FileC ass() { fclose(f); }

FILE* FileC ass::fp() { return f; } ///:~

The constructor calls fopen(),as you would normally do, but it also checksto ensure the
result isn't zero, which indicates a failure upon opening the file. If there's afailure, the name
of thefileis printed and exit() is called.

The destructor closes the file, and the access function fp()returnsf. Here's a simple example
using class FileClass:

[1: CO2:Filed assTest.cpp
/1{L} Filed ass

/1 Testing class File

#i nclude "Fil ed ass. h"
#include "../require. h"
usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argec, 1);
FileC ass f(argv[1l]); // Opens and tests
const int bsize = 100;
char buf[bsize];
whi | e(fgets(buf, bsize, f.fp()))

Chapter 14: Templates & Container Classes
64

put s(buf);
} // File autonmatically closed by destructor
11~

Y ou create the FileClass object and use it in normal C file 1/O function calls by calling fp().
When you're done with it, just forget about it, and the file is closed by the destructor at the
end of the scope.

True wrapping

Even though the FILE pointer is private, it isn't particularly safe because fp() retrievesit. The
only effect seems to be guaranteed initialization and cleanup, so why not make it public, or
use a struct instead? Notice that while you can get a copy of f using fp(), you cannot assign
to f —that’ s completely under the control of the class. Of course, after capturing the pointer
returned by fp(), the client programmer can still assign to the structure elements, so the safety
isin guaranteeing avalid FILE pointer rather than proper contents of the structure.

If you want complete safety, you have to prevent the user from direct accessto the FILE
pointer. This means some version of al the normal file 1/0 functions will have to show up as
class members, so everything you can do with the C approach is available in the C++ class:

[1: CO2: Fullwap.h
/1 Conpletely hidden file IO
#i f ndef FULLWRAP_H
#defi ne FULLWRAP_H

class File {

std:: FILE* f;

std::FILE* F(); // Produces checked pointer to f
public:

File(); // Create object but don't open file

Fil e(const char* path,

const char* node = "r");
~File();
i nt open(const char* path,
const char* node = "r");

i nt reopen(const char* path,
const char* node);
int getc();
int ungetc(int c);
int putc(int c);
int puts(const char* s);
char* gets(char* s, int n);
int printf(const char* format, ...);
size t read(void* ptr, size_ t size,

Chapter 14: Templates & Container Classes
65

size t n);
size t wite(const void* ptr,
size t size, size_t n);
int eof();
int close();
int flush();
i nt seek(long offset, int whence);
i nt getpos(fpos_t* pos);
i nt setpos(const fpos_ t* pos);
long tell();
void rew nd();
voi d set buf (char* buf);
i nt setvbuf(char* buf, int type, size_ t sz);
int error();
void clearErr();
b
#endi f // FULLMRAP_H ///: ~

This class contains almost all the file 1/O functions from cstdio. vfprintf() ismissing; itis
used to implement the printf(’) member function.

File has the same constructor as in the previous example, and it also has a default constructor.
The default constructor isimportant if you want to create an array of File objects or use aFile
object as a member of another class where the initialization doesn’'t happen in the constructor
(but sometime after the enclosing object is created).

The default constructor sets the private FILE pointer f to zero. But now, before any reference
to f, its value must be checked to ensure it isn’t zero. Thisis accomplished with the last
member function in the class, F(), which is private because it is intended to be used only by
other member functions. (We don’'t want to give the user direct access to the FIL E structure
in this class.)®

Thisis not aterrible solution by any means. It's quite functional, and you could imagine
making similar classes for standard (console) 1/0 and for in-core formatting (reading/writing a
piece of memory rather than afile or the console).

The big stumbling block is the runtime interpreter used for the variable-argument list
functions. Thisisthe code that parses through your format string at runtime and grabs and
interprets arguments from the variable argument list. It's a problem for four reasons.

1. Even if you use only afraction of the functionality of the interpreter, the
whole thing gets loaded. So if you say:

6 The implementation and test files for FULLWRAP are available in the freely distributed
source code for this book. See preface for details.

Chapter 14: Templates & Container Classes
66

printf("%", 'Xx');

you'll get the whole package, including the parts that print out floating-
point numbers and strings. There’s no option for reducing the amount of
space used by the program.

Because the interpretation happens at runtime there’s a performance
overhead you can’t get rid of. It's frustrating because all the information is
therein the format string at compile time, but it's not evaluated until
runtime. However, if you could parse the arguments in the format string at
compile time you could make hard function calls that have the potential to
be much faster than aruntime interpreter (although the printf() family of
functionsis usually quite well optimized).

A worse problem occurs because the evaluation of the format string doesn’t
happen until runtime: there can be no compile-time error checking. You're
probably very familiar with this problem if you' ve tried to find bugs that
came from using the wrong number or type of argumentsin aprintf()
statement. C++ makes a big deal out of compile-time error checking to find
errors early and make your life easier. It seems a shame to throw it away for
an /O library, especially because I/O is used alot.

For C++, the most important problem is that the printf() family of
functionsis not particularly extensible. They're really designed to handle
the four basic datatypesin C (char, int, float, double and their variations).
You might think that every time you add a hew class, you could add an
overloaded printf() and scanf(') function (and their variants for files and
strings) but remember, overloaded functions must have different typesin
their argument lists and the printf() family hidesits type information in the
format string and in the variable argument list. For alanguage like C++,
whose goal isto be able to easily add new data types, thisis an ungainly
restriction.

| ostreams to the rescue

All these issues make it clear that one of the first standard class libraries for C++ should
handle 1/0. Because “hello, world” is the first program just about everyone writesin a new
language, and because I/O is part of virtually every program, the I/O library in C++ must be
particularly easy to use. It also has the much greater challenge that it can never know all the
classes it must accommodate, but it must neverthel ess be adaptable to use any new class. Thus
its constraints required that this first class be atruly inspired design.

This chapter won't look at the details of the design and how to add iostream functionality to
your own classes (you'll learn that in alater chapter). First, you need to learn to use iostreams.

Chapter 14: Templates & Container Classes

67

In addition to gaining a great deal of leverage and clarity in your dealings with 1/O and
formatting, you'll also see how areally powerful C++ library can work.

Sneak preview of operator overloading

Before you can use the iostreams library, you must understand one new feature of the
language that won't be covered in detail until alater chapter. To use iostreams, you need to
know that in C++ all the operators can take on different meanings. In this chapter, we're
particularly interested in << and >>. The statement “operators can take on different
meanings’ deserves some extrainsight.

In Chapter XX, you learned how function overloading allows you to use the same function
name with different argument lists. Now imagine that when the compiler sees an expression
consisting of an argument followed by an operator followed by an argument, it smply callsa
function. That is, an operator is simply a function call with a different syntax.

Of course, thisis C++, which is very particular about data types. So there must be a
previously declared function to match that operator and those particular argument types, or
the compiler will not accept the expression.

What most people find immediately disturbing about operator overloading is the thought that
maybe everything they know about operatorsin C is suddenly wrong. Thisis absolutely false.
Here are two of the sacred design goals of C++:

1 A program that compilesin C will compile in C++. The only compilation
errors and warnings from the C++ compiler will result from the “holes’ in
the C language, and fixing these will require only local editing. (Indeed, the
complaints by the C++ compiler usually lead you directly to undiscovered
bugsin the C program.)

2. The C++ compiler will not secretly change the behavior of a C program by
recompiling it under C++.

Keeping these goals in mind will help answer alot of questions; knowing there are no
capricious changes to C when moving to C++ helps make the transition easy. In particular,
operators for built-in types won't suddenly start working differently — you cannot change their
meaning. Overloaded operators can be created only where new data types are involved. So
you can create a new overloaded operator for a new class, but the expression

| 1 << 4;
won’'t suddenly change its meaning, and theillegal code
| 1.414 << 1;

won't suddenly start working.

Chapter 14: Templates & Container Classes
68

Inserters and extractors

In the iostreams library, two operators have been overloaded to make the use of iostreams
easy. The operator << is often referred to as an inserter for iostreams, and the operator >> is
often referred to as an extractor.

A streamis an object that formats and holds bytes. Y ou can have an input stream (istream) or
an output stream (ostream). There are different types of istreams and ostreams: ifstreams and
ofstreams for files, istrstreams, and ostrstreams for char* memory (in-core formatting), and
istringstreams & ostringstreams for interfacing with the Standard C++ string class. All these
stream objects have the same interface, regardless of whether you' re working with afile,
standard 1/0O, a piece of memory or astring object. The single interface you learn also works
for extensions added to support new classes.

If astreamis capable of producing bytes (an istream), you can get information from the
stream using an extractor. The extractor produces and formats the type of information that’s
expected by the destination object. To see an example of this, you can use the cin object,
which isthe iostream equivalent of stdin in C, that is, redirectable standard input. This object
is pre-defined whenever you include the iostream.h header file. (Thus, the iostream library is
automatically linked with most compilers.)

int i;

cin >>i;

float f;
cin >> f;

char c;
cin >> c;

char buf[100];
cin >> buf;

There's an overloaded operator >> for every data type you can use as the right-hand
argument of >> in an iostream statement. (Y ou can aso overload your own, which you'll see
in alater chapter.)

To find out what you have in the various variables, you can use the cout object
(corresponding to standard output; there’s also a cerr object corresponding to standard error)
with the inserter <<:

cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<

Chapter 14: Templates & Container Classes

69

cout << "¢ =";
cout << ¢;

cout << "\n";
cout << "buf =";
cout << bhuf;

cout << "\n";

Thisis notably tedious, and doesn’t seem like much of an improvement over printf(), type
checking or no. Fortunately, the overloaded inserters and extractors in iostreams are designed
to be chained together into a complex expression that is much easier to write:

cout << "j
cout << "f
cout << "¢
cout << "buf

<< | << endl;
" << f << endl;
<< ¢ << endl;
" << puf << endl;

You'll understand how this can happen in alater chapter, but for now it's sufficient to take the
attitude of a class user and just know it works that way.

Manipulators

One new element has been added here: a manipulator called endl. A manipulator acts on the
stream itself; in this case it inserts a newline and flushes the stream (puts out all pending
characters that have been stored in the internal stream buffer but not yet output). Y ou can also
just flush the stream:

| cout << flush;

There are additional basic manipulators that will change the number base to oct (octal), dec
(decimal) or hex (hexadecimal):

| cout << hex << "0x" << i << endl;
There's amanipulator for extraction that “eats’ white space:
| cin >> ws;

and a manipulator called ends, which islike endl, only for strstreams (covered in awhile).
These are al the manipulators in <iostream>, but there are more in <iomanip> you'll see
later in the chapter.

Common usage

Although cin and the extractor >> provide a nice balance to cout and the inserter <<, in
practice using formatted input routines, especially with standard input, has the same problems
you run into with scanf(). If the input produces an unexpected value, the process is skewed,
and it’s very difficult to recover. In addition, formatted input defaults to whitespace
delimiters. So if you collect the above code fragments into a program

Chapter 14: Templates & Container Classes
70

/1
/1

int main() {
int i;
cin >> i;

float f;
cin >> f;

char c;
cin >> c;

char
cin >> buf;

oo = —
c
=%

<<
<<
<<
<<

cout
cout
cout
cout

cout <<
cout <<
Y 11~

buf [100] ;

flush;
hex <<

C02: | osexanp. cpp
| ost r eam exanpl es
#i ncl ude <i ostreane
usi ng namespace std;

<< | << endl:
<< f << endl:
<< ¢ << endl:
" << buf << endl;
"0Ox" << i << endl;

and give it the following input,

| 12 1.4 ¢ this is a test

you'll get the same output as if you give it

12

1.4

c

this is a test

[12

f 1.4
c
buf

Oxc

1o

this

and the output is, somewhat unexpectedly,

Chapter 14:

71

Templates & Container Classes

Notice that buf got only the first word because the input routine looked for a space to delimit
the input, which it saw after “this.” In addition, if the continuous input string is longer than
the storage allocated for buf, you'll overrun the buffer.

It seems cin and the extractor are provided only for completeness, and thisis probably a good
way to look at it. In practice, you'll usually want to get your input aline at atimeasa
sequence of characters and then scan them and perform conversions once they're safely in a
buffer. Thisway you don’t have to worry about the input routine choking on unexpected data.

Another thing to consider is the whole concept of a command-line interface. This has made
sense in the past when the console was little more than a glass typewriter, but the world is
rapidly changing to one where the graphical user interface (GUI) dominates. What is the
meaning of console /0O in such aworld? It makes much more sense to ignore cin altogether
other than for very simple examples or tests, and take the following approaches:

1 If your program requires input, read that input from afile — you'll soon see
it's remarkably easy to use files with iostreams. | ostreams for files still
works fine with a GUI.

2. Read the input without attempting to convert it. Once the input is someplace
where it can't foul things up during conversion, then you can safely scan it.

3. Output is different. If you're using a GUI, cout doesn’t work and you must
send it to afile (which isidentical to sending it to cout) or use the GUI
facilities for data display. Otherwise it often makes sense to send it to cout.
In both cases, the output formatting functions of iostreams are highly useful.

Line-oriented input

To grab input aline at atime, you have two choices: the member functions get() and

getling(). Both functions take three arguments: a pointer to a character buffer in which to
store the result, the size of that buffer (so they don’t overrun it), and the terminating character,
to know when to stop reading input. The terminating character has a default value of ‘\n’,
which iswhat you'll usually use. Both functions store a zero in the result buffer when they
encounter the terminating character in the input.

So what' s the difference? Subtle, but important: get() stops when it sees the delimiter in the
input stream, but it doesn’t extract it from the input stream. Thus, if you did another get()
using the same delimiter it would immediately return with no fetched input. (Presumably, you
either use a different delimiter in the next get(') statement or a different input function.)
getling(), on the other hand, extracts the delimiter from the input stream, but still doesn’t
store it in the result buffer.

Generally, when you're processing a text file that you read aline at atime, you' Il want to use
getline().

Chapter 14: Templates & Container Classes
72

Overloaded versions of get()

get() also comesin three other overloaded versions: one with no arguments that returns the
next character, using an int return value; one that stuffs a character into its char argument,
using areference (You'll have to jump forward to Chapter XX if you want to understand it
right thisminute); and one that stores directly into the underlying buffer structure of
another iostream object. That is explored later in the chapter.

Reading raw bytes

If you know exactly what you' re dealing with and want to move the bytes directly into a
variable, array, or structure in memory, you can useread(). Thefirst argument is a pointer to
the destination memory, and the second is the number of bytesto read. Thisis especially
useful if you've previoudly stored the information to afile, for example, in binary form using
the complementary write() member function for an output stream. You'll see examples of all
these functions later.

Error handling

All the versions of get() and getling() return the input stream from which the characters
came except for get() with no arguments, which returns the next character or EOF. If you get
the input stream object back, you can ask it if it's still OK. In fact, you can ask any iostream
object if it's OK using the member functions good(), eof(), fail(), and bad(). These return
state information based on the eofbit (indicates the buffer is at the end of sequence), the
failbit (indicates some operation has failed because of formatting issues or some other
problem that does not affect the buffer) and the badbit (indicates something has gone wrong
with the buffer).

However, as mentioned earlier, the state of an input stream generally gets corrupted in weird
ways only when you're trying to do input to specific types and the type read from the input is
inconsistent with what is expected. Then of course you have the problem of what to do with
the input stream to correct the problem. If you follow my advice and read input aline at a
time or asabig glob of characters (with read()) and don’t attempt to use the input formatting
functions except in simple cases, then all you' re concerned with is whether you're at the end
of the input (EOF). Fortunately, testing for this turns out to be simple and can be done inside
of conditionals, such as while(cin) or if(cin). For now you'll have to accept that when you use
an input stream object in this context, the right value is safely, correctly and magically
produced to indicate whether the object has reached the end of the input. Y ou can also use the
Boolean NOT operator !, asin if(!cin), to indicate the stream is not OK; that is, you've
probably reached the end of input and should quit trying to read the stream.

There are times when the stream becomes not-OK, but you understand this condition and
want to go on using it. For example, if you reach the end of an input file, the eofbit and failbit
are set, so aconditional on that stream object will indicate the stream is no longer good.

Chapter 14: Templates & Container Classes
73

However, you may want to continue using the file, by seeking to an earlier position and
reading more data. To correct the condition, simply call the clear () member function.’

File i1ostreams

Manipulating files with iostreams is much easier and safer than using cstdio in C. All you do
to open afileis create an object; the constructor does the work. Y ou don’t have to explicitly
close afile (although you can, using the close() member function) because the destructor will
close it when the object goes out of scope.

To create afile that defaults to input, make an ifstr eam object. To create one that defaults to
output, make an ofstream object.

Here's an exampl e that shows many of the features discussed so far. Note the inclusion of
<fstream> to declare the file 1/0 classes; this also includes <iostream>.

[1: CO2:Strfile.cpp

/1 Stream|/Owth files

/1 The difference between get() & getline()
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

usi ng namespace std;

int main() {

const int sz = 100; // Buffer size;

char buf[sz];

{
ifstreamin("Strfile.cpp"); // Read
assure(in, "Strfile.cpp"); // Verify open
of streamout ("Strfile.out"); // Wite
assure(out, "Strfile.out");
int i =1; // Line counter

/1 Al ess-convenient approach for |ine input:
whil e(in.get(buf, sz)) { // Leaves \n in input
in.get(); // Throw away next character (\n)
cout << buf << endl; // Must add \n
/1 File output just like standard I/C

7 Newer implementations of iostreams will still support this style of handling errors, but in
some cases will also throw exceptions.

Chapter 14: Templates & Container Classes
74

out << i++ << ": " << buf << endl;

}

} // Destructors close in & out

ifstreamin("Strfile.out");

assure(in, "Strfile.out");

/1 More convenient |line input:

whil e(in.getline(buf, sz)) { // Renobves \n
char* cp = buf;

while(*cp I'=":")
Cp++;
cp += 2; // Past ": "
cout << cp << endl; // Must still add \n
}
Y I~

The creation of both the ifstream and ofstream are followed by an assure() to guarantee the
file has been successfully opened. Here again the object, used in a situation where the
compiler expects an integral result, produces a value that indicates success or failure. (To do
this, an automatic type conversion member function is called. These are discussed in Chapter
XX.)

The first while loop demonstrates the use of two forms of the get() function. The first gets
charactersinto a buffer and puts a zero terminator in the buffer when either sz — 1 characters
have been read or the third argument (defaulted to ‘\n") is encountered. get() leaves the
terminator character in the input stream, so this terminator must be thrown away viain.get()
using the form of get() with no argument, which fetches a single byte and returnsit as an int.
Y ou can a'so use the ignor e) member function, which has two defaulted arguments. The
first isthe number of characters to throw away, and defaults to one. The second isthe
character at which the ignore() function quits (after extracting it) and defaults to EOF.

Next you see two output statements that ook very similar: one to cout and one to the file out.
Notice the convenience here; you don’'t need to worry about what kind of object you're
dealing with because the formatting statements work the same with all ostream objects. The
first one echoes the line to standard output, and the second writes the line out to the new file
and includes a line number.

To demongtrate getling(), it's interesting to open the file we just created and strip off the line
numbers. To ensure the fileis properly closed before opening it to read, you have two choices.
Y ou can surround the first part of the program in braces to force the out object out of scope,
thus calling the destructor and closing the file, which is done here. Y ou can aso call close()
for both files; if you want, you can even reuse the in object by calling the open() member
function (you can also create and destroy the object dynamically on the heap asisin Chapter
XX).

Chapter 14: Templates & Container Classes
75

The second while loop shows how getline() removes the terminator character (itsthird
argument, which defaultsto ‘\n’) from the input stream when it’s encountered. Although
getling(), like get(), puts azero in the buffer, it still doesn’t insert the terminating character.

Open modes

Y ou can control the way afile is opened by changing a default argument. The following table

shows the flags that control the mode of thefile:

These flags can be combined using a bitwise or.

| oStream

Flag Function

ios::in Opens an input file. Use this as an open
mode for an ofstream to prevent
truncating an existing file.

ios::out Opens an output file. When used for an
ofstream without ios::app, ios::ate or
ios::in, ios::truncisimplied.

ios::app Opens an output file for appending.

ios::ate Opens an existing file (either input or
output) and seeks the end.

ios::nocr eate Opensafileonly if it already exists.

(Otherwise it fails.)

ios::noreplace

Opens afile only if it does not exist.
(Otherwise it fails.)

ios::trunc Opens afile and deletes the old file, if
it aready exists.
ios::binary Opens afilein binary mode. Default is

text mode.

ouffering

Whenever you create a new class, you should endeavor to hide the details of the underlying
implementation as possible from the user of the class. Try to show them only what they need
to know and make the rest private to avoid confusion. Normally when using iostreams you
don’t know or care where the bytes are being produced or consumed; indeed, thisis different

Chapter 14: Templates & Container Classes

76

depending on whether you' re dealing with standard 1/O, files, memory, or some newly created
classor device.

There comes atime, however, when it becomes important to be able to send messages to the
part of the iostream that produces and consumes bytes. To provide this part with a common
interface and still hide its underlying implementation, it is abstracted into its own class, called
streambuf. Each iostream object contains a pointer to some kind of streambuf. (The kind
depends on whether it deals with standard 1/O, files, memory, etc.) Y ou can access the
streambuf directly; for example, you can move raw bytes into and out of the streambuf,
without formatting them through the enclosing iostream. Thisis accomplished, of course, by
calling member functions for the streambuf object.

Currently, the most important thing for you to know is that every iostream object contains a
pointer to a streambuf object, and the streambuf has some member functions you can call if
you need to.

To allow you to access the streambuf, every iostream object has a member function called
rdbuf (') that returns the pointer to the object’s streambuf. Thisway you can call any member
function for the underlying streambuf. However, one of the most interesting things you can
do with the streambuf pointer isto connect it to another iostream object using the <<
operator. Thisdrains all the bytes from your object into the one on the |eft-hand side of the
<<. Thismeansif you want to move all the bytes from one iostream to another, you don’t
have to go through the tedium (and potential coding errors) of reading them one byte or one
line at atime. It's a much more elegant approach.

For example, here’s avery simple program that opens a file and sends the contents out to
standard output (similar to the previous example):

/1: CO02: Stype.cpp

/1 Type a file to standard out put
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

usi ng namespace std;

int main(int argc, char* argv[]) {
requireArgs(argc, 1); // Mist have a conmand |ine
ifstreamin(argv[1]);
assure(in, argv[1]); // Ensure file exists
cout << in.rdbuf(); // CQutputs entire file

Y I~

After making sure there is an argument on the command line, an ifstream is created using this
argument. The open will fail if the file doesn’t exist, and this failure is caught by the
assert(in).

All the work really happensin the statement

Chapter 14: Templates & Container Classes
77

| cout << in.rdbuf();

which causes the entire contents of the file to be sent to cout. Thisis not only more succinct
to code, it is often more efficient than moving the bytes one at atime.

Using get() with a streambuf

Thereisaform of get() that allows you to write directly into the streambuf of another
object. The first argument is the destination streambuf (whose address is mysterioudly taken
using areference, discussed in Chapter XX), and the second is the terminating character,
which stops the get() function. So yet another way to print afile to standard output is

//: CO02: Sbufget.cpp

/1 Get directly into a streambuf
#include "../require. h"

#i ncl ude <fstreanr

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
i fstreamin("Sbufget.cpp");
assure(in, "Sbufget.cpp");
whi [e(in.get(*cout.rdbuf()))
in.ignore();
Y I~

rdbuf() returns a pointer, so it must be dereferenced to satisfy the function’s need to see an
object. The get() function, remember, doesn’t pull the terminating character from the input
stream, so it must be removed using ignore() so get() doesn’t just bonk up against the
newline forever (which it will, otherwise).

Y ou probably won't need to use a technique like this very often, but it may be useful to know
it exists.

Seeking In 1ostreams

Each type of iostream has a concept of where its “next” character will come from (if it'san
istream) or go (if it's an ostream). In some situations you may want to move this stream
position. You can do it using two models: One uses an absolute location in the stream called
the streampos; the second works like the Standard C library functions fseek() for afile and
moves a given number of bytes from the beginning, end, or current position in the file.

The streampos approach requires that you first call a“tell” function: tellp(') for an ostream
or tellg() for anistream. (The“p” refersto the “put pointer” and the “g” refersto the “get
pointer.”) This function returns a streampos you can later use in the single-argument version

Chapter 14: Templates & Container Classes
78

of seekp() for an ostream or seekg() for anistream, when you want to return to that
position in the stream.

The second approach is arelative seek and uses overloaded versions of seekp() and seekg().
The first argument is the number of bytes to move: it may be positive or negative. The second
argument is the seek direction:

ios::beg From beginning of stream
ios::cur Current position in stream
ios::end From end of stream

Here's an exampl e that shows the movement through a file, but remember, you're not limited
to seeking within files, as you are with C and cstdio. With C++, you can seek in any type of
iostream (although the behavior of cin & cout when seeking is undefined):

/1: CO02: Seeki ng. cpp

/1 Seeking in iostreans
#include "../require. h"
#i ncl ude <i ostreanp

#i ncl ude <fstreanr
usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(arge, 1);
ifstreamin(argv[1]);
assure(in, argv[1]); // File must already exist
i n.seekg(0, ios::end); // End of file
streanmpos sp = in.tellg(); // Size of file
cout << "file size = " << sp << endl;
i n. seekg(-sp/ 10, ios::end);
streanpos sp2 = in.tellg();
i n.seekg(0, ios::beg); // Start of file
cout << in.rdbuf(); // Print whole file
i n.seekg(sp2); // Mwve to streanpos
/1 Prints the last 1/10th of the file:
cout << endl << endl << in.rdbuf() << endl;
Y I~

This program picks a file name off the command line and opensit as an ifstream. assert()
detects an open failure. Because thisis atype of istream, seekg() is used to position the “get
pointer.” Thefirst call seeks zero bytes off the end of thefile, that is, to the end. Because a
streamposisatypedef for along, calling tellg() at that point also returns the size of thefile,
which is printed out. Then a seek is performed moving the get pointer 1/10 the size of thefile
— notice it's a negative seek from the end of thefile, so it backs up from the end. If you try to
seek positively from the end of the file, the get pointer will just stay at the end. The

Chapter 14: Templates & Container Classes
79

streampos at that point is captured into sp2, then aseekg() is performed back to the
beginning of the file so the whole thing can be printed out using the str eambuf pointer
produced with rdbuf(). Finally, the overloaded version of seekg() is used with the
streampos sp2 to move to the previous position, and the last portion of thefileis printed out.

Creating read/write files

Now that you know about the streambuf and how to seek, you can understand how to create
a stream object that will both read and write afile. The following code first creates an
ifstream with flags that say it's both an input and an output file. The compiler won't let you
writeto an ifstream, however, so you need to create an ostr eam with the underlying stream
buffer:

ifstreamin("filename", ios::in|ios::out);
ostream out (i n. rdbuf());

Y ou may wonder what happens when you write to one of these objects. Here’ s an example:

/1: CO2:1ofile.cpp

/! Reading & witing one file
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

usi ng namespace std;

int main() {
ifstreamin("lofile.cpp");

assure(in, "lofile.cpp");

of streamout ("l ofile.out");
assure(out, "lofile.out");

out << in.rdbuf(); // Copy file
in.close();

out. cl ose();
/1 Open for reading and writing:
ifstreamin2("lofile.out", ios::in | ios::out);
assure(in2, "lofile.out");
ostream out 2(i n2. rdbuf ());
cout << in2.rdbuf(); // Print whole file
out 2 << "Were does this end up?”;
out 2. seekp(0, ios::beg);
out2 << "And what about this?"
i n2. seekg(0, ios::beg);
cout << in2.rdbuf();

Y I~

Chapter 14: Templates & Container Classes
80

Thefirst five lines copy the source code for this programinto afile called iofile.out, and then
close thefiles. This gives us a safe text file to play around with. Then the aforementioned
technique is used to create two objects that read and write to the same file. In cout <<
in2.rdbuf(), you can see the “get” pointer isinitialized to the beginning of thefile. The “put”
pointer, however, is set to the end of the file because “Where does this end up?’ appears
appended to the file. However, if the put pointer is moved to the beginning with a seekp(), all
the inserted text overwrites the existing text. Both writes are seen when the get pointer is
moved back to the beginning with a seekg(), and thefileis printed out. Of course, thefileis
automatically saved and closed when out2 goes out of scope and its destructor is called.

stringstreams
strstreams

Before there were stringstr eams, there were the more primitive strstr eams. Although these
are not an official part of Standard C++, they have been around along time so compilers will
no doubt leave in the strstream support in perpetuity, to compile legacy code. Y ou should
always use stringstreams, but it’s certainly likely that you'll come across code that uses
strstreams and at that point this section should come in handy. In addition, this section
should make it fairly clear why stringstreams have replace strstreams.

A strstream works directly with memory instead of afile or standard outpuit. It allows you to
use the same reading and formatting functions to manipulate bytes in memory. On old
computers the memory was referred to as core so this type of functionality is often called in-
core formatting.

The class names for strstreams echo those for file streams. If you want to create a strstream to
extract characters from, you create an istrstream. If you want to put charactersinto a
strstream, you create an ostr stream.

String streams work with memory, so you must deal with the issue of where the memory
comes from and where it goes. Thisisn't terribly complicated, but you must understand it and
pay attention (it turned out is was too easy to lose track of this particular issue, thus the birth
of stringstreams).

User-allocated storage

The easiest approach to understand is when the user is responsible for allocating the storage.
Withistrstreamsthisis the only allowed approach. There are two constructors:

istrstream :istrstreanm(char* buf);
istrstream:istrstrean(char* buf, int size);

Chapter 14: Templates & Container Classes
81

The first constructor takes a pointer to a zero-terminated character array; you can extract bytes
until the zero. The second constructor additionally requires the size of the array, which

doesn’'t have to be zero-terminated. Y ou can extract bytes all the way to buf[size], whether or
not you encounter a zero along the way.

When you hand an istrstream constructor the address of an array, that array must already be
filled with the characters you want to extract and presumably format into some other data
type. Here'sasimple example:

[1: CO2:1string.cpp
/1 1Input strstreans
#i ncl ude <i ostreanp
#i ncl ude <strstreanr
usi ng nanmespace std;

int main() {
istrstreams("47 1.414 This is a test");
int i;
float f;
s > i > f; // \Wiitespace-delimted input
char buf 2[100];

s >> buf 2;

cout << "ji =" << j <«<", f =" << f;

cout << " buf2 =" << buf2 << endl;

cout << s.rdbuf(); // Get the rest...
Yy I~

Y ou can see that thisis amore flexible and general approach to transforming character strings
to typed values than the Standard C Library functions like atof(), atoi(), and so on.

The compiler handles the static storage all ocation of the string in
istrstreams("47 1.414 This is a test");
You can aso hand it a pointer to a zero-terminated string allocated on the stack or the heap.

Ins>>i >>f, thefirst number is extracted into i and the second into f. Thisisn’t “the first
whitespace-delimited set of characters’ because it depends on the data type it's being
extracted into. For example, if the string wereinstead, “1.414 47 Thisisatest,” then i would
get the value one because the input routine would stop at the decimal point. Then f would get
0.414. This could be useful if you want to break a floating-point number into a whole number
and afraction part. Otherwise it would seem to be an error.

Asyou may already have guessed, buf2 doesn't get the rest of the string, just the next
whitespace-delimited word. In general, it seems the best place to use the extractor in
iostreams is when you know the exact sequence of data in the input stream and you're
converting to some type other than a character string. However, if you want to extract the rest
of the string all a once and send it to another iostream, you can use rdbuf(') as shown.

Chapter 14: Templates & Container Classes
82

Output strstreams

Output strstreams also allow you to provide your own storage; in this caseit’sthe placein
memory the bytes are formatted into. The appropriate constructor is

| ostrstream:ostrstream(char*, int, int = ios::out);

The first argument is the preallocated buffer where the characters will end up, the second is
the size of the buffer, and the third is the mode. If the mode is |eft as the default, characters
are formatted into the starting address of the buffer. If the modeis either ios::ate or ios::app
(same effect), the character buffer is assumed to already contain a zero-terminated string, and
any new characters are added starting at the zero terminator.

The second constructor argument is the size of the array and is used by the object to ensure it
doesn’t overwrite the end of the array. If you fill the array up and try to add more bytes, they
won't go in.

An important thing to remember about ostr streamsis that the zero terminator you normally
need at the end of a character array is not inserted for you. When you're ready to zero-
terminate the string, use the special manipulator ends.

Once you' ve created an ostr stream you can insert anything you want, and it will magically
end up formatted in the memory buffer. Here's an example:

//: CO02:Cstring.cpp
/1 Qutput strstreans
#i ncl ude <i ostreanp
#i ncl ude <strstreane
usi ng namespace std;

int main() {
const int sz = 100;
cout << "type an int, a float and a string:";
int i;
float f;
cin >> i > f;
cin >> ws; // Throw away white space
char buf[sz];
cin.getline(buf, sz); // Get rest of the line
/1 (cin.rdbuf() would be awkwar d)
ostrstream os(buf, sz, ios::app);

0s << endl;
0s << "integer =" << i << endl;
0s << "float =" << f << endl;

0s << ends;
cout << buf;
cout << os.rdbuf(); // Same effect

Chapter 14: Templates & Container Classes
83

cout << os.rdbuf(); // NOT the same effect
Y I~

Thisis similar to the previous example in fetching theint and float. Y ou might think the
logical way to get the rest of the lineisto use rdbuf(); thisworks, but it’s awkward because
all the input including newlinesis collected until the user presses control-Z (control-D on
Unix) to indicate the end of the input. The approach shown, using getline(), gets the input
until the user presses the carriage return. Thisinput is fetched into buf, which is subsequently
used to construct the ostrstream os. If the third argument ios::app weren't supplied, the
constructor would default to writing at the beginning of buf, overwriting the line that was just
collected. However, the “append” flag causesit to put the rest of the formatted information at
the end of the string.

Y ou can see that, like the other output streams, you can use the ordinary formatting tools for
sending bytes to the ostrstream. The only differenceis that you' re responsible for inserting
the zero at the end with ends. Note that endl inserts a newline in the strstream, but no zero.

Now the information is formatted in buf, and you can send it out directly with cout << buf.
However, it's also possible to send the information out with os.rdbuf(). When you do this,
the get pointer inside the streambuf is moved forward as the characters are output. For this
reason, if you say cout << os.rdbuf() a second time, nothing happens — the get pointer is
already at the end.

Automatic storage allocation

Output strstreams (but not istrstreams) give you a second option for memory alocation: they
can do it themselves. All you do is create an ostr stream with no constructor arguments:

| ostrstream a;

Now a takes care of all its own storage allocation on the heap. Y ou can put as many bytes into
a asyou want, and if it runs out of storage, it will allocate more, moving the block of memory,
if necessary.

Thisisavery nice solution if you don’t know how much space you' |l need, becauseit’'s
completely flexible. And if you simply format data into the strstream and then hand its
streambuf off to another iostream, things work perfectly:

a << "hello, world. i =" << i << endl << ends;
cout << a.rdbuf();

Thisisthe best of all possible solutions. But what happens if you want the physical address of
the memory that a's characters have been formatted into? It’s readily available — you simply
call the str() member function:

| char* cp = a.str();

There' saproblem now. What if you want to put more charactersinto a? It would be OK if
you knew a had aready allocated enough storage for all the characters you want to give it, but

Chapter 14: Templates & Container Classes
84

that’s not true. Generally, a will run out of storage when you give it more characters, and
ordinarily it would try to allocate more storage on the heap. This would usually require
moving the block of memory. But the stream objects has just handed you the address of its
memory block, so it can’t very well move that block, because you're expecting it to be at a
particular location.

The way an ostr stream handles this problem is by “freezing” itself. Aslong as you don't use
str() to ask for the internal char*, you can add as many characters as you want to the
ostrstream. It will allocate all the necessary storage from the heap, and when the object goes
out of scope, that heap storage is automatically released.

However, if you cal str(), the ostrstream becomes “frozen.” Y ou can’t add any more
charactersto it. Rather, you aren’'t supposed to — implementations are not required to detect
the error. Adding characters to a frozen ostr str eam results in undefined behavior. In addition,
the ostrstream is no longer responsible for cleaning up the storage. Y ou took over that
responsibility when you asked for the char* with str().

To prevent amemory leak, the storage must be cleaned up somehow. There are two
approaches. The more common one isto directly release the memory when you're done. To
understand this, you need a sneak preview of two new keywordsin C++: new and delete. As
you'll seein Chapter XX, these do quite a bit, but for now you can think of them as
replacements for malloc() and free() in C. The operator new returns a chunk of memory, and
delete freesit. It'simportant to know about them here because virtually all memory allocation
in C++ is performed with new, and thisis also true with ostr stream. If it's allocated with
new, it must be released with delete, so if you have an ostrstream a and you get the char*
using str(), the typical way to clean up the storageis

| delete [Ja.str():

This satisfies most needs, but there’ s a second, much less common way to release the storage:
Y ou can unfreeze the ostrstream. Y ou do this by calling freeze(), which isamember
function of the ostrstream’s streambuf. freeze() has a default argument of one, which
freezes the stream, but an argument of zero will unfreezeit:

a. rdbuf ()->freeze(0);

Now the storage is deallocated when a goes out of scope and its destructor is called. In
addition, you can add more bytesto a. However, this may cause the storage to move, so you
better not use any pointer you previously got by calling str () —it won't be reliable after
adding more characters.

The following example tests the ability to add more characters after a stream has been
unfrozen:

[1: CO2:\Wal rus. cpp

/1 Freezing a strstream
#i ncl ude <i ostreanp

#i ncl ude <strstreanr

usi ng nanmespace std;

Chapter 14: Templates & Container Classes
85

int main() {
ostrstreams;
s << "'The time has cone', the walrus said,";
s << ends;
cout << s.str() << endl; // String is frozen
/1 s is frozen; destructor won't delete
/1 the streanbuf storage on the heap
s.seekp(-1, ios::cur); // Back up before NULL
s.rdbuf ()->freeze(0); // Unfreeze it
/1 Now destructor rel eases nmenory, and
/1 you can add nmore characters (but you
/1 better not use the previous str() val ue)
s << " 'To speak of many things << ends;
cout << s.rdbuf();

Y I~

After putting the first string into s, an endsis added so the string can be printed using the
char* produced by str(). At that point, sisfrozen. We want to add more charactersto s, but
for it to have any effect, the put pointer must be backed up one so the next character is placed
on top of the zero inserted by ends. (Otherwise the string would be printed only up to the
original zero.) Thisis accomplished with seekp(). Then sis unfrozen by fetching the
underlying streambuf pointer using rdbuf() and calling freeze(0). At this point sislike it
was before calling str(): We can add more characters, and cleanup will occur automatically,
with the destructor.

It is possible to unfreeze an ostr stream and continue adding characters, but it is not common
practice. Normally, if you want to add more characters once you’ ve gotten the char* of a
ostrstream, you create a new one, pour the old stream into the new one using rdbuf() and
continue adding new characters to the new ostr stream.

Proving movement

If you're still not convinced you should be responsible for the storage of a ostrstream if you
call str(), here’s an example that demonstrates the storage location is moved, therefore the
old pointer returned by str() isinvalid:

/1: CO02: Strnove. cpp

/1 ostrstream nmenory novenent
#i ncl ude <i ostreanp

#i ncl ude <strstreanps

usi ng namespace std;

int main() {
ostrstreams;
S << llhill;

Chapter 14: Templates & Container Classes
86

char* old = s.str(); // Freezes s
s. rdbuf ()->freeze(0); // Unfreeze
for(int i =0; i < 100; i++)
s << "howdy"; // Should force reallocation
cout << "old =" << (void*)old << endl
cout << "new = " << (void*)s.str(): // Freezes
delete s.str(); // Release storage
Y I~

After inserting a string to s and capturing the char* with str (), the string is unfrozen and
enough new bytes are inserted to virtually assure the memory is reallocated and most likely
moved. After printing out the old and new char* values, the storage is explicitly released with
delete because the second call to str() froze the string again.

To print out addresses instead of the strings they point to, you must cast the char* to avoid*.
The operator << for char* prints out the string it is pointing to, while the operator << for
void* prints out the hex representation of the pointer.

It'sinteresting to note that if you don't insert a string to s before calling str(), the result is
zero. This means no storage is allocated until the first time you try to insert bytesto the
ostrstream.

A better way

Again, remember that this section was only left in to support legacy code. Y ou should always
use string and stringstream rather than character arrays and strstream. The former is much
safer and easier to use and will help ensure your projects get finished faster.

Output stream formatting

The whole goal of this effort, and all these different types of iostreams, isto alow you to
easily move and trand ate bytes from one place to another. It certainly wouldn't be very useful
if you couldn’t do all the formatting with the printf() family of functions. In this section,
you'll learn all the output formatting functions that are available for iostreams, so you can get
your bytes the way you want them.

The formatting functions in iostreams can be somewhat confusing at first because there's
often more than one way to control the formatting: through both member functions and
manipulators. To further confuse things, there is a generic member function to set state flags
to control formatting, such as left- or right-justification, whether to use uppercase |etters for
hex notation, whether to always use adecimal point for floating-point values, and so on. On
the other hand, there are specific member functions to set and read values for the fill
character, the field width, and the precision.

Chapter 14: Templates & Container Classes
87

In an attempt to clarify all this, the internal formatting data of an iostream is examined first,
along with the member functions that can modify that data. (Everything can be controlled
through the member functions.) The manipulators are covered separately.

Internal formatting data

The class ios (which you can see in the header file <iostr eam>) contains data members to
store al the formatting data pertaining to that stream. Some of this data has a range of values
and is stored in variables: the floating-point precision, the output field width, and the
character used to pad the output (normally a space). The rest of the formatting is determined
by flags, which are usually combined to save space and are referred to collectively asthe
format flags. Y ou can find out the value of the format flags with theios::flags() member
function, which takes no arguments and returns along (typedefed to fmtflags) that contains
the current format flags. All the rest of the functions make changes to the format flags and
return the previous value of the format flags.

fntflags ios::flags(fmflags newfl ags);
fntflags ios::setf(fnmflags ored_flag);
fntflags ios::unsetf(fntflags clear_flag);

fntflags ios::setf(fmflags bits, fntflags field);

Thefirst function forces all the flags to change, which you do sometimes. More often, you
change one flag at atime using the remaining three functions.

The use of setf() can seem more confusing: To know which overloaded version to use, you
must know what type of flag you' re changing. There are two types of flags: onesthat are
simply on or off, and ones that work in a group with other flags. The on/off flags are the
simplest to understand because you turn them on with setf(fmtflags) and off with
unsetf(fmtflags). These flags are

on/off flag effect

ios::skipws Skip white space. (For input; thisis the
default.)

ios::showbase Indicate the numeric base (dec, oct, or

hex) when printing an integral value.
The format used can be read by the
C++ compiler.

i0s::showpoint Show decimal point and trailing zeros
for floating-point values.

Chapter 14: Templates & Container Classes
88

on/off flag

effect

i0s::uppercase

Display uppercase A-F for
hexadecimal values and E for scientific
values.

ios::showpos

Show plus sign (+) for positive values.

ios::unitbuf

“Unit buffering.” The streamis flushed
after each insertion.

ios::stdio

Synchronizes the stream with the C
standard 1/0O system.

For example, to show the plus sign for cout, you say cout.setf(ios::showpos). To stop
showing the plus sign, you say cout.unsetf(ios:: showpos).

The last two flags deserve some explanation. Y ou turn on unit buffering when you want to
make sure each character is output as soon asit isinserted into an output stream. Y ou could
also use unbuffered output, but unit buffering provides better performance.

Theios::stdio flag is used when you have a program that uses both iostreams and the C
standard 1/O library (not unlikely if you're using C libraries). If you discover your iostream
output and printf() output are occurring in the wrong order, try setting this flag.

Format fields

The second type of formatting flags work in a group. Y ou can have only one of these flags on
at atime, like the buttons on old car radios — you push onein, the rest pop out. Unfortunately
this doesn’t happen automatically, and you have to pay attention to what flags you' re setting
so you don't accidentally call the wrong setf() function. For example, there’saflag for each
of the number bases. hexadecimal, decimal, and octal. Collectively, these flags are referred to
astheios::basefield. If theios::dec flag is set and you call setf(ios::hex), you'll set the
ios::hex flag, but you won't clear the ios::dec bit, resulting in undefined behavior. The proper
thing to do is call the second form of setf() like this: setf(ios::hex, ios::basefield). This
function first clears all the bitsin theios::basefield, then setsios::hex. Thus, this form of
setf(') ensuresthat the other flagsin the group “pop out” whenever you set one. Of course, the
hex() manipulator does all this for you, automatically, so you don’t have to concern yourself
with the internal details of the implementation of this class or to even care that it’s a set of
binary flags. Later you'll see there are manipulators to provide equivalent functionality in all

the places you would use setf().

Here are the flag groups and their effects:

ios::basefield

effect

Chapter 14: Templates & Container Classes
89

ios::basefield

effect

ios::dec Format integral valuesin base 10
(decimal) (default radix).

ios::hex Format integral valuesin base 16
(hexadecimal).

ios::oct Format integral valuesin base 8
(octdl).

ios::floatfield effect

ios::scientific Display floating-point numbersin
scientific format. Precision field
indicates number of digits after the
decimal point.

ios::fixed Display floating-point numbersin

fixed format. Precision field
indicates number of digits after the
decimal point.

“automatic” (Neither bit
isset.)

Precision field indicates the total
number of significant digits.

ios.:adjustfield

effect

ios::left Left-align values; pad on the right
with thefill character.

ios::right Right-align values. Pad on the left
with thefill character. Thisisthe
default alignment.

ios::internal Add fill characters after any leading

sign or base indicator, but before
the value.

Chapter 14: Templates & Container Classes
Q0

Width, fill and precision

Theinternal variables that control the width of the output field, the fill character used when
the data doesn't fill the output field, and the precision for printing floating-point numbers are
read and written by member functions of the same name.

function effect

int ios::width() Reads the current width. (Default is
0.) Used for both insertion and
extraction.

int ios::width(int n) Sets the width, returns the previous
width.

intios:fill() Reads the current fill character.

(Default is space.)

int ios::fill(int n) Setsthefill character, returns the
previous fill character.

int ios::precision() Reads current floating-point
precision. (Default is6.)

int ios::precision(int n) Sets floating-point precision,
returns previous precision. See
ios::floatfield table for the meaning
of “precision.”

Thefill and precision values are fairly straightforward, but width requires some explanation.
When the width is zero, inserting a value will produce the minimum number of characters
necessary to represent that value. A positive width means that inserting a value will produce
at least as many characters as the width; if the value has less than width characters, the fill
character is used to pad the field. However, the value will never be truncated, so if you try to
print 123 with awidth of two, you'll still get 123. The field width specifies a minimum
number of characters; there's no way to specify a maximum number.

Thewidth isalso distinctly different because it’s reset to zero by each inserter or extractor
that could be influenced by its value. It'sreally not a state variable, but an implicit argument
to the inserters and extractors. If you want to have a constant width, you have to call width()
after each insertion or extraction.

Chapter 14: Templates & Container Classes
91

An exhaustive example

To make sure you know how to call al the functions previoudly discussed, here's an example
that calls them all:

/1: CO2: Format. cpp

/1 Formatting functions

#i ncl ude <fstreanr

usi ng nanmespace std;

#define D(A) T << #A << endl; A
of stream T("format.out");

int main() {

Dint i = 47;)
D(float f = 2300114. 414159;)
char* s = "lIs there any nore?";

DX T.setf(ios::unitbuf);)
/1 D(T.setf(ios::stdio);) // SOVETH NG MAY HAVE CHANGED

X T.setf(ios::showbase);)

X T.setf(ios::uppercase);)

X T.setf(ios::showpos);)

T <<i << endl;) // Default to dec

DX T.setf(ios::hex, ios::basefield);)
DT << i << endl;)

D T.unsetf (i os::uppercase);)

DX T.setf(ios::oct, ios::basefield);)
DT << i << endl;)

D T.unsetf (i os::showbase);)

X T.setf(ios::dec, ios::basefield);)

DX T.setf(ios::left, ios::adjustfield);)
D(T.fill("'0);)

D(T << "fill char: " << T.fill() << endl;)
D(T.w dt h(10);)

T << i << endl;

X T.setf(ios::right, ios::adjustfield);)
D(T.w dt h(10);)

T << i << endl;

X T.setf(ios::internal, ios::adjustfield);)
D(T.w dt h(10);)

T << i << endl;

D(T << i << endl;) // Wthout wi dth(10)

Chapter 14: Templates & Container Classes
92

D(T.unsetf (i os::showpos);)
D(T.setf(ios::showpoint);)

D(T << "prec =" << T.precision() << endl;)
D(T.setf(ios::scientific, ios::floatfield);)
T << endl << f << endl;)
D(T.setf(ios::fixed, ios::floatfield);)

T << f << endl;)

D(T.setf(0, ios::floatfield);) // Automatic
T << f << endl;)

D(T. precision(20);)

D(T << "prec =" << T.precision() << endl;)
T << endl << f << endl;)
D(T.setf(ios::scientific, ios::floatfield);)
T << endl << f << endl;)
D(T.setf(ios::fixed, ios::floatfield);)

T << f << endl;)

D(T.setf(0, ios::floatfield);) // Automatic
T << f << endl;)

D(T.w dth(10);)
T << s << endl;
D(T.w dt h(40);)
T << s << endl;
D(T.setf(ios::left, ios::adjustfield);)
D(T.w dt h(40);)
T << s << endl;

D(T.unsetf (i os::showpoint);)

D(T.unsetf(ios::unitbuf);)
/1 D(T.unsetf(ios::stdio);) // SOVETH NG MAY HAVE CHANGED
Y I~

This example uses atrick to create atrace file so you can monitor what’s happening. The
macro D(a) uses the preprocessor “stringizing” to turn a into a string to print out. Then it
reiterates a so the statement takes effect. The macro sends all the information out to afile
called T, which isthe trace file. The output is

int i = 47,

float f = 2300114.414159;

T.setf(ios::unitbuf);

T.setf(ios::stdio);

T.setf (i os::showbase);

T.setf (i os::uppercase);

Chapter 14: Templates & Container Classes
93

T.setf (i os::showos);

T << i << endl

+47

T.setf(ios::hex, ios::basefield);

T << i << endl

+0X2F

T.unsetf (i os::uppercase);
T.setf(ios::oct, ios::basefield);

T << i << endl

+057

T.unsetf (i os::showbase);
T.setf(ios::dec, ios::basefield);
T.setf(ios::left, ios::adjustfield);
T.fill("0");

T << "fill char: " << T.fill() << endl
fill char: O

T.wi dt h(10);

+470000000

T.setf(ios::right, ios::adjustfield);
T.wi dt h(10);

0000000+47

T.setf(ios::internal, ios::adjustfield);
T.wi dt h(10);

+000000047

T << i << endl

+47

T.unsetf (i 0os::showpos);

T.setf (i os::showpoint);

T << "prec = " << T.precision() << endl
prec = 6

T.setf(ios::scientific, ios::floatfield);
T << endl << f << endl

2.300115e+06

T.setf(ios::fixed, ios::floatfield);

T << f << endl

2300114. 500000

T.setf(0, ios::floatfield);

T << f << endl

2.300115e+06

T. preci sion(20);

T << "prec = " << T.precision() << endl
prec = 20

Chapter 14: Templates & Container Classes
9%

T << endl << f << endl;

2300114. 50000000020000000000
T.setf(ios::scientific, ios::floatfield);
T << endl << f << endl;

2.30011450000000020000e+06
T.setf(ios::fixed, ios::floatfield);

T << f << endl;

2300114. 50000000020000000000

T.setf(0, ios::floatfield);

T << f << endl;

2300114. 50000000020000000000

T.wi dt h(10);

I's there any nore?

T. wi dt h(40);

00000000000000000000001 s there any nore?
T.setf(ios::left, ios::adjustfield);

T. wi dt h(40);

I's there any nore?0000000000000000000000
T.unsetf (i os::showpoint);

T.unsetf (ios::unitbuf);
T.unsetf(ios::stdio);

Studying this output should clarify your understanding of the iostream formatting member
functions.

Formatting manipulators

Asyou can see from the previous example, calling the member functions can get a bit tedious.
To make things easier to read and write, a set of manipulatorsis supplied to duplicate the
actions provided by the member functions.

M anipulators with no arguments are provided in <iostream>. These include dec, oct, and
hex , which perform the same action as, respectively, setf(ios::dec, ios::basefield),
setf(ios::oct, ios.:basefield), and setf(ios::hex, ios::basefield), abeit more succinctly.
<iostream>8 also includes ws, end|, ends, and flush and the additional set shown here:

8 These only appear in the revised library; you won't find them in older implementations of
iostreams.

Chapter 14: Templates & Container Classes

95

manipulator effect

showbase Indicate the numeric base (dec,

noshowbase oct, or hex) when printing an
integral value. The format used
can be read by the C++
compiler.

showpos Show plus sign (+) for positive

noshowpos values

uppercase Display uppercase A-F for

nouppercase hexadecimal values, and E for
scientific values

showpoint Show decimal point and trailing

noshowpoint zeros for floating-point values.

skipws Skip white space on input.

noskipws

left Left-align, pad onright.

right Right-align, pad on left.

internal Fill between leading sign or base
indicator and value.

scientific Use scientific notation

fixed setprecision() or

ios::precision() sets number of
places after the decimal point.

Manipulators with arguments

If you are using manipulators with arguments, you must also include the header file
<iomanip>. This contains code to solve the general problem of creating manipulators with
arguments. In addition, it has six predefined manipulators:

manipulator

effect

Chapter 14: Templates & Container Classes

96

manipulator

effect

setiosflags (Fmtflags n)

Sets only the format flags
specified by n. Setting remains
in effect until the next change,
likeios::setf().

resetiosflags(fmtflags n)

Clears only the format flags
specified by n. Setting remains
in effect until the next change,
likeios::unsetf().

setbase(base n)

Changes baseto n, wherenis
10, 8, or 16. (Anything else
resultsin 0.) If niszero, output
isbase 10, but input usesthe C
conventions: 10 is 10, 010is 8,
and Oxf is 15. Y ou might as well
use dec, oct, and hex for output.

setfill (char n)

Changes thefill character to n,
likeios::fill().

setprecision(int n)

Changes the precision to n, like
ios::precision().

setw(int n)

Changes the field width to n,
likeios::width().

If you're using alot of inserters, you can see how this can clean things up. As an example,
here' s the previous program rewritten to use the manipulators. (The macro has been removed

to makeit easier to read.)

[1: CO2: Mani ps. cpp

/1 Format.cpp using mani pul ators
#i ncl ude <fstreanr

#i ncl ude <i omani p>

usi ng nanmespace std;

int main() {
of streamtrc("trace.out");
int i = 47,
float f = 2300114. 414159;

Chapter 14: Templates & Container Classes
97

char* s = "lIs there any nore?";

trc << setiosflags(
ios::unitbuf /*| ios::stdio */ [/] 2?2?2277
| io0s::showbase | io0s::uppercase
| i1os::showpos);
trc << i << endl; // Default to dec
trc << hex << i << endl
trc << resetiosflags(ios::uppercase)
<< oct << i << endl
trc.setf(ios::left, ios::adjustfield);
trc << resetiosflags(ios::showbase)
<< dec << setfill('0");
trc << "fill char: " << trc.fill() << endl
trc << setw(10) << i << endl
trc.setf(ios::right, ios::adjustfield);
trc << setw(10) << i << endl
trc.setf(ios::internal, ios::adjustfield);
trc << setw(10) << i << endl
trc << i << endl; // Wthout setw(10)

trc << resetiosflags(ios::showpos)

<< setiosflags(ios::showpoint)

<< "prec = " << trc.precision() << endl
trc.setf(ios::scientific, ios::floatfield);
trc << f << endl
trc.setf(ios::fixed, ios::floatfield);
trc << f << endl
trc.setf(0, ios::floatfield); // Automatic
trc << f << endl
trc << setprecision(20);
trc << "prec = " << trc.precision() << endl
trc << f << endl
trc.setf(ios::scientific, ios::floatfield);
trc << f << endl
trc.setf(ios::fixed, ios::floatfield);
trc << f << endl
trc.setf(0, ios::floatfield); // Automatic
trc << f << endl

trc << setw(10) << s << endl
trc << setw(40) << s << endl
trc.setf(ios::left, ios::adjustfield);

Chapter 14: Templates & Container Classes
98

trc << setw(40) << s << endl;

trc << resetiosflags(
i 0S::showpoint | ios::unitbuf
[l | ios::stdio /] ?2?2?2?2?2?27?°??
)
Y I~

Y ou can see that alot of the multiple statements have been condensed into a single chained
insertion. Note the calls to setiosflags() and resetiosflags(), where the flags have been
bitwise-ORed together. This could also have been done with setf() and unsetf() in the
previous example.

Creating manipulators

(Note: This section contains some material that will not be introduced until later chapters.)
Sometimes you'd like to create your own manipulators, and it turns out to be remarkably
simple. A zero-argument manipulator like endl is ssmply afunction that takes as its argument
an ostream reference (references are a different way to pass arguments, discussed in Chapter
XX). The declaration for endl is

| ostream& endl (ostreanms);
Now, when you say:
| cout << “howdy” << endl;

the endl produces the address of that function. So the compiler says “is there afunction | can
call that takes the address of afunction asits argument?’ Thereis a pre-defined function in
lostream.h to do this; it's called an applicator. The applicator calls the function, passing it
the ostr eam object as an argument.

Y ou don't need to know how the applicator works to create your own manipulator; you only
need to know the applicator exists. Here's an example that creates a manipulator called nl that
emits a newline without flushing the stream:

/1: CO02:nl.cpp

/1 Creating a mani pul at or
#i ncl ude <i ostreanp

usi ng namespace std;

ostream& nl (ostream& os) {
return os << '\n';

}

int main() {

Chapter 14: Templates & Container Classes
99

cout << "new ines" << nl << "between" << nl
<< "each" << nl << "word" << nl;
Y I~

The expression
| 0s << '\n':
calls afunction that returns os, which is what is returned from nl.°

People often argue that the nl approach shown above is preferable to using endl because the
latter always flushes the output stream, which may incur a performance penalty.

Effectors

As you' ve seen, zero-argument manipulators are quite easy to create. But what if you want to
create a manipulator that takes arguments? The iostream library has a rather convoluted and
confusing way to do this, but Jerry Schwarz, the creator of the iostream library, suggestst a
scheme he calls effectors. An effector is a simple class whose constructor performs the desired
operation, along with an overloaded oper ator << that works with the class. Here's an example
with two effectors. The first outputs a truncated character string, and the second prints a
number in binary (the process of defining an overloaded oper ator << will not be discussed
until Chapter XX):

/]: C02: Effector.txt

/1 (Should be "cpp" but | can't get it to compile with
/1 My windows conpilers, so making it a txt file wll
/1 keep it out of the makefile for the time being)

/1 Jerry Schwarz's "effectors”

#i ncl ude<i ostreanr

#i ncl ude <cstdlib>

#i ncl ude <string>

#include <climts> // ULONG MAX

usi ng namespace std;

/1 Put out a portion of a string:
class Fixw {

string str;
public:

Fi xw(const string& s, int wdth)

9 Before putting nl into a header file, you should make it an inline function (see Chapter 7).

10 |n a private conversation.

Chapter 14: Templates & Container Classes
100

str(s, 0, width) {}
friend ostream&
operator<<(ostrean& os, Fixw& fw) {
return os << fw.str;
}
}s

t ypedef unsigned | ong ul ong;

/1 Print a nunber in binary:
class Bin {
ul ong n;
public:
Bin(ulong nn) { n = nn; }
friend ostream& operator<<(ostream Bin&);

b
ost ream& oper at or<<(ostream& os, Bin& b) {
ulong bit = ~(ULONG MAX >> 1); // Top bit set
while(bit) {
0s << (b.n & bit ?2'1" : '0");
bit >>= 1;
}
return os;

}

int main() {
char* string =
"Thi ngs that nmake us happy, nake us w se";
for(int i = 1; i <= strlen(string); i++)
cout << Fixw(string, i) << endl;
ul ong x = OxCAFEBABEUL;
ulong y = 0x76543210UL;

cout << "x in binary: " << Bin(x) << endl;
cout << "y in binary: " << Bin(y) << endl;
Y I~

The constructor for Fixw creates a shortened copy of its char* argument, and the destructor
releases the memory created for this copy. The overloaded oper ator << takes the contents of
its second argument, the Fixw object, and insertsit into the first argument, the ostream, then
returns the ostream so it can be used in a chained expression. When you use Fixw in an
expression likethis:

cout << Fixw(string, i) << endl;

Chapter 14: Templates & Container Classes
101

atemporary object is created by the call to the Fixw constructor, and that temporary is passed
to oper ator <<. The effect isthat of a manipulator with arguments.

The Bin effector relies on the fact that shifting an unsigned number to the right shifts zeros
into the high bits. ULONG_MAX (the largest unsigned long value, from the standard include
file <climits>) is used to produce a value with the high bit set, and this value is moved across
the number in question (by shifting it), masking each bit.

Initially the problem with this technique was that once you created a class called Fixw for
char* or Bin for unsigned long, no one else could create a different Fixw or Bin class for
their type. However, with namespaces (covered in Chapter XX), this problemis eliminated.

| ostream examples

In this section you' Il see some examples of what you can do with all the information you' ve
learned in this chapter. Although many tools exist to manipulate bytes (stream editors like sed
and awk from Unix are perhaps the most well known, but atext editor also fits this category),
they generally have some limitations. sed and awk can be slow and can only handlelinesin a
forward sequence, and text editors usually require human interaction, or at least learning a
proprietary macro language. The programs you write with iostreams have none of these
limitations: They're fast, portable, and flexible. It's avery useful tool to have in your Kit.

Code generation

The first examples concern the generation of programs that, coincidentally, fit the format used
in this book. This provides a little extra speed and consistency when developing code. The
first program creates afile to hold main() (assuming it takes no command-line arguments and
uses the iostream library):

/1: CO02: Makenmi n. cpp

/1l Create a shell main() file
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <strstreans

#i ncl ude <cstring>

#i ncl ude <cctype>

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
of stream mai nfil e(argv[1]);
assure(mainfile, argv[1]);
i strstream name(argv|[1]);
ost rstream CAPnane;

Chapter 14: Templates & Container Classes
102

char c;
whi | e(nane. get (c))

CAPnanme << char (toupper(c));
CAPnanme << ends;

mainfile << "//" << ": " << CAPnane. rdbuf ()
<< " -- " << endl
<< "#include <iostreanr" << endl
<< endl

<< "main() {" << endl << endl
<< "}" << endl;
YL~

The argument on the command line is used to create an istrstream, so the characters can be
extracted one at atime and converted to upper case with the Standard C library macro
toupper (). Thisreturnsan int so it must be explicitly cast to achar. This name is used in the
headline, followed by the remainder of the generated file.

Maintaining class library source

The second example performs a more complex and useful task. Generally, when you create a
classyou think in library terms, and make a header file Name.h for the class declaration and a
file where the member functions are implemented, called Name.cpp. These files have certain
requirements: a particular coding standard (the program shown here will use the coding
format for this book), and in the header file the declarations are generally surrounded by some
preprocessor statements to prevent multiple declarations of classes. (Multiple declarations
confuse the compiler — it doesn’t know which one you want to use. They could be different,

so it throws up its hands and gives an error message.)

This example allows you to create a new header-implementation pair of files, or to modify an
existing pair. If the files already exist, it checks and potentially modifies the files, but if they
don't exist, it creates them using the proper format.

[[This should be changed to use string instead of <cstring>]]

/1: C02: Cppcheck. cpp

/1 Configures .h & .cpp files

/1 To conformto style standard.

/1 Tests existing files for confornmance
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <strstreanps

#i ncl ude <cstring>

#i ncl ude <cctype>

usi ng namespace std;

int main(int argc, char* argv[]) {

Chapter 14: Templates & Container Classes
103

const int sz = 40; // Buffer sizes

const int bsz = 100;

requireArgs(argc, 1); // File set nane

enum bufs { base, header, inplenent,
H i nel, guardl, guard2, guards3,
CPPl i nel, include, bufnum}

char b[buf nunm[sz];

ostrstreamosarray[] = {
ostrstrean(b[base], sz),
ostrstrean(b[header], sz),
ostrstrean(b[inplenment], sz),
ostrstream(b[H i nel], sz),
ostrstreanm(b[guardl], sz),
ostrstreanm(b[guard2], sz),
ostrstreanm(b[guard3], sz),
ostrstrean(b[CPPl i nel], sz),
ostrstrean(b[include], sz),

b

osarray|[base] << argv[1l] << ends;

/1 Find any '."' in the string using the
/1 Standard C library function strchr():
char* period = strchr(b[base], '.");

i f(period) *period = 0; // Strip extension
/1l Force to upper case:

for(int i = 0; b[base][i]; i++)
b[base][i] = toupper(b[base][i]);
/!l Create file names and internal |ines:

osarray[header] << b[base] << ".h" << ends;
osarray[i npl enment] << b[base] << ".cpp" << ends;
osarray[H inel] << "//" << ": " << b[header]
<< " -- " << ends;
osarray[guardl] << "#i fndef " << b[base]
<< " H' << ends;
osarray[guard2] << "#define " << b[base]
<< " H' << ends;
osarray[guard3] << "#endif // " << b[base]
<< " H' << ends;
osarray[CPPl i nel] << "//" << "
<< b[i npl enment]
<< " -- " << ends;
osarray[include] << "#include \""
<< b[header] << "\"" <<ends;
/1 First, try to open existing files:

Chapter 14: Templates & Container Classes
104

i fstream exi st h(b[header]),
exi stcpp(b[inplenment]);
if('existh) { // Doesn't exist; create it
of stream newheader (b[header]);
assur e(newheader, b[header]);
newheader << b[H inel] << end
<< b[guardl] << end
<< b[guard2] << endl << end
<< b[guard3] << endl
}
if('existcpp) { // Create cpp file
of stream newcpp(b[i mpl enent]);
assure(newcpp, b[inplenent]);
newcpp << b[CPPlinel] << end
<< b[include] << endl
}
if(existh) { // Aready exists; verify it
strstreamhfile; // Wite & read
ostrstream newheader; // Wite
hfile << existh.rdbuf () << ends;
/1 Check that first line confornmns:
char buf[bsz];
if(hfile.getline(buf, bsz)) {
if(!strstr(buf, "//" ":") ||
I'strstr(buf, b[header]))
newheader << b[H inel] << endl
}
/1 Ensure guard |ines are in header
if(!strstr(hfile.str(), b[guardl]) ||
Istrstr(hfile.str(), b[guard2]) ||
Istrstr(hfile.str(), b[guard3])) {
newheader << b[guardl] << end
<< b[guard2] << end
<< buf
<< hfile.rdbuf() << end
<< b[guard3] << endl << ends;
} else
newheader << buf
<< hfile.rdbuf() << ends;
/1 1f there were changes, overwite file:
if(strcnp(hfile.str(), newheader.str())!=0){
exi sth.close();
of stream newH(b[header]);

Chapter 14: Templates & Container Classes
105

assure(newH, b[header]);
newH << "//@/" << endl // Change marker
<< newheader . rdbuf () ;
}

delete hfile.str();
del et e newheader.str();
}
if(existcpp) { // Already exists; verify it
strstream cppfil e;
ostrstream newcpp;
cppfil e << existcpp.rdbuf() << ends;
char buf[bsz];
/1 Check that first |line confornms:
i f(cppfile.getline(buf, bsz))
if(!strstr(buf, "//" ":") ||
I'strstr(buf, b[inplenent]))
newcpp << b[CPPlinel] << endl
/1 Ensure header is included:
if(!strstr(cppfile.str(), b[include]))
newcpp << b[include] << endl
/1 Put in the rest of the file:
newcpp << buf << endl; // First line read
newcpp << cppfile.rdbuf() << ends;
/1 1f there were changes, overwite file:
if(strcnp(cppfile.str(), newcpp.str())!=0){
exi st cpp. cl ose();
of stream newCPP(b[i nmpl enent]);
assure(newCPP, b[inplenent]);
newCPP << "//@/" << endl // Change narker
<< newcpp. rdbuf ();
}

del ete cppfile.str();
del ete newcpp.str();

}
Y 11~

This example requires alot of string formatting in many different buffers. Rather than

creating alot of individually named buffers and ostr stream objects, asingle set of namesis
created in the enum bufs. Then two arrays are created: an array of character buffers and an
array of ostr stream objects built from those character buffers. Note that in the definition for
the two-dimensional array of char buffers b, the number of char arraysis determined by
bufnum, the last enumerator in bufs. When you create an enumeration, the compiler assigns
integral valuesto all the enum labels starting at zero, so the sole purpose of bufnum isto bea
counter for the number of enumeratorsin buf. The length of each stringinb issz.

Chapter 14: Templates & Container Classes
106

The names in the enumeration are base, the capitalized base file name without extension;
header, the header file name; implement, the implementation file (cpp) name; Hlinel, the
skeleton first line of the header file; guardl, guard2, and guard3, the “guard” linesin the
header file (to prevent multiple inclusion); CPPlinel, the skeleton first line of the cpp file;
and include, thelinein the cpp file that includes the header file.

osarray isan array of ostrstream objects created using aggregate initialization and automatic
counting. Of course, thisis the form of the ostrstream constructor that takes two arguments
(the buffer address and buffer size), so the constructor calls must be formed accordingly
inside the aggregate initializer list. Using the bufs enumerators, the appropriate array element
of b istied to the corresponding osarray object. Once the array is created, the objectsin the
array can be selected using the enumerators, and the effect is to fill the corresponding b
element. Y ou can see how each string is built in the lines following the ostr stream array
definition.

Once the strings have been created, the program attempts to open existing versions of both the
header and cpp file asifstreams. If you test the object using the operator ‘!" and thefile
doesn’t exist, the test will fail. If the header or implementation file doesn’t exist, it is created
using the appropriate lines of text built earlier.

If the files do exist, then they are verified to ensure the proper format is followed. In both
cases, astrstream is created and the whole file isread in; then the first line isread and
checked to make sure it follows the format by seeing if it contains both a“//:” and the name of
thefile. Thisis accomplished with the Standard C library function strstr(). If thefirst line
doesn’t conform, the one created earlier isinserted into an ostr stream that has been created to
hold the edited file.

In the header file, the wholefile is searched (again using strstr()) to ensure it contains the
three “guard” lines; if not, they are inserted. The implementation file is checked for the
existence of the line that includes the header file (although the compiler effectively guarantees
its existence).

In both cases, the original file (in its strstream) and the edited file (in the ostr stream) are
compared to seeif there are any changes. If there are, the existing file is closed, and a new
ofstream object is created to overwrite it. The ostrstream is output to the file after a special
change marker is added at the beginning, so you can use a text search program to rapidly find
any filesthat need reviewing to make additional changes.

Detecting compiler errors

All the code in this book is designed to compile as shown without errors. Any line of code
that should generate a compile-time error is commented out with the special comment
sequence “//!”. The following program will remove these special comments and append a
numbered comment to the line, so that when you run your compiler it should generate error
messages and you should see all the numbers appear when you compile all the files. It also
appends the modified line to a special file so you can easily locate any lines that don’t
generate errors:

Chapter 14: Templates & Container Classes
107

/1: CO02: Showerr.cpp

/1 Un-conment error generators
#include "../require. h"

#i ncl ude <i ostreane

#i ncl ude <fstreanp

#i ncl ude <strstreans

#i ncl ude <cctype>

#i ncl ude <cstring>

usi ng namespace std;

char* marker = "//1";

char* usage =

"usage: showerr filenane chapnum n"

"where filename is a C++ source file\n"

"and chapnumis the chapter nane it's in.\n"
"Finds lines conmented with //! and renpves\n"
"comment, appending //(#) where # is unique\n"
"across all files, so you can determ ne\n"

"if your compiler finds the error.\n"

"“showerr /r\n"

"resets the uni que counter.";

/1 File containing error nunber counter

char* errnum="../errnumtxt";
/1 File containing error lines:
char* errfile = "../errlines.txt";

of streamerrlines(errfile,ios::app);

int main(int argc, char* argv[]) {
requi reArgs(argc, 2, usage);
if(argv[1][0] =="/" || argv[1][0] == "-") {
/1 Allow for other swtches:
switch(argv[1][1]) {
case 'r': case 'R :
cout << "reset counter" << endl
renove(errnum; // Delete files
renove(errfile);
return O;
defaul t:
cerr << usage << endl
return 1,

Chapter 14: Templates & Container Classes
108

char* chapter = argv|[2];
strstreamedited; // Edited file
int counter = 0;
{
ifstreaminfile(argv[1]);
assure(infile, argv[1]);
i fstream count (errnum;
assure(count, errnum;
i f(count) count >> counter;
int Iinecount = O;
const int sz = 255;
char buf[sz];
while(infile.getline(buf, sz)) {
| i necount ++;
/1 Eat white space:
int i =0;
whi | e(i sspace(buf[i]))
i ++;
/1 Find marker at start of |ine:
if(strstr(&uf[i], marker) == &buf[i]) {
/1 Erase marker:
menset (&uf[i], " ', strlen(marker));
/1 Append counter & error info:
ostrstream out (buf, sz, ios::ate);
out << "//(" << ++counter << ")
<< "Chapter " << chapter

<< " File: " << argv[1]
<< " Line " << linecount << end
<< ends;

edited << buf;
errlines << buf; // Append error file
} else
edited << buf << "\n"; // Just copy
}
} // Closes files
of streamoutfile(argv[1]); // Overwites
assure(outfile, argv[1]);
outfile << edited. rdbuf();
of stream count(errnun); // Overwites
assure(count, errnum;
count << counter; // Save new counter
Y I~

Chapter 14: Templates & Container Classes
109

The marker can be replaced with one of your choice.

Eachfileisread aline at atime, and each lineis searched for the marker appearing at the head
of the ling; the line is modified and put into the error line list and into the strstream edited.
When the wholefile is processed, it is closed (by reaching the end of a scope), reopened as an
output file and edited is poured into the file. Also notice the counter is saved in an externa
file, so the next time this program is invoked it continues to sequence the counter.

A simple datalogger

This example shows an approach you might take to log data to disk and later retrieve it for
processing. The example is meant to produce a temperature-depth profile of the ocean at
various points. To hold the data, aclassis used:

//: CO2: Dat aLogger. h

/1 Datal ogger record | ayout
#i f ndef DATALOG H

#defi ne DATALOG H

#i ncl ude <cti me>

#i ncl ude <i ostreanp

cl ass Dat aPoi nt {
std::tmtime; // Tine & day
static const int bsz = 10;
/1 Ascii degrees (*) mnutes (') seconds ("):

char latitude[bsz], |ongitude[bsz];
doubl e depth, tenperature;
publi c:

std::tmgetTime();
void setTinme(std::tmt);
const char* getlLatitude();
voi d setlLatitude(const char* I|);
const char* getlLongitude();
voi d setlLongitude(const char* 1);
doubl e get Dept h();
voi d set Dept h(doubl e d);
doubl e get Tenperature();
voi d set Tenperature(double t);
void print(std::ostream& os);
i
#endi f // DATALOG H ///:~

The access functions provide controlled reading and writing to each of the data members. The
print() function formats the DataPoint in areadable form onto an ostr eam object (the
argument to print()). Here' s the definition file:

Chapter 14: Templates & Container Classes
110

//: CO02: Datal og.cpp {O

/1 Datapoi nt nember functions
#i ncl ude "Dat alLogger. h"

#i ncl ude <i omani p>

#i ncl ude <cstring>

usi ng namespace std;

tmDataPoint::getTine() { return tine; }
void DataPoint::setTine(tmt) { tine =t; }

const char* DataPoint::getlLatitude() {
return |atitude;

}

voi d DataPoint::setlLatitude(const char* |) {
| atitude[bsz - 1] = O;
strncpy(latitude, |, bsz - 1);

}

const char* Dat aPoi nt::getlLongitude() {
return | ongitude;

}

voi d Dat aPoi nt::setlLongitude(const char* |) {
| ongi tude[bsz - 1] = O;
strncpy(longitude, |, bsz - 1);

}

doubl e Dat aPoi nt::getDepth() { return depth; }
voi d Dat aPoi nt:: set Dept h(double d) { depth = d; }

doubl e Dat aPoi nt: : get Tenperature() {
return tenperature;

}

voi d Dat aPoi nt:: set Tenperature(double t) {
tenmperature =t

}

voi d DataPoint::print(ostream& os) {
os.setf(ios::fixed, ios::floatfield);

Chapter 14: Templates & Container Classes
m

0s. preci sion(4);

os.fill("0"); // Pad on left with '0'

0S << setw(2) << getTinme().tmnon << "\\'
<< setw(2) << getTine().tmnday << "\\'
<< setwW(2) << getTinme().tmyear << ' '
<< setwW(2) << getTinme().tmhour <<'
<< setwW(2) << getTime().tmmn << '
<< setw(2) << getTinme().tmsec;

os.fill(" "); /] Pad on left with '

0S << " Lat:" << setw(9) << getlatitude()
<< ", Long:" << setw(9) << getlLongitude()
<< ", depth:" << setw(9) << getDepth()
<< ", tenp:" << setw(9) << getTenperature()
<< endl;

Y I~

Inprint(), the call to setf() causes the floating-point output to be fixed-precision, and
precision() setsthe number of decimal placesto four.

The default is to right-justify the data within the field. The time information consists of two
digits each for the hours, minutes and seconds, so the width is set to two with setw() in each
case. (Remember that any changes to the field width affect only the next output operation, so
setw() must be given for each output.) But first, to put a zero in the left position if the value is
lessthan 10, the fill character isset to ‘0’. Afterwards, it is set back to a space.

The latitude and longitude are zero-terminated character fields, which hold the information as
degrees (here, ‘** denotes degrees), minutes (*), and seconds(*). Y ou can certainly devise a
more efficient storage layout for latitude and longitude if you desire.

Generating test data

Here's a program that creates afile of test datain binary form (using write()) and a second
filein ASCII form using DataPoint::print(). You can also print it out to the screen but it's
easier to inspect in file form.

/1: CO02: Dat agen. cpp
/1{L} Datal og

/1 Test data generator
#i ncl ude "Dat alLogger. h"
#include "../require. h"
#i ncl ude <fstreanp

#i ncl ude <cstdlib>

#i ncl ude <cstring>
usi ng namespace std;

int main() {

Chapter 14: Templates & Container Classes
12

of stream data("data. txt");
assure(data, "data.txt");
of stream bi ndata("data. bin", ios::binary);
assure(bi ndata, "data.bin");
time_t tiner;
/1 Seed random nunber generator:
srand(time(&iner));
for(int i =0; i < 100; i++) {
Dat aPoi nt d;
/1 Convert date/time to a structure:
d.setTine(*localtime(&inmer));
timer += 55; // Readi ng each 55 seconds
d. setLatitude("45*20"' 31\"");
d. set Longi tude("22*34" 18\"");
/1 Zero to 199 neters:
doubl e newdepth = rand() % 200;
double fraction = rand() % 100 + 1;
newdept h += doubl e(1) / fraction;
d. set Dept h(newdept h) ;
doubl e newtenp = 150 + rand()%00; // Kelvin
fraction = rand() % 100 + 1;
newt enp += (double)l / fraction;
d. set Tenper at ure(newt enp) ;
d. print(data);
bi ndat a. write((unsigned char*) &d,
si zeof (d));
}
Y I~

Thefile DATA.TXT iscreated in the ordinary way as an ASCI| file, but DATA.BIN hasthe
flag ios::binary to tell the constructor to set it up as a binary file.

The Standard C library function time(), when called with a zero argument, returns the current
time asatime_t value, which is the number of seconds elapsed since 00:00:00 GMT, January
1 1970 (the dawning of the age of Aquarius?). The current time is the most convenient way to
seed the random number generator with the Standard C library function srand(), asis done
here.

Sometimes a more convenient way to store the timeis as atm structure, which has all the
elements of the time and date broken up into their constituent parts as follows:

struct tm{
int tmsec; // 0-59 seconds
int tmmn; // 0-59 mnutes
int tmhour; // 0-23 hours

Chapter 14: Templates & Container Classes
113

nt tmnday; // Day of nonth

nt tmnon; // 0-11 nonths

nt tmyear; // Cal endar year

nt tmwday; // Sunday == 0, etc.

nt tmyday; // 0-365 day of year

nt tmisdst; // Daylight savings?
b

To convert from the time in seconds to the local time in the tm format, you use the Standard
C library localtime() function, which takes the number of seconds and returns a pointer to the
resulting tm. Thistm, however, is a static structure inside the localtime() function, which is
rewritten every time localtime() is called. To copy the contents into the tm struct inside
DataPoint, you might think you must copy each element individually. However, all you must
do is a structure assignment, and the compiler will take care of the rest. This means the right-
hand side must be a structure, not a pointer, so the result of localtime() is dereferenced. The
desired result is achieved with

d.setTine(*localtime(&inmer));

After this, the timer isincremented by 55 secondsto give an interesting interval between
readings.

The latitude and longitude used are fixed values to indicate a set of readings at asingle
location. Both the depth and the temperature are generated with the Standard C library rand()
function, which returns a pseudorandom number between zero and the constant
RAND_MAX. To put thisin adesired range, use the modulus operator % and the upper end
of the range. These numbers are integral; to add a fractional part, a second call torand() is
made, and the value isinverted after adding one (to prevent divide-by-zero errors).

In effect, the DATA.BIN fileis being used as a container for the data in the program, even
though the container exists on disk and not in RAM. To send the data out to the disk in binary
form, write() isused. The first argument is the starting address of the source block — notice it
must be cast to an unsigned char* because that’s what the function expects. The second
argument is the number of bytes to write, which is the size of the DataPoint object. Because
no pointers are contained in DataPoint, there is no problem in writing the object to disk. If
the object is more sophisticated, you must implement a scheme for serialization . (Most
vendor class libraries have some sort of serialization structure built into them.)

Verifying & viewing the data

To check the validity of the data stored in binary format, it is read from the disk and put in
text formin DATA2.TXT, so that file can be compared to DATA.TXT for verification. In the
following program, you can see how simple this data recovery is. After the test fileis created,
the records are read at the command of the user.

//: CO2: Dat ascan. cpp
/1{L} Datal og
/1 Verify and view | ogged data

Chapter 14: Templates & Container Classes
114

#i ncl ude "Dat alLogger. h"
#include "../require. h"
#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <strstreane

#i ncl ude <i omani p>
usi ng namespace std;

int main() {
i fstream bi ndata("data. bin", ios::binary);
assure(bi ndata, "data.bin");
/1l Create conparison file to verify data.txt:
of streamverify("data2.txt");
assure(verify, "data2.txt");
Dat aPoi nt d;
whi | e(bi ndat a. r ead(
(unsi gned char*)&d, sizeof d))
d.print(verify);
bi ndata.clear(); // Reset state to "good"
/1 Display user-sel ected records:
int recnum= 0;
/1 Left-align everything:
cout.setf(ios::left, ios::adjustfield);
/1 Fixed precision of 4 decimal places:
cout.setf(ios::fixed, ios::floatfield);
cout. precision(4);
for(;;) {
bi ndat a. seekg(recnunt sizeof d, ios::beg);
cout << "record " << recnum << endl|
i f(bindata. read(
(unsigned char*)&d, sizeof d)) {
cout << asctinme(&(d.getTine()));
cout << setw(1l) << "Latitude"
<< setw(11l) << "Longitude"
<< setw(10) << "Depth"
<< setw(12) << "Tenperature"
<< endl;
/1 Put a line after the description
cout << setfill('-") << setw(43) << '-'
<< setfill (' ') << endl;
cout << setw(1ll) << d.getlLatitude()
<< setw(1l) << d.getLongitude()
<< setw(10) << d. get Depth()

Chapter 14: Templates & Container Classes
115

<< setw(12) << d.get Tenperature()
<< endl;
} else {
cout << "invalid record nunber" << endl;
bi ndata.clear(); // Reset state to "good"
}
cout << endl
<< "enter record number, x to quit:";
char buf[10];
cin.getline(buf, 10);
i f(buf[0] == "x") break;
i strstream i nput (buf, 10);
i nput >> recnum
}
Y I~

The ifstream bindata is created from DATA.BIN as abinary file, with theios::nocreate flag
on to cause the assert() to fail if the file doesn’t exist. Theread() statement reads asingle
record and placesit directly into the DataPoint d. (Again, if DataPoint contained pointers
this would result in meaningless pointer values.) Thisread() action will set bindata’s failbit
when the end of thefile is reached, which will cause the while statement to fail. At this point,
however, you can’'t move the get pointer back and read more records because the state of the
stream won't alow further reads. So the clear () functionis called to reset the failbit.

Once the record isread in from disk, you can do anything you want with it, such as perform
calculations or make graphs. Here, it is displayed to further exercise your knowledge of
iostream formatting.

The rest of the program displays a record number (represented by recnum) selected by the
user. As before, the precision isfixed at four decimal places, but thistime everything is left
justified.

The formatting of this output looks different from before:

record O
Tue Nov 16 18:15:49 1993
Latitude Longi tude Depth Tenper at ure

45*20' 31" 22*34' 18" 186.0172 269.0167

To make sure the labels and the data columns line up, the labels are put in the same width
fields as the columns, using setw(). The line in between is generated by setting thefill
character to ‘-’, the width to the desired line width, and outputting asingle ‘-'.

If theread() fails, you'll end up in the else part, which tells the user the record number was
invalid. Then, because the failbit was set, it must be reset with a call to clear () so the next
read() issuccessful (assuming it’sin the right range).

Chapter 14: Templates & Container Classes
116

Of course, you can also open the binary datafile for writing as well as reading. Thisway you
can retrieve the records, modify them, and write them back to the same location, thus creating
aflat-file database management system. In my very first programming job, | also had to create
aflat-file DBMS — but using BASIC on an Apple 1. It took months, while this took minutes.
Of course, it might make more sense to use a packaged DBM S now, but with C++ and
iostreams you can still do all the low-level operations that are necessary in alab.

Counting editor

Often you have some editing task where you must go through and sequentially number
something, but all the other text is duplicated. | encountered this problem when pasting digital
photos into a Web page — | got the formatting just right, then duplicated it, then had the
problem of incrementing the photo number for each one. So | replaced the photo number with
XXX, duplicated that, and wrote the following program to find and replace the “XXX” with
an incremented count. Notice the formatting, so the value will be “001,” “002,” etc.:

/1: CO2: Number Phot 0s. cpp

/1 Find the marker "XXX' and replace it with an
/1 increnmenting nunber whereever it appears. Used
/1 to help format a web page with photos in it
#include "../require. h"

#i ncl ude <fstreanr

#i ncl ude <sstreanp

#i ncl ude <i omani p>

#i ncl ude <string>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 2);
ifstreamin(argv[1]);
assure(in, argv[1]);
of stream out (argv[2]);
assure(out, argv[2]);
string |line;
int counter = 1;
whil e(getline(in, line)) {
int xxx = line.find("XXX");
i f(xxx I'= string::npos) {
ostringstreamcntr;
cntr << setfill('0') << setw(3) << counter++;
line.replace(xxx, 3, cntr.str());

}

out << line << endl;

}

Chapter 14: Templates & Container Classes
17

|}///:~

Breaking up big files
This program was created to break up big filesinto smaller ones, in particular so they could
be more easily downloaded from an Internet server (since hangups sometimes occur, this
allows someone to download afile a piece at atime and then re-assembleit at the client end).
You'll note that the program also creates a reassembly batch file for DOS (whereitis
messier), whereas under Linux/Unix you simply say something like “cat *piece* >
destination.file".

This program reads the entire file into memory, which of course relies on having a 32-bit
operating system with virtual memory for big files. It then piecesit out in chunksto the
smaller files, generating the names as it goes. Of course, you can come up with a possibly
more reasonabl e strategy that reads a chunk, creates afile, reads another chunk, etc.

Note that this program can be run on the server, so you only have to download the big file
once and then break it up onceit’s on the server.

/1: CO02: Breakup. cpp

/!l Breaks a file up into smaller files for
/1 easier downl oads

#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <i omani p>

#i ncl ude <strstreanps

#i ncl ude <string>

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1l], io0s::binary);
assure(in, argv[1]);
in.seekg(0, ios::end); // End of file
long fileSize = in.tellg(); // Size of file
cout << "file size = " << fileSize << endl
in seekg(0, ios::beg); // Start of file
char* fbuf = new char[fileSize];
require(fbuf = 0);
in.read(fbuf, fileSize);
in.close();
string infile(argv[1]);

Chapter 14: Templates & Container Classes
118

int dot = infile.find('.");
whi l e(dot !'= string::npos)
infile.replace(dot, 1, "-");
dot = infile.find('.");
}
string bat chNange(
"DOSAssenbl e" + infile + ".bat");
of stream bat chFi | e(bat chNanme. c_str());
batchFile << "copy /b ";
int filecount = 0;
const int sbufsz = 128;
char sbuf[sbufsz];
const |ong pieceSize = 1000L * 100L
| ong byteCounter = 0;
whi | e(byt eCounter < fileSize) {
ostrstream nanme(sbuf, sbufsz);
nane << argv[1l] << "-part" << setfill('0")
<< setw(2) << filecount++ << ends;
cout << "creating " << shuf << endl
if(filecount > 1)
batchFile << "+";
bat chFi | e << sbuf;

of stream out (sbuf, ios::out | ios::binary);
assure(out, sbhuf);
| ong byteq;

i f(byteCounter + pieceSize < fileSize)
byteq = pi eceSi ze;
el se
byteq = fileSize - byteCounter
out.wite(fbuf + byteCounter, byteq);
cout << "wrote " << byteq << " bytes, ";
byt eCount er += byteq;
out.cl ose();

cout << "ByteCounter = " << byteCounter
<< ", fileSize = " << fileSize << endl
}
batchFile << " " << argv[1l] << endl
Y I~

Chapter 14: Templates & Container Classes
119

Summary

This chapter has given you afairly thorough introduction to the iostream class library. In all
likelihood, it isall you need to create programs using iostreams. (In later chaptersyou'll see
simple examples of adding iostream functionality to your own classes.) However, you should
be aware that there are some additional featuresin iostreams that are not used often, but which
you can discover by looking at the iostream header files and by reading your compiler's
documentation on iostreams.

Exercises

1.

Open afile by creating an ifstr eam object called in. Make an ostr stream
object called os, and read the entire contents into the ostr str eam using the
rdbuf() member function. Get the address of os's char* with the str ()
function, and capitalize every character in the file using the Standard C
toupper () macro. Write the result out to a new file, and delete the memory
allocated by os.

Create a program that opens afile (the first argument on the command line)
and searchesit for any one of a set of words (the remaining arguments on
the command line). Read the input aline at atime, and print out the lines
(with line numbers) that match.

Write a program that adds a copyright notice to the beginning of all source-
code files. Thisisasmall modification to exercise 1.

Use your favorite text-searching program (grep, for example) to output the
names (only) of al the files that contain a particular pattern. Redirect the
output into afile. Write a program that uses the contents of that file to
generate a batch file that invokes your editor on each of the files found by
the search program.

Chapter 14: Templates & Container Classes

120

3. Templatesin
depth

Nontype template arguments

Here is arandom number generator class that always produces a unique number and
overloads operator () to produce a familiar function-call syntax:

//: CO03:Urand. h

/1 Uni que random nunber generat or
#i f ndef URAND H

#defi ne URAND H

#i ncl ude <cstdlib>

#i ncl ude <cti me>

t enpl at e<i nt upper Bound>
class Urand {
i nt used[upper Bound] ;
bool recycle;
publi c:
Urand(bool recycle = fal se);
int operator()(); // The "generator" function

IR

t enpl at e<i nt upper Bound>
Ur and<upper Bound>: : Urand(bool recyc)
recycl e(recyc) {
nmenset (used, 0, upperBound * sizeof(int));
srand(time(0)); // Seed random number generat or

}

t enpl at e<i nt upper Bound>

121

i nt Urand<upper Bound>: : operator()() {
i f(!menchr(used, 0, upperBound)) {

i f(recycle)
nenset (used, O, si zeof (used) * sizeof(int));
el se
return -1; // No nore spaces |eft
}
int newal;
whi | e(used[newal = rand() % upperBound])

; /1 Until unique value is found
used[newal] ++; // Set flag
return newal ;

}
#endi f // URAND_H ///:~

The uniqueness of Urand is produced by keeping a map of all the numbers possible in the
random space (the upper bound is set with the template argument) and marking each one off
asit’'sused. The optional constructor argument allows you to reuse the numbers once they're
all used up. Notice that thisimplementation is optimized for speed by alocating the entire
map, regardless of how many numbers you’ re going to need. If you want to optimize for size,
you can change the underlying implementation so it allocates storage for the map dynamically
and puts the random numbers themselves in the map rather than flags. Notice that this change
in implementation will not affect any client code.

Default template arguments
The typename keyword

Consider the following:

/1: CO03: Typenanedl D. cpp
/1 Using 'typenane' to say it's a type,
/1 and not sonething other than a type

tenpl at e<cl ass T> class X {
/1 Wthout typename, you should get an error:
typenane T::id i;

publi c:

} void f() { i.90): }

Chapter 15: Multiple Inheritance
122

class Y {
public:
class id {
public:
void g() {}
b
b

int main() {
Yy,
X<Y> xy;
xy. f();

Yy I~

The template definition assumes that the class T that you hand it must have a nested identifier
of somekind called id. But id could be a member object of T, in which case you can perform
operations on id directly, but you couldn’t “create an object” of “the typeid.” However, that's
exactly what is happening here: the identifier id is being treated as if it were actually a nested
typeinside T. Inthecase of class Y, id isin fact a nested type, but (without the typename
keyword) the compiler can't know that when it’s compiling X.

If, when it sees an identifier in atemplate, the compiler has the option of treating that
identifier as atype or as something other than atype, then it will assume that the identifier
refers to something other than atype. That is, it will assume that the identifier refersto an
object (including variables of primitive types), an enumeration or something similar.
However, it will not — cannot — just assume that it is a type. Thus, the compiler gets confused
when we pretend it's atype.

The typename keyword tells the compiler to interpret a particular name as atype. It must be
used for a name that:

1. Isaquadified name, one that is nested within another type.

2. Depends on atemplate argument. That is, atemplate argument is somehow involved in
the name. The template argument causes the ambiguity when the compiler makes the
simplest assumption: that the name refers to something other than atype.

Because the default behavior of the compiler isto assume that a name that fits the above two
pointsis not atype, you must use typename even in places where you think that the compiler
ought to be able to figure out the right way to interpret the name on its own. In the above
example, when the compiler sees T::id, it knows (because of the typename keyword) that id
refers to a nested type and thus it can create an object of that type.

The short version of theruleis: if your type is a qualified name that involves a template
argument, you must use typename.

Chapter 15: Multiple Inheritance
123

Typedefing atypename
The typename keyword does not autometically create atypedef. A line which reads:
| typenane Seq::iterator It;

causes a variable to be declared of type Seq::iterator. If you mean to make atypedef, you
must say:

| typedef typenane Seq::iterator It;

Using typename instead of class

With the introduction of the typename keyword, you now have the option of using typename
instead of classin the template argument list of atemplate definition. This may produce code
which isclearer:

/1: CO03: Usi ngTypenane. cpp
/1 Using 'typenane' in the tenplate argunment |ist

tenpl at e<t ypenane T> class X { };

int main() {
X<int> x;
Y I~

You'll probably see agreat deal of code which does not use typename in this fashion, since
the keyword was added to the language a relatively long time after templates were introduced.

Function templates

A class template describes an infinite set of classes, and the most common place you'll see
templatesis with classes. However, C++ also supports the concept of an infinite set of
functions, which is sometimes useful. The syntax is virtually identical, except that you create
afunction instead of aclass.

The clue that you should create afunction template is, as you might suspect, if you find
you're creating a number of functions that look identical except that they are dealing with
different types. The classic example of a function template is a sorting function.11 However, a
function template is useful in all sorts of places, as demonstrated in the first example that
follows. The second example shows a function template used with containers and iterators.

11 see C++ Inside & Out (Osborne/McGraw-Hill, 1993) by the author, Chapter 10.

Chapter 15: Multiple Inheritance
124

A string conversion system

//: CO03:stringConv.h

/1 Chuck Allison's string converter
#i f ndef STRI NGCONV_H

#defi ne STRI NGCONV_H

#i ncl ude <string>

#i ncl ude <sstreanp

t enpl at e<t ypename T>
T fronBtring(const std::string& s) {
std::istringstreamis(s);
Tt,;
is > t;
return t;

}

t enpl at e<t ypename T>

std::string toString(const T& t) {
std::ostringstreams
s << t;
return s.str();

}
#endif // STRINGCONV_H ///:~

Here's atest program, that includes the use of the Standard Library complex number type:

/1: CO03:stringConvTest.cpp
#i ncl ude "stringConv. h"

#i ncl ude <i ostreanp

#i ncl ude <compl ex>

usi ng namespace std;

int main() {

int i = 1234;

cout << "i == \"" << toString(i) << "\"\n";
float x = 567. 89;

cout << "x == \"" << toString(x) << "\"\n";
conpl ex<float> c(1.0, 2.0);

cout << "¢ == \"" << toString(c) << "\"\n";

cout << endl

Chapter 15: Multiple Inheritance
125

i = fronBtring<int>(string("1234"));
cout << "i == " << i << endl
x = fronBtring<float>(string("567.89"));
cout << "x == " << x << endl
c = fronBString< conmpl ex<float> >(string("(1.0,2.0)"));
cout << "¢ == " << ¢ << endl

Y I~

The output is what you'd expect:

i == "1234"

X == "567.89"

c =="(1,2)"

i == 1234

x == 567.89

c == (1, 2)

A memory allocation system

There are afew things you can do to make the raw memory allocation routines malloc(),
calloc() and realloc() safer. The following function template produces one function
getmem() that either allocates a new piece of memory or resizes an existing piece (like
realloc()). In addition, it zeroes only the new memory, and it checks to see that the memory
is successfully alocated. Also, you only tell it the number of elements of the type you want,
not the number of bytes, so the possibility of a programmer error is reduced. Here' s the
header file:

/1: C03: Cetmem h

/1 Function tenplate for nenory
#i f ndef GETMEM H

#defi ne GETMEM H

#include "../require. h"

#i ncl ude <cstdlib>

#i ncl ude <cstring>

t enpl at e<cl ass T>
void getnmem(T*& ol dnem int elenms) {
typedef int cntr; // Type of el enent counter
const int csz = sizeof(cntr); // And size
const int tsz = sizeof(T);
if(elems == 0)
free(& ((cntr*)oldmem[-1]));

Chapter 15: Multiple Inheritance
126

return;
}
T p = ol dnmem
cntr ol dcount = O;
if(p) { // Previously allocated nenory
/1 Ad style:
/1 ((cntr*)p)--; // Back up by one cntr
/1 New styl e:
cntr* tnp = reinterpret_cast<cntr*>(p);
p = reinterpret_cast<T*>(--tnp);
ol dcount = *(cntr*)p; // Previous # el ens
}
T* m= (T*)realloc(p, elens * tsz + csz);
require(m!= 0);
((centr)n) = elens; // Keep track of count
const cntr increment = elens - ol dcount;
if(increment > 0) {
/1 Starting address of data:
long startadr = (long) & nfoldcount]);
startadr += csz;
/1l Zero the additional new nenory:
nenset ((void*)startadr, 0, increment * tsz);
}
/1 Return the address beyond the count:
oldmem = (T*)& ((cntr*)m[1]);
}

t enpl at e<cl ass T>
inline void freemem{(T * m) { getmen(m 0); }

#endif // CGETMEMH ///]:~

To be able to zero only the new memory, a counter indicating the number of elements
allocated is attached to the beginning of each block of memory. The typedef cntr isthetype
of this counter; it allows you to change fromint to long if you need to handle larger chunks
(other issues come up when using long, however — these are seen in compiler warnings).

A pointer reference is used for the argument oldmem because the outside variable (a pointer)
must be changed to point to the new block of memory. oldmem must point to zero (to allocate
new memory) or to an existing block of memory that was created with getmem(). This
function assumes you' re using it properly, but for debugging you could add an additional tag
next to the counter containing an identifier, and check that identifier in getmem() to help
discover incorrect calls.

Chapter 15: Multiple Inheritance
127

If the number of elements requested is zero, the storage is freed. There's an additional
function template freemem() that aliases this behavior.

You'll notice that getmem() is very low-level —there are lots of casts and byte
manipulations. For example, the oldmem pointer doesn’t point to the true beginning of the
memory block, but just past the beginning to allow for the counter. So to free() the memory
block, getmem(') must back up the pointer by the amount of space occupied by cntr. Because
oldmemisaT*, it must first be cast to acntr*, then indexed backwards one place. Finally
the address of that location is produced for free() in the expression:

| free(& ((cntr*)oldmem[-1]));

Similarly, if thisis previously allocated memory, getmem() must back up by one cntr sizeto
get the true starting address of the memory, and then extract the previous number of elements.
The true starting addressis required inside realloc(). If the storage size is being increased,
then the difference between the new number of elements and the old number is used to
calculate the starting address and the amount of memory to zero in memset(). Finally, the
address beyond the count is produced to assign to oldmem in the statement:

ol dmem = (T*)&(((cntr*)m[1]);

Again, because oldmem is areference to a pointer, this has the effect of changing the outside
argument passed to getmem().

Here's aprogram to test getmem(). It alocates storage and fillsit up with values, then
increases that amount of storage:

/1: CO3: Get mem cpp

/1 Test nmenmory function tenplate
#i ncl ude " Get nem h"

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {

int* p =0;

getmem(p, 10);

for(int i =0; i < 10; i++) {
cout << p[i] <<' :
pli] =1i;

}

cout << '\n';

get mem(p, 20);

for(int j =0; j < 20; j++) {
cout << p[j] << :
plil =1i;

}

cout << '\n';

Chapter 15: Multiple Inheritance
128

getmem(p, 25);

for(int k = 0; k < 25; k++)
cout << p[k] << "' *;

freemenm(p);

cout << '\n';

float* f = 0;

getmenm(f, 3);

for(int u=0; u<3; u++) {
cout << flu] << ' ';
flul = u + 3.14159;

}
cout << '\n';
getmen(f, 6);

for(int v = 0; v < 6; v++)
cout << f[v] << ' ';
freemen(f);
Y I~

After each getmem(), the valuesin memory are printed out to show that the new ones have
been zeroed.

Notice that a different version of getmem() isinstantiated for the int and float pointers. You
might think that because all the manipulations are so low-level you could get away with a
single non-template function and pass avoid* & asoldmem. This doesn’t work because then
the compiler must do a conversion from your type to avoid*. To take the reference, it makes
atemporary. This produces an error because then you' re modifying the temporary pointer, not
the pointer you want to change. So the function template is necessary to produce the exact
type for the argument.

Type induction in function
templates

Asasimple but very useful example, consider the following:

[l: :arraySize.h

/1 Uses tenplate type induction to
/1 discover the size of an array
#i f ndef ARRAYSI ZE_H

#defi ne ARRAYSI ZE_H

tenpl at e<t ypenanme T, int size>

Chapter 15: Multiple Inheritance
129

int asz(T (& [size]) { return size; }

#endif // ARRAYSIZE H ///:~

This actually figures out the size of an array as a compile-time constant value, without using

any sizeof() operations! Thus you can have a much more succinct way to calculate the size of

an array at compile time:

[1: CO3:ArraySi ze. cpp

/1 The return value of the tenplate function
/1 asz() is a conpile-tine constant

#include "../arraySi ze. h"

int main() {
int a[12], b[20];
const int szl = asz(a);
const int sz2 = asz(b);
int c[szl], d[sz2];

Y I~

Of course, just making a variable of a built-in type a const does not guarantee it’s actually a
compile-time constant, but if it's used to define the size of an array (asit isin the last line of
main()), then it must be a compile-time constant.

Taking the address of a
generated function template

There are anumber of situations where you need to take the address of a function. For
example, you may have afunction that takes an argument of a pointer to another function. Of
courseit’s possible that this other function might be generated from a template function so

you need some way to take that kind of address!2:

/1: CO03: Tenpl at eFuncti onAddr ess. cpp
/1 Taking the address of a function generated
/1 froma tenpl ate.

tenpl ate <typenanme T> void f(T*) {}

void h(void (*pf)(int*)) {}

12 | am indebted to Nathan Myers for this example.

Chapter 15: Multiple Inheritance
130

tenpl ate <class T>
void g(void (*pf)(T*)) {}

int main() {
/1 Full type exposition:

h(&f <i nt>);
/1 Type induction:
h(&f);

/1 Full type exposition:
g<i nt >(&f <i nt>);
/1 Type inductions:
g(&f <i nt>);
g<i nt>(&f);

Y I~

This example demonstrates a number of different issues. First, even though you're using
templates, the signatures must match — the function h(') takes a pointer to a function that takes
anint* and returns void, and that’s what the template f produces. Second, the function that
wants the function pointer as an argument can itself be atemplate, asin the case of the
template g.

In main() you can see that type induction works here, too. The first call to h() explicitly
gives the template argument for f, but since h() saysthat it will only take the address of a
function that takes an int*, that part can be induced by the compiler. With g() the situation is
even more interesting because there are two templates involved. The compiler cannot induce
the type with nothing to go on, but if either f or g is given int, then the rest can be induced.

Local classes in templates

Applying afunctionto an STL
sequence

Suppose you want to take an STL sequence container (which you'll learn more about in
subsequent chapters; for now we can just use the familiar vector) and apply afunction to all
the objectsit contains. Because avector can contain any type of object, you need a function
that works with any type of vector and any type of object it contains:

/1: CO3:appl ySequence. h
/1 Apply a function to an STL sequence cont ai ner

Chapter 15: Multiple Inheritance
131

/1 0 argunents, any type of return val ue:
tenpl at e<cl ass Seq, class T, class R>
void apply(Seq& sq, R (T::*f)()) {
typenane Seq::iterator it = sq.begin();
while(it '= sq.end()) {
((*it)->*F)();
1t ++;
}
}

/1 1 argunent, any type of return val ue:
tenpl ate<cl ass Seq, class T, class R class A>
void apply(Seq& sq, R(T::*f)(A), A a) {
typenane Seq::iterator it = sq.begin();
while(it '= sq.end()) {
((xit)->*f)(a);
1t ++;
}
}

/1 2 argunents, any type of return val ue:
tenpl at e<cl ass Seq, class T, class R
class Al, class A2>
void apply(Seq& sq, R(T::*f)(Al, A2),
Al al, A2 a2) {
typenane Seq::iterator it = sq.begin();
while(it '=sq.end()) {
((*it)->*f)(al, a2);
it++;
}
}

/1l Etc., to handle maximum|likely argunents ///:~

The apply() function template takes a reference to the container class and a pointer-to-
member for a member function of the objects contained in the class. It uses an iterator to
move through the Stack and apply the function to every object. If you've (understandably)
forgotten the pointer-to-member syntax, you can refresh your memory at the end of Chapter
XX.

Notice that there are no STL header files (or any header files, for that matter) included in
applySequence.h, so it is actually not limited to use with an STL sequence. However, it does
make assumptions (primarily, the name and behavior of theiterator) that apply to STL
sequences.

Chapter 15: Multiple Inheritance
132

Y ou can see there is more than one version of apply(), so it’s possible to overload function
templates. Although they all take any type of return value (which isignored, but the type
information is required to match the pointer-to-member), each version takes a different
number of arguments, and because it’s a template, those arguments can be of any type. The
only limitation here is that there’ s no “super template” to create templates for you; thus you
must decide how many arguments will ever be required.

To test the various overloaded versions of apply(), the class Gromit13 is created containing
functions with different numbers of arguments:

/l: CO03:Gomt.h

/1 The techno-dog. Has menber functions
/1 with various nunbers of argunents.
#i ncl ude <i ostreanp

class Gomt {
int arf;
public:
Gomt(int arf = 1) : arf(arf + 1) {}
voi d speak(int) {
for(int i =0; i < arf; i++)
std::cout << "arfl ";
std::cout << std::endl;
}

char eat (float) {
std::cout << "chomp!" << std::endl;

return 'z';

}

i nt sleep(char, double) {
std::cout << "zzz..." << std::endl;
return O;

}

void sit(void) {}

Y, M1~

Now the apply() template functions can be combined with avector <Gromit*> to make a
container that will call member functions of the contained objects, like this:

/1: CO3:applyGomt.cpp

/1 Test appl ySequence. h
#include "Gomt.h"

#i ncl ude "appl ySequence. h"

13 A reference to the British animated short The Wrong Trousers by Nick Park.

Chapter 15: Multiple Inheritance
133

#i ncl ude <vector>
#i ncl ude <i ostreanr
usi ng namespace std;

int main() {
vector<G omt*> dogs;
for(int i =0; i <5; i++)
dogs. push_back(new Gromt(i));
appl y(dogs, &G omit::speak, 1);
appl y(dogs, &G onmit::eat, 2.0f);
appl y(dogs, &Gonit::sleep, 'z', 3.0);
appl y(dogs, &Gonmit::sit);
Y I~

Although the definition of apply() is somewhat complex and not something you' d ever
expect a novice to understand, its use is remarkably clean and simple, and a novice could
easily use it knowing only what it isintended to accomplish, not how. Thisis the type of
division you should strive for in all of your program components: The tough details are all
isolated on the designer’ s side of the wall, and users are concerned only with accomplishing

their goals, and don't see, know about, or depend on details of the underlying implementation

"emplate-templates

//: CO3: Tenpl at eTenpl at e. cpp
#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng nanmespace std;

/1 As long as things are sinple,

/1 this approach works fine:

t enpl at e<t ypename C

void print1(C& c) {
typenane C :iterator it;
for(it = c.begin(); it !'=—c.end(); it++)

cout << *jit << " ",

cout << endl;

}

/1 Tenpl ate-tenpl ate argunment mnust
/1 be a class; cannot use typenane:
t enpl at e<typenanme T, tenpl ate<typenane> class C

Chapter 15: Multiple Inheritance
134

void print2(C<T>& c¢) {
copy(c. begin(), c.end(),
ostream.iterator<T>(cout, " "));
cout << endl

}

int main() {
vector<string> v(5, "Yow");
printl(v);
print2(v);

Y I~

Member function templates

It's also possible to make apply() a member function template of the class. That is, a separate
template definition from the class’ template, and yet a member of the class. This may produce
a cleaner syntax:

dogs. appl y(& G onit::sit);
Thisis analogous to the act (in Chapter X X) of bringing ordinary functions inside a class.14

The definition of the apply() functions turn out to be cleaner, as well, because they are
members of the container. To accomplish this, a new container isinherited from one of the
existing STL sequence containers and the member function templates are added to the new
type. However, for maximum flexibility we'd like to be able to use any of the STL sequence
containers, and for thisto work a template-template must be used, to tell the compiler that a
template argument is actually atemplate, itself, and can thus take a type argument and be
instantiated. Hereiswhat it looks like after bringing the apply() functions into the new type
as member functions:

/1: CO03: appl yMenber. h
/1 appl ySequence. h nodified to use
/1 menber function tenplates

tenpl at e<cl ass T, tenpl ate<typename> cl ass Seq>
cl ass SequenceWthApply : public Seq<T*> {
public:

/1 0 argunments, any type of return val ue:

14 Check your compiler version information to seeif it supports member function templates.

Chapter 15: Multiple Inheritance
135

t enpl at e<cl ass R>
void apply(R (T::*f)()) {
iterator it = begin();
while(it !'=end()) {
((*it)->*)();
1t ++;
}
}

/1 1 argunment, any type of return val ue:
tenpl ate<cl ass R, class A>
void appl y(R(T::*f) (A, Aa) {
iterator it = begin();
while(it !'= end()) {
((xit)->*f)(a);
1t ++;
}
}

/1 2 argunents, any type of return val ue:
tenpl ate<class R, class Al, class A2>
void appl y(R(T::*f) (AL, A2),
Al al, A2 a2) {
iterator it = begin();
while(it !'= end()) {
((*it)->*f)(al, a2);
it++;

}
}
Y, M1~

Because they are members, the apply() functions don’t need as many arguments, and the
iterator class doesn’t need to be qualified. Also, begin() and end() are now member
functions of the new type and so look cleaner as well. However, the basic code is still the
same.

Y ou can see how the function calls are also simpler for the client programmer:

/1: CO3:applyGonit2. cpp
/1 Test applyMenber. h
#include "Gomt.h"

#i ncl ude "appl yMenber. h"
#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng namespace std;

int main() {

Chapter 15: Multiple Inheritance
136

SequenceWt hAppl y<Gromt, vector> dogs;
for(int i =0; i <5; i++)
dogs. push_back(new Gromt(i));
dogs. appl y(& G oni t:: speak, 1);
dogs. appl y(& G onit::eat, 2.0f);
dogs. appl y(& G onit::sleep, 'z', 3.0);
dogs. appl y(& G onit::sit);
Y I~

Conceptually, it reads more sensibly to say that you're calling apply() for the dogs container.

Why virtual member template functions
are disallowed

Nested template classes
Template specializations

Full specialization

Partial Specialization

A practical example

There's nothing to prevent you from using a class template in any way you'd use an ordinary
class. For example, you can easily inherit from a template, and you can create a new template
that instantiates and inherits from an existing template. If the vector class does everything you
want, but you'd also like it to sort itself, you can easily reuse the code and add valueto it:

//: C03: Sorted.h

/1 Tenpl ate specialization
#i f ndef SORTED H

#def i ne SORTED H

#i ncl ude <vector>

t enpl at e<cl ass T>
class Sorted : public std::vector<T> {
public:

Chapter 15: Multiple Inheritance
137

void sort();

};

t enpl at e<cl ass T>
void Sorted<T>::sort() { // A bubble sort
for(int i =size(); i >0; i--)
for(int j =1; j <i; j++)
if(at(j-1) > at(j)) {
/1 Swap the two el enents:
Tt = at(j-1);
at(j-1) = at(j);
at(j) =t;

}

/1 Partial specialization for pointers:

t enpl at e<cl ass T>

class Sorted<T*> : public std::vector<T*> {
public:

void sort();

};

t enpl at e<cl ass T>
void Sorted<T*>::sort() {
for(int i =size(); i >0; i--)
for(int j =1; j <i; j++)
if(*at(j-1) > *at(j)) {
/1 Swap the two el enents:
™ t = at(j-1);
at(j-1) = at(j);
at(j) =t;

}

/1 Full specialization for char*:

t enpl at e<>

voi d Sorted<char*>::sort() {

for(int i =size(); i >0; i--)
for(int j =1; j <i; j++)
if(strenmp(at(j-1), at(j)) > 0) {

/1 Swap the two el enents:
char* t = at(j-1);
at(j-1) = at(j);

Chapter 15: Multiple Inheritance
138

at(j) =t;
}

}
#endi f // SORTED_H ///:~

The Sorted template imposes arestriction on all classesit isinstantiated for: They must
contain a> operator. In SString thisis added explicitly, but in Integer the automatic type
conversion oper ator int provides a path to the built-in > operator. When a template provides
more functionality for you, the trade-off is usually that it puts more requirements on your
class. Sometimes you' Il have to inherit the contained class to add the required functionality.
Notice the value of using an overloaded operator here —the I nteger class can rely oniits
underlying implementation to provide the functionality.

The default Sorted template only works with objects (including objects of built-in types).
However, it won't sort pointers to objects so the partial specialization is necessary. Even then,
the code generated by the partial specialization won't sort an array of char*. To solve this, the
full specialization compares the char* elements using strcmp() to produce the proper
behavior.

Here'satest for Sorted.h that uses the unique random number generator introduced earlier in
the chapter:

//: CO3:Sorted. cpp

/1 Testing tenplate specialization
#i ncl ude "Sorted. h"

#i ncl ude "Urand. h"

#include "../arraySi ze. h"

#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng nanmespace std;

char* words[] = {

"is", "running", "big", "dog", "a"
}s
char* words2[] = {

"this", "that", "theother",
}s
int main() {

Sorted<int> is;

Ur and<47> rand;

for(int i =0; i < 15; i++4)

i s. push_back(rand());
for(int I =0; I <is.size(); |++)

cout << isf[l] << :

Chapter 15: Multiple Inheritance
139

cout << endl

is.sort();

for(int 1 =0; | <is.size(); |++)
cout << is[l] << " "

cout << endl

/1l Uses the tenplate partial specialization:
Sorted<string*> ss;

for(int i =0; i < asz(words); i++)
ss. push_back(new string(words[i]));
for(int i =0; i < ss.size(); i++)

cout << *ss[i] << :

cout << endl

ss.sort();

for(int i = 0; i < ss.size(); i++)
cout << *ssf[i] << ' '

cout << endl

/1 Uses the full char* specialization:
Sort ed<char *> scp;

for(int i =0; i < asz(words2); i++)
scp. push_back(words2[i]);
for(int i = 0; i < scp.size(); i++)

cout << scpl[i] << :

cout << endl

scp.sort();

for(int i = 0; i < scp.size(); i++)
cout << scpl[i] << "' ';

cout << endl

Y 11~

Each of the template instantiations uses a different version of the template. Sorted<int> uses
the “ordinary,” non-specialized template. Sorted<string* > uses the partial specialization for
pointers. Lastly, Sorted<char*> uses the full specialization for char*. Note that without this
full specialization, you could be fooled into thinking that things were working correctly
because the wor ds array would still sort out to “abig dog isrunning” since the partial
specialization would end up comparing the first character of each array. However, wor ds2
would not sort out correctly, and for the desired behavior the full specialization is necessary.

Chapter 15: Multiple Inheritance
140

Pointer specialization
Partial ordering of function templates

Design & efficiency
In Sorted, every time you call add() the element isinserted and the array is resorted. Here,
the horribly inefficient and greatly deprecated (but easy to understand and code) bubble sort is

used. Thisis perfectly appropriate, because it’s part of the private implementation. During
program devel opment, your priorities are to

1. Get the classinterfaces correct.
2. Create an accurate implementation as rapidly as possible so you can:
3. Proveyour design.

Very often, you will discover problems with the class interface only when you assembl e your
initial “rough draft” of the working system. Y ou may also discover the need for “helper”
classes like containers and iterators during system assembly and during your first-pass
implementation. Sometimesiit’s very difficult to discover these kinds of issues during analysis
—your goal in analysis should be to get a big-picture design that can be rapidly implemented
and tested. Only after the design has been proven should you spend the time to flesh it out
completely and worry about performance issues. If the design fails, or if performance is not a
problem, the bubble sort is good enough, and you haven't wasted any time. (Of course, the
ideal solution isto use someone else's sorted container; the Standard C++ template library is
the first place to look.)

Preventing template bloat

Each time you instantiate a template, the code in the template is generated anew (except for
inline functions). If some of the functionality of atemplate does not depend on type, it can be
put in a common base class to prevent needless reproduction of that code. For example, in
Chapter XX in InheritStack.cpp inheritance was used to specify the types that a Stack could
accept and produce. Here' s the templatized version of that code:

//: CO3: Nobloat.h

/1 Tenplatized InheritStack. cpp
#i f ndef NOBLOAT_H

#defi ne NOBLOAT_H

#include "../ COA/ Stack4. h"

t enpl at e<cl ass T>
class NBStack : public Stack {
publi c:

Chapter 15: Multiple Inheritance
141

void push(T* str) {
St ack: : push(str);

}
T* peek() const {

return (T*) Stack: : peek();
}

T pop() {
return (T*)Stack:: pop();

}
~NBSt ack() ;
b

/1 Defaults to heap objects & ownershi p:
t enpl at e<cl ass T>
NBSt ack<T>:: ~NBSt ack() {
T top = pop();
whi l e(top) {
del ete top;
} top = pop();

}
#endi f // NOBLOAT_H ///:~

As before, the inline functions generate no code and are thus “free.” The functionality is
provided by creating the base-class code only once. However, the ownership problem has
been solved here by adding a destructor (which is type-dependent, and thus must be created
by the template). Here, it defaults to ownership. Notice that when the base-class destructor is
called, the stack will be empty so no duplicate releases will occur.

/1: CO3: Nobl oat Test . cpp
#i ncl ude " Nobl oat. h"
#include "../require. h"
#i ncl ude <fstreanp

#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng namespace std;

int main(int argc, char* argv[]) {
requireArgs(argc, 1); // File nane is argunent
ifstreamin(argv[1]);
assure(in, argv[1]);
NBSt ack<stri ng> textlines;
string |line;
/! Read file and store lines in the stack:

Chapter 15: Multiple Inheritance
142

whil e(getline(in, line))
textlines. push(new string(line));

/1 Pop the Iines fromthe stack and print them

string* s;

while((s = (string*)textlines.pop()) !'=0) {
cout << *s << endl
del ete s;

}
Y 11~

Explicit instantiation
At timesit isuseful to explicitly instantiate atemplate; that is, to tell the compiler to lay down

the code for a specific version of that template even though you' re not creating an object at
that point. To do this, you reuse the template keyword as follows:

tenpl at e cl ass Bobbi n<t hr ead>;

tenmpl ate void sort<char>(char*[]);

Here'saversion of the Sorted.cpp example that explicitly instantiates a template before using
it:
/1: CO3:Explicitlnstantiation.cpp
#i ncl ude "Urand. h"

#i ncl ude "Sorted. h"

#i ncl ude <i ostreanp

usi ng namespace std;

/1 Explicit instantiation:
tenpl ate class Sorted<int>;

int main() {
Sorted<int> is;
Ur and<47> randl
for(int k = 0; k < 15; k++)
i s.push_back(randl());

is.sort();
for(int 1 =0; | <is.size(); |++)
cout << is[l] << endl
Y I~

In this example, the explicit instantiation doesn’t really accomplish anything; the program
would work the same without it. Explicit instantiation is only for special cases where extra
control is needed.

Chapter 15: Multiple Inheritance
143

Explicit specification of template
functions

Normally templates are not instantiated until they are needed. For function templates this just
means the point at which you call the function, but for class templates it’s more granular than
that: each individual member function of the templateis not instantiated until the first point of
use. This means that only the member functions you actually use will be instantiated, whichis

quite important since it allows greater freedom in what the template can be used with. For
example:

//: CO3: Del ayedl nstanti ation. cpp
/1 Menmber functions of class tenplates are not
/1 instantiated until they're needed.

class X {
public:

void f() {}
i

class Y {
public:
vord a0)

tenpl ate <typename T> class Z {
Tt,;

int main() {
Z<X> zX;
zx.a(); // Doesn't create Z<X>::b()
Z<Y> zy;
zy.b(); // Doesn't create Z<Y>::a()

Chapter 15: Multiple Inheritance
144

|}///:~

Here, even though the template purports to use both f() and g() member functions of T, the
fact that the program compiles shows you that it only generates Z<X>::a() whenitis
explicitly called for zx (if Z<X>::b() were also generated at the same time, a compile-time
error message would be generated). Similarly, the call to zy.b() doesn’t generate Z<Y>::a().
Asaresult, the Z template can be used with X and Y, whereasiif all the member functions
were generated when the class was first created it would significantly limit the use of many
templates.

The inclusion vs. separation models
The export keyword

Template programming idioms
The “curioudly-recurring template”
Traits

Summary

One of the greatest weaknesses of C++ templates will be shown to you when you try to write
code that uses templates, especialy STL code (introduced in the next two chapters), and start
getting compile-time error messages. When you're not used to it, the quantity of inscrutable
text that will be spewed at you by the compiler will be quite overwhelming. After awhile
you' Il adapt (although it always feels a bit barbaric), and if it's any consolation, C++
compilers have actually gotten alot better about this— previously they would only give the
line where you tried to instantiate the template, and most of them now go to the line in the
template definition that caused the problem.

The issueisthat a template implies an interface. That is, even though the template keyword
says “I'll take any type,” the code in atemplate definition actually requires that certain
operators and member functions be supported — that’ s the interface. So in reality, atemplate
definition is saying “1'll take any type that supports thisinterface.” Things would be much
nicer if the compiler could simply say “hey, this type that you' re trying to instantiate the
template with doesn’t support that interface — can't do it.” The Java language has a feature
called interface that would be a perfect match for this (Java, however, has no parameterized
type mechanism), but it will be many years, if ever, before you will see such athingin C++

Chapter 15: Multiple Inheritance
145

(at this writing the C++ Standard has only just been accepted and it will be awhile before all
the compilers even achieve compliance). Compilers can only get so good at reporting
template instantiation errors, so you'll have to grit your teeth, go to the first line reported as an
error and figure it out.

Chapter 15: Multiple Inheritance
146

4: STL Contaners
& lterators

Container classes are the solution to a specific kind of code
reuse problem. They are building blocks used to create
object-oriented programs — they make the internals of a
program much easier to construct.

A container class describes an object that holds other objects. Container classes are so
important that they were considered fundamental to early object-oriented languages. In
Smalltalk, for example, programmers think of the language as the program trandator together
with the classlibrary, and a critical part of that library is the container classes. So it became
natural that C++ compiler vendors a so include a container class library. You'll note that the
vector was so useful that it was introduced in its simplest form very early in this book.

Like many other early C++ libraries, early container class libraries followed Smalltalk’s
object-based hierarchy, which worked well for Smalltalk, but turned out to be awkward and
difficult to use in C++. Another approach was required.

This chapter attempts to slowly work you into the concepts of the C++ Standard Template
Library (STL), which is a powerful library of containers (as well as algorithms, but these are
covered in the following chapter). In the past, | have taught that thereis arelatively small
subset of elements and ideas that you need to understand in order to get much of the
usefulness from the STL. Although this can be true it turns out that understanding the STL
more deeply isimportant to gain the full power of the library. This chapter and the next probe
into the STL containers and a gorithms.

Containers and iterators

If you don’t know how many objects you' re going to need to solve a particular problem, or
how long they will last, you also don’t know how to store those objects. How can you know
how much space to create? Y ou can't, since that information isn’t known until run time.

The solution to most problemsin object-oriented design seems flippant: you create another
type of object. For the storage problem, the new type of object holds other objects, or pointers

147

to objects. Of course, you can do the same thing with an array, but there’s more. This new
type of object, which istypically referred to in C++ as a container (also called acollection in
some languages), will expand itself whenever necessary to accommodate everything you
place insideit. So you don’t need to know how many objects you're going to hold in a
collection. You just create a collection object and let it take care of the details.

Fortunately, a good OOP language comes with a set of containers as part of the package. In
C++, it'sthe Standard Template Library (STL). In some libraries, a generic container is
considered good enough for al needs, and in others (C++ in particular) the library has
different types of containers for different needs: a vector for consistent accessto all elements,
and alinked list for consistent insertion at all elements, for example, so you can choose the
particular type that fits your needs. These may include sets, queues, hash tables, trees, stacks,
etc.

All containers have some way to put things in and get things out. The way that you place
something into a container is fairly obvious. There’'s afunction called “push” or “add” or a
similar name. Fetching things out of a container is not always as apparent; if it's an array-like
entity such as a vector, you might be able to use an indexing operator or function. But in
many situations this doesn’t make sense. Also, a single-selection function is restrictive. What
if you want to manipulate or compare a group of elements in the container?

The solution is an iterator, which is an object whose job is to select the elements within a
container and present them to the user of the iterator. Asaclass, it also provides alevel of
abstraction. This abstraction can be used to separate the details of the container from the code
that’s accessing that container. The container, via the iterator, is abstracted to be smply a
sequence. The iterator allows you to traverse that sequence without worrying about the
underlying structure —that is, whether it's a vector, alinked list, a stack or something else.
This gives you the flexihility to easily change the underlying data structure without disturbing
the code in your program.

From the design standpoint, al you really want is a sequence that can be manipulated to solve
your problem. If asingle type of sequence satisfied all of your needs, there’ d be no reason to
have different kinds. There are two reasons that you need a choice of containers. First,
containers provide different types of interfaces and external behavior. A stack has a different
interface and behavior than that of a queue, which is different than that of a set or alist. One
of these might provide a more flexible solution to your problem than the other. Second,
different containers have different efficiencies for certain operations. The best exampleisa
vector and alist. Both are simple sequences that can have identical interfaces and external
behaviors. But certain operations can have radically different costs. Randomly accessing
elements in avector is a constant-time operation; it takes the same amount of time regardless
of the element you select. However, in alinked list it is expensive to move through the list to
randomly select an element, and it takes longer to find an element if it is further down the list.
On the other hand, if you want to insert an element in the middle of a sequence, it’s much
cheaper in alist than in a vector. These and other operations have different efficiencies
depending upon the underlying structure of the sequence. In the design phase, you might start
with alist and, when tuning for performance, change to a vector. Because of the abstraction
viaiterators, you can change from one to the other with minimal impact on your code.

Chapter 15: Multiple Inheritance
148

In the end, remember that a container is only a storage cabinet to put objectsin. If that cabinet
solves all of your needs, it doesn't really matter how it is implemented (a basic concept with
most types of objects). If you're working in a programming environment that has built-in
overhead due to other factors, then the cost difference between a vector and alinked list might
not matter. Y ou might need only one type of sequence. Y ou can even imagine the “perfect”
container abstraction, which can automatically change its underlying implementation
according to the way it is used.

STL reference documentation

Y ou will notice that this chapter does not contain exhaustive documentation describing each
of the member functionsin each STL container. Although | describe the member functions
that | use, I've left the full descriptionsto others: there are at least two very good on-line
sources of STL documentation in HTML format that you can keep resident on your computer
and view with a Web browser whenever you need to look something up. Thefirst isthe
Dinkumware library (which covers the entire Standard C and C++ library) mentioned at the
beginning of this book section (page XX X). The second is the freely-downloadable SGI STL
and documentation, freely downloadable at http://www.sgi.com/Technology/STL/. These
should provide complete references when you' re writing code. In addition, the STL books
listed in Appendix XX will provide you with other resources.

The Standard Template Library

The C++ STL15isapowerful library intended to satisfy the vast bulk of your needs for
containers and algorithms, but in a completely portable fashion. This means that not only are
your programs easier to port to other platforms, but that your knowledge itself does not
depend on the libraries provided by a particular compiler vendor (and the STL islikely to be
more tested and scrutinized than a particular vendor’ s library). Thus, it will benefit you
greatly to look first to the STL for containers and algorithms, before looking at vendor-
specific solutions.

A fundamental principle of software design is that all problems can be simplified by
introducing an extra level of indirection. Thissimplicity is achieved in the STL using
iterators to perform operations on a data structure while knowing as little as possibl e about
that structure, thus producing data structure independence. With the STL, this means that any
operation that can be performed on an array of objects can also be performed on an STL
container of objects and vice versa. The STL containers work just as easily with built-in types
as they do with user-defined types. If you learn the library, it will work on everything.

15 Contributed to the C++ Standard by Alexander Stepanov and Meng Lee at Hewlett-
Packard.

Chapter 15: Multiple Inheritance
149

The drawback to this independence is that you' |l have to take alittle time at first getting used
to the way things are done in the STL. However, the STL uses a consistent pattern, so once
you fit your mind around it, it doesn’t change from one STL tool to another.

Consider an example using the STL set class. A set will allow only one of each object value
to beinserted into itself. Hereis asimple set created to work with ints by providing int as the
template argument to set:

[1: CO4:Intset.cpp

/1 Sinple use of STL set
#i ncl ude <set>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
set<int> intset;
for(int i =0; i < 25; i++4)
for(int j =0; j < 10; j++4)
/1 Try to insert multiple copies:
intset.insert(j);
/1 Print to output:
copy(intset.begin(), intset.end(),
ostream.iterator<int>(cout, "\n"));
Y I~

Theinsert() member does all the work: it tries putting the new element in and rejectsit if it's
already there. Very often the activitiesinvolved in using a set are simply insertion and a test
to see whether it contains the element. Y ou can also form a union, intersection, or difference
of sets, and test to see if one set is a subset of another.

In this example, the values 0 - 9 are inserted into the set 25 times, and the results are printed
out to show that only one of each of the valuesis actually retained in the set.

The copy() function is actually the instantiation of an STL template function, of which there
are many. These template functions are generally referred to as “the STL Algorithms’ and
will be the subject of the following chapter. However, several of the algorithms are so useful
that they will be introduced in this chapter. Here, copy() showsthe use of iterators. The set
member functions begin() and end() produce iterators as their return values. These are used
by copy() as beginning and ending points for its operation, which is simply to move between
the boundaries established by the iterators and copy the elements to the third argument, which
isalso an iterator, but in this case, a special type created for iostreams. This placesint objects
on cout and separates them with a newline.

Because of its genericity, copy() is certainly not restricted to printing on a stream. It can be
used in virtually any situation: it needs only three iterators to talk to. All of the algorithms
follow the form of copy(') and simply manipulate iterators (the use of iteratorsis the “extra
level of indirection”).

Chapter 15: Multiple Inheritance
150

Now consider taking the form of Intset.cpp and reshaping it to display alist of the words
used in a document. The solution becomes remarkably simple.

/1: CO4:WbrdSet. cpp
#include "../require. h"
#i ncl ude <string>

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

#i ncl ude <set >

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
i fstream source(argv[1]);
assure(source, argv[1]);
string word;
set <stri ng> words;
whi | e(source >> word)
wor ds. i nsert (word);
copy(words. begi n(), words.end(),
ostream.iterator<string>(cout, "\n"));
cout << "Number of unique words:"
<< words. si ze() << endl
Y I~

The only substantive difference here isthat string is used instead of int. The words are pulled
from afile, but everything elseisthe same asin Intset.cpp. The operator>> returnsa
whitespace-separated group of characters each timeit is called, until there’s no more input
from the file. So it approximately breaks an input stream up into words. Each string is placed
inthe set using insert(), and the copy() function is used to display the results. Because of the
way set isimplemented (as atree), the words are automatically sorted.

Consider how much effort it would be to accomplish the sametask in C, or evenin C++
without the STL.

The basic concepts

The primary ideain the STL isthe container (also known as a collection), which is just what
it sounds like: a place to hold things. Y ou need containers because objects are constantly
marching in and out of your program and there must be someplace to put them while they're
around. Y ou can’'t make named local objects because in atypical program you don’t know
how many, or what type, or the lifetime of the objects you' re working with. So you need a
container that will expand whenever necessary to fill your needs.

Chapter 15: Multiple Inheritance
151

All the containersin the STL hold objects and expand themselves. In addition, they hold your
objectsin a particular way. The difference between one container and another is the way the
objects are held and how the sequence is created. Let’'s start by looking at the simplest
containers.

A vector isalinear sequence that allows rapid random access to its elements. However, it's
expensive to insert an element in the middle of the sequence, and is also expensive when it
allocates additional storage. A dequeisalso alinear sequence, and it allows random access
that’'s nearly asfast as vector, but it's significantly faster when it needs to allocate new
storage, and you can easily add new elements at either end (vector only allows the addition of
elements at itstail). A list the third type of basic linear sequence, but it's expensive to move
around randomly and cheap to insert an element in the middle. Thuslist, deque and vector
arevery similar in their basic functionality (they all hold linear sequences), but different in the
cost of their activities. So for your first shot at a program, you could choose any one, and only
experiment with the othersif you're tuning for efficiency.

Many of the problems you set out to solve will only require asimple linear sequence like a
vector, dequeor list. All three have a member function push_back() which you use to insert
anew element at the back of the sequence (deque and list also have push_front()).

But now how do you retrieve those el ements? With avector or deque, it is possible to use the
indexing operator|[], but that doesn’t work with list. Since it would be nicest to learn asingle
interface, we'll often use the one defined for all STL containers: the iterator.

An iterator is a class that abstracts the process of moving through a sequence. It allows you to
select each element of a sequence without knowing the underlying structure of that sequence.
Thisis apowerful feature, partly because it allows usto learn a single interface that works
with all containers, and partly because it allows containers to be used interchangeably.

One more observation and you’ re ready for another example. Even though the STL containers
hold objects by value (that is, they hold the whole object inside themselves) that’s probably
not the way you'll generally use them if you’ re doing object-oriented programming. That’s
because in OOP, most of the time you'll create objects on the heap with new and then upcast
the address to the base-class type, later manipulating it as a pointer to the base class. The
beauty of thisisthat you don’t worry about the specific type of object you' re dealing with,
which greatly reduces the complexity of your code and increases the maintainability of your
program. This process of upcasting iswhat you try to do in OOP with polymorphism, so
you'll usually be using containers of pointers.

Consider the classic “shape” example where shapes have a set of common operations, and you
have different types of shapes. Here'swhat it looks like using the STL vector to hold pointers
to various types of Shape created on the heap:

/1: CO4: Stl shape. cpp

/1 Sinple shapes w STL
#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng namespace std;

Chapter 15: Multiple Inheritance
152

cl ass Shape {

public:
virtual void draw() = 0;
virtual ~Shape() {};

}s

class Circle : public Shape {

public:
void draw() { cout << "Circle::drawhn"; }
~Circle() { cout << "~Circle\n"; }

}s

class Triangle : public Shape {

public:
void draw() { cout << "Triangle::dramn"; }
~Triangle() { cout << "~Triangle\n"; }

}s

class Square : public Shape {

public:
void draw() { cout << "Square::drawn"; }
~Square() { cout << "~Square\n"; }

}s

t ypedef std::vector<Shape*> Contai ner;
typedef Container::iterator lter;

int main() {
Cont ai ner shapes;
shapes. push_back(new Circl e);
shapes. push_back(new Square);
shapes. push_back(new Tri angl e);

for(lter i = shapes. begin();
i 1= shapes.end(); i++)
(*i)->draw();
/[l ... Sonetine |ater:
for(lter j = shapes. begin();
j != shapes.end(); j++)
delete *j;
Y I~

Chapter 15: Multiple Inheritance
153

The creation of Shape, Circle, Square and Triangle should be fairly familiar. Shapeisa
pure abstract base class (because of the pure specifier =0) that defines the interface for all
types of shapes. The derived classes redefine the virtual function draw() to perform the
appropriate operation. Now we'd like to create a bunch of different types of Shape object, but
where to put them? In an STL container, of course. For convenience, thistypedef:

| t ypedef std::vector<Shape*> Contai ner;
creates an alias for avector of Shape*, and this typedef:

typedef Container::iterator lter;

uses that alias to create another one, for vector <Shape*>::iterator. Notice that the container
type name must be used to produce the appropriate iterator, which is defined as a nested class.
Although there are different types of iterators (forward, bidirectional, reverse, etc., which will
be explained later) they all have the same basic interface: you can increment them with ++,
you can dereference them to produce the object they’re currently selecting, and you can test
them to see if they're at the end of the sequence. That's what you'll want to do 90% of the
time. And that’s what is done in the above example: after creating a container, it'sfilled with
different types of Shape*. Notice that the upcast happens as the Circle, Squar e or Rectangle
pointer is added to the shapes container, which doesn’t know about those specific types but
instead holds only Shape*. So as soon as the pointer is added to the container it losesits
specific identity and becomes an anonymous Shape*. Thisis exactly what we want: toss them
all in and let polymorphism sort it out.

Thefirst for loop creates an iterator and sets it to the beginning of the sequence by calling the
begin() member function for the container. All containers have begin() and end() member
functions that produce an iterator selecting, respectively, the beginning of the sequence and
one past the end of the sequence. To test to seeif you' re done, you make sure you're !=to the
iterator produced by end(). Not < or <=. The only test that worksis!=. Soit's very common
to write aloop like:

| for(lter i = shapes.begin(); i != shapes.end(); i++)
This says. “take me through every element in the sequence.”

What do you do with the iterator to produce the element it’s selecting? Y ou dereference it
using (what else) the ‘*’ (which is actually an overloaded operator). What you get back is
whatever the container is holding. This container holds Shape*, so that’swhat *i produces. If
you want to send a message to the Shape, you must select that message with ->, so you write
the line:

| (xi)->draw();

This calls the draw() function for the Shape* the iterator is currently selecting. The
parentheses are ugly but necessary to produce the proper order of evaluation. As an
alternative, operator-> is defined so that you can say:

| i ->draw();

Chapter 15: Multiple Inheritance
154

Asthey are destroyed or in other cases where the pointers are removed, the STL containers do
not call delete for the pointers they contain. If you create an object on the heap with new and
place its pointer in a container, the container can't tell if that pointer is also placed inside
another container. So the STL just doesn’'t do anything about it, and puts the responsibility
squarely in your lap. The last lines in the program move through and delete every object in the
container so proper cleanup occurs.

It's very interesting to note that you can change the type of container that this program uses
with two lines. Instead of including <vector >, you include <list>, and in the first typedef you

say:
typedef std::|ist<Shape*> Contai ner;

instead of using a vector. Everything else goes untouched. Thisis possible not because of an
interface enforced by inheritance (thereisn’t any inheritance in the STL, which comes as a
surprise when you first seeit), but because the interface is enforced by a convention adopted
by the designers of the STL, precisely so you could perform this kind of interchange. Now
you can easily switch between vector and list and see which one works fastest for your needs.

Containers of strings

In the prior example, at the end of main(), it was necessary to move through the whole list
and delete all the Shape pointers.

for(lter j = shapes. begin();
j 1= shapes.end(); j++)
delete *j;

This highlights what could be seen as aflaw in the STL: there’s no facility in any of the STL
containers to automatically delete the pointers they contain, so you must do it by hand. It'sas
if the assumption of the STL designers was that containers of pointersweren't an interesting
problem, although | assert that it is one of the more common things you'll want to do.

Automatically deleting a pointer turns out to be a rather aggressive thing to do because of the
multiple membership problem. If a container holds a pointer to an object, it's not unlikely that
pointer could also be in another container. A pointer to an Aluminum object in alist of Trash
pointers could also residein alist of Aluminum pointers. If that happens, which list is
responsible for cleaning up that object — that is, which list “owns’ the object?

This question is virtually eliminated if the object rather than a pointer residesin the list. Then
it seems clear that when the list is destroyed, the objects it contains must also be destroyed.
Here, the STL shines, as you can see when creating a container of string objects. The
following example stores each incoming line asastring in avector <string>:

/1: CO4:StringVector.cpp
/1 A vector of strings
#include "../require. h"

Chapter 15: Multiple Inheritance
155

#i
#i
#i
#i
#i
#i

ncl ude <string>
ncl ude <vector>
ncl ude <fstreanp
ncl ude <i ostreane
ncl ude <iterator>
ncl ude <sstreanp

usi ng namespace std;

int main(int argc, char* argv[]) {

}

*w = ss.str() +

requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
vector<string> strings;
string |line;
whil e(getline(in, line))
strings. push_back(line);
/1 Do sonething to the strings..
int i =1;
vector<string>: :iterator w,
for(w = strings. begin();
w = strings.end(); w+) {
ostringstream ss;
SS << | ++4;
*w = ss.str() +": " + *w
}
/1 Now send them out:
copy(strings. begin(), strings.end(),
ostream.iterator<string>(cout, "\n"));
/1 Since they aren't pointers, string
/1 objects clean themsel ves up!
11~

Once the vector <string> called stringsis created, each line in thefileisread into astring
and put in the vector:

whil e(getline(in, line))
strings. push_back(!line);

The operation that’s being performed on thisfile isto add line numbers. A stringstream
provides easy conversion from an int to astring of characters representing that int.

Assembling string objectsis quite easy, since operator + is overloaded. Sensibly enough, the
iterator w can be dereferenced to produce a string that can be used as both an rvalue and an
Ivalue:

+ *w

Chapter 15: Multiple Inheritance

156

The fact that you can assign back into the container viathe iterator may seem a bit surprising
at first, but it’s atribute to the careful design of the STL.

Because the vector <string> contains the obj ects themselves, a number of interesting things
take place. First, no cleanup is necessary. Even if you were to put addresses of the string
objects as pointersinto other containers, it's clear that stringsisthe “master list” and
maintains ownership of the objects.

Second, you are effectively using dynamic object creation, and yet you never use new or
delete! That's because, somehow, it's all taken care of for you by the vector (thisis non-
trivial. You can try to figure it out by looking at the header files for the STL —all the codeis
there — but it’s quite an exercise). Thus your coding is significantly cleaned up.

The limitation of holding objects instead of pointers inside containersis quite severe: you
can’t upcast from derived types, thus you can’'t use polymorphism. The problem with
upcasting objects by value is that they get sliced and converted until their type is completely
changed into the base type, and there's no remnant of the derived type left. It's pretty safe to
say that you never want to do this.

Inheriting from STL containers

The power of instantly creating a sequence of elementsis amazing, and it makes you realize
how much time you’ ve spent (or rather, wasted) in the past solving this particular problem.
For example, many utility programsinvolve reading afile into memory, modifying the file
and writing it back out to disk. One might as well take the functionality in StringVector .cpp
and package it into a class for later reuse.

Now the question is: do you create a member object of type vector, or do you inherit? A
general guidelineisto aways prefer composition (member objects) over inheritance, but with
the STL thisis often not true, because there are so many existing algorithms that work with
the STL types that you may want your new type to be an STL type. So thelist of strings
should also be avector, thusinheritance is desired.

//: CO4:FileEditor.h
// File editor too
#i f ndef FI LEEDI TOR H
#defi ne FI LEEDI TOR H
#i ncl ude <string>

#i ncl ude <vector >

#i ncl ude <i ostreanr

class Fil eEditor
public std::vector<std::string> {
publi c:

Fi | eEdi tor(char* fil enane);

Chapter 15: Multiple Inheritance
157

void wite(std::ostream& out = std::cout);

}1
#endif // FILEEDITOR H ///:~

Note the careful avoidance of aglobal using namespace std statement here, to prevent the
opening of the std namespace to every file that includes this header.

The constructor opens the file and reads it into the FileEditor, and write() puts the vector of
string onto any ostream. Noticein write() that you can have a default argument for a
reference.

Theimplementation is quite simple:

/1: CO4:FileEditor.cpp {G
#i nclude "Fil eEditor.h"
#include "../require. h"

#i ncl ude <fstreanp

usi ng namespace std;

FileEditor::FileEditor(char* filenanme) {
ifstreamin(filenane);
assure(in, filenane);
string |line;
whil e(getline(in, line))
push_back(li ne);
}

/1 Could al so use copy() here:
void FileEditor::wite(ostrean& out) ({
for(iterator w = begin(); w!= end(); wkt)
out << *w << endl
Y I~

The functions from StringVector .cpp are simply repackaged. Often thisisthe way classes
evolve — you start by creating a program to solve a particular application, then discover some
commonly-used functionality within the program that can be turned into a class.

The line numbering program can now be rewritten using FileEditor:

[1: CO4: FEditTest. cpp

/1{L} FileEditor

/1 Test the FileEditor tool
#include "FileEditor. h"
#include "../require. h"

#i ncl ude <sstreanp

usi ng nanmespace std;

Chapter 15: Multiple Inheritance
158

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
FileEditor file(argv[1]);
/1 Do sonething to the lines...
int i =1;
FileEditor::iterator w
while(w!= file.end()) {
ostringstream ss;
SS << | ++4;
*w = ss.str() + ": " + *w
WH+;

file.begin();

}

/1 Now send themto cout:
file.wite();
Y I~
Now the operation of reading the file isin the constructor:
| FileEditor file(argv[1]);

and writing happens in the single line (which defaults to sending the output to cout):

| file.wite();
The bulk of the program isinvolved with actually modifying the file in memory.

A plethoraof iterators

As mentioned earlier, the iterator isthe abstraction that allows a piece of code to be generic,
and to work with different types of containers without knowing the underlying structure of
those containers. Every container produces iterators. Y ou must always be able to say:

Cont ai ner Type: :iterator
Cont ai ner Type: : const _iterator

to produce the types of the iterators produced by that container. Every container has abegin()
method that produces an iterator indicating the beginning of the elementsin the container, and
an end() method that produces an iterator which is the as the past-the-end value of the
container. If the container is const, begin() and end() produce const iterators.

Every iterator can be moved forward to the next element using the oper ator ++ (an iterator
may be able to do more than this, as you shall see, but it must at least support forward
movement with operator ++).

The basic iterator is only guaranteed to be able to perform == and != comparisons. Thus, to
move an iterator it forward without running it off the end you say something like:

| while(it !'= pastEnd) {

Chapter 15: Multiple Inheritance
159

/1 Do sonething
it++;

}

Where pastEnd is the past-the-end value produced by the container’s end() member
function.

An iterator can be used to produce the element that it is currently selecting within a container
by dereferencing theiterator. This can take two forms. If it is an iterator and f() is a member
function of the objects held in the container that the iterator is pointing within, then you can
say either:

| (*it).f();
or
| it->f();

Knowing this, you can create a template that works with any container. Here, the apply()
function template calls a member function for every object in the container, using a pointer to
member that is passed as an argument:

/1: CO4: Apply.cpp

/1 Using basic iterators
#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <iterator>
usi ng namespace std;

t enpl at e<cl ass Cont, class PtrMenfFun>
void apply(Cont& c, PtrMenFun f) {
typenane Cont::iterator it = c.begin();
while(it '= c.end()) {
(it->*f)(); /I Compact form
((*it).*f)(); // Alternate form
it++;
}
}

class Z {
int i;
public:
Z(int ii) :i(ii) {}
void g() { i++ }
friend ostreamk
oper at or<<(ostrean& os, const Z& z) {
return os << z.i;

Chapter 15: Multiple Inheritance
160

}

b

int main() {
ostream.iterator<zZ> out(cout, " ");
vector<z> vz;
for(int i =0; i < 10; i++4)

vz. push_back(Z(i));
copy(vz. begin(), vz.end(), out);
cout << endl
apply(vz, &Z::9);
copy(vz. begin(), vz.end(), out);
Y I~

Because oper ator-> is defined for STL iterators, it can be used for pointer-to-member
dereferencing (in the following chapter you'll learn a more elegant way to handle the problem
of applying a member function or ordinary function to every object in a container).

Much of the time, thisis all you need to know about iterators — that they are produced by
begin() and end(), and that you can use them to move through a container and select
elements. Many of the problems that you solve, and the STL algorithms (covered in the next
chapter) will allow you to just flail away with the basics of iterators. However, things can at
times become more subtle, and in those cases you need to know more about iterators. The rest
of this section gives you the details.

lterators in reversible containers

All containers must produce the basic iterator. A container may also be reversible, which
means that it can produce iterators that move backwards from the end, as well asthe iterators
that move forward from the beginning.

A reversible container has the methods rbegin() (to produce areverse iterator selecting the
end) and rend() (to produce areverse_iterator indicating “one past the beginning”). If the
container is const then rbegin() and rend() will produce const_reverse iterators.

All the basic sequence containers vector, deque and list are reversible containers. The
following example uses vector, but will work with deque and list aswell:

/1: CO4: Reversible.cpp

/1 Using reversible containers
#include "../require. h"

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <string>

usi ng nanmespace std;

Chapter 15: Multiple Inheritance
161

int main() {

ifstreamin("Reversible.cpp");
assure(in, "Reversible.cpp");
string |ine;
vector<string> |lines;
whil e(getline(in, line))

i nes. push_back(Iline);
vector<string>::reverse_ iterator r;

for(r = lines.rbegin(); r !'=1lines.rend(); r++)
cout << *r << endl;
Y I~

Y ou move backward through the container using the same syntax as moving forward through
acontainer with an ordinary iterator.

The associative containers set, multiset, map and multimap are also reversible. Using
iterators with associative containersis a bit different, however, and will be delayed until those
containers are more fully introduced.

|terator categories

Theiterators are classified into different “ categories’ which describe what they are capable of
doing. The order in which they are generally described moves from the categories with the
most restricted behavior to those with the most powerful behavior.

Input: read-only, one pass

The only predefined implementations of input iterators are istream_iterator and
istreambuf_iterator, to read from an istream. As you can imagine, an input iterator can only
be dereferenced once for each element that’s selected, just as you can only read a particular
portion of an input stream once. They can only move forward. Thereis a special constructor
to define the past-the-end value. In summary, you can dereference it for reading (once only
for each value), and move it forward.

Output: write-only, one pass

Thisisthe complement of an input iterator, but for writing rather than reading. The only
predefined implementations of output iterators are ostream_iterator and
ostreambuf_iterator, to write to an ostream, and the less-commonly-used
raw_storage iterator. Again, these can only be dereferenced once for each written value,
and they can only move forward. There is no concept of aterminal past-the-end value for an
output iterator. Summarizing, you can dereference it for writing (once only for each value)
and move it forward.

Chapter 15: Multiple Inheritance
162

Forward: multiple read/write

The forward iterator contains all the functionality of both the input iterator and the output
iterator, plus you can dereference an iterator location multiple times, so you can read and
write to avalue multiple times. As the name implies, you can only move forward. There are
no predefined iterators that are only forward iterators.

Bidirectional: operator--

The bidirectional iterator has al the functionality of the forward iterator, and in addition it can
be moved backwards one location at atime using oper ator --.

Random-access. like a pointer

Finally, the random-access iterator has all the functionality of the bidirectional iterator plusall
the functionality of a pointer (a pointer is a random-access iterator). Basically, anything you
can do with a pointer you can do with a random-access iterator, including indexing with

oper ator[], adding integral valuesto a pointer to move it forward or backward by a number
of locations, and comparing one iterator to another with <, >=, etc.

Is this really important?

Why do you care about this categorization? When you're just using containersin a
straightforward way (for example, just hand-coding all the operations you want to perform on
the abjects in the container) it usually doesn’t impact you too much. Things either work or
they don’t. The iterator categories become important when:

1. You use some of the fancier built-in iterator types that will be demonstrated shortly. Or
you graduate to creating your own iterators (this will also be demonstrated, later in this
chapter).

2. Youusethe STL algorithms (the subject of the next chapter). Each of the algorithms have
requirements that they place on the iterators that they work with. Knowledge of the
iterator categories is even more important when you create your own reusable algorithm
templates, because the iterator category that your algorithm requires determines how
flexible the algorithm will be. If you only require the most primitive iterator category
(input or output) then your algorithm will work with everything (copy() is an example of
this).

Predefined iterators

The STL has a predefined set of iterator classes that can be quite handy. For example, you've
already seen reverse_iterator (produced by calling rbegin() and rend() for al the basic
containers).

The insertion iterators are necessary because some of the STL agorithms— copy() for
example — use the assignment oper ator = in order to place objects in the destination container.

Chapter 15: Multiple Inheritance
163

Thisis a problem when you're using the algorithm to fill the container rather than to overwrite
items that are already in the destination container. That is, when the spaceisn’t aready there.
What the insert iterators do is change the implementation of the oper ator= so that instead of
doing an assignment, it callsa“push” or “insert” function for that container, thus causing it to
allocate new space. The constructors for both back_insert_iterator and
front_insert_iterator take a basic sequence container object (vector, deque or list) astheir
argument and produce an iterator that calls push_back() or push_front(), respectively, to
perform assignment. The shorthand functions back_inserter () and front_inserter () produce
the same objects with alittle less typing. Since all the basic sequence containers support
push_back(), you will probably find yourself using back_inserter () with some regularity.

Theinsert_iterator allowsyou to insert elementsin the middle of the sequence, again
replacing the meaning of operator =, but thistime with insert(') instead of one of the “push”
functions. Theinsert() member function requires an iterator indicating the place to insert
before, sotheinsert_iterator requiresthisiterator in addition to the container object. The
shorthand function inserter () produces the same object.

The following example shows the use of the different types of inserters:

[1: CO4:Inserters.cpp

/1 Different types of iterator inserters
#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <deque>

#i nclude <list>

#i nclude <iterator>

usi ng nanmespace std;

int a[] ={ 1, 3, 5 7, 11, 13, 17, 19, 23 };

t empl at e<cl ass Cont >
void frontlnsertion(Cont& ci) {
copy(a, a + sizeof(a)/sizeof(int),
front _inserter(ci));
copy(ci.begin(), ci.end(),
ostream.iterator<int>(cout, " "));
cout << endl

}

t enmpl at e<cl ass Cont >
voi d backlnsertion(Cont& ci) {
copy(a, a + sizeof(a)/sizeof(int),
back_inserter(ci));
copy(ci.begin(), ci.end(),
ostream.iterator<int>(cout, " "));

Chapter 15: Multiple Inheritance
164

cout << endl;

}

t enpl at e<cl ass Cont >
void mdlnsertion(Cont& ci) {
typenane Cont::iterator it = ci.begin();
it++; it++ 0t ++
copy(a, a + sizeof(a)/(sizeof(int) * 2),
inserter(ci, it));
copy(ci.begin(), ci.end(),
ostreamiterator<int>(cout, " "));
cout << endl

}

int main() {
deque<i nt > di
list<int> [Ii;
vect or<i nt > vi
/1 Can't use a front _inserter() with vector
frontlnsertion(di);
frontlnsertion(li);
di.clear();
li.clear();
backl nsertion(vi);
backl nsertion(di);
backl nsertion(li);
m dlnsertion(vi);
m dlnsertion(di);
m dlnsertion(li);

Y I~

Since vector does not support push_front(), it cannot produce afront_insertion_iterator.
However, you can see that vector does support the other two types of insertion (even though,
asyou shall seelater, insert() is not avery efficient operation for vector).

|O stream iterators

Y ou've aready seen some use of the ostream _iterator (an output iterator) in conjunction
with copy() to place the contents of a container on an output stream. There is a corresponding
istream_iterator (an input iterator) which allows you to “iterate” aset of objects of a
specified type from an input stream. An important difference between ostream_iterator and
istream_iterator comes from the fact that an output stream doesn’t have any concept of an
“end,” since you can always just keep writing more elements. However, an input stream
eventually terminates (for example, when you reach the end of afil€) so there needsto be a

Chapter 15: Multiple Inheritance
165

way to represent that. Anistream_iterator hastwo constructors, one that takes an istream
and produces the iterator you actually read from, and the other which is the default
constructor and produces an object which is the past-the-end sentinel. In the following
program this object is named end:

[]: CO4:Streamt.cpp

/'l lterators for istreams and ostreans
#include "../require. h"

#i ncl ude <i ostreanr

#i ncl ude <fstreanp

#i ncl ude <vector>

#i ncl ude <string>

usi ng nanmespace std;

int main() {
ifstreamin("Streamt.cpp");
assure(in, "Streamt.cpp");
istreamiterator<string> init(in), end;
ostream.iterator<string> out(cout, "\n");
vector<string> vs;
copy(init, end, back_inserter(vs));
copy(vs. begin(), vs.end(), out);
*out ++ = vs[O0];
*out++ = "That's all, folks!";

Y I~

When in runs out of input (in this case when the end of the file is reached) then init becomes
equivalent to end and the copy() terminates.

Because out isan ostream_iter ator <string>, you can simply assign any string object to the
dereferenced iterator using oper ator= and that string will be placed on the output stream, as
seen in the two assignments to out. Because out is defined with a newline as its second
argument, these assignments also cause a newline to be inserted along with each assignment.

Whileit is possible to create an istream_iterator <char> and ostr eam_iter ator <char >, these
actualy parse the input and thus will for example automatically eat whitespace (spaces, tabs
and newlines), which is not desirable if you want to manipulate an exact representation of an
istream. Instead, you can use the special iteratorsistreambuf_iterator and
ostreambuf_iterator, which are designed strictly to move characters!®. Although these are

16 These were actual ly created to abstract the “locale” facets away from iostreams, so that
locale facets could operate on any sequence of characters, not only iostreams. Locales allow
iostreams to easily handle culturally-different formatting (such as representation of money),
and are beyond the scope of this book.

Chapter 15: Multiple Inheritance
166

templates, the only template arguments they will accept are either char or wchar _t (for wide
characters). The following example allows you to compare the behavior of the stream iterators
vs. the streambuf iterators:

[]: CO4: Streanbuflterator.cpp

/'l istreanmbuf iterator & ostreanbuf iterator
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i nclude <iterator>

#i ncl ude <al gorithne

usi ng nanmespace std;

int main() {
ifstreamin("Streanbuflterator.cpp");
assure(in, "Streanbuflterator.cpp");
/1 Exact representation of stream
i streanbuf _iterator<char> isb(in), end;
ost reanmbuf _iterator<char> osb(cout);
whil e(isb I'= end)
*osb++ = *isb++; // Copy 'in'" to cout
cout << endl
i fstreamin2("Streanbuflterator.cpp");
/1 Strips white space:
i stream.iterator<char> is(in2), end2;
ostream.iterator<char> os(cout);
while(is !'= end2)
*0S++ = *jS++;
cout << endl
Y I~

The stream iterators use the parsing defined by istream:: oper ator >>, which is probably not
what you want if you are parsing characters directly —it’sfairly rare that you would want all
the whitespace stripped out of your character stream. Y ou'll virtually always want to use a
streambuf iterator when using characters and streams, rather than a stream iterator. In
addition, istream:: oper ator >> adds significant overhead for each operation, so it is only
appropriate for higher-level operations such as parsing floating-point numbers.1”

17 amindebted to Nathan Myers for explaining thisto me.

Chapter 15: Multiple Inheritance
167

Manipulating raw storage

Thisisalittle more esoteric and is generally used in the implementation of other Standard
Library functions, but it is nonetheless interesting. Theraw_storage iterator isdefinedin
<algorithm> and is an output iterator. It is provided to enable algorithmsto store their results
into uninitialized memory. The interface is quite simple: the constructor takes an output
iterator that is pointing to the raw memory (thusit is typically a pointer) and the operator=
assigns an object into that raw memory. The template parameters are the type of the output
iterator pointing to the raw storage, and the type of object that will be stored. Here's an
example which creates Noisy objects (you'll be introduced to the Noisy class shortly; it's not
necessary to know its details for this example):

/1: CO4: RawsSt or agel terator. cpp

/1 Denpbnstrate the raw storage_ iterator
#i ncl ude "Noi sy. h"

#i ncl ude <i ostreanp

#include <iterator>

#i ncl ude <al gorithne

usi ng namespace std;

int main() {
const int quantity = 10;
/1l Create raw storage and cast to desired type:
Noi sy* np =
(Noi sy*)new char[quantity * sizeof (Noisy)];
raw st orage_iterator<Noi sy*, Noisy> rsi(np);
for(int i =0; i < quantity; i++)
*rsi++ = Noisy(); // Place objects in storage
cout << endl;
copy(np, np + quantity,
ostream.iterator<Noi sy>(cout, " "));
cout << endl;
/1 Explicit destructor call for cleanup:
for(int j =0; j < quantity; j++)
(&np[j])->~Noisy();
/'l Rel ease raw st orage:
del ete (char*)np;
Y I~

To maketheraw_storage iterator template happy, the raw storage must be of the same type
as the objects you're creating. That’s why the pointer from the new array of char iscast to a
Noisy*. The assignment operator forces the objects into the raw storage using the copy-
constructor. Note that the explicit destructor call must be made for proper cleanup, and this
also allows the objects to be deleted one at atime during container manipulation.

Chapter 15: Multiple Inheritance
168

Basic sequences:
vector, list & deque

If you take a step back from the STL containers you'll see that there are really only two types
of container: sequences (including vector, list, deque, stack, queue, and priority_queue)
and associations (including set, multiset, map and multimap). The sequences keep the
objects in whatever sequence that you establish (either by pushing the objects on the end or
inserting them in the middle).

Since al the sequence containers have the same basic goal (to maintain your order) they seem
relatively interchangeable. However, they differ in the efficiency of their operations, so if you
are going to manipulate a sequence in a particular fashion you can choose the appropriate
container for those types of manipulations. The “basic” sequence containers are vector, list
and deque — these actually have fleshed-out implementations, while stack, queue and
priority_queue are built on top of the basic sequences, and represent more speciaized uses
rather than differencesin underlying structure (stack, for example, can be implemented using
adeque, vector or list).

So far inthisbook | have been using vector as acatch-all container. This was acceptable
because I ve only used the simplest and safest operations, primarily push_back() and
operator|[]. However, when you start making more sophisticated uses of containersit
becomes important to know more about their underlying implementations and behavior, so
you can make the right choices (and, as you'll see, stay out of trouble).

Basic sequence operations

Using atemplate, the following example shows the operations that all the basic sequences
(vector, deque or list) support. Asyou shall learn in the sections on the specific sequence
containers, not all of these operations make sense for each basic sequence, but they are
supported.

/1: CO04: Basi cSequenceQOper ati ons. cpp

/1l The operations available for all the
/'l basic sequence Contai ners.

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <deque>

#i ncl ude <list>

usi ng namespace std;

t enpl at e<t ypename Cont ai ner >
void print(Container& c, char* s = "") {

Chapter 15: Multiple Inheritance
169

cout << s << << endl

if(c.empty()) {
cout << "(empty)" << endl

return;
}
typenane Container::iterator it;
for(it = c.begin(); it !'=c.end(); it++)

cout << *it << ;
cout << endl
cout << "size() << c.size()
<< " max_size() "<< c.nmax_size()
<< " front() " << c.front()
<< " back() " << c.back() << endl

}

t enpl at e<t ypenane Contai ner O | nt >
voi d basi cOps(char* s) {

cout << "------- "< s << " m-ma- " << endl
typedef ContainerOiint G
G c;

print(c, "c after default constructor");

G c2(10, 1); // 10 elements, values all 1

print(c2, "c2 after constructor(10,1)");

int ia[] ={ 1, 3, 5 7, 91};

const int iasz = sizeof(ia)/sizeof(*ia);

/1 Initialize with begin & end iterators:

C c3(ia, ia + iasz);

print(c3, "c3 after constructor(iter,iter)");

C c4(c2); /Il Copy-constructor

print(c4, "c4 after copy-constructor(c2)");

c = c2; // Assignnent operator

print(c, "c after operator=c2");

c.assign(10, 2); // 10 elenments, values all 2

print(c, "c after assign(10, 2)");

/1 Assign with begin & end iterators:

c.assign(ia, ia + iasz);

print(c, "c after assign(iter, iter)");

cout << "c using reverse iterators:" << endl

typenane Ci::reverse_iterator rit = c.rbegin();

while(rit I'= c.rend())
cout << *rit++ << " ",

cout << endl

c.resize(4);

Chapter 15: Multiple Inheritance
170

print(c, "c after resize(4)");
c. push_back(47);
print(c, "c after push_back(47)");
c. pop_back();
print(c, "c after pop_back()");
typenane Ci::iterator it = c.begin();
it++; it++;
c.insert(it, 74);
print(c, "c after insert(it, 74)");
it = c.begin();
it++;
c.insert(it, 3, 96);
print(c, "c after insert(it, 3, 96)");
it = c.begin();
it++;
c.insert(it, c3.begin(), c3.end());
print(c, "c after insert("

"it, c3.begin(), c3.end())");
it = c.begin();
it++;
c.erase(it);
print(c, "c after erase(it)")
typenane Ci::iterator it2 =
it++;
it2++; it2++; it2++; it2++; it2++
c.erase(it, it2);
print(c, "c after erase(it, it2)");
c.swap(c2);
print(c, "c after swap(c2)");
c.clear();
print(c, "c after clear()");

}

i = c. begin();

int main() {
basi cOps<vector<int> >("vector");
basi cOps<deque<i nt> >("deque");
basi cOps<list<int> >("list");

Y I~

The first function template, print(), demonstrates the basic information you can get from any
sequence container: whether it’s empty, its current size, the size of the largest possible
container, the element at the beginning and the element at the end. Y ou can also see that every
container has begin(') and end(') methods that return iterators.

Chapter 15: Multiple Inheritance
171

The basicOps() function tests everything else (and in turn calls print()), including a variety
of constructors: default, copy-constructor, quantity and initial value, and beginning and
ending iterators. There's an assignment oper ator = and two kinds of assign() member
functions, one which takes a quantity and initial value and the other which take a beginning
and ending iterator.

All the basic sequence containers are reversible containers, as shown by the use of the
rbegin(’) and rend() member functions. A sequence container can be resized, and the entire
contents of the container can be removed with clear ().

Using an iterator to indicate where you want to start inserting into any sequence container,
you caninsert() asingle element, a number of elementsthat all have the same value, and a
group of elements from another container using the beginning and ending iterators of that
group.

To erase() asingle element from the middle, use an iterator; to erase() arange of elements,
use apair of iterators. Notice that since alist only supports bidirectional iterators, all the
iterator motion must be performed with increments and decrements (if the containers were
limited to vector and deque, which produce random-access iterators, then oper ator + and
oper ator - could have been used to move the iterators in big jumps).

Although both list and deque support push_front(') and pop_front(), vector does not, so the
only member functions that work with all three are push_back() and pop_back().

The naming of the member function swap() isalittle confusing, since there's also a non-
member swap() algorithm that switches two elements of a container. The member swap(),
however, swaps everything in one container for another (if the containers hold the same type),
effectively swapping the containers themselves. There's a'so a non-member version of this
function.

The following sections on the sequence containers discuss the particulars of each type of
container.

vector

The vector isintentionally made to look like a souped-up array, since it has array-style
indexing but also can expand dynamically. vector is so fundamentally useful that it was
introduced in avery primitive way early in this book, and used quite regularly in previous
examples. This section will give amore in-depth look at vector.

To achieve maximally-fast indexing and iteration, the vector maintainsits storage asasingle
contiguous array of objects. Thisisacritical point to observe in understanding the behavior of
vector. It means that indexing and iteration are lighting-fast, being basically the same as
indexing and iterating over an array of objects. But it also means that inserting an object
anywhere but at the end (that is, appending) is not really an acceptable operation for avector.
It also means that when avector runs out of pre-allocated storage, in order to maintain its

Chapter 15: Multiple Inheritance
172

contiguous array it must allocate awhole new (larger) chunk of storage elsewhere and copy
the objects to the new storage. This has a number of unpleasant side effects.

Cost of overflowing allocated storage

A vector starts by grabbing a block of storage, asif it's taking a guess at how many objects
you planto put init. Aslong as you don’t try to put in more objects than can be held in the
initial block of storage, everything is very rapid and efficient (note that if you do know how
many objects to expect, you can pre-allocate storage using reserve()). But eventually you
will put in one too many objects and, unbeknownst to you, the vector responds by:

1. Allocating a new, bigger piece of storage

2. Copying all the objects from the old storage to the new (using the copy-constructor)
3. Destroying al the old objects (the destructor is called for each one)

4. Releasing the old memory

For complex objects, this copy-construction and destruction can end up being very expensive
if you overfill your vector alot. To see what happens when you'refilling avector, hereisa
class that prints out information about its creations, destructions, assignments and copy-
constructions:

/1: CO4: Noisy.h

/1 A class to track various object activities
#i f ndef NO SY_H

#defi ne NO SY_H

#i ncl ude <i ostreanp

cl ass Noi sy {
static long create, assign, copycons, destroy;

long id;
public:
Noi sy() : id(create++) {

std::cout << "d[" << id << "]";

}

Noi sy(const Noisy& rv) : id(rv.id) {
std::cout << "c[" << id << "]";
copycons++;

}

Noi sy& operat or=(const Noi sy& rv) {
std::cout << "(" << id << ")z[" <<

rv.id << "1";
id=rv.id;
assi gn++;

Chapter 15: Multiple Inheritance
173

return *this;

}

friend boo

operator<(const Noisy& Iv, const Noisy& rv) {
return lv.id < rv.id;

}

friend boo
operat or==(const Noi sy& |lv, const Noisy& rv) {

return lv.id == rv.id;

}

~Noi sy() {
std::cout << "~[" << id << "]":
destroy++,

}

friend std::ostream&

operator<<(std::ostream& os, const Noisy& n) {
return os << n.id;

}

friend class Noi syReport;

}s

struct Noi syGen {
Noi sy operator()() { return Noisy(); }
b

/1 A singleton. WII automatically report the
/1 statistics as the programterni nates:
cl ass Noi syReport {
static Noi syReport nr;
Noi syReport () {} // Private constructor
public:
~Noi syReport () {
std::cout << "\M-------mioiiao \n"
<< "Noi sy creations: " << Noisy::create
<< "\ nCopy- Constructions: "
<< Noi sy: : copycons
<< "\ nAssi gnnents:
<< "\ nDestructions:
<< std::endl

<< Noi sy::assign

" << Noi sy::destroy
}

b

/1 Because of these this file can only be used

Chapter 15: Multiple Inheritance
174

/1 in sinple test situations. Mouwve themto a

/1 .cpp file for nore conpl ex prograns:

I ong Noisy::create = 0, Noisy::assign
Noi sy:: copycons = 0, Noisy::destroy

Noi syReport Noi syReport::nr;

#endif // NOSY H///:~

Each Noisy object hasits own identifier, and there are static variables to keep track of al the
creations, assignments (using oper ator =), copy-constructions and destructions. Theid is
initialized using the cr eate counter inside the default constructor; the copy-constructor and
assignment operator take their id values from the rvalue. Of course, with oper ator = the lvalue
is aready an initialized object so the old value of id is printed before it is overwritten with the
id from the rvalue.

= 0,
= 0;

In order to support certain operations like sorting and searching (which are used implicitly by
some of the containers), Noisy must have an oper ator < and oper ator==. These simply
compare theid values. The operator << for ostream follows the standard form and simply
printstheid.

NoisyGen produces a function object (since it has an operator ()) that is used to
automeatically generate Noisy objects during testing.

NoisyReport isatype of class called asingleton, whichis a*“design pattern” (these are
covered more fully in Chapter XX). Here, the goa isto make sure thereis one and only one
NoisyReport object, because it is responsible for printing out the results at program
termination. It has a private constructor so no one else can make a NoisyReport object, and a
single static instance of NoisyReport called nr. The only executable statements are in the
destructor, which is called as the program exits and the static destructors are called; this
destructor prints out the statistics captured by the static variablesin Noisy.

The one snag to this header file is the inclusion of the definitions for the statics at the end. If
you include this header in more than one place in your project, you'll get multiple-definition
errors at link time. Of course, you can put the static definitionsin a separate cpp file and link
itin, but that isless convenient, and since Noisy isjust intended for quick-and-dirty
experiments the header file should be reasonable for most situations.

Using Noisy.h, the following program will show the behaviors that occur when avector
overflowsiits currently allocated storage:

/1: CO4: VectorOverfl ow cpp

/1 Shows the copy-construction and destruction
/1 That occurs when a vector nust reallocate
/1 (It maintains a linear array of elenments)

#i ncl ude "Noi sy. h"

#include "../require. h"

#i ncl ude <vector>

#i ncl ude <i ostreanp

Chapter 15: Multiple Inheritance
175

#i ncl ude <string>
#i ncl ude <cstdlib>
usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
int size = 1000;
if(argc >= 2) size = atoi(argv[1]);
vect or <Noi sy> vn;
Noi sy n;
for(int i =0; i < size; i++)
vn. push_back(n);
cout << "\n cleaning up \n";
Y I~

Y ou can either use the default value of 1000, or use your own value by putting it on the
command-line.

When you run this program, you'll see a single default constructor call (for n), then alot of
copy-constructor calls, then some destructor calls, then some more copy-constructor calls, and
so on. When the vector runs out of space in the linear array of bytesit has allocated, it must
(to maintain all the objectsin alinear array, which is an essential part of its job) get abigger
piece of storage and move everything over, copying first and then destroying the old objects.
Y ou can imagine that if you store alot of large and complex objects, this process could
rapidly become prohibitive.

There are two solutions to this problem. The nicest one requires that you know beforehand
how many objects you' re going to make. In that case you can use reserve() to tell the vector
how much storage to pre-allocate, thus eliminating all the copies and destructions and making
everything very fast (especially random access to the objects with operator[]). Note that the
use of reserve() isdifferent from using the vector constructor with an integral first argument;
the latter initializes each element using the default copy-constructor.

However, in the more general case you won't know how many objects you' Il need. If vector
reallocations are slowing things down, you can change sequence containers. Y ou could use a
list, but asyou'll see, the deque alows speedy insertions at either end of the sequence, and
never needs to copy or destroy objects asit expandsits storage. The deque also allows
random access with operator[], but it's not quite as fast as vector’soperator[]. Sointhe
case where you're creating all your objectsin one part of the program and randomly accessing
them in another, you may find yourself filling a deque, then creating avector from the deque
and using the vector for rapid indexing. Of course, you don’'t want to program this way
habitually, just be aware of these issues (avoid premature optimization).

Thereisadarker side to vector’sreallocation of memory, however. Because vector keepsits
objectsin anice, neat array (allowing, for one thing, maximally-fast random access), the
iterators used by vector are generally just pointers. Thisisagood thing — of all the sequence
containers, these pointers allow the fastest selection and manipulation. However, consider

Chapter 15: Multiple Inheritance
176

what happens when you' re holding onto an iterator (i.e. a pointer) and then you add the one
additional object that causes the vector to reallocate storage and move it elsewhere. Y our
pointer is now pointing off into nowhere:

/1: CO4: Vect or Cor eDunp. cpp

/!l How to break a program using a vector
#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
vector<int> vi (10, 0);

ostream.iterator<int> out(cout, " ");
copy(vi.begin(), vi.end(), out);
vector<int>::iterator i = vi.begin();

cout << "\n i:
*I = 47,
copy(vi.begin(), vi.end(), out);
/! Force it to nmove nmenory (could al so just add
/1 enough objects):
vi.resize(vi.capacity() + 1);
/1 Now i points to wong nmenory:
cout << "\ni: " << long(i) << endl
cout << "vi.begin(): " << long(vi.begin());
*i = 48; [/ Access violation
Y I~

<< long(i) << endl;

If your program is breaking mysterioudly, look for places where you hold onto an iterator
while adding more objectsto avector. You'll need to get a new iterator after adding
elements, or use operator|[] instead for element selections. If you combine the above
observation with the awareness of the potential expense of adding new objectsto avector,
you may conclude that the safest way to use oneisto fill it up al at once (ideally, knowing
first how many objects you'll need) and then just use it (without adding more objects)
elsewhere in the program. This is the way vector has been used in the book up to this point.

Y ou may observe that using vector asthe “basic” container in the earlier chapters of this book
may not be the best choice in all cases. Thisis afundamental issue in containers, and in data
structures in general: the “best” choice varies according to the way the container is used. The
reason vector has been the “best” choice up until now isthat it looks alot like an array, and
was thus familiar and easy for you to adopt. But from now on it’s a so worth thinking about
other issues when choosing containers.

Inserting and erasing elements

The vector is most efficient if:

Chapter 15: Multiple Inheritance
177

1. Youreserve() the correct amount of storage at the beginning so the vector never hasto
reallocate.

2. Youonly add and remove elements from the back end.

Itis possible to insert and erase elements from the middle of avector using an iterator, but the
following program demonstrates what a bad ideaiit is:

/1: CO4: Vectorlnsert AndEr ase. cpp

/1 Erasing an element froma vector
#i ncl ude "Noi sy. h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <al gorithne

usi ng nanmespace std;

int main() {
vect or <Noi sy> v;
v.reserve(1ll);
cout << "11 spaces have been reserved" << endl
generate_n(back_inserter(v), 10, NoisyGen());
ostream.iterator<Noisy> out(cout, " ");
cout << endl
copy(v. begin(), v.end(), out);
cout << "Inserting an el enent:’
vector<Noi sy>::iterator it =

v.begin() + v.size() / 2; // Mddle

v.insert(it, Noisy());
cout << endl
copy(v. begin(), v.end(), out);
cout << "\nErasing an elenent:" << endl
/1 Cannot use the previous value of it:
it = v.begin() + v.size() / 2
v.erase(it);
cout << endl
copy(v. begin(), v.end(), out);
cout << endl

Y I~

<< endl ;

When you run the program you' |l see that the call to reserve() really does only alocate
storage — no constructors are called. The generate n() call is pretty busy: each call to
NoisyGen::oper ator () results in a construction, a copy-construction (into the vector) and a
destruction of the temporary. But when an object is inserted into the vector in the middle, it
must shove everything down to maintain the linear array and — since there is enough space — it
does this with the assignment operator (if the argument of reserve() is 10 instead of eleven

Chapter 15: Multiple Inheritance
178

then it would have to reallocate storage). When an object is erased from the vector, the
assignment operator is once again used to move everything up to cover the place that is being
erased (notice that this requires that the assignment operator properly cleans up the Ivalue).
Lastly, the object on the end of the array is deleted.

Y ou can imagine how enormous the overhead can become if objects are inserted and removed
from the middle of avector if the number of elementsislarge and the objects are
complicated. It's obviously a practice to avoid.

deque

The deque (double-ended-queue, pronounced “deck”) is the basic sequence container
optimized for adding and removing elements from either end. It also allows for reasonably
fast random access—it has an operator|] like vector. However, it does not have vector’s
constraint of keeping everything in asingle sequential block of memory. Instead, deque uses
multiple blocks of sequential storage (keeping track of al the blocks and their order in a
mapping structure). For this reason the overhead for a deque to add or remove elements at
either end is very low. In addition, it never needs to copy and destroy contained objects during
anew storage allocation (like vector does) so it is far more efficient than vector if you are
adding an unknown quantity of objects. This means that vector isthe best choice only if you
have a pretty good idea of how many objects you need. In addition, many of the programs
shown earlier in this book that use vector and push_back() might be more efficient with a
deque. Theinterface to dequeisonly sightly different from avector (degque hasa
push_front() and pop_front() while vector does not, for example) so converting code from
using vector to using dequeis amost trivial. Consider StringVector .cpp, which can be
changed to use deque by replacing the word “vector” with “deque” everywhere. The
following program adds parallel deque operations to the vector operationsin

StringVector .cpp, and performs timing comparisons:

/1: CO4: StringDeque. cpp
/1 Converted from StringVector.cpp
#include "../require. h"
#i ncl ude <string>

#i ncl ude <deque>

#i ncl ude <vector>

#i ncl ude <fstreanp

#i ncl ude <i ostreanp

#i ncl ude <iterator>

#i ncl ude <sstreanp

#i ncl ude <ctine>

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);

Chapter 15: Multiple Inheritance
179

ifstreamin(argv[1]);
assure(in, argv[1]);
vector<string> vstrings;
deque<string> dstrings;
string |ine;
/1 Time reading into vector
clock t ticks = clock();
whil e(getline(in, line))
vstrings. push_back(line);
ticks = clock() - ticks;
cout << "Read into vector: " << ticks << endl
/1 Repeat for deque:
ifstreamin2(argv[1]);
assure(in2, argv[1]);
ticks = clock();
whil e(getline(in2, line))
dstrings. push_back(line);
ticks = clock() - ticks;
cout << "Read into deque: " << ticks << endl
/1 Now conpare indexing:
ticks = clock();

for(int i = 0; i < vstrings.size(); i++) {
ostringstream ss;
SS << i;
vstrings[i] = ss.str() + ": " + vstrings[i];
}
ticks = clock() - ticks;
cout << "Indexing vector: " << ticks << endl

ticks = clock();

for(int j =0; j < dstrings.size(); j++) {
ostringstream ss;
ss << j;
dstrings[j] = ss.str() + ": " + dstrings[j];

ticks = clock() - ticks;

cout << "Indexing deqeue: " << ticks << endl

/1 Conpare iteration

of stream tmpl("tnpl.tnmp"), tnp2("tnmp2.tnmp");

ticks = clock();

copy(vstrings. begin(), vstrings.end(),
ostream.iterator<string>(tnmpl, "\n"));

ticks = clock() - ticks;

cout << "Iterating vector: " << ticks << endl

Chapter 15: Multiple Inheritance
180

ticks = clock();
copy(dstrings. begin(), dstrings.end(),
ostreamiterator<string>(tnmp2, "\n"));
ticks = clock() - ticks;
cout << "lIterating degeue:
Y I~

Knowing now what you do about the inefficiency of adding things to vector because of
storage reall ocation, you may expect dramatic differences between the two. However, ona 1.7
Megabyte text file one compiler’s program produced the following (measured in
platform/compiler specific clock ticks, not seconds):

<< ticks << endl;

Read into vector: 8350
Read i nto deque: 7690
I ndexi ng vector: 2360
I ndexi ng deqeue: 2480
Iterating vector: 2470
Iterating degeue: 2410

A different compiler and platform roughly agreed with this. It's not so dramatic, isit? This
points out some important issues:

1. We (programmers) are typically very bad at guessing where inefficiencies occur in our
programs.

2. Efficiency comes from a combination of effects— here, reading the linesin and
converting them to strings may dominate over the cost of the vector vs. deque.

3. Thestring classis probably fairly well-designed in terms of efficiency.

Of course, this doesn’t mean you shouldn't use a deque rather than a vector when you know
that an uncertain number of objects will be pushed onto the end of the container. On the
contrary, you should —when you' re tuning for performance. But you should also be aware
that performance issues are usually not where you think they are, and the only way to know
for sure where your bottlenecks areis by testing. Later in this chapter there will be amore
“pure” comparison of performance between vector, deque and list.

Converting between sequences

Sometimes you need the behavior or efficiency of one kind of container for one part of your
program, and a different container’s behavior or efficiency in another part of the program. For
example, you may need the efficiency of adeque when adding objects to the container but the
efficiency of avector when indexing them. Each of the basic sequence containers (vector,
deque and list) has atwo-iterator constructor (indicating the beginning and ending of the
sequence to read from when creating a new object) and an assign() member function to read
into an existing container, so you can easily move objects from one sequence container to
another.

Chapter 15: Multiple Inheritance
181

The following example reads objects into a deque and then converts to a vector:

/1: CO04: DequeConversi on. cpp

/! Reading into a Deque, converting to a vector
#i ncl ude "Noi sy. h"

#i ncl ude <deque>

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

usi ng namespace std;

int main(int argc, char* argv[]) {
int size = 25;
if(argc >= 2) size = atoi(argv[1]);
deque<Noi sy> d;
generate_n(back_inserter(d), size, NoisyGen());
cout << "\n Converting to a vector(1)" << endl
vect or <Noi sy> v1(d. begin(), d.end());
cout << "\n Converting to a vector(2)" << endl
vect or <Noi sy> v2
v2.reserve(d.size());
v2.assign(d. begin(), d.end());
cout << "\n C eanup" << endl

Y I~

You can try various sizes, but you should see that it makes no difference — the objects are
simply copy-constructed into the new vectors. What's interesting is that v1 does not cause
multiple allocations while building the vector, no matter how many elements you use. You
might initially think that you must follow the process used for v2 and preallocate the storage
to prevent messy reallocations, but the constructor used for v1 determines the memory need
ahead of time so thisis unnecessary.

Cost of overflowing allocated storage

It'silluminating to see what happens with a deque when it overflows ablock of storage, in
contrast with Vector Over flow.cpp:

[1: CO4: DequeOverfl ow. cpp

/1 A deque is much nore efficient than a vector
/1 when pushing back a | ot of elements, since it
/1 doesn't require copying and destroying.

#i ncl ude "Noi sy. h"

#i ncl ude <deque>

#i ncl ude <cstdlib>

Chapter 15: Multiple Inheritance
182

usi ng namespace std;

int main(int argc, char* argv[]) {
int size = 1000;
if(argc >= 2) size = atoi(argv[1]);
deque<Noi sy> dn;
Noi sy n;
for(int i =0; i < size; i++)
dn. push_back(n);
cout << "\n cleaning up \n";
Y I~

Here you will never see any destructors before the words “cleaning up” appear. Since the
deque allocates all its storage in blocksinstead of a contiguous array like vector, it never
needs to move existing storage (thus no additional copy-constructions and destructions occur).
It simply allocates a new block. For the same reason, the deque can just as efficiently add

elements to the beginning of the sequence, sinceiif it runs out of storageit (again) just

allocates a new block for the beginning. Insertions in the middle of a deque, however, could

be even messier than for vector (but not as costly).

Because a deque never movesits storage, a held iterator never becomes invalid when you add

new things to either end of a deque, as it was demonstrated to do with vector (in
Vector CoreDump.cpp). However, it's still possible (albeit harder) to do bad things:

/1: CO4: DequeCor eDunp. cpp

/1 How to break a program using a deque
#i ncl ude <queue>

#i ncl ude <i ostreane

usi ng nanmespace std;

int main() {
deque<i nt> di (100, O0);
/1 No problemiterating from beginning to end,
/1 even though it spans nultiple bl ocks:
copy(di . begin(), di.end(),
ostream.iterator<int>(cout, " "));
deque<int>::iterator i =// In the mddle:
di . begin() + di.size() / 2;
/1 Walk the iterator forward as you perform
/1 a lot of insertions in the mddle:
for(int j = 0; j < 1000; j++) {
cout << j << endl
di.insert(i++, 1); // Eventually breaks

}
Y 110~

Chapter 15: Multiple Inheritance
183

Of course, there are two things here that you wouldn’t normally do with adeque: first,
elements are inserted in the middle, which deque alows but isn't designed for. Second,
calling insert() repeatedly with the same iterator would not ordinarily cause an access
violation, but the iterator iswalked forward after each insertion. I'm guessing it eventually
walks off the end of ablock, but I’'m not sure what actually causes the problem.

If you stick to what dequeis best at — insertions and removal s from either end, reasonably
rapid traversals and fairly fast random-access using operator[] —you'll be in good shape.

Checked random-access

Both vector and deque provide two ways to perform random access of their elements: the
oper ator[], which you' ve seen already, and at(), which checks the boundaries of the
container that's being indexed and throws an exception if you go out of bounds. It does cost
moreto use at():

[1: CO4:1ndexi ngVsAt. cpp

/1 Conparing "at()" to operator[]
#include "../require. h"

#i ncl ude <vector>

#i ncl ude <deque>

#i ncl ude <i ostreanp

#i ncl ude <cti ne>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reM nArgs(argc, 1);
| ong count = 1000;
int sz = 1000;
if(argc >= 2) count = atoi(argv[1]);
if(argc >= 3) sz = atoi(argv[2]);
vector<int> vi(sz);
clock _t ticks = clock();
for(int il =0; il < count; il++)
for(int j =0; j < sz; j++4)
vi[jl;
cout << "vector[]" << clock() - ticks << endl
ticks = clock();
for(int i2 = 0; 12 < count; i2++)
for(int j = 0; j < sz; j++4)
vi.at(j);
cout << "vector::at()" << clock()-ticks <<endl
deque<i nt> di (sz);
ticks = clock();

Chapter 15: Multiple Inheritance
184

for(int i3 =0; i3 < count; i3++)
for(int j =0; j < sz; j++)
di[j];
cout << "deque[]" << clock() - ticks << endl
ticks = clock();
for(int i4 = 0; i4 < count; i4++)
for(int j = 0; j < sz; j++4)
di.at(j);
cout << "deque::at()" << clock()-ticks <<endl
/1 Denonstrate at() when you go out of bounds:
di.at(vi.size() + 1);
Y I~

Asyou'll learn in the exception-handling chapter, different systems may handle the uncaught
exception in different ways, but you'll know one way or another that something went wrong
with the program when using at(), whereasit’s possible to go blundering ahead using
operator[].

A list isimplemented as a doubly-linked list and is thus designed for rapid insertion and
removal of elementsin the middle of the sequence (whereas for vector and deque thisisa
much more costly operation). A list is so dow when randomly accessing elements that it does
not have an operator|]. It's best used when you're traversing a sequence, in order, from
beginning to end (or end to beginning) rather than choosing elements randomly from the

middle. Even then the traversal is significantly slower than either avector or adeque, but if
you aren't doing alot of traversals that won't be your bottleneck.

Another thing to be aware of with alist isthe memory overhead of each link, which requires a
forward and backward pointer on top of the storage for the actual object. Thus alist is a better
choice when you have larger objects that you'll be inserting and removing from the middle of
thelist. It's better not to use alist if you think you might be traversing it alot, looking for
objects, since the amount of time it takes to get from the beginning of the list —which is the
only place you can start unless you' ve already got an iterator to somewhere you know is
closer to your destination — to the object of interest is proportional to the number of objects
between the beginning and that object.

The objectsin alist never move after they are created; “moving” alist element means
changing the links, but never copying or assigning the actual objects. This means that a held
iterator never moves when you add new thingsto alist as it was demonstrated to do in vector.
Here's an example using the Noisy class:

/1: CO4:ListStability.cpp
/1 Things don't nobve around in lists
#i ncl ude "Noi sy. h"

Chapter 15: Multiple Inheritance
185

#incl ude <list>

#i ncl ude <i ostreanp
#i ncl ude <al gorithne
usi ng namespace std;

int main() {
list<Noisy>|;
ostream.iterator<Noisy> out(cout, " ");
generate_n(back_inserter(l), 25, NoisyGen());
cout << "\n Printing the list:" << endl
copy(!l.begin(), I.end(), out);
cout << "\n Reversing the list:" << endl
. reverse();
copy(!l.begin(), I.end(), out);
cout << "\n Sorting the list:" << endl
| .sort();
copy(!l.begin(), I.end(), out);
cout << "\'n Swapping two el enents:" << endl
list<Noisy> :iterator itl, it2;
itl =it2 =1.begin();
it2++;
swap(*itl, *it2);
cout << endl
copy(!l.begin(), |.end(), out);
cout << "\n Using generic reverse(): " << endl
reverse(l.begin(), |.end());
cout << endl
copy(!l.begin(), I.end(), out);
cout << "\n C eanup" << endl
Y I~

Operations as seemingly radical asreversing and sorting the list require no copying of objects,
because instead of moving the objects, the links are simply changed. However, notice that
sort() and rever se() are member functions of list, so they have special knowledge of the
internals of list and can perform the pointer movement instead of copying. On the other hand,
the swap() function is a generic algorithm, and doesn’t know about list in particular and so it
uses the copying approach for swapping two elements. There are also generic algorithms for
sort() and reverse(), but if you try to use these you'll discover that the generic reverse()
performs lots of copying and destruction (so you should never useit with alist) and the
generic sort() simply doesn’t work because it requires random-access iterators that list
doesn’t provide (a definite benefit, since this would certainly be an expensive way to sort
compared to list’s own sort()). The generic sort() and reverse() should only be used with
arrays, vectors and degues.

Chapter 15: Multiple Inheritance
186

If you have large and complex objects you may want to choose alist first, especialy if
construction, destruction, copy-construction and assignment are expensive and if you are
doing things like sorting the objects or otherwise reordering them alot.

Special list operations
Thelist has some special operations that are built-in to make the best use of the structure of
thelist. You've already seen reverse() and sort(), and here are some of the othersin use:

/1: CO04: Li st Speci al Functi ons. cpp

#i ncl ude "Noi sy. h"

#i ncl ude <list>

#i ncl ude <i ostreanp

#i ncl ude <al gorithne

usi ng namespace std;
ostream.iterator<Noisy> out(cout, " ");

void print(list<Noisy>& In, char* comment = "") {
cout << "\n" << comment << ":\n";
copy(ln.begin(), In.end(), out);
cout << endl;

}

int main() {
t ypedef |ist<Noisy> LN
LN 11, 12, 13, 14
generate_n(back_inserter(l1), 6, NoisyGen())
generate_n(back_inserter(l12), 6, NoisyGen());
generate_n(back_inserter(l13), 6, NoisyGen());
generate_n(back_inserter(l4), 6, NoisyGen())
print(l1, "I1"); print(l2, "I2")
print(13, "I3"); print(l4, "14")
LN :iterator itl = 11.begin();
itl++; Pitdl++; it 1+
I1.splice(itl, 12);
print(l1, "I1 after splice(itl, 12)");
print(l2, "I2 after splice(itl, 12)");
LN :iterator it2 = 13.begin();
it2++; it2++; it2++
l1.splice(itl, 13, it2);
print(l1, "I1 after splice(itl, 13, it2)");
LN :iterator it3 = 14.begin(), itd =14.end();
it3++; it4--;

Chapter 15: Multiple Inheritance
187

l1.splice(itl, 14, it3, it4);

print(l1, "I1 after splice(itl,14,it3,itd4)");
Noi sy n;

LN 15(3, n);

generate_n(back_inserter(l5), 4, NoisyGen());
| 5. push_back(n);

print(l5, "I5 before renove()");
I 5. renove(l5.front());

print(l5, "I5 after renmove()");
| 1.sort(); I5.sort();

I 5. merge(l1);

print(l5, "I5 after I5.nerge(l1)");
cout << "\'n C eanup" << endl;
Y I~

The print() function is used to display results. After filling four lists with Noisy objects, one
list is spliced into another in three different ways. In thefirst, the entirelist 2 is spliced into |1
at theiterator it1. Notice that after the splice, 12 is empty — splicing means removing the
elements from the source list. The second splice inserts elements from |3 starting at it2 into 11
starting at it1. Thethird splice starts at it1 and uses elements from I4 starting at it3 and ending
at it4 (the seemingly-redundant mention of the source list is because the elements must be
erased from the source list as part of the transfer to the destination list).

The output from the code that demonstrates remove() shows that the list does not have to be
sorted in order for all the elements of a particular value to be removed.

Finally, if you merge() onelist with another, the merge only works sensibly if the lists have
been sorted. What you end up with in that case is a sorted list containing all the elements from
both lists (the source list is erased —that is, the elements are moved to the destination list).

There'salso aunique() member function that removes all duplicates, but only if thelist has
been sorted first:

/1: CO4: Uni queList.cpp

/1 Testing list's unique() function
#i nclude <list>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int a[] ={ 1, 3, 1, 4, 1, 5 1, 6, 11};
const int asz = sizeof a / sizeof *a;

int main() {
/1 For output:
ostream.iterator<int> out(cout, " ");
list<int>1li(a, a + asz);

Chapter 15: Multiple Inheritance
188

[i.unique();
/1 Cops! No duplicates renoved:
copy(li.begin(), li.end(), out);
cout << endl
/1 Must sort it first:
li.sort();
copy(li.begin(), li.end(), out);
cout << endl
/1 Now unique() will have an effect:
[i.unique();
copy(li.begin(), li.end(), out);
cout << endl

Y I~

The list constructor used here takes the starting and past-the-end iterator from another
container, and it copies al the elements from that container into itself (asimilar constructor is
available for all the containers). Here, the “container” isjust an array, and the “iterators’ are
pointersinto that array, but because of the design of the STL it works with arraysjust as
easily as any other container.

If you run this program, you'll see that unique() will only remove adjacent duplicate
elements, and thus sorting is necessary before calling unique().

There are four additional list member functions that are not demonstrated here: aremove_if()
that takes a predicate which is used to decide whether an object should be removed, a
unique() that takes a binary predicate to perform uniqueness comparisons, amer ge() that
takes an additional argument which performs comparisons, and asort() that takes a
comparator (to provide a comparison or override the existing one).

list vs. set

Looking at the previous example you may note that if you want a sorted list with no
duplicates, a set can give you that, right? It'sinteresting to compare the performance of the
two containers:

/1: CO4:ListVsSet.cpp

/1 Conparing |ist and set performance
#i ncl ude <i ostreanp

#incl ude <list>

#i ncl ude <set>

#i ncl ude <al gorithne

#i ncl ude <cti nme>

#i ncl ude <cstdlib>

usi ng namespace std;

class Obj {

Chapter 15: Multiple Inheritance
189

int a[20]; // To take up extra space
int val;
public:

Obj () : val(rand() %500) {}

friend boo

operator<(const hj & a, const Obj& b) {
return a.val < b.val

}

friend boo

operator==(const Obj & a, const Ohj& b) {
return a.val == b.val

}

friend ostreamk

oper at or<<(ostream& os, const Obj& a) {
return os << a.val;

}
}s

t enpl at e<cl ass Cont ai ner >
void print(Container& c) {
typenane Container::iterator it;
for(it = c.begin(); it !'=c.end(); it++)
cout << *it << "
cout << endl

}

struct Obj Gen {
o] operator()() { return Ohj(); }

};

int main() {
const int sz = 5000;
srand(tinme(0));
list<Ohj> Io;
clock t ticks = clock();
generate_n(back_inserter(lo), sz, jGen());
lo.sort();
| 0. uni que();
cout << "list:" << clock() - ticks << endl
set <bj > so
ticks = clock();
generate_n(inserter(so, so.begin()),
sz, Qbj Gen());

Chapter 15: Multiple Inheritance
190

cout << "set:" << clock() - ticks << endl;
print(lo);
print(so);

Y I~

When you run the program, you should discover that set is much faster than list. Thisis
reassuring — after all, it isset’s primary job description!

Swapping all basic sequences
It turns out that all basic sequences have a member function swap() that’s designed to switch
one seguence with another (however, this swap() isonly defined for sequences of the same

type). The member swap() makes use of its knowledge of the internal structure of the
particular container in order to be efficient:

[1: CO4: Swappi ng. cpp

/1 Al basic sequence containers can be swapped
#i ncl ude "Noi sy. h"

#include <list>

#i ncl ude <vector>

#i ncl ude <deque>

#i ncl ude <i ostreanp

#i ncl ude <al gorithne

usi ng nanmespace std;

ostream.iterator<Noisy> out(cout, " ");

t empl at e<cl ass Cont >

void print(Cont& c, char* comment = "") {
cout << "\n" << coment << ": ";
copy(c. begin(), c.end(), out);
cout << endl

}

t empl at e<cl ass Cont >
voi d test Swap(char* cname) ({
Cont c1, c2,
generate_n(back_inserter(cl), 10, NoisyGen());
generate_n(back_inserter(c2), 5, NoisyGen());
cout << "\n" << cname << ":" << endl;
print(cl, "cl1"); print(c2, "c2");
cout << "\'n Swapping the " << cnane
<< ":" << endl;
cl.swap(c2);
print(cl, "cl1"); print(c2, "c2");

Chapter 15: Multiple Inheritance
191

}

int main() {
t est Swap<vect or <Noi sy> >("vector");
t est Swap<deque<Noi sy> >("deque");
t est Swap<li st <Noi sy> >("list");

Y I~

When you run this, you'll discover that each type of sequence container is able to swap one
sequence for another without any copying or assignments, even if the sequences are of
different sizes. In effect, you' re completely swapping the memory of one object for another.

The STL algorithms also contain aswap(), and when this function is applied to two
containers of the same type, it will use the member swap() to achieve fast performance.
Consequently, if you apply the sort() agorithm to a container of containers, you will find

that the performanceis very fast — it turns out that fast sorting of a container of containers was
adesign goal of the STL.

Robustness of lists

To break alist, you have to work pretty hard:

//: CO4:Li st Robust ness. cpp
/1l lists are harder to break
#include <list>

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {
list<int> li(100, 0);

list<int> :iterator i = 1i.begin();
for(int j =0; j <li.size() /I 2; j++4)
i ++;

/1 Walk the iterator forward as you perform
/1 a lot of insertions in the mddle:
for(int k = 0; k < 1000; k++)
li.insert(i++, 1); // No problem

li.erase(i);
i ++;
*i =2; /] Oops! It's invalid

Y I~

When the link that the iterator i was pointing to was erased, it was unlinked from the list and
thus became invalid. Trying to move forward to the “next link” from an invalid link is poorly-

Chapter 15: Multiple Inheritance
192

formed code. Notice that the operation that broke deque in DequeCoreDump.cpp is
perfectly fine with alist.

Performance comparison

To get abetter fed for the differences between the sequence containers, it’silluminating to
race them against each other while performing various operations.

/1: CO04: SequencePer f or mance. cpp

/1 Conparing the performance of the basic
/'l sequence containers for various operations
#i ncl ude <vector>

#i ncl ude <queue>

#i ncl ude <list>

#i ncl ude <i ostreanp

#i ncl ude <string>

#i ncl ude <typei nfo>

#i ncl ude <cti nme>

#i ncl ude <cstdlib>

usi ng namespace std;

cl ass Fi xedSi ze {
int x[20];
/1 Automatic generation of default constructor
/1 copy-constructor and operator=

} fs;

t enpl at e<cl ass Cont >
struct InsertBack {
voi d operator()(Cont& c, long count) {
for(long i = 0; i < count; i++)
c. push_back(fs);
}

char* testNane() { return "InsertBack"; }

};

t enpl at e<cl ass Cont >
struct InsertFront {
voi d operator()(Cont& c, long count) {
long cnt = count * 10;
for(long i = 0; i <cnt; i++)
c.push_front(fs);

Chapter 15: Multiple Inheritance
193

}

char* testNane() { return "InsertFront"; }

};

t enpl at e<cl ass Cont >
struct InsertMddle {
voi d operator()(Cont& c, long count) {
typenane Cont::iterator it;
long cnt = count / 10;
for(long i =0; i <ecnt; i++) {
/1 Must get the iterator every tine to keep
/1 from causing an access violation with
/1 vector. Increnent it to put it in the
/1 mddle of the container:
it = c.begin();
it++;
c.insert(it, fs);
}
}
char* testName() { return "InsertMddle"; }

};

t enpl at e<cl ass Cont >
struct RandomAccess { // Not for |ist
voi d operator()(Cont& c, long count) {

int sz = c.size();

long cnt = count * 100;

for(long i = 0; i < cnt; i++)

c[rand() % sz];

}
char* testName() { return "RandomAccess"; }

};

t enpl at e<cl ass Cont >
struct Traversal ({
voi d operator()(Cont& c, long count) {
long cnt = count / 100;
for(long i =0; i <ecnt; i++) {
typenane Cont::iterator it = c.begin(),
end = c.end();
while(it !'= end) it++;
}

}

Chapter 15: Multiple Inheritance
194

char* testNane() { return "Traversal"; }

};

t enpl at e<cl ass Cont >
struct Swap {
voi d operator()(Cont& c, long count) {
int mddle = c.size() / 2
typenane Cont::iterator it = c.begin(),
md = c.begin();

it++; // Put it in the mddle
for(int x = 0; x <mddle + 1; x++)

m d++;
long cnt = count * 10;
for(long i = 0; i < cnt; i++)

swap(*it, *md);
}
char* testNane() { return "Swap"; }

};

t enpl at e<cl ass Cont >
struct RenpveM ddl e {
voi d operator()(Cont& c, long count) {
long cnt = count / 10;
if(cnt > c.size()) {
cout << "RenmpoveM ddl e: not enough el ements"
<< endl;
return;
}
for(long i =0; i <ecnt; i++) {
typenane Cont::iterator it = c.begin();
it++;
c.erase(it);
}
}
char* testName() { return "RenoveM ddl e"; }

};

t enpl at e<cl ass Cont >
struct RenoveBack {
voi d operator()(Cont& c, long count) {
long cnt = count * 10;
if(cnt > c.size()) {
cout << "RenmpveBack: not enough el enents”

Chapter 15: Multiple Inheritance
195

<< endl;
return;
}
for(long i = 0; i < cnt; i++)
c. pop_back();
}

char* testNane() { return "RenmoveBack"; }

};

tenpl at e<cl ass p, class Contai ner>

void neasureTime(Qp f, Container& c, |ong count){
string id(typeid(f).name());
bool Deque = id.find("deque") != string::npos;
bool List = id.find("list") !'= string::npos;
bool Vector id.find("vector") !=string::npos;
string cont Deque ? "deque" : List ? "list"

Vector? "vector" : "unknown";

cout << f.testName() << " for " << cont <<
/1 Standard C library CPU ticks:
clock t ticks = clock();
f(c, count); // Run the test
ticks = clock() - ticks;
cout << ticks << endl

}

t ypedef deque<Fi xedSi ze> DF
typedef |ist<FixedSi ze> LF
t ypedef vector<Fi xedSi ze> VF;

int main(int argc, char* argv[]) {
srand(tinme(0));
| ong count = 1000;
if(argc >= 2) count = atoi(argv[1]);
DF deq;
LF | st;
VF vec, vecres;
vecres.reserve(count); // Preallocate storage
nmeasur eTi me(| nsert Back<VF>(), vec, count);
nmeasur eTi me(| nsert Back<VF>(), vecres, count);
nmeasur eTi me(| nsert Back<DF>(), deq, count);
nmeasur eTi me(| nsert Back<LF>(), |st, count);
/1 Can't push _front() with a vector

/1" measureTi me(lnsertFront<VF>(), vec, count);

Chapter 15: Multiple Inheritance
196

nmeasur eTi me(| nsert Front <DF>(), deq, count);
nmeasur eTi me(I nsert Front<LF>(), |st, count);
nmeasur eTi me(| nsert M ddl e<VF>(), vec, count);
nmeasur eTi me(| nsert M ddl e<DF>(), deq, count);
nmeasur eTi me(| nsert M ddl e<LF>(), Ist, count);
nmeasur eTi me(RandomAccess<VF>(), vec, count);
nmeasur eTi me(RandomAccess<DF>(), deq, count);
/1 Can't operator[] with a list:

/1! measureTi ne(RandomAccess<LF>(), |st, count);
nmeasur eTi me(Traver sal <VF>(), vec, count);
nmeasur eTi me(Traver sal <DF>(), deq, count);
nmeasur eTi me(Traversal <LF>(), |st, count);
nmeasur eTi me(Swap<VF>(), vec, count);
nmeasur eTi me(Swap<DF>(), deq, count);
nmeasur eTi me(Swap<LF>(), |st, count);
nmeasur eTi me(RenoveM ddl e<VF>(), vec, count);
nmeasur eTi me(RenoveM ddl e<DF>(), deq, count);
nmeasur eTi me(RenoveM ddl e<LF>(), |st, count);
vec. resize(vec.size() * 10); // Make it bigger
nmeasur eTi me(RenoveBack<VF>(), vec, count);
neasur eTi me(RenoveBack<DF>(), deq, count);
nmeasur eTi me(RenoveBack<LF>(), |st, count);

Y I~

This example makes heavy use of templates to eliminate redundancy, save space, guarantee
identical code and improve clarity. Each test is represented by a class that istemplatized on
the container it will operate on. The test itself isinside the operator () which, in each case,
takes a reference to the container and a repeat count — this count is not always used exactly as
itis, but sometimesincreased or decreased to prevent the test from being too short or too long.
The repeat count isjust afactor, and al tests are compared using the same value.

Each test class also has a member function that returnsits name, so that it can easily be
printed. Y ou might think that this should be accomplished using run-time type identification,
but since the actual name of the class involves a template expansion, this turns out to be the
more direct approach.

The measureTime() function template takes as its first template argument the operation that
it's going to test —which isitself a class template sel ected from the group defined previously
in thelisting. The template argument Op will not only contain the name of the class, but also
(decorated into it) the type of the container it's working with. The RTTI typeid() operation
allows the name of the class to be extracted as a char*, which can then be used to create a
string called id. This string can be searched using string::find() to look for deque, list or
vector. The bool variable that corresponds to the matching string becomestrue, and thisis
used to properly initialize the string cont so the container name can be accurately printed,
along with the test name.

Chapter 15: Multiple Inheritance
197

Once the type of test and the container being tested has been printed out, the actual test is
quite simple. The Standard C library function clock() is used to capture the starting and
ending CPU ticks (thisis typically more fine-grained than trying to measure seconds). Since f
is an object of type Op, which isa class that has an operator (), theline:

| f(c, count):
is actually calling the operator () for the object f.

In main(), you can see that each different type of test is run on each type of container, except
for the containers that don’t support the particular operation being tested (these are
commented out).

When you run the program, you' [l get comparative performance numbers for your particular
compiler and your particular operating system and platform. Although thisis only intended to
give you afeel for the various performance features relative to the other sequences, it isnot a
bad way to get a quick-and-dirty idea of the behavior of your library, and also to compare one
library with another.

Set

The set produces a container that will accept only one of each thing you place in it; it also
sorts the elements (sorting isn't intrinsic to the conceptual definition of a set, but the STL set
storesits elementsin a balanced binary tree to provide rapid lookups, thus producing sorted
results when you traverseit). The first two examples in this chapter used sets.

Consider the problem of creating an index for a book. Y ou might like to start with all the
words in the book, but you only want one instance of each word and you want them sorted. Of
course, a set is perfect for this, and solves the problem effortlessly. However, there’ s also the
problem of punctuation and any other non-al pha characters, which must be stripped off to
generate proper words. One solution to this problem is to use the Standard C library function
strtok(), which produces tokens (in our case, words) given a set of delimitersto strip out:

/1: CO4:WbrdLi st.cpp

/1 Display a list of words used in a docunent
#include "../require. h"

#i ncl ude <string>

#i ncl ude <cstring>

#i ncl ude <set >

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

usi ng namespace std;

const char* delimters =
ANt OV S {[] - =& #H N

Chapter 15: Multiple Inheritance
198

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
set<string> wordlist;
string |ine;
whil e(getline(in, line)) {
/1 Capture individual words:
char* s = // Cast probably won’t crash:
strtok((char*)line.c_str(), delimters);
whi l e(s) {
/1 Automatic type conversion
wordlist.insert(s);
s = strtok(0, delimters);
}
}
/] CQutput results:
copy(wordlist.begin(), wordlist.end(),
ostream.iterator<string>(cout, "\n"));
Y I~

strtok() takes the starting address of a character buffer (the first argument) and looks for
delimiters (the second argument). It replaces the delimiter with a zero, and returns the address
of the beginning of the token. If you call it subsequent times with a first argument of zero it
will continue extracting tokens from the rest of the string until it finds the end. In this case,
the delimiters are those that delimit the keywords and identifiers of C++, so it extracts these
keywords and identifiers. Each word is turned into a string and placed into the wor dlist
vector, which eventually contains the whole file, broken up into words.

You don’t have to use a set just to get a sorted sequence. Y ou can use the sort() function
(along with a multitude of other functionsin the STL) on different STL containers. However,
it'slikely that set will be faster.

Eliminating strtok()

Some programmers consider strtok() to be the poorest design in the Standard C library
because it uses a static buffer to hold its data between function calls. This means:

1 You can't use strtok() in two places at the same time

2. You can't use strtok() in a multithreaded program

3. You can't use strtok() in alibrary that might be used in a multithreaded
program

4 strtok() modifies the input sequence, which can produce unexpected side
effects

Chapter 15: Multiple Inheritance
199

5. strtok() dependsonreadingin “lines’, which means you need a buffer big
enough for the longest line. This produces both wastefully-sized buffers,
and lines longer than the “longest” line. This can also introduce security
holes. (Notice that the buffer size problem was eliminated in WordList.cpp
by using string input, but this required a cast so that strtok() could modify
the data in the string — a dangerous approach for general-purpose
programming).

For all these reasons it seems like agood ideato find an aternative for strtok(). The
following example will use anistreambuf_iterator (introduced earlier) to move the
characters from one place (which happens to be an istream) to another (which happensto be
astring), depending on whether the Standard C library function isalpha() istrue:

/1: CO4:WbrdLi st2. cpp

/1 Elimnating strtok() fromWbrdlist.cpp
#include "../require. h"

#i ncl ude <string>

#i ncl ude <cstring>

#i ncl ude <set >

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i nclude <iterator>

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
i streanbuf iterator<char> p(in), end;
set<string> wordlist;
while (p !'= end) {
string word;
insert_iterator<string>
ii(word, word.begin());
/1 Find the first al pha character
whil e(!isal pha(*p) & p != end)
pt+
/1 Copy until the first non-al pha character
whil e (isal pha(*p) & p != end)
*Pi++ = *p++
if (word.size() !'= 0)
wordlist.insert(word);
}
/] CQutput results:
copy(wordlist.begin(), wordlist.end(),

Chapter 15: Multiple Inheritance
200

ostream.iterator<string>(cout, "\n"));
Y I~

This example was suggested by Nathan Myers, who invented theistreambuf_iterator and its
relatives. Thisiterator extracts information character-by-character from a stream. Although
theistreambuf_iterator template argument might suggest to you that you could extract, for
example, intsinstead of char, that’s not the case. The argument must be of some character
type—aregular char or awide character.

After thefileis open, anistreambuf_iterator called p is attached to the istream so characters
can be extracted from it. The set<string> called wordlist will be used to hold the resulting
words.

The while loop reads words until the end of the input streamis found. Thisis detected using
the default constructor for istreambuf_iterator which produces the past-the-end iterator
object end. Thus, if you want to test to make sure you're not at the end of the stream, you
simply say p !=end.

The second type of iterator that’'s used hereistheinsert_iterator, which creates an iterator
that knows how to insert objects into a container. Here, the “container” isthe string called
word which, for the purposes of insert_iterator, behaves like a container. The constructor for
insert_iterator requires the container and an iterator indicating where it should start inserting
the characters. You could also use aback_insert_iterator, which requires that the container
have a push_back() (string does).

After the while loop sets everything up, it begins by looking for the first alpha character,
incrementing start until that character is found. Then it copies characters from one iterator to
the other, stopping when a non-alpha character is found. Each word, assuming it is non-
empty, is added to wordlist.

StreamTokenizer:
amore flexible solution

The above program parses its input into strings of words containing only al pha characters, but
that's still a special case compared to the generality of strtok(). What we'd like now isan
actual replacement for strtok() so we're never tempted to use it. WordList2.cpp can be
modified to create a class called StreamT okenizer that delivers anew token asastring
whenever you call next(), according to the delimiters you give it upon construction (very
similar to strtok()):

/1: CO04: Streamlokeni zer. h

/1l C++ Repl acement for Standard C strtok()
#i f ndef STREAMIOKENI ZER H

#def i ne STREAMIOKENI ZER H

#i ncl ude <string>

#i ncl ude <i ostreanp

Chapter 15: Multiple Inheritance
201

#i ncl ude <iterator>

cl ass Streamlokeni zer {
typedef std::istreanbuf iterator<char> It;
It p, end;
std::string delimters;
bool isDelimter(char c) {

return
delimters.find(c) != std::string::npos;
}
public:
St reanifokeni zer (std: :istream& is,
std::string delim=" \t\n; ()\"<>:{}[]+- =& #"

", /1\\~10123456789") : p(is), end(lt()),
delimters(delin {}
std::string next(); // Get next token
1
#endi f STREAMIOKENI ZER H ///: ~
The default delimiters for the StreamT okenizer constructor extract words with only alpha
characters, as before, but now you can choose different delimiters to parse different tokens.
The implementation of next() looks similar to Wordlist2.cpp:

[]: CO4: StreanTokeni zer.cpp {G
#i ncl ude " StreaniTokeni zer. h"
usi ng nanmespace std;

string Streanifokenizer::next() {
string result;
if(p !'= end) {
insert_iterator<string>
ii(result, result.begin());
while(isDelimter(*p) & p != end)
p++;
while (lisDelimter(*p) & p != end)
¥+t = *p++
}
return result;
Y I~

he first non-delimiter is found, then characters are copied until a delimiter is found, and the
esulting string isreturned. Here's atest:

= -

/1: CO4: Tokeni zeTest. cpp
/1{L} StreaniTokeni zer

Chapter 15: Multiple Inheritance
202

/1l Test Streamlokeni zer

#i ncl ude " Streanmlokeni zer. h"
#include "../require. h"

#i ncl ude <i ostreane

#i ncl ude <fstreanp

#i ncl ude <set>

usi ng namespace std;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
St reanifokeni zer words(in);
set<string> wordlist;
string word;
whil e((word = words. next()).size() !'= 0)
wordlist.insert(word);
/1 Qutput results:
copy(wordlist.begin(), wordlist.end(),
ostream.iterator<string>(cout, "\n"));
Y I~

Now the tool is more reusable than before, but it’s still inflexible, because it can only work
with anistream. Thisisn't asbad asit first seems, since astring can be turned into an
istream viaan istringstream. But in the next section we'll come up with the most general,
reusabl e tokenizing tool, and this should give you afeeling of what “reusable” really means,
and the effort necessary to create truly reusable code.

A completely reusable tokenizer

Since the STL containers and algorithms all revolve around iterators, the most flexible
solution will itself be an iterator. Y ou could think of the Tokenlterator as an iterator that
wraps itself around any other iterator that can produce characters. Because it is designed as an
input iterator (the most primitive type of iterator) it can be used with any STL algorithm. Not
only isit auseful tool initself, the Tokenlterator is also agood example of how you can

design your own iterators.18

The Tokenlterator isdoubly flexible: first, you can choose the type of iterator that will
produce the char input. Second, instead of just saying what characters represent the
delimiters, Tokenlterator will use a predicate which is a function object whose oper ator ()
takes a char and decidesif it should be in the token or not. Although the two examples given

18 Thisis another example coached by Nathan Myers.

Chapter 15: Multiple Inheritance
203

here have a static concept of what characters belong in atoken, you could easily design your
own function object to change its state as the characters are read, producing a more
sophisticated parser.

The following header file contains the two basic predicates | salpha and Delimiters, along
with the template for Tokenlterator:

[1: CO4: Tokenlterator.h
#i f ndef TOKENI TERATOR_H
#defi ne TOKENI TERATOR H
#i ncl ude <string>

#i nclude <iterator>

#i ncl ude <al gorithne

#i ncl ude <cctype>

struct |sal pha {
bool operator()(char c) {
usi ng nanespace std; //[[For a conpiler bug]]
return isal pha(c);
}
}s

class Delimters {
std::string exclude;
public:
Delimters() {}
Delimters(const std::string& excl)
excl ude(excl) {}
bool operator()(char c) {
return exclude.find(c) == std::string::npos;
}
i

tenmplate <class Inputlter, class Pred = Isal pha>
cl ass Tokenlterator: public std::iterator<
std::input_iterator_tag,std::string,ptrdiff _t>{
Inputlter first;
Inputlter |ast;
std::string word;
Pred predicate;
publi c:
Tokenlterator (I nputlter begin, Inputlter end,
Pred pred = Pred())
first(begin), last(end), predicate(pred) {

Chapter 15: Multiple Inheritance
204

++*t hi s;
}
Tokenlterator() {} // End sentine
/1 Prefix increment:
Tokenl terat or & operator++() {
wor d. resi ze(0);
first = std::find_if(first, last, predicate);
while (first !=last & predicate(*first))
word += *first++;
return *this;
}
/1 Postfix increnent
class Proxy {
std::string word;
public:
Proxy(const std::string& w : word(w) {}
std::string operator*() { return word; }
b
Proxy operator++(int) {
Proxy d(word);
++*t hi s;
return d;
}
/1 Produce the actual val ue:
std::string operator*() const { return word; }
std::string* operator->() const {
return & operator*());
}

/1 Conpare iterators:
bool operator==(const Tokenlterator&) {

return word.size() == 0 & first == | ast;
}
bool operator!=(const Tokenlterator& rv) {
return ! (*this == rv);
}

b
#endi f // TOKENI TERATOR H ///: ~

Tokenlterator isinherited from the std::iterator template. It might appear that there's some
kind of functionality that comes with std::iterator, but it is purely away of tagging an
iterator so that a container that uses it knows what it's capable of. Here, you can see
input_iterator_tag as atemplate argument — this tells anyone who asks that a Tokenlterator
only has the capabilities of an input iterator, and cannot be used with algorithms requiring

Chapter 15: Multiple Inheritance
205

more sophisticated iterators. Apart from the tagging, std::iterator doesn’'t do anything else,
which means you must design all the other functionality in yourself.

Tokenlterator may look alittle strange at first, because the first constructor requires both a
“begin” and “end” iterator as arguments, along with the predicate. Remember that thisisa
“wrapper” iterator that has no idea of how to tell whether it's at the end of itsinput source, so
the ending iterator is necessary in the first constructor. The reason for the second (default)
constructor is that the STL algorithms (and any agorithms you write) need a Tokenl ter ator
sentinel to be the past-the-end value. Since all the information necessary to seeif the
Tokenlterator hasreached the end of itsinput is collected in the first constructor, this second
constructor creates a Tokenlterator that is merely used as a placeholder in algorithms.

The core of the behavior happensin operator ++. This erases the current value of word using
string::resize(), then finds the first character that satisfies the predicate (thus discovering the
beginning of the new token) using find_if() (from the STL algorithms, discussed in the
following chapter). The resulting iterator is assigned to fir st, thus moving fir st forward to the
beginning of the token. Then, aslong as the end of the input is not reached and the predicate
is satisfied, characters are copied into the word from the input. Finally, the Tokenlterator
object isreturned, and must be dereferenced to access the new token.

The postfix increment requires a proxy object to hold the value before the increment, so it can
be returned (see the operator overloading chapter for more details of this). Producing the
actual valueis a straightforward operator*. The only other functions that must be defined for
an output iterator are the oper ator== and oper ator ! = to indicate whether the Tokenlterator
has reached the end of itsinput. Y ou can see that the argument for oper ator==isignored — it
only cares about whether it has reached itsinternal last iterator. Notice that operator!=is
defined in terms of operator==.

A good test of Tokenlterator includes a number of different sources of input characters
including a streambuf_iterator, achar*, and adeque<char >::iterator. Finaly, the original
Wordlist.cpp problemis solved:

[1: CO4: TokenlteratorTest.cpp
#i ncl ude "Tokenlterator.h"
#include "../require. h"

#i ncl ude <fstreanr

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <deque>

#i ncl ude <set>

usi ng nanmespace std;

int main() {
i fstreamin("TokenlteratorTest.cpp");
assure(in, "TokenlteratorTest.cpp");
ostream.iterator<string> out(cout, "\n");
typedef istreanbuf _iterator<char> Isblt;

Chapter 15: Multiple Inheritance
206

I sblt begin(in), isbEnd;
Delimters
delimters(" \t\n~ ()\"<>:{}[]+-=&#. ,/\\");
Tokenlterator<lshlt, Delimters>
wordl ter(begin, isbEnd, delimters),
end;
vector<string> wordlist;
copy(wordlter, end, back inserter(wordlist));
/1 Qutput results:
copy(wordlist.begin(), wordlist.end(), out);
a0 1} A 5 = e T T T "
/1 Use a char array as the source:
char* cp =
"typedef std::istreanbuf iterator<char> It";
Tokenlterator<char*, Delimters>
charlter(cp, cp + strlen(cp), delimters),
end2;
vector<string> wordlist2
copy(charlter, end2, back_ inserter(wordlist2));
copy(wordlist2. begin(), wordlist2.end(), out);
a0 1} A 5 = e T T T "
/1 Use a deque<char> as the source:
i fstreamin2("TokenlteratorTest.cpp");
deque<char > dc;
copy(lsblt(in2), Isblt(), back_ inserter(dc));
Tokenl t er at or <deque<char>::iterator,Delimters>
dclter(dc. begin(), dc.end(), delinmters),
end3;
vector<string> wordlist3
copy(dclter, end3, back inserter(wordlist3));
copy(wordlist3.begin(), wordlist3.end(), out);
a0 1} A 5 = e T T T "
/1 Reproduce the Wordlist.cpp exanpl e:
i fstreamin3("TokenlteratorTest.cpp");
Tokenlterator<lishlt, Delimters>
wordlter2(lsblt(in3), isbEnd, delimters);
set<string> wordli st4;
whi l e(wordliter2 != end)
wordlist4.insert(*wordlter2++);
copy(wordlist4. begin(), wordlist4.end(), out);
Y I~

Chapter 15: Multiple Inheritance
207

When using an istreambuf _iterator, you create one to attach to the istream object, and one
with the default constructor as the past-the-end marker. Both of these are used to create the
Tokenlterator that will actually produce the tokens; the default constructor produces the faux
Tokenlterator past-the-end sentinel (thisisjust a placeholder, and as mentioned previoudly is
actually ignored). The Tokenlterator produces stringsthat are inserted into a container
which must, naturally, be a container of string — here avector<string> isused in all cases
except the last (you could also concatenate the results onto a string). Other than that, a
Tokenlterator works like any other input iterator.

stack

The stack, along with the queue and priority_queue, are classified as adapters, which means
they are implemented using one of the basic sequence containers: vector, list or deque. This,
in my opinion, is an unfortunate case of confusing what something does with the details of its
underlying implementation — the fact that these are called “adapters’ is of primary value only
to the creator of the library. When you use them, you generally don't care that they're
adapters, but instead that they solve your problem. Admittedly there are times when it’s useful
to know that you can choose an alternate implementation or build an adapter from an existing
container object, but that’s generally one level removed from the adapter’s behavior. So,
while you may see it emphasized elsewhere that a particular container is an adapter, | shall
only point out that fact when it’s useful. Note that each type of adapter has a default container
that it’s built upon, and this default is the most sensible implementation, so in most cases you
won't need to concern yourself with the underlying implementation.

The following example shows stack<string> implemented in the three possible ways: the
default (which uses deque), with avector and with alist:

/1: CO4: Stackl. cpp

// Denponstrates the STL stack
#include "../require. h"

#i ncl ude <i ostreanr

#i ncl ude <fstreanp

#i ncl ude <stack>

#include <list>

#i ncl ude <vector>

#i ncl ude <string>

usi ng nanmespace std;

/1 Default: deque<string>:

t ypedef stack<string> Stackl;

/1 Use a vector<string>:

typedef stack<string, vector<string> > Stack2;
/1 Use a list<string>:

typedef stack<string, list<string> > Stacks3;

Chapter 15: Multiple Inheritance
208

int main(int argc, char* argv[]) {

requireArgs(argc, 1); // File nanme is argunent
ifstreamin(argv[1]);
assure(in, argv[1]);
Stackl textlines; // Try the different versions
/!l Read file and store lines in the stack
string |ine;
whil e(getline(in, line))

textlines.push(line + "\n");
/1 Print lines fromthe stack and pop them
while(!textlines.empty()) {

cout << textlines.top();

textlines. pop();

}
Y 11~

Thetop() and pop() operationswill probably seem non-intuitive if you've used other stack
classes. When you call pop() it returns void rather than the top element that you might have
expected. If you want the top element, you get areference to it with top(). It turns out thisis
more efficient, since atraditional pop() would have to return a value rather than areference,
and thus invoke the copy-constructor. When you're using astack (or apriority_queue,
described later) you can efficiently refer to top() as many times as you want, then discard the
top element explicitly using pop() (perhapsif some other term than the familiar “pop” had
been used, this would have been a bit clearer).

The stack template has a very simple interface, essentially the member functions you see
above. It doesn’t have sophisticated forms of initialization or access, but if you need that you
can use the underlying container that the stack isimplemented upon. For example, suppose
you have afunction that expects a stack interface but in the rest of your program you need the
objects stored in alist. The following program stores each line of afile along with the leading
number of spacesin that line (you might imagine it as a starting point for performing some
kinds of source-code reformatting):

[1: CO4: Stack2. cpp

/1 Converting a list to a stack
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <stack>

#i nclude <list>

#i ncl ude <string>

usi ng nanmespace std;

/1 Expects a stack:

Chapter 15: Multiple Inheritance
209

t enpl at e<cl ass St k>
void stackQut(Stk& s, ostream& os = cout) {
while(!s.empty()) {
0s << s.top() << "\n";
s. pop();
}
}

class Line {
string line; // Wthout |eading spaces
int |spaces; // Nunber of |eading spaces

public:
Line(string s) : line(s) {
| spaces = line.find first_not _of (' ");
i f(l spaces == string::npos)
| spaces = 0;
line = line.substr(lspaces);
}

friend ostreamk
operat or<<(ostream& os, const Line& |I) {

for(int i =0; i < |.l|lspaces; i++)
0s << ' ',
return os << |.line;

}

// O her functions here..

};

int main(int argc, char* argv[]) {
requireArgs(argc, 1); // File nanme is argunent
ifstreamin(argv[1]);
assure(in, argv[1]);
i st<Line> |lines;
/!l Read file and store lines in the list:
string s;
whil e(getline(in, s))

i nes. push_front(s);

/1 Turn the list into a stack for printing:
stack<Li ne, list<Line> > stk(lines);
stackQut (stk);

Y I~

The function that requires the stack interface just sends each top() object to an ostream and
then removes it by calling pop(). The Line class determines the number of leading spaces,
then stores the contents of the line without the leading spaces. The ostream operator << re-

Chapter 15: Multiple Inheritance
210

inserts the leading spaces so the line prints properly, but you can easily change the number of
spaces by changing the value of Ispaces (the member functionsto do this are not shown here).

Inmain(), the input fileisread into alist<Line>, then a stack iswrapped around thislist so
it can be sent to stackOut().

Y ou cannot iterate through a stack; this emphasizes that you only want to perform stack
operations when you creste a stack. Y ou can get equivalent “stack” functionality using a
vector and its back(), push_back(') and pop_back() methods, and then you have al the
additional functionality of the vector. Stack1.cpp can be rewritten to show this:

/1: CO4: Stack3. cpp

/1 Using a vector as a stack; nodified Stackl.cpp
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <vector>

#i ncl ude <string>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argec, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
vector<string> textlines;
string |line;
whil e(getline(in, line))
textlines. push_back(line + "\n");
while(!textlines.empty()) {
cout << textlines. back();
textlines. pop_back();

}
Y 110~

You'll seethis produces the same output as Stack1.cpp, but you can now perform vector
operations as well. Of course, list has the additional ability to push things at the front, but it's
generally less efficient than using push_back() with vector. (In addition, dequeis usually
more efficient than list for pushing things at the front).

queue

The queue isarestricted form of a deque — you can only enter elements at one end, and pull
them off the other end. Functionally, you could use a deque anywhere you need a queue, and
you would then also have the additional functionality of the deque. The only reason you need

Chapter 15: Multiple Inheritance
211

to use a queue rather than a deque, then, isif you want to emphasize that you will only be
performing queue-like behavior.

The queue is an adapter class like stack, in that it is built on top of another sequence
container. As you might guess, the ideal implementation for aqueue isadeque, and that is
the default template argument for the queue; you'll rarely need a different implementation.

Queues are often used when modeling systems where some elements of the system are
waiting to be served by other elementsin the system. A classic example of thisisthe “bank-
teller problem,” where you have customers arriving at random intervals, getting into aline,
and then being served by a set of tellers. Since the customers arrive randomly and each take a
random amount of time to be served, there’'s no way to deterministically know how long the
line will be at any time. However, it's possible to simulate the situation and see what happens.

A problem in performing this simulation is the fact that, in effect, each customer and teller
should be run by a separate process. What we' d like is a multithreaded environment, then
each customer or teller would have their own thread. However, Standard C++ has no model
for multithreading so there is no standard solution to this problem. On the other hand, with a
little adjustment to the code it’s possible to simulate enough multithreading to provide a
satisfactory solution to our problem.

Multithreading means you have multiple threads of control running at once, in the same
address space (this differs from multitasking, where you have different processes each running
in their own address space). Thetrick isthat you have fewer CPUs than you do threads (and
very often only one CPU) so to give theillusion that each thread has its own CPU thereisa
time-slicing mechanism that says “ OK, current thread — you’ ve had enough time. I’'m going to
stop you and go give time to some other thread.” This automatic stopping and starting of
threadsis called pre-emptive and it means you don’'t need to manage the threading process at
all.

An alternative approach is for each thread to voluntarily yield the CPU to the scheduler,
which then goes and finds another thread that needs running. This is easier to synthesize, but
it still requires a method of “swapping” out one thread and swapping in another (this usually
involves saving the stack frame and using the standard C library functions setjmp() and
longjmp(); see my articlein the (XX) issue of Computer Language magazine for an
example). So instead, we'll build the time-dlicing into the classes in the system. In this case, it
will be thetellers that represent the “threads,” (the customers will be passive) so each teller
will have an infinite-looping run() method that will execute for a certain number of “time
units,” and then simply return. By using the ordinary return mechanism, we eliminate the need
for any swapping. The resulting program, although small, provides a remarkably reasonable
simulation:

/1: CO4:BankTel l er.cpp

/1 Using a queue and sinmulated nultithreading
/1 To nodel a bank teller system

#i ncl ude <i ostreanp

#i ncl ude <queue>

Chapter 15: Multiple Inheritance
212

#i ncl ude <list>

#i ncl ude <cstdlib>
#i ncl ude <cti nme>
usi ng namespace std;

cl ass Customer ({
int serviceTine;

public:
Custoner () : serviceTine(0) {}
Custonmer(int tm : serviceTinme(tm {}
int getTime() { return serviceTine; }
void setTinme(int newtine) {

serviceTime = newi ne;

}

friend ostreamk

oper at or <<(ostrean& os, const Custoneré& c) {
return os << '[' << c.serviceTine << ']";

}

}s

class Teller {
gueue<Cust oner >& cust oners;
Cust oner current;
static const int slice = 5;
int ttine; // Time left in slice
bool busy; // Is teller serving a custoner?
public:
Tel | er (queue<Cust orrer >& cq)
custonmers(cq), ttime(0), busy(false) {}
Tel | er & operator=(const Teller& rv) {
customers = rv.custoners;
current = rv.current;
ttime = rv.ttineg;
busy = rv. busy;
return *this;
}
bool isBusy() { return busy; }
void run(bool recursion = false) {
i f(!recursion)
ttime = slice;
int servtine = current.getTine();
if(servtime > ttime) {
servtine -= ttine;

Chapter 15: Multiple Inheritance
213

current.set Ti me(servtinme);
busy = true; // Still working on current
return;
}
if(servtime < ttime) {
ttime -= servtinme;
i f(!customers.empty()) {
current = custoners.front();
custoners. pop(); // Renove it
busy = true;
run(true); // Recurse
}
return;
}
if(servtime == ttinme) {
/1 Done with current, set to enpty:
current = Custoner(0);
busy = fal se;
return; // No nmore time in this slice
}
}
b

/1 Inherit to access protected i nplenmentation
class CustomerQ : public queue<Custoner> {
public:
friend ostreamk
oper at or <<(ostream& os, const CustonerQ& cd) {
copy(cd. c. begin(), cd.c.end(),
ostream.iterator<Custoner>(os, ""));
return os;
}
b

int main() {
Cust oner Q cust omrer s;
list<Teller> tellers;
typedef list<Teller>::iterator Telllt;
tell ers. push_back(Tell er(custoners));
srand(tinme(0)); // Seed random nunber generator
while(true) {
/1 Add a random nunber of customers to the
/1 queue, with random service tines:

Chapter 15: Multiple Inheritance
214

for(int i =0; i <rand() %5; i++)
custoners. push(Custoner(rand() %15 + 1));
cout << '{' << tellers.size() <<'}'
<< customers << endl
/1 Have the tellers service the queue:
for(Telllt i = tellers.begin();
i 1= tellers.end(); i++)
(*i).run();
cout << '{' << tellers.size() <<'}'
<< customers << endl
/1 1f line is too long, add another teller
i f(custonmers.size() / tellers.size() > 2)
tell ers. push_back(Tell er(custoners));
/1 1f line is short enough, renove a teller
if(tellers.size() > 1 &&
custoners.size() / tellers.size() < 2)
for(Telllt i = tellers.begin();
i 1= tellers.end(); i++)
if(l(*i).isBusy()) {
tellers.erase(i);
break; // Qut of for |oop
}
}
Yy I~
Each customer requires a certain amount of service time, which is the number of time units
that ateller must spend on the customer in order to serve that customer’s needs. Of course, the
amount of service time will be different for each customer, and will be determined randomly.

In addition, you won't know how many customerswill be arriving in each interval, so this
will also be determined randomly.

The Customer objects are kept in a queue<Customer >, and each Teller object keeps a
reference to that queue. When a Teller object is finished with its current Customer object,
that Teller will get another Customer from the queue and begin working on the new
Customer, reducing the Customer’s service time during each time dice that the Teller is
alotted. All thislogic isintherun() member function, which is basically athree-way if
statement based on whether the amount of time necessary to serve the customer isless than,
greater than or equal to the amount of time left in the teller’s current time slice. Notice that if
the Teller has more time after finishing with a Customer, it gets a new customer and recurses
into itself.

Just as with a stack, when you use aqueue, it's only aqueue and doesn’t have any of the
other functionality of the basic sequence containers. Thisincludes the ability to get an iterator
in order to step through the stack. However, the underlying sequence container (that the
queue is built upon) is held as a protected member inside the queue, and the identifier for

Chapter 15: Multiple Inheritance
215

this member is specified in the C++ Standard as ‘¢’, which means that you can inherit from
queue in order to access the underlying implementation. The Customer Q class does exactly
that, for the sole purpose of defining an ostream oper ator << that can iterate through the
gueue and print out its members.

The driver for the simulation is the infinite while loop in main(). At the beginning of each
pass through the loop, a random number of customers are added, with random service times.
Both the number of tellers and the queue contents are displayed so you can see the state of the
system. After running each teller, the display is repeated. At this point, the system adapts by
comparing the number of customers and the number of tellers; if the line istoo long another
teller isadded and if it is short enough ateller can be removed. It isin this adaptation section
of the program that you can experiment with policies regarding the optimal addition and
removal of tellers. If thisisthe only section that you' re modifying, you may want to
encapsulate policies inside of different objects.

Priority queues

When you push(') an object onto apriority_queue, that object is sorted into the queue
according to afunction or function object (you can allow the default |ess template to supply
this, or provide one of your own). The priority_queue ensures that when you look at the

top() element it will be the one with the highest priority. When you' re done with it, you call
pop() to remove it and bring the next one into place. Thus, the priority_queue has nearly the
same interface as a stack, but it behaves differently.

Like stack and queue, priority_gqueueis an adapter which is built on top of one of the basic
sequences — the default is vector .

It'strivial to make apriority_queue that works with ints:

[1: CO4:PriorityQueuel. cpp
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <cstdlib>

#i ncl ude <cti me>

usi ng nanmespace std;

int main() {
priority_queue<int> pqi
srand(time(0)); // Seed random number generat or
for(int i =0; i < 100; i++)
pgi . push(rand() % 25);
whi le(!pqi.enpty()) {
cout << pqgi.top() <<'
pai . pop();

}

Chapter 15: Multiple Inheritance
216

| Y oI~

This pushes into the priority_queue 100 random values from O to 24. When you run this
program you'll see that duplicates are allowed, and the highest values appear first. To show
how you can change the ordering by providing your own function or function object, the
following program gives lower-valued numbers the highest priority:

[1: CO4:PriorityQueue2. cpp
/1 Changing the priority
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <cstdlib>

#i ncl ude <cti ne>

usi ng nanmespace std;

struct Reverse {
bool operator()(int x, int y) {
returny < x;
}
i

int main() {
priority_queue<int, vector<int> Reverse> pqi
/1 Could al so say:
/] priority_queue<int, vector<int>,
/1 greater<int> > pqi;
srand(tinme(0));
for(int i =0; i < 100; i++)
pgi . push(rand() % 25);
whi le(!pqi.enpty()) {
cout << pgi.top() << ' ',
pai . pop();
}
Y I~

Although you can easily use the Standard Library greater template to produce the predicate, |
went to the trouble of creating Rever se so you could see how to do it in case you have a more
complex scheme for ordering your objects.

If you look at the description for priority_queue, you see that the constructor can be handed a
“Compare” object, as shown above. If you don’t use your own “Compare” object, the default
template behavior is the less template function. Y ou might think (as | did) that it would make
sense to leave the template instantiation as priority_queue<int>, thus using the default
template arguments of vector <int> and less<int>. Then you could inherit a new class from
less<int>, redefine oper ator () and hand an object of that type to the priority_queue

Chapter 15: Multiple Inheritance
217

constructor. | tried this, and got it to compile, but the resulting program produced the same old
less<int> behavior. The answer liesin the less< > template:

tenpl ate <class T>
struct less : binary function<T, T, bool> {
/1 Other stuff...
bool operator()(const T& x, const T& y) const {
return x <vy;
}
b

The operator () isnot virtual, so even though the constructor takes your subclass of
less<int> by reference (thus it doesn’t slice it down to a plain less<int>), when operator () is
called, it is the base-class version that is used. Whileit is generally reasonable to expect
ordinary classes to behave polymorphically, you cannot make this assumption when using the
STL.

Of course, apriority_queue of int istrivial. A more interesting problem isato-do list, where
each object contains a string and a primary and secondary priority value:

[1: CO4:PriorityQueue3. cpp

/1 A nore conplex use of priority queue
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <string>

usi ng namespace std;

cl ass ToDoltem {
char primary;
i nt secondary;
string item
public:
ToDoltem(string td, char pri = A, int sec =1)
item(td), primary(pri), secondary(sec) {}
friend bool operator<(
const ToDoltem& x, const ToDoltem& y) {
if(x.primary > y.prinmary)
return true;
if(x.primary == y.prinary)
i f(x.secondary > y.secondary)
return true;
return false;
}
friend ostreamk
oper at or<<(ostream& os, const ToDoltem& td) {

Chapter 15: Multiple Inheritance
218

return os << td.primary << td.secondary
<< ": " << td.item
}

}s

int main() {

priority _queue<ToDoltemnm> toDoli st;
t oDoLi st. push(ToDoltem("Enpty trash", 'C, 4));
t oDoLi st. push(ToDol tem(" Feed dog", 'A, 2));
t oDoLi st. push(ToDol tem("Feed bird", 'B", 7));
t oDoLi st. push(ToDol tem("Mow | awn", 'C, 3));
t oDoLi st. push(ToDol tem("Water lawn", 'A, 1));
t oDoLi st. push(ToDol tem("Feed cat", 'B, 1));
whi | e(!toDoList.enmpty()) {

cout << toDoList.top() << endl;

t oDoLi st. pop();

}
Y 11~

ToDoltem’s operator < must be a non-member function for it to work with less< >. Other
than that, everything happens automatically. The output is:

Al: Water | awn
A2: Feed dog
Bl: Feed cat
B7: Feed bird
C3: Mow | awn
C4A: Enpty trash

Note that you cannot iterate through apriority_queue. However, it is possible to emulate the
behavior of apriority_queue using avector, thus allowing you access to that vector. You
can do this by looking at the implementation of priority_queue, which uses make_heap(),
push_heap() and pop_heap() (they are the soul of the priority_queue; in fact you could say
that the heap isthe priority queue and priority_queueisjust awrapper around it). Thisturns
out to be reasonably straightforward, but you might think that a shortcut is possible. Since the
container used by priority_queueis protected (and has the identifier, according to the
Standard C++ specification, named c¢) you can inherit a new class which provides access to
the underlying implementation:

[1: CO4:PriorityQueue4d. cpp

/1 Mani pul ating the underlying inplementation
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <cstdlib>

#i ncl ude <cti ne>

Chapter 15: Multiple Inheritance
219

usi ng namespace std;

class PQ : public priority_queue<int> {
public:
vector<int>& inmpl () { return c; }

b
int main() {
PQ pqi;
srand(time(0));
for(int i = 0; i < 100; i++)

pqi . push(rand() % 25);
copy(pqi . inpl().begin(), pqi.inpl().end(),
ostream.iterator<int>(cout, " "));
cout << endl;
whi le(!pai.emty()) {
cout << pqgi.top() << ' ';

pgi . pop();

Y 11~

However, if you run this program you'll discover that the vector doesn’t contain the itemsin
the descending order that you get when you call pop(), the order that you want from the
priority queue. It would seem that if you want to create a vector that isa priority queue, you
have to do it by hand, like this:

[1: CO4:PriorityQueueb. cpp

/1 Building your own priority queue
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <cstdlib>

#i ncl ude <cti ne>

usi ng nanmespace std;

templ at e<cl ass T, class Compare>
class PQV : public vector<T> {
Conpar e conp;
publi c:
PQV(Compare cnp = Conpare()) : conp(cnmp) {
make heap(begin(), end(), conp);
}

const T& top() { return front(); }
voi d push(const T& x) {
push_back(x);

Chapter 15: Multiple Inheritance
220

push_heap(begin(), end(), conp);
}
voi d pop() {
pop_heap(begi n(), end(), conp);
pop_back();
}
}s

int main() {
PQV<int, |ess<int> > pqi
srand(time(0));
for(int i =0; i < 100; i++)
pgi . push(rand() % 25);
copy(pqi.begin(), pqgi.end(),
ostream.iterator<int>(cout, " "));
cout << endl
whi l'e(!pgi.enmpty()) {
cout << pgi.top() << ' ';
pai . pop();
}
YL~

But this program behaves in the same way as the previous one! What you are seeing in the
underlying vector is called a heap. This heap represents the tree of the priority queue (stored
in the linear structure of the vector), but when you iterate through it you do not get a linear
priority-queue order. Y ou might think that you can simply call sort_heap(), but that only
works once, and then you don’t have a heap anymore, but instead a sorted list. This means
that to go back to using it as a heap the user must remember to call make_heap() first. This
can be encapsulated into your custom priority queue:

[1: CO4:PriorityQueueb. cpp
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

usi ng namespace std;

tenpl at e<cl ass T, class Compare>
class PQV : public vector<T> {
Conpar e conp;
bool sorted;
voi d assureHeap() {
if(sorted) {

Chapter 15: Multiple Inheritance
221

/1 Turn it back into a heap
make heap(begin(), end(), conp);
sorted = fal se
}
}
public:

PQV(Conpare cnp = Conpare()) : conp(cnmp) {
make heap(begin(), end(), conp);
sorted = fal se

}

const T& top() {
assur eHeap();
return front();

}

voi d push(const T& x) {
assur eHeap() ;
/1 Put it at the end:
push_back(x);
/1 Re-adjust the heap
push_heap(begin(), end(), conp);

}
voi d pop() {
assur eHeap() ;
/1 Move the top elenment to the |ast position
pop_heap(begi n(), end(), conp);
/1 Renpve that elenment:
pop_back() ;
}
voi d sort() {
if(!sorted) {
sort _heap(begin(), end(), conp);
reverse(begin(), end());
sorted = true;
}
}
b

int main() {
PQV<int, |ess<int> > pqi
srand(time(0));
for(int i =0; i < 100; i++) {
pgi . push(rand() % 25);
copy(pqi.begin(), pqgi.end(),

Chapter 15: Multiple Inheritance
222

ostreamiterator<int>(cout, " "));

cout << "\n----- \n";
}
pgi . sort();
copy(pqi . begin(), pqi.end(),
ostream.iterator<int>(cout, " "));
cout << "\n----- \n";

while(!pgi.empty()) {
cout << pqgi.top() << ' ';
} pgi . pop();
Y I~

If sorted istrue, then the vector is not organized as a heap, but instead as a sorted sequence.
assureHeap() guarantees that it's put back into heap form before performing any heap
operations on it.

Thefirst for loop in main(') now has the additional quality that it displaysthe heap asit’'s
being built.

The only drawback to this solution is that the user must remember to call sort() before
viewing it as a sorted sequence (although one could conceivably override all the methods that
produce iterators so that they guarantee sorting). Another solution isto build a priority queue
that is not avector, but will build you avector whenever you want one;

/1: CO4:PriorityQueue7.cpp

/1 A priority queue that will hand you a vector
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

usi ng namespace std;

tenpl at e<cl ass T, class Compare>
class PQV {
vector<T> v;
Conpar e conp;
public:
/1 Don't need to call make_heap(); it's enpty:
PQV(Conpare cnp = Conpare()) : conp(cnmp) {}
voi d push(const T& x) {
/1 Put it at the end:
v. push_back(x);
/1l Re-adjust the heap:

Chapter 15: Multiple Inheritance
223

push_heap(v. begin(), v.end(), conp);
}
voi d pop() {
/1 Move the top elenment to the |ast position
pop_heap(v. begin(), v.end(), conp);
/1 Renpve that elenment:
V. pop_back();
}
const T& top() { return v.front(); }
bool enpty() const { return v.enpty(); }
int size() const { return v.size(); }
t ypedef vector<T> TVec;
TVec vector() {
TVec r(v.begin(), v.end());
/1 1t’s already a heap
sort _heap(r.begin(), r.end(), conp);
/1 Put it into priority-queue order
reverse(r.begin(), r.end());
return r;

}
}s

int main() {
PQV<i nt, |ess<int> > pqi;
srand(tinme(0));
for(int i = 0; i < 100; i++)
pgi . push(rand() % 25);
const vector<int>& v = pgi.vector();
copy(v. begin(), v.end(),
ostreamiterator<int>(cout, " "));
cout << "\nN----------- \n":
whi I e(!pgi.empty()) {
cout << pgi.top() << ' ';
pai . pop() ;
}
Y oI~

PQV follows the same form asthe STL’s priority_queue, but has the additional member
vector (), which creates a new vector that’s a copy of the onein PQV (which meansthat it's
already a heap), then sortsit (thusit leave’'s PQV’ s vector untouched), then reverses the order
so that traversing the new vector produces the same effect as popping the elements from the
priority queue.

Chapter 15: Multiple Inheritance
224

Y ou may observe that the approach of inheriting from priority_queue used in
PriorityQueued.cpp could be used with the above technique to produce more succinct code:

/1: CO4:PriorityQueue8. cpp

/1 A nore conpact version of PriorityQueue7.cpp
#i ncl ude <i ostreanp

#i ncl ude <queue>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

usi ng namespace std;

t enpl at e<cl ass T>
class PQV : public priority queue<T> {
public:
t ypedef vector<T> TVec;
TVec vector() {
TVec r(c.begin(), c.end());
/1 ¢ is already a heap
sort _heap(r.begin(), r.end(), conp);
/1 Put it into priority-queue order
reverse(r.begin(), r.end());
return r;
}
b

int main() {
PQV<i nt > pq|,
srand(tinme(0));
for(int i = 0; i < 100; i++)
pai . push(rand() % 25);
const vector<int>& v = pgi.vector();
copy(v. begin(), v.end(),
ostreamiterator<int>(cout, " "));
cout << "\nN----------- \n":
whi | (! pgi.enpty()) {
cout << pgi.top() << ' ';
pqi . pop();
}
Y I~

The brevity of this solution makesit the simplest and most desirable, plusit’s guaranteed that
the user will not have avector in the unsorted state. The only potentia problem isthat the

Chapter 15: Multiple Inheritance
225

vector () member function returns the vector <T > by value, which might cause some
overhead issues with complex values of the parameter type T.

Holding bits

Most of my computer education was in hardware-level design and programming, and | spent
my first few years doing embedded systems devel opment. Because C was a language that
purported to be “close to the hardware,” | have always found it dismaying that there was no
native binary representation for numbers. Decimal, of course, and hexadecimal (tolerable only
because it’s easier to group the bitsin your mind), but octal? Ugh. Whenever you read specs
for chips you're trying to program, they don’t describe the chip registersin octal, or even
hexadecimal — they use binary. And yet C won't let you say 0b0101101, which is the obvious
solution for alanguage close to the hardware.

Although there's till no native binary representation in C++, things have improved with the
addition of two classes: bitset and vector <bool>, both of which are designed to manipulate a
group of on-off values. The primary differences between these types are;

1. Thebitset holds afixed number of bits. Y ou establish the quantity of bitsin the bitset
template argument. The vector <bool> can, like aregular vector, expand dynamically to
hold any number of bool values.

2. Thebitset isexplicitly designed for performance when manipulating bits, and not asa
“regular” container. As such, it has no iterators and it's most storage-efficient when it
contains an integral number of long values. The vector <bool>, on the other hand, isa
specialization of avector, and so has all the operations of a normal vector — the
specialization isjust designed to be space-efficient for bool.

Thereisno trivial conversion between abitset and a vector <bool>, which implies that the
two are for very different purposes.

bitset<n>

The template for bitset accepts an integral template argument which is the number of bitsto
represent. Thus, bitset<10> is a different type than bitset<20>, and you cannot perform
comparisons, assignments, etc. between the two.

A bitset provides virtually any bit operation that you could ask for, in avery efficient form.
However, each bitset is made up of anintegral number of longs (typically 32 bits), so even
though it uses no more space than it needs, it always uses at least the size of along. This
means you' |l use space most efficiently if you increase the size of your bitsetsin chunks of
the number of bitsin along. In addition, the only conversion from a bitset to a numerica
valueisto an unsigned long, which meansthat 32 bits (if your long isthetypical size) isthe
most flexible form of abitset.

Chapter 15: Multiple Inheritance
226

The following example tests ailmost all the functionality of the bitset (the missing operations
are redundant or trivial). You'll see the description of each of the bitset outputs to the right of
the output so that the bits all line up and you can compare them to the source values. If you
till don’t understand bitwise operations, running this program should help.

[1: CO4:BitSet.cpp

/1 Exercising the bitset class
#i ncl ude <i ostreanp

#i ncl ude <bitset>

#i ncl ude <cstdlib>

#i ncl ude <cti me>
#include <climts>

#i ncl ude <string>
usi ng nanmespace std;
const int sz = 32;
typedef bitset<sz> BS;

tenpl ate<i nt bits>
bitset<bits> randBitset () ({
bitset<bits> r(rand());

for(int i =0; i <bits/16 - 1; i++) {
r <<= 16;
/1 "OR' together with a new |lower 16 bits:
r |= bitset<bits>(rand());

}

return r;

}

int main() {
srand(tinme(0));
cout << "sjzeof (bitset<l16>) ="
<< sij zeof (bitset<16>) << endl
cout << "sijzeof (bitset<32>) ="
<< sij zeof (bitset<32>) << endl
cout << "sijzeof (bitset<48>) ="
<< sij zeof (bitset <48>) << endl
cout << "sijzeof (bitset<64>) ="
<< sij zeof (bitset <64>) << endl
cout << "sijzeof (bitset<65>) ="
<< sij zeof (bitset <65>) << endl
BS a(randBitset<sz>()), b(randBitset<sz>());
/1 Converting froma bitset:
unsi gned long ul = a.to_ulong();
string s = b.to_string();

Chapter 15: Multiple Inheritance
227

/1 Converting a string to a bitset:
char* chits = "111011010110111";
cout << "char* chits = " << chits <<endl;
cout << BS(chits) << " [BS(chits)]" << endl;
cout << BS(chits, 2)

<< " [BS(chits, 2)]" << endl;
cout << BS(chits, 2, 11)

<< " [BS(chits, 2, 11)]" << endl;
cout << a << " [a]" << endl;
cout << b << " [b]"<< endl;
/1 Bitw se AND:
cout << (a & b) << " [a & b]" << endl;
cout << (BS(a) & b) << " [a &= b]" << endl;
/] Bitw se OR
cout << (a | b) << " [a | b]" << endl;
cout << (BS(a) |=b) << " [a |= b]" << endl;
/1 Exclusive OR
cout << (a ™ b) << " [a ™ b]" << endl;
cout << (BS(a) "= b) << " [a ™= b]" << endl;
cout << a << " [a]" << endl; // For reference
/1 Logical left shift (fill with zeros):
cout << (BS(a) <<= sz/?2)

<< " [a <<= (sz/2)]" << endl;
cout << (a << sz/2) << endl;
cout << a << " [a]" << endl; // For reference
/1 Logical right shift (fill with zeros):
cout << (BS(a) >>= sz/?2)

<< " [a >>= (sz/2)]" << endl;
cout << (a >> sz/2) << endl;
cout << a << " [a]" << endl; // For reference
cout << BS(a).set() << " [a.set()]" << endl;
for(int i =0; i < sz; i++4)

if(la.test(i)) {

cout << BS(a).set(i)
<< " Ja.set(" << i <<")]" << endl;
break; // Just do one exanple of this

}
cout << BS(a).reset() << " [a.reset()]"<< endl;
for(int j =0; j < sz; j++)

if(a.test(j)) {
cout << BS(a).reset(j)
<< " Ja.reset(" << j <<")]" << endl;
break; // Just do one exanple of this

Chapter 15: Multiple Inheritance
228

}
cout << BS(a).flip() << " [a.flip()]" << endl;

cout << ~a << " [~a]" << endl
cout << a << " [a]" << endl; // For reference
cout << BS(a).flip(l) << " [a.flip(l)]"<< endl;

BS c;
cout << ¢ << " [c]" << endl;
cout << "c.count() = " << c.count() << endl;
cout << "c.any() ="

<< (c.any() ? "true" : "false") << endl;
cout << "c.none() ="

<< (c.none() ? "true" : "false") << endl;

c[1].flip(); c[2].flip();
cout << ¢ << " [c]" << endl;

cout << "c.count() = " << c.count() << endl
cout << "c.any() ="

<< (c.any() ? "true" : "false") << endl
cout << "c.none() ="

<< (c.none() ? "true" : "false") << endl
/1 Array indexing operations:
c.reset();

for(int k = 0; k < c.size(); k++)
if(k %2 == 0)
clkl.flip();
cout << ¢ << " [c]" << endl;
c.reset();
/1 Assignnment to bool:
for(int ii = 0; ii < c.size(); ii++)
c[ii] = (rand() % 100) < 25;
cout << ¢ << " [c]" << endl;
/1 bool test:
if(c[1l] == true)

cout << "c¢[1] == true";
el se
cout << "c¢[1] == false" << endl;
Y I~

To generate interesting random bitsets, the randBitset() function is created. The Standard C
rand() function only generates an int, so this function demonstrates oper ator <<= by shifting
each 16 random bits to the left until the bitset (which is templatized in this function for size)
isfull. The generated number and each new 16 bits is combined using the operator |=.

The first thing demonstrated in main() isthe unit size of abitset. If it isless than 32 bhits,
sizeof produces 4 (4 bytes = 32 hits), which is the size of a single long on most

Chapter 15: Multiple Inheritance
229

implementations. If it's between 32 and 64, it requires two longs, greater than 64 requires 3
longs, etc. Thus you make the best use of space if you use a bit quantity that fitsin an integral
number of longs. However, notice there’ s no extra overhead for the object —it'sasif you
were hand-coding to use along.

Another clue that bitset is optimized for longsisthat thereisato_ulong() member function
that produces the value of the bitset as an unsigned long. There are no other numerical
conversions from bitset, but thereisato_string() conversion that produces a string
containing ones and zeros, and this can be aslong as the actual bitset. However, using
bitset<32> may make your life ssimpler because of to_ulong().

There's still no primitive format for binary values, but the next best thing is supported by
bitset: astring of ones and zeros with the least-significant bit (Isb) on the right. The three
constructors demonstrated show taking the entire string (the char array is automatically
converted to astring), the string starting at character 2, and the string from character 2
through 11. Y ou can write to an ostr eam from a bitset using oper ator << and it comes out as
ones and zeros. Y ou can also read from an istream using oper ator >> (not shown here).

You'll notice that bitset only has three non-member operators: and (&), or (]) and exclusive-
or (*). Each of these create a new bitset as their return value. All of the member operators opt
for the more efficient & =, |=, etc. form where atemporary is not created. However, these
forms actually change their Ivalue (which isa in most of the tests in the above example). To
prevent this, | created atemporary to be used as the Ivalue by invoking the copy-constructor
on a; thisiswhy you see the form BS(a). The result of each test is printed out, and
occasionally ais reprinted so you can easily look at it for reference.

Therest of the example should be self-explanatory when you run it; if not you can find the
detailsin your compiler’s documentation or the other documentation mentioned earlier in this
chapter.

vector <bool>

vector <bool> is a specialization of the vector template. A normal bool variable requires at
least one byte, but since abool only has two states the ideal implementation of vector <bool>
is such that each bool value only requires one bit. This means the iterator must be specially-
defined, and cannot be abool*.

The bit-manipulation functions for vector <bool> are much more limited than those of bitset.
The only member function that was added to those aready in vector isflip(), to invert al the
bits; thereisno set() or reset() asin bitset. When you use operator|[], you get back an
object of type vector<bool>::reference, which also has aflip() to invert that individual bit.

/1: CO4: Vect or Of Bool . cpp

/1 Denonstrate the vector<bool > specialization
#i ncl ude <i ostreanp

#i ncl ude <sstreanp

#i ncl ude <vector>

Chapter 15: Multiple Inheritance
230

#i ncl ude <bitset>
#i ncl ude <iterator>
usi ng namespace std;

int main() {

vect or <bool > vb(10, true);

vector<bool >::iterator it;

for(it = vb.begin(); it != vb.end(); it++)
cout << *it;

cout << endl

vb. push_back(fal se);

ostream.terator<bool > out (cout, "");

copy(vb. begin(), vb.end(), out);

cout << endl

bool ab[] = { true, false, false, true, true,
true, true, false, false, true };

/1 There's a simlar constructor

vb. assi gn(ab, ab + sizeof (ab)/sizeof(bool));

copy(vb. begin(), vb.end(), out);

cout << endl

vb.flip(); // Flip all bits

copy(vb. begin(), vb.end(), out);

cout << endl

for(int i =0; i < vb.size(); i++)
vb[i] = 0; // (Equivalent to "false")

vb[4] = true;

vb[5] = 1;

vb[7].flip(); // Invert one bit

copy(vb. begin(), vb.end(), out);

cout << endl

/1 Convert to a bitset:

ostringstream os;

copy(vb. begin(), vb.end(),
ostream.iterator<bool >(os, ""));

bi t set <10> bs(os.str());

cout << "Bitset:\n" << bs << endl

Y I~

The last part of this example takes a vector <bool> and convertsit to a bitset by first turning it

into astring of ones and zeros. Of course, you must know the size of the bitset at compile-
time. Y ou can see that this conversion is not the kind of operation you'll want to do on a
regular basis.

Chapter 15: Multiple Inheritance
231

Associative contaners

The set, map, multiset and multimap are called associative containers because they
associate keys with values. Well, at least maps and multimaps associate keys to values, but
you can look at aset as amap that has no values, only keys (and they can in fact be
implemented this way), and the same for the relationship between multiset and multimap.
So, because of the structural similarity sets and multisets are lumped in with associative
containers.

The most important basic operations with associative containers are putting thingsin, and in
the case of a set, seeing if something isin the set. In the case of amap, you want to first see if
akey isinthe map, and if it exists you want the associated value for that key to be returned.
Of course, there are many variations on this theme but that’ s the fundamental concept. The
following example shows these basics:

/1: CO4: Associ ati veBasi cs. cpp

/1 Basic operations with sets and nmaps
#i ncl ude "Noi sy. h"

#i ncl ude <i ostreane

#i ncl ude <set>

#i ncl ude <map>

usi ng nanmespace std;

int main() {
Noi sy na[] = { Noisy(), Noisy(), Noisy(),
Noi sy(), Noisy(), Noisy(), Noisy() };
/1 Add el ements via constructor
set <Noi sy> ns(na, na+ sizeof na/sizeof (Noisy));
/1 Ordinary insertion:
Noi sy n;
ns.insert(n);
cout << endl
/1 Check for set menbership
cout << "ns.count(n)=" << ns.count(n) << endl
if(ns.find(n) !'= ns.end())
cout << "n(" << n << ") found in ns" << endl
/1 Print elenents:
copy(ns. begin(), ns.end(),
ostream.iterator<Noisy>(cout, " "));
cout << endl
cout << "\p----------- \n";
map<i nt, Noi sy> nm
for(int i =0; i < 10; i++4)

Chapter 15: Multiple Inheritance
232

nnmi]; // Automatically makes pairs

cout << "\nN----------- \n":
for(int j =0; j < nmsize(); j++)

cout << "nn{" << j <<"] =" << nn{j] << end|
cout << "\nN----------- \n":
nn{10] = n;
cout << "\nN----------- \n":
nminsert(make_pair(47, n));
cout << "\nN----------- \n":

cout << "\'n nmcount(10)="
<< nm count (10) << endl;
cout << "nmcount(11)="
<< nmcount (11) << endl;
map<i nt, Noisy>::iterator it = nmfind(6);
if(it '= nmend())
cout << "value:" << (*it).second
<< " found in nmat |ocation 6" << endl;
for(it = nmbegin(); it !'= nmend(); it++)
cout << (*it).first << ™"
<< (*it).second << ", ";
cout << "
Y I~

The set<Noisy> object nsis created using two iterators into an array of Noisy objects, but
there is also a default constructor and a copy-constructor, and you can pass in an object that
provides an alternate scheme for doing comparisons. Both sets and maps have an insert()
member function to put thingsin, and there are a couple of different waysto check to seeif an
object is aready in an associative container: count(), when given akey, will tell you how
many times that key occurs (this can only be zero or one in aset or map, but it can be more
than one with amultiset or multimap). The find() member function will produce an iterator
indicating the first occurrence (with set and map, the only occurrence) of the key that you
giveit, or the past-the-end iterator if it can’t find the key. The count() and find() member
functions exist for al the associative containers, which makes sense. The associative
containers also have member functions lower_bound(), upper_bound() and

equal_range(), which actually only make sense for multiset and multimap, as you shall see
(but don't try to figure out how they would be useful for set and map, since they are designed
for dealing with arange of duplicate keys, which those containers don't allow).

Designing an oper ator|[] always produces a little bit of a dilemma because it’sintended to be
treated as an array-indexing operation, so people don’t tend to think about performing atest
before they use it. But what happensif you decide to index out of the bounds of the array?
One option, of course, isto throw an exception, but with amap “indexing out of the array”
could mean that you want an entry there, and that’ s the way the STL map treatsit. The first
for loop after the creation of the map<int, Noisy> nm just “looks up” objects using the
operator[], but thisis actually creating new Noisy objects! The map creates a new key-value

Chapter 15: Multiple Inheritance
233

pair (using the default constructor for the value) if you look up avalue with operator[] and it
isn't there. This meansthat if you really just want to look something up and not create a new
entry, you must use count() (to seeif it’sthere) or find() (to get an iterator to it).

Thefor loop that prints out the values of the container using operator[] has a number of
problems. First, it requires integral keys (which we happen to have in this case). Next and
worsg, if al the keys are not sequential, you'll end up counting from O to the size of the
container, and if there are some spots which don’t have key-value pairs you'll automatically
create them, and miss some of the higher values of the keys. Finally, if you look at the output
from the for loop you'll see that things are very busy, and it’s quite puzzling at first why there
are so many constructions and destructions for what appears to be a simple lookup. The
answer only becomes clear when you look at the code in the map template for operator|[],
which will be something like this:

mapped_type& operator[] (const key type& k) {
val ue_type tnp(k, T());
return (*((insert(tnp)).first)).second;

}

Following the trail, you'll find that map::value_typeis:
| t ypedef pair<const Key, T> val ue_type;
Now you need to know what a pair is, which can be found in <utility>:

tenplate <class T1, class T2>
struct pair {

typedef T1 first_type;

typedef T2 second_type;

T1 first;

T2 second;

pair();

pai r(const T1& x, const T2& y)

first(x), second(y) {}
/1 Tenpl atized copy-constructor
tenpl ate<class U, class V>
pai r (const pair<UyU, V> &p);

}s

It turns out thisis avery important (albeit simple) struct which is used quite a bit in the STL.
All it really does it package together two objects, but it’s very useful, especially when you
want to return two objects from a function (since aretur n statement only takes one object).
There's even a shorthand for creating a pair called make_pair (), whichisused in
AssociativeBasics.cpp.

So to retrace the steps, map::value_typeisapair of the key and the value of the map —
actualy, it'sasingle entry for the map. But notice that pair packages its objects by value,
which means that copy-constructions are necessary to get the objects into the pair. Thus, the

Chapter 15: Multiple Inheritance
234

creation of tmp in map::operator[] will involve at least a copy-constructor call and
destructor call for each object in the pair. Here, we're getting off easy because the key isan
int. But if you want to really see what kind of activity can result from map::operator[], try
running this:

/1: CO4: Noi syMap. cpp

/1 Mapping Noisy to Noisy
#i ncl ude "Noi sy. h"

#i ncl ude <map>

usi ng nanmespace std;

int main() {
map<Noi sy, Noi sy> mn;
Noi sy nl, n2;

cout << "\n-------- \n";

mmn[nl] = n2;

cout << "\n-------- \n";

cout << mmn[nl] << endl;

cout << "\n-------- \n";
Y I~

You'll seethat both the insertion and lookup generate alot of extra objects, and that’s because
of the creation of the tmp object. If you look back up at map::operator[] you'll seethat the
second line callsinsert() passing it tmp —that is, operator[] does an insertion every time.
The return value of insert() isadifferent kind of pair, wherefirst isan iterator pointing to
the key-value pair that was just inserted, and second is a bool indicating whether the

insertion took place. Y ou can see that operator[] grabsfirst (theiterator), dereferencesit to
produce the pair, and then returns the second which is the value at that location.

So on the upside, map has this fancy “make a new entry if oneisn’t there” behavior, but the
downside is that you always get alot of extra object creations and destructions when you use
map::operator[]. Fortunately, AssociativeBasics.cpp aso demonstrates how to reduce the
overhead of insertions and deletions, by not using operator[] if you don’t haveto. The
insert() member function is slightly more efficient than operator[]. With a set you only hold
one object, but with amap you hold key-value pairs, so insert() requires apair asits
argument. Here’' s where make_pair () comesin handy, as you can see.

For looking objects up in amap, you can use count() to see whether akey isin the map, or
you can use find() to produce an iterator pointing directly at the key-value pair. Again, since
the map contains pair s that’ s what the iterator produces when you dereference it, so you have
to select first and second. When you run AssociativeBasics.cpp you'll notice that the iterator
approach involves no extra object creations or destructions at all. It’s not as easy to write or
read, though.

If you use amap with large, complex objects and discover there's too much overhead when
doing lookups and insertions (don’t assume this from the beginning — take the easy approach

Chapter 15: Multiple Inheritance
235

first and use a profiler to discover bottlenecks), then you can use the counted-handle approach
shown in Chapter XX so that you are only passing around small, lightweight objects.

Of course, you can aso iterate through a set or map and operate on each of its objects. This
will be demonstrated in later examples.

Generators and fillers
for associative containers

Y ou’ve seen how useful thefill(), fill_n(), generate() and generate_n() function templates
in <algorithm> have been for filling the sequential containers (vector, list and deque) with
data. However, these are implemented by using oper ator = to assign values into the sequential
containers, and the way that you add objects to associative containersis with their respective
insert() member functions. Thus the default “assignment” behavior causes a problem when
trying to use the “fill” and “generate” functions with associative containers.

One solution is to duplicate the “fill” and “generate” functions, creating new ones that can be
used with associative containers. It turns out that only the fill_n(') and generate n()
functions can be duplicated (fill() and generate() copy in between two iterators, which
doesn’t make sense with associative containers), but the job isfairly easy, since you have the
<algorithm> header file to work from (and since it contains templates, al the source code is
there):

/1. C04:assocCGen. h

/1 The fill _n() and generate_n() equival ents
/! for associative containers.

#i f ndef ASSOCGEN H

#def i ne ASSOCGEN H

t enpl at e<cl ass Assoc, class Count, class T>
voi d
assocFill _n(Assoc& a, Count n, const T& val) {
while(n-- > 0)
a.insert(val);
}

t enpl at e<cl ass Assoc, class Count, class Gen>
voi d assocCGen_n(Assoc& a, Count n, Gen g) {
while(n-- > 0)
a.insert(g());

}
#endi f // ASSOCGEN H ///: ~

Chapter 15: Multiple Inheritance
236

Y ou can see that instead of using iterators, the container classitself is passed (by reference, of
course, since you wouldn’t want to make alocal copy, fill it, and then have it discarded at the
end of the scope).

This code demonstrates two valuable lessons. The first lesson is that if the algorithms don’t do
what you want, copy the nearest thing and modify it. Y ou have the example at hand in the
STL header, so most of the work has already been done.

The second lesson is more pointed: if you look long enough, there’ s probably away to do it in
the STL without inventing anything new. The present problem can instead be solved by using
aninsert_iterator (produced by acall toinserter()), which callsinsert() to placeitemsin
the container instead of operator=. Thisisnot simply avariation of front_insert_iterator
(produced by acall to front_inserter()) or back_insert_iterator (produced by acall to
back_inserter()), since those iterators use push_front() and push_back(), respectively.
Each of the insert iteratorsis different by virtue of the member function it uses for insertion,
and insert() isthe one we need. Here's a demonstration that shows filling and generating
both amap and a set (of course, it can also be used with multimap and multiset). First, some
templatized, simple generators are created (this may seem like overkill, but you never know
when you'll heed them; for that reason they’re placed in a header file):

/1: CO4:Sinmpl eGenerators. h

/1l Generic generators, including
/1 one that creates pairs

#i ncl ude <i ostreane

#include <utility>

/1 A generator that increments its val ue:
t enpl at e<t ypename T>
class IncrGen {
Ti;
public:
IncrGen(T ii) : i (ii) {}
T operator()() { return i++; }

IR

/1 A generator that produces an STL pair<>:
t enpl at e<t ypenanme T1, typename T2>
class PairGen {
T1 i;
T2 j;
publi c:
PairGen(Tl ii, T2 jj) - i(ii), j(jj) {}
std::pair<Tl, T2> operator()() {
return std::pair<T1, T2>(i++, j++);
}

Chapter 15: Multiple Inheritance
237

}s

/1 A generic gl obal operator<<
/1 for printing any STL pair<>:
t enpl at e<t ypenane Pair> std::ostrean&
operator<<(std::ostream& os, const Pair& p) {
return os << p.first << "\t"
<< p.second << std::endl
Y I~

Both generators expect that T can be incremented, and they simply use oper ator ++ to
generate new values from whatever you used for initialization. Pair Gen creates an STL pair
object asitsreturn value, and that’s what can be placed into amap or multimap using
insert().

The last function is a generalization of operator << for ostreams, so that any pair can be
printed, assuming each element of the pair supports a stream oper ator <<. ASyou can see
below, this allows the use of copy() to output the map:

/1: CO4: Assoclnserter.cpp

/1 Using an insert_iterator so fill_n() and
/1l generate_n() can be used with associative
/1 containers

#i ncl ude "Si npl eGenerators. h"

#include <iterator>

#i ncl ude <i ostreanp

#i ncl ude <al gorithne

#i ncl ude <set>

#i ncl ude <map>

usi ng namespace std;

int main() {
set<int> s;
fill _n(inserter(s, s.begin()), 10, 47);
generate_n(inserter(s, s.begin()), 10,
I ncr Gen<i nt>(12));
copy(s. begin(), s.end(),
ostream.iterator<int>(cout, "\n"));

map<int, int>m

fill _n(inserter(m mbegin()), 10,
make_ pair (90, 120));

generate_n(inserter(m mbegin()), 10,
PairGen<int, int>(3, 9));

copy(m begin(), mend(),

Chapter 15: Multiple Inheritance
238

ostream.iterator<pair<int,int> >(cout,"\n"));
Y I~

The second argument to inserter isan iterator, which actually isn’t used in the case of
associative containers since they maintain their order internally, rather than allowing you to
tell them where the element should be inserted. However, an insert_iterator can be used with
many different types of containers so you must provide the iterator.

Note how the ostream_iterator is created to output a pair; this wouldn't have worked if the
oper ator << hadn’t been created, and since it’s atemplate it is automatically instantiated for
pair<int, int>.

The magic of maps

An ordinary array uses an integral value to index into a sequential set of elements of some
type. A map is an associative array, which means you associate one object with another in an
array-like fashion, but instead of selecting an array element with a number as you do with an
ordinary array, you look it up with an object! The example which follows counts the wordsin
atext file, so theindex isthe string object representing the word, and the value being looked
up isthe object that keeps count of the strings.

In asingle-item container like avector or list, there's only one thing being held. But ina
map, you've got two things: the key (what you look up by, asin mapname[key]) and the
value that results from the lookup with the key. If you simply want to move through the entire
map and list each key-value pair, you use an iterator, which when dereferenced produces a
pair object containing both the key and the value. Y ou access the members of a pair by
selecting first or second.

This same philosophy of packaging two items together is also used to insert elementsinto the
map, but the pair is created as part of the instantiated map and is called value_type,
containing the key and the value. So one option for inserting a new element isto create a
value_type object, loading it with the appropriate objects and then calling the insert()
member function for the map. Instead, the following example makes use of the
aforementioned special feature of map: if you're trying to find an object by passing in akey
to operator|[] and that object doesn’t exist, operator[] will automatically insert a new key-
value pair for you, using the default constructor for the value object. With that in mind,
consider an implementation of aword counting program:

[1: CO4: Wbr dCount . cpp

/1{L} StreaniTokeni zer

/1 Count occurrences of words using a map
#i ncl ude " StreaniTokeni zer. h"

#include "../require. h"

#i ncl ude <string>

#i ncl ude <map>

#i ncl ude <i ostreanp

Chapter 15: Multiple Inheritance
239

#i ncl ude <fstreanp
usi ng namespace std;

cl ass Count {
int i;
public:
Count() : i(0) {}
void operator++(int) { i++; } // Post-increnent
int& val () { returni; }

};

t ypedef map<string, Count> WordMap;
typedef WordMap::iterator WM ter;

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
St reanifokeni zer words(in);
Wor dMap wor dnap;
string word;
whil e((word = words. next()).size() !'= 0)
wor dmap[wor d] ++;
for(WMter w = wordnmap. begin();
w ! = wordnap. end(); w++)
cout << (*w).first << "
<< (*w).second.val () << endl;
Y I~

The need for the Count classisto contain an int that’s automatically initialized to zero. This
is necessary because of the crucia line:

| wor dmap[wor d] ++;

This finds the word that has been produced by StreamT okenizer and increments the Count
object associated with that word, which isfine aslong asthere is a key-value pair for that
string. If thereisn’t, the map automatically inserts a key for the word you’re looking up, and
a Count object, which isinitialized to zero by the default constructor. Thus, when it's
incremented the Count becomes 1.

Printing the entire list requires traversing it with an iterator (there’s no copy() shortcut for a
map unless you want to write an oper ator << for the pair in the map). As previously
mentioned, dereferencing thisiterator produces a pair object, with the first member the key
and the second member the value. In this case second is a Count object, so itsval() member
must be called to produce the actual word count.

Chapter 15: Multiple Inheritance
240

If you want to find the count for a particular word, you can use the array index operator, like
this:

cout << "the: << wordnap["the"].val () << endl;

Y ou can see that one of the great advantages of the map is the clarity of the syntax; an
associative array makes intuitive sense to the reader (note, however, that if “the” isn't already
in the wordmap a new entry will be created!).

A command-line argument tool

A problem that often comes up in programming is the management of program arguments that
you can specify on the command line. Usually you'd like to have a set of defaultsthat can be
changed via the command line. The following tool expects the command line argumentsto be
in the form flagl=valuel with no spaces around the ‘=" (so it will be treated asasingle
argument). The ProgVal class simply inherits from map<string, string>:

/1: CO4:ProgVal s.h

/1 Program val ues can be changed by command |ine
#i f ndef PROGVALS H

#defi ne PROGVALS H

#i ncl ude <map>

#i ncl ude <i ostreanp

#i ncl ude <string>

cl ass ProgVal s
public std::map<std::string, std::string> {
public:
ProgVal s(std: :string defaults[][2], int sz);
voi d parse(int argc, char* argv[],
std::string usage, int offset = 1);
void print(std::ostream& out = std::cout);
i
#endi f // PROGVALS H ///:~

The constructor expects an array of string pairs (asyou'll see, thisalowsyou to initiaize it
with an array of char*) and the size of that array. The par se() member function is handed the
command-line arguments along with a“usage” string to print if the command lineis given
incorrectly, and the “offset” which tells it which command-line argument to start with (so you
can have non-flag arguments at the beginning of the command line). Finally, print() displays
the values. Here is the implementation:

[1: CO4:ProgVals.cpp {O
#i ncl ude "ProgVal s. h"
usi ng nanmespace std;

ProgVal s: : ProgVal s(

Chapter 15: Multiple Inheritance
241

std::string defaults[][2], int sz) {
for(int i =0; i < sz; i++4)
i nsert (make_pai r(
defaul ts[i][0], defaults[i][1]));
}

void ProgVal s::parse(int argc, char* argv[],
string usage, int offset) {
/1 Parse and apply additiona
/1 command-|ine argunents:
for(int i = offset; i < argc; i++) {
string flag(argv[i]);
int equal = flag.find('=");
i f(equal == string::npos) {
cerr << "Conmand line error: " <<
argv[i] << endl << usage << endl|
continue; // Next argunent
}
string nane = flag.substr (0, equal);
string value = flag.substr(equal + 1);
if(find(nane) == end()) {
cerr << name << endl << usage << endl|
continue; // Next argunent

operator[](nanme) = val ue;

}
}

void ProgVal s::print(ostream& out) {
out << "Program val ues:" << endl;
for(iterator it = begin(); it != end(); it++)
out << (*it).first << " ="
<< (*it).second << endl
Y I~

The constructor usesthe STL make _pair (') helper function to convert each pair of char* into
apair object that can be inserted into the map. In par se(), each command-line argument is
checked for the existence of the telltale ‘=" sign (reporting an error if it isn’t there), and then
is broken into two strings, the name which appears before the ‘=', and the value which
appears after. The operator|[] is then used to change the existing value to the new one.

Here's an example to test the tool:

/1: CO4: ProgVal Test. cpp
/1{L} ProgVvals

Chapter 15: Multiple Inheritance

242

#i ncl ude "ProgVal s. h"
usi ng namespace std;

string defaults[][2] = {

{ "color", "red" },
{ "size", "medium' },
{ "shape", "rectangular" },
{ "action", "hopping"},
b
const char* usage = "usage:\n"
"ProgVal Test [flagl=vall flag2=val2 ...]\n"
"(Note no space around '=")\n"

"Where the flags can be any of: \n"
"color, size, shape, action \n";

/1 So it can be used gl obally:
ProgVal s pval s(defaults,
si zeof defaults / sizeof *defaults);

class Animal {
string color, size, shape, action
public:
Ani nal (string col, string sz,
string shp, string act)
.color(col), size(sz), shape(shp), action(act){}
/1 Default constructor uses program default
/1 val ues, possibly change on command |i ne:
Aninmal () : color(pvals["color"]),
si ze(pval s["size"]), shape(pval s["shape"]),
action(pval s["action"]) {}
void print() {

cout << "color = " << color << end
<< "size = " << size << end
<< "shape = " << shape << end
<< "action = " << action << endl

}

/1 And of course pvals can be used anywhere
/1 else you'd |ike.

}s

int main(int argc, char* argv[]) {
/1 Initialize and parse command |ine val ues

Chapter 15: Multiple Inheritance
243

/1l before any code that uses pvals is called:
pval s. parse(argc, argv, usage);
pval s. print();
Ani mal a;
cout << "Animal a val ues:
a.print();

Y I~

This program can create Animal objects with different characteristics, and those
characteristics can be established with the command line. The default characteristics are given
in the two-dimensional array of char* called defaults and, after the usage string you can see
aglobal instance of ProgVals called pvalsis created; thisisimportant because it allows the
rest of the code in the program to access the values.

<< endl ;

Note that Animal’s default constructor uses the valuesin pvals inside its constructor
initializer list. When you run the program you can try creating different animal characteristics.

Many command-line programs also use a style of beginning a flag with a hyphen, and
sometimes they use single-character flags.

The STL map is used in numerous places throughout the rest of this book.

Multimaps and duplicate keys

A multimap isamap that can contain duplicate keys. At first this may seem like a strange
idea, but it can occur surprisingly often. A phone book, for example, can have many entries
with the same name.

Suppose you are monitoring wildlife, and you want to keep track of where and when each
type of animal is spotted. Thus, you may see many animals of the same kind, all in different
locations and at different times. So if the type of anima is the key, you'll need amultimap.
Here' swhat it looks like:

//: CO4: W I dLi feMonitor.cpp
#i ncl ude <vector>

#i ncl ude <map>

#i ncl ude <string>

#i ncl ude <al gorithne

#i ncl ude <i ostreanp

#i ncl ude <sstreanp

#i ncl ude <cti me>

usi ng nanmespace std;

cl ass Dat aPoi nt {
int x, y; // Location coordinates
time_t tinme; // Time of Sighting

Chapter 15: Multiple Inheritance
244

public:
DataPoint () : x(0), y(0), time(0) {}
DataPoint (int xx, int yy, time_t tn
x(xx), y(yy), time(tm {}

/1l Synthesi zed operator=, copy-constructor OK
int getX() { return x; }

int getY() { returny; }

time_t* getTime() { return &ine; }

b

string animal[] = {
"“chi pmunk”, "beaver", "marnot", "weasel"
"squirrel", "ptarm gan", "bear", "eagle",
"hawk", "vole", "deer", "otter", "humm ngbird",

const int asz = sizeof animal/sizeof *aninal;
vector<string> ani mal s(ani mal, aninmal + asz);

/1 Al the information is contained in a
/1 "Sighting," which can be sent to an ostream
t ypedef pair<string, DataPoint> Sighting;

ostreami
oper at or<<(ostrean& os, const Sighting& s) {
return os << s.first << " sighted at x= " <<
s.second.getX() << ", y= " << s.second. get Y()
<< ", time =" << ctinme(s.second.getTine());

}

/1 A generator for Sightings:
class SightingGen {
vect or<string>& ani mal s;
static const int d = 100;
public:
Si ghti ngGen(vector<string>& an)
ani mal s(an) { srand(tine(0)); }
Si ghting operator()() {
Sighting result;
int select = rand() % ani mal s. si ze();
result.first = ani nal s[sel ect];
result.second = Dat aPoi nt (
rand() %d, rand() %d, tinme(0));
return result;

Chapter 15: Multiple Inheritance
245

}
}s

typedef multi map<string, DataPoint> DataMap;
typedef DataMap::iterator DMter;

int main() {
Dat aMap si ghti ngs;
generate_n(
i nserter(sightings, sightings.begin()),
50, SightingGen(aninmals));
/1 Print everything:
copy(si ghtings. begin(), sightings.end(),
ostream.iterator<Si ghting>(cout, ""));
/1 Print sightings for selected aninal:
while(true) {
cout << "select an animal or 'q" to quit: ";
for(int i =0; i < aninmals.size(); i++)
cout <<'['<< i <<']'<< animals[i] << ' ";
cout << endl
string reply;
cin >> reply;

if(reply.at(0) =="'q') return O;
istringstreamr(reply);

int i;

r >>i; // Converts to int

i % animals.size();
/1 lterators in "range" denote begin, one
/1 past end of matching range:
pair<DMter, DMter> range =
si ghtings. equal range(aninals[i]);
copy(range.first, range.second,
ostream.iterator<Si ghti ng>(cout, ""));

}
Y 11~

All the data about a sighting is encapsulated into the class DataPoint, which is simple enough
that it can rely on the synthesized assignment and copy-constructor. It uses the Standard C
library time functions to record the time of the sighting.

In the array of string animal, notice that the char* constructor is automatically used during
initialization, which makes initializing an array of string quite convenient. Since it's easier to
use the animal namesin avector, the length of the array is calculated and avector<string> is
initialized using the vector (iterator, iterator) constructor.

Chapter 15: Multiple Inheritance

246

The key-value pairs that make up a Sighting are the string which names the type of animal,
and the DataPoint that says where and when it was sighted. The standard pair template
combines these two types and is typedefed to produce the Sighting type. Then an ostream
oper ator << is created for Sighting; thiswill allow you to iterate through a map or multimap
of Sightingsand print it out.

SightingGen generates random sightings at random data points to use for testing. It has the

usual operator (') necessary for afunction object, but it also has a constructor to capture and
store areference to a vector <string>, which is where the aforementioned animal names are
stored.

A DataM ap isamultimap of string-DataPoint pairs, which means it stores Sightings. It is
filled with 50 Sightings using generate_n(), and printed out (notice that because thereis an
oper ator << that takes a Sighting, an ostream_iterator can be created). At this point the user
is asked to select the animal that they want to see all the sightings for. If you press‘q’ the
program will quit, but if you select an animal number, then the equal_range() member
function isinvoked. Thisreturns an iterator (DM Iter) to the beginning of the set of matching
pairs, and one indicating past-the-end of the set. Since only one object can be returned from a
function, equal_range() makes use of pair. Since the range pair has the beginning and
ending iterators of the matching set, those iterators can be used in copy() to print out al the
sightings for a particular type of animal.

Multisets

Y ou’ ve seen the set, which only allows one object of each value to be inserted. The multiset
is odd by comparison since it allows more than one object of each value to beinserted. This
seems to go against the whole idea of “setness,” where you can ask “is‘it’ in thisset?’ If
there can be more than one of ‘it’, then what does that question mean?

With some thought, you can see that it makes no sense to have more than one object of the
same value in a set if those duplicate objects are exactly the same (with the possible exception
of counting occurrences of objects, but as seen earlier in this chapter that can be handled in an
alternative, more elegant fashion). Thus each duplicate object will have something that makes
it unique from the other duplicates — most likely different state information that is not used in
the calculation of the value during the comparison. That is, to the comparison operation, the
objects ook the same but they actually contain some differing internal state.

Likeany STL container that must order its elements, the multiset template uses the less
template by default to determine element ordering. This uses the contained classes
operator <, but you may of course substitute your own comparison function.

Consider a simple class that contains one element that is used in the comparison, and another
that is not:

[1: CO4:MultiSetl.cpp
/] Denpnstration of multiset behavior
#i ncl ude <i ostreanp

Chapter 15: Multiple Inheritance
247

#i ncl ude <set>

#i ncl ude <al gorithne
#i ncl ude <cti nme>
usi ng namespace std;

class X {
char c; // Used in conparison
int i; // Not used in conparison
/1 Don't need default constructor and operator=
X();

X& operator=(const X&) ;
/1 Usually need a copy-constructor (but the
/1 synthesized version works here)

public:
X(char cc, int ii) : c(cc), i(ii) {}
/1 Notice no operator==is required

friend bool operator<(const X& x, const X& y) {
return x.c < y.c;
}

friend ostream& operator<<(ostream& os, X x) {
return os << x.c << ":" << X.i;
}

}s

cl ass Xgen {
static int i;
/1 Nunber of characters to select from
static const int span = 6;
public:
Xgen() { srand(tine(0)); }
X operator()() {
char ¢ = '"A + rand() % span
return X(c, i++);
}
b

int Xgen::i = 0;

typedef multiset<X> Xmset;
typedef Xnset::const iterator Xmt;

int main() {
Xnset nmset;

Chapter 15: Multiple Inheritance
248

[/ Fill it with X's:

generate_n(inserter(nset, nset.begin()),
25, Xgen());

/1 Initialize a regular set from nset:

set <X> uni que(nset. begin(), nset.end());

copy(uni que. begi n(), uni que.end(),

ostream.iterator<xX>(cout, " "));
cout << "\np----\n";
/1 l1terate over the unique val ues:
for(set<X>::iterator i = unique.begin();

i 1= unique.end(); i++) {
pair<Xmt, Xmt> p = nset.equal _range(*i);
copy(p.first, p.second,
ostream.iterator<x>(cout, " "));
cout << endl;

}
Y 11~

In X, al the comparisons are made with the char c. The comparison is performed with
operator <, whichis all that is necessary for the multiset, since in this example the default
less comparison object is used. The class Xgen is used to randomly generate X objects, but
the comparison value is restricted to the span from ‘A’ to ‘E’. In main(), amultiset<X> is
created and filled with 25 X objects using Xgen, guaranteeing that there will be duplicate
keys. So that we know what the unique values are, aregular set<X> is created from the
multiset (using the iterator, iterator constructor). These values are displayed, then each one
is used to produce the equal_range() in the multiset (equal_range() has the same meaning
here as it does with multimap: al the elements with matching keys). Each set of matching
keysisthen printed.

As a second example, a (possibly) more elegant version of WordCount.cpp can be created
using multiset:

[/: CO4: Mul ti Set Wbr dCount . cpp

/1{L} StreaniTokeni zer

/1 Count occurrences of words using a multiset
#i ncl ude " StreaniTokeni zer. h"

#include "../require. h"

#i ncl ude <string>

#i ncl ude <set>

#i ncl ude <fstreanr

#i nclude <iterator>

usi ng nanmespace std;

int main(int argc, char* argv[]) {
requi reArgs(argec, 1);

Chapter 15: Multiple Inheritance
249

ifstreamin(argv[1]);

assure(in, argv[1]);

St reanifokeni zer words(in);

nmul ti set<string> wordnset;

string word;

whil e((word = words. next()).size() !'= 0)
wor dnset . i nsert (word);

typedef multiset<string>: :iterator Msit;

MSit it = wordnset. begin();

while(it !'= wordnset.end()) {
pai r<mMsit, MSit> p=wordnset.equal range(*it);
int count = distance(p.first, p.second);
cout << *it << ": " << count << endl
it = p.second; // Myve to the next word

}
Y 11~

The setup in main() isidentical to WordCount.cpp, but then each word is simply inserted
into the multiset<string>. Aniterator is created and initialized to the beginning of the
multiset; dereferencing thisiterator produces the current word. equal_range() produces the
starting and ending iterators of the word that’s currently selected, and the STL algorithm
distance() (whichisin <iterator>) is used to count the number of elementsin that range.
Then theiterator it is moved forward to the end of the range, which putsit at the next word.
Although if you're unfamiliar with the multiset this code can seem more complex, the density
of it and the lack of need for supporting classes like Count has alot of appeal.

Inthe end, isthisreally a“set,” or should it be called something else? An alternative isthe
generic “bag” that has been defined in some container libraries, since a bag holds anything at
all without discrimination — including duplicate objects. Thisis close, but it doesn’t quite fit
since a bag has no specification about how elements should be ordered, while amultiset
(which requires that all duplicate elements be adjacent to each other) is even more restrictive
than the concept of a set, which could use a hashing function to order its elements, in which
case they would not be in sorted order. Besides, if you wanted to store a bunch of objects
without any special criterions, you'd probably just use avector, deque or list.

Combining STL containers

When using a thesaurus, you have aword and you want to know all the words that are similar.
When you look up aword, then, you want alist of words as the result. Here, the “ multi”
containers (multimap or multiset) are not appropriate. The solution isto combine containers,
which is easily done using the STL. Here, we need atool that turns out to be a powerful
general concept, whichisamap of vector:

| //: C04: Thesaurus. cpp

Chapter 15: Multiple Inheritance
250

/1 A map of vectors
#i ncl ude <map>

#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreane
#i ncl ude <al gorithne
#i ncl ude <cti nme>
usi ng namespace std;

typedef map<string, vector<string> > Thesaurus;
typedef pair<string, vector<string> > TEntry;
typedef Thesaurus::iterator Tlter

ost ream& oper at or <<(ostrean& 0s, const TEntry& t){
0os << t.first << ": ";
copy(t.second. begin(), t.second.end(),
ostream.iterator<string>(os, " "));
return os;

}

/1 A generator for thesaurus test entries:
cl ass ThesaurusGen {
static const string letters;
static int count;
public:
int maxSize() { return letters.size(); }
ThesaurusGen() { srand(tinme(0)); }
TEntry operator()() {
TEntry result;
i f(count >= maxSize()) count = O;

result.first = letters[count++];
int entries = (rand() %5) + 2;
for(int i =0; i <entries; i++) {

int choice = rand() % maxSi ze();
char cbuf[2] ={ 0 };
cbuf[0] = letters[choice];
resul t. second. push_back(cbuf);

}

return result;

}
}s

i nt ThesaurusGen::count = O;

Chapter 15: Multiple Inheritance
251

const string ThesaurusGen::|letters("ABCDEFGH JKL"
" MNOPQRSTUW\KYZabcdef ghi j kIl mopgr st uvwyz") ;

int main() {
Thesaur us t hesaurus;
/1 Fill with 10 entries:
generate_n(
i nserter(thesaurus, thesaurus.begin()),
10, ThesaurusGen());
/1 Print everything:
copy(thesaurus. begi n(), thesaurus.end(),
ostream.iterator<TEntry>(cout, "\n"));
/1 Ask for a "word" to |ook up
while(true) {
cout << "Select a \"word\", 0 to quit: ";
for(Tlter it = thesaurus. begin();
it != thesaurus.end(); it++)
cout << (*it).first << ' ';
cout << endl
string reply;
cin >> reply;
if(reply.at(0) == '0") return 0; // Quit
i f(thesaurus.find(reply) == thesaurus.end())
continue; // Not in list, try again
vector<string>& v = thesaurus[reply];
copy(v. begin(), v.end(),
ostream.iterator<string>(cout, " "));
cout << endl

}
Y 11~

A Thesaurus maps a string (the word) to a vector <string> (the synonyms). A TEntry isa
single entry in a Thesaur us. By creating an ostream oper ator << for a TEntry, asingle entry
from the Thesaur us can easily be printed (and the whole Thesaur us can easily be printed
with copy()). The ThesaurusGen creates “words’ (which are just single |etters) and
“synonyms’ for those words (which are just other randomly-chosen single letters) to be used
as thesaurus entries. It randomly chooses the number of synonym entries to make, but there
must be at least two. All the letters are chosen by indexing into astatic string that is part of
ThesaurusGen.

Inmain(), aThesaurusis created, filled with 10 entries and printed using the copy()
algorithm. Then the user is requested to choose a“word” to look up by typing the letter of that
word. The find() member function is used to find whether the entry existsin the map
(remember, you don’'t want to use operator[] or it will automatically make anew entry if it

Chapter 15: Multiple Inheritance
252

doesn't find amatch!). If so, operator[] is used to fetch out the vector <string> which is
displayed.
Because templates make the expression of powerful concepts easy, you can take this concept

much further, creating a map of vector s containing maps, etc. For that matter, you can
combine any of the STL containers this way.

Cleaning up
containers of pointers

In Stishape.cpp, the pointers did not clean themselves up automatically. It would be
convenient to be able to do this easily, rather than writing out the code each time. Hereisa
function template that will clean up the pointersin any sequence container; note that it is
placed in the book’ s root directory for easy access:

/1: :purge.h

/1 Delete pointers in an STL sequence contai ner
#i f ndef PURGE_H

#defi ne PURGE_H

#i ncl ude <al gorithne

tenpl at e<cl ass Seq> void purge(Seq& c) {
typenane Seq:.:iterator i;

for(i = c.begin(); i !'=c.end(); i++) {
delete *i;
*i = 0;

}

}

/1 lterator version:
tenpl at e<cl ass I nplt>
void purge(lnplt begin, Inplt end) {
whi | e(begin !'= end) {
del et e *begi n;
*begin = O;
begi n++;
}

}
#endif // PURGE_H ///:~

In the first version of purge(), note that typename is absolutely necessary; indeed thisis
exactly the case that the keyword was added for: Seq is atemplate argument, and iterator is

Chapter 15: Multiple Inheritance
253

something that is nested within that template. So what does Seq::iterator refer to? The
typename keyword specifies that it refers to atype, and not something else.

While the container version of purge must work with an STL-style container, the iterator
version of purge() will work with any range, including an array.

Hereis Stlshape.cpp, modified to use the purge() function:

[1: CO4:Stl shape2. cpp

/1 Stlshape.cpp with the purge() function
#i nclude "../purge.h"

#i ncl ude <vector>

#i ncl ude <i ostreanp

usi ng nanmespace std;

cl ass Shape {

public:
virtual void draw() = 0;
virtual ~Shape() {};

b

class Circle : public Shape {

public:
void draw() { cout << "Circle::dramn"; }
~Circle() { cout << "~Circle\n"; }

b

class Triangle : public Shape {

public:
void draw() { cout << "Triangle::dramn"; }
~Triangle() { cout << "~Triangle\n"; }

b

cl ass Square : public Shape {

public:
void draw() { cout << "Square::drawn"; }
~Square() { cout << "~Square\n"; }

b

t ypedef std::vector<Shape*> Contai ner;
typedef Container::iterator lter;

int main() {
Cont ai ner shapes;
shapes. push_back(new Circl e);

Chapter 15: Multiple Inheritance
254

shapes. push_back(new Square);
shapes. push_back(new Tri angl e) ;
for(lter i = shapes. begin();
i 1= shapes.end(); i++)
(*i)->draw();
pur ge(shapes) ;
Y I~

When using purge(), you must be careful to consider ownership issues— if an object pointer
is held in more than one container, then you must be sure not to delete it twice, and you don’t
want to destroy the object in the first container before the second one is finished with it.
Purging the same container twice is not a problem, because purge() setsthe pointer to zero
once it deletes that pointer, and calling delete for a zero pointer is a safe operation.

Creating your own containers

With the STL asafoundation, it's possible to create your own containers. Assuming you
follow the same model of providing iterators, your new container will behave asif it were a
built-in STL container.

Consider the “ring” data structure, which is acircular sequence container. If you reach the
end, it just wraps around to the beginning. This can be implemented on top of alist as
follows:

//: CO4:Ring.cpp

/1 Making a "ring" data structure fromthe STL
#i ncl ude <i ostreanp

#i ncl ude <list>

#i ncl ude <string>

usi ng namespace std;

t enpl at e<cl ass T>
class Ring {
[ist<T> |st;
public:
/1 Declaration necessary so the follow ng
/1 'friend statenent sees this 'iterator'
/1 instead of std::iterator:
class iterator;
friend class iterator;
class iterator : public std::iterator<
std::bidirectional iterator_tag, T,ptrdiff_t>{
list<T>::iterator it;
[ist<T>* r;

Chapter 15: Multiple Inheritance
255

public:
/1 "typenane" necessary to resolve nesting:
iterator(list<T>& |st,
const typenane list<T>.:iterator& i)
r(&st), it(i) {}

bool operator==(const iterator& x) const {

return it == x.it;

}

bool operator!=(const iterator& x) const {
return I'(*this == x);

}

list<T>::reference operator*() const {
return *it;
}
iterator& operator++() {
++it;
if(it == r->end())
it = r->begin();
return *this;
}
iterator operator++(int) {
iterator tnp = *this;
++*t hi s;
return tnp;
}
iteratoré& operator--()
if(it == r->begin())
it = r->end();
--it;
return *this;
}
iterator operator--(int) {
iterator tnp = *this;
--*this;
return tnp;
}
iterator insert(const T& x){
return iterator(*r, r->insert(it, x));
}
iterator erase() {
return iterator(*r, r->erase(it));

}

{

}s

Chapter 15: Multiple Inheritance
256

voi d push_back(const T& x) {
| st. push_back(x);
}

iterator begin() {
return iterator(lst, Ist.begin());

int size() { return Ist.size(); }

};

int main() {
Ri ng<string> rs;
rs. push_back("one");
rs.push_back("two");
rs.push_back("three");
rs.push_back("four");
rs.push_back("five");
Ri ng<string>::iterator it = rs.begin();
it++; it++;
it.insert("six");
it = rs.begin();
/1 Twice around the ring:

for(int i =0; i <rs.size() * 2; i++)
cout << *it++ << endl;
Y I~

Y ou can see that the iterator is where most of the coding is done. The Ring iterator must
know how to loop back to the beginning, so it must keep areference to thelist of its“parent”
Ring object in order to know if it's at the end and how to get back to the beginning.

You'll notice that the interface for Ring is quite limited; in particular there isno end(), since
aring just keeps looping. This means that you won't be able to use a Ring in any STL
algorithms that require a past-the-end iterator — which is many of them. (It turns out that
adding this feature is a non-trivial exercise). Although this can seem limiting, consider stack,
queue and priority_queue, which don’t produce any iterators at all!

Freely-available
STL extensions

Although the STL containers may provide all the functionality you'll ever need, they are not
complete. For example, the standard implementations of set and map use trees, and athough
these are reasonably fast they may not be fast enough for your needs. In the C++ Standards

Committee it was generally agreed that hashed implementations of set and map should have

Chapter 15: Multiple Inheritance
257

been included in Standard C++, however there was not considered to be enough time to add
these components, and thus they were left out.

Fortunately, there are freely-avail able alternatives. One of the nice things about the STL is
that it establishes a basic model for creating STL-like classes, so anything built using the
same model is easy to understand if you are already familiar with the STL.

The SGI STL (freely available at http://www.sgi.com/Technology/STL/) is one of the most
robust implementations of the STL, and can be used to replace your compiler’s STL if that is
found wanting. In addition they’ ve added a number of extensionsincluding hash_set,
hash_multiset, hash_map, hash_multimap, slist (asingly-linked list) and rope (a variant of
string optimized for very large strings and fast concatenation and substring operations).

Let’s consider a performance comparison between a tree-based map and the SGI hash_map.
To keep things simple, the mappings will be fromint to int:

/1: CO4: MapVsHashMap. cpp

/1 The hash_map header is not part of the

/1 Standard C++ STL. It is an extension that
/1 is only available as part of the SA@ STL:
#i ncl ude <hash_map>

#i ncl ude <i ostreanp

#i ncl ude <map>

#i ncl ude <cti nme>

usi ng namespace std;

int main(){
hash_nap<int, int> hm
map<int, int>m
clock t ticks = clock();
for(int i =0; i < 100; i++)
for(int j = 0; j < 1000; j++)
minsert(make pair(j,j));
cout << "map insertions:
<< clock() - ticks << endl
ticks = clock();
for(int i =0; i < 100; i++)
for(int j = 0; j < 1000; j++)
hminsert(nmake_pair(j,j));
cout << "hash_map insertions:
<< clock() - ticks << endl
ticks = clock();

for(int i = 0; i < 100; i++)
for(int j = 0; j < 1000; j++)
njl;

Chapter 15: Multiple Inheritance
258

cout << "map::operator[] | ookups:
<< clock() - ticks << endl;
ticks = clock();

for(int i = 0; i < 100; i++)
for(int j = 0; j < 1000; j++)
hnfj];

cout << "hash_map::operator[] | ookups:
<< clock() - ticks << endl;
ticks = clock();

for(int i = 0; i < 100; i++)
for(int j = 0; j < 1000; j++)
mfind(j);

cout << "map::find() | ookups:
<< clock() - ticks << endl;
ticks = clock();

for(int i = 0; i < 100; i++)
for(int j = 0; j < 1000; j++)
hmfind(j);

cout << "hash_map::find() | ookups:
<< clock() - ticks << endl;
Y I~

The performance test | ran showed a speed improvement of roughly 4:1 for the hash_map
over the map in all operations (and as expected, find() is slightly faster than operator[] for
lookups for both types of map). If a profiler shows a bottleneck in your map, you should
consider ahash_map.

Summary

The goal of this chapter was not just to introduce the STL containers in some considerable
depth (of course, not every detail could be covered here, but you should have enough now that
you can look up further information in the other resources). My higher hope is that this
chapter has made you grasp the incredible power available in the STL, and shown you how
much faster and more efficient your programming activities can be by using and
understanding the STL.

Thefact that | could not escape from introducing some of the STL algorithms in this chapter
suggests how useful they can be. In the next chapter you'll get a much more focused look at
the algorithms.

Chapter 15: Multiple Inheritance
259

Exercises

1.

o s

© oOoNOo

10.

11.

12.
13.

Create a set<char >, then open afile (whose nameis provided on the
command line) and read that filein achar at atime, placing each char in
the set. Print the results and observe the organization, and whether there are
any lettersin the alphabet that are not used in that particular file.

Create akind of “hangman” game. Create a class that contains achar and a
bool to indicate whether that char has been guessed yet. Randomly select a
word from afile, and read it into avector of your new type. Repeatedly ask
the user for a character guess, and after each guess display the charactersin
the word that have been guessed, and underscores for the characters that
haven't. Allow away for the user to guess the whole word. Decrement a
value for each guess, and if the user can get the whole word before the value
goesto zero, they win.

Modify WordCount.cpp so that it usesinsert() instead of operator|[] to
insert elements in the map.

Modify WordCount.cpp so that it uses amultimap instead of a map.
Create a generator that produces random int values between 0 and 20. Use
thisto fill amultiset<int>. Count the occurrences of each value, following
the example given in M ultiSetWor dCount.cpp.

Change StlShape.cpp so that it uses adeque instead of avector.

Modify Reversible.cpp so it works with deque and list instead of vector.

Modify Progvals.h and ProgVals.cpp so that they expect leading hyphens
to distinguish command-line arguments.

Create a second version of Progvals.h and ProgVals.cpp that uses a set
instead of a map to manage single-character flags on the command line
(such as-a-b -c etc) and also allows the characters to be ganged up behind
asingle hyphen (such as -abc).

Use a stack<int> and build a Fibonacci sequence on the stack. The
program’s command line should take the number of Fibonacci elements
desired, and you should have aloop that |ooks at the last two elements on
the stack and pushes a new one for every pass through the loop.

Open atext file whose name is provided on the command line. Read the file
aword at atime (hint: use >>) and use a multiset<string> to create aword
count for each word.

Modify BankTeller.cpp so that the policy that decides when ateller is
added or removed is encapsulated inside a class.

Create two classes A and B (feel free to choose more interesting names).
Create amultimap<A, B> and fill it with key-value pairs, ensuring that
there are some duplicate keys. Use equal_range() to discover and print a

Chapter 15: Multiple Inheritance

260

14.
15.

16.
17.
18.

19.
20.
21.

22.

23.

range of objectswith duplicate keys. Note you may have to add some
functionsin A and/or B to make this program work.

Perform the above exercise for amultiset<A>.

Create aclassthat has an oper ator < and an ostreamé& oper ator<<. The
class should contain a priority number. Create a generator for your class that
makes a random priority number. Fill apriority_queue using your
generator, then pull the elements out to show they are in the proper order.

Rewrite Ring.cpp o it uses adeque instead of alist for its underlying
implementation.

Modify Ring.cpp so that the underlying implementation can be chosen
using a template argument (let that template argument default to list).

Open afileand read it into asingle string. Turnthe stringinto a

stringstr eam. Read tokens from the stringstream into alist<string> using
aTokenlterator.

Compare the performance of stack based on whether it isimplemented with
vector, deque or list.

Create an iterator class called BitBucket that just absorbs whatever you
send to it without writing it anywhere.

Create atemplate that implements a singly-linked list called SList. Provide
adefault constructor, begin() and end() functions (thus you must create
the appropriate nested iterator), insert(), erase() and a destructor.

(More challenging) Create alittle command language. Each command can
simply print its name and its arguments, but you may also want to make it
perform other activities like run programs. The commands will be read from
afile that you pass as an command-line argument, or from standard input if
no file is given. Each command is on asingle line, and lines beginning with
‘# are comments. A line begins with the one-word command itself,
followed by any number of arguments. Commands and arguments are
separated by spaces. Use amap that maps string objects (the name of the
command) to object pointers. The object pointers point to objects of a base
class Command that has avirtual execute(string args) function, where
args contains all the arguments for that command (execute() will parseits
own arguments from ar gs). Each different type of command is represented
by a classthat is inherited from Command.

Add features to the above exercise so that you can have labels, if-then
statements, and the ability to jump program execution to alabel.

Chapter 15: Multiple Inheritance

261

5. STL Algorithms

The other half of the STL isthe algorithms, which are
templatized functions designed to work with the containers
(or, asyou will see, anything that can behave like a
container, including arrays and string objects).

The STL was originally designed around the algorithms. The goal was that you use algorithms
for almost every piece of code that you write. In this sense it was a bit of an experiment, and
only time will tell how well it works. The real test will be in how easy or difficult it is for the
average programmer to adapt. At the end of this chapter you'll be able to decide for yourself
whether you find the algorithms addictive or too confusing to remember. If you're like me,
you'll resist them at first but then tend to use them more and more.

Before you make your judgment, however, there's one other thing to consider. The STL
algorithms provide a vocabulary with which to describe solutions. That is, once you become
familiar with the algorithms you'll have a new set of words with which to discuss what you're
doing, and these words are at a higher level than what you' ve had before. Y ou don’t have to
say “thisloop moves through and assigns from here to there ... oh, | see, it's copying!”
Instead, you say copy(). Thisisthe kind of thing we' ve been doing in computer
programming from the beginning — creating more dense ways to express what we're doing
and spending less time saying how we' re doing it. Whether the STL algorithms and generic
programming are a great success in accomplishing this remains to be seen, but that is
certainly the objective.

Function objects

A concept that is used heavily in the STL algorithms is the function object, which was
introduced in the previous chapter. A function object has an overloaded operator (), and the
result isthat atemplate function can't tell whether you' ve handed it a pointer to a function or
an object that has an operator (); all the template function knowsis that it can attach an
argument list to the object asif it were a pointer to a function:

/1: CO5: Funchj ect.cpp

/1 Sinple function objects
#i ncl ude <i ostreanp

usi ng namespace std;

263

t enpl at e<cl ass UnaryFunc, class T>

void cal |l Func(T& x, UnaryFunc f) {
f(x);

}

void g(int& x) {
X = 47;
}

struct UFunc {
void operator()(int& x) {
X = 48;
}
b

int main() {
int y =0;
cal | Func(y, 9);
cout << y << endl;
y =0
cal | Func(y, UFunc());
cout << y << endl;
Y I~

The template callFunc() says “give me an f and an x, and I'll write the code f(x).” Inmain(),
you can see that it doesn’t matter if f isapointer to afunction (asin the case of g()), or if it's
afunction object (which is created as atemporary object by the expression UFunc()). Notice
you can only accomplish this genericity with atemplate function; a non-template function is
too particular about its argument types to allow such athing. The STL algorithms use this
flexibility to take either afunction pointer or a function object, but you'll usually find that
creating a function object is more powerful and flexible.

The function object is actually a variation on the theme of a callback, which is described in
the design patterns chapter. A callback allows you to vary the behavior of afunction or object
by passing, as an argument, a way to execute some other piece of code. Here, we are handing
callFunc() apointer to afunction or afunction object.

The following descriptions of function objects should not only make that topic clear, but also
give you an introduction to the way the STL algorithms work.

Classification of function objects

Just asthe STL classifies iterators (based on their capabilities), it also classifies function
objects based on the number of arguments that their operator () takes and the kind of value
returned by that operator (of course, thisis also true for function pointers when you treat them

Chapter 15: Multiple Inheritance
264

as function objects). The classification of function objectsin the STL is based on whether the
oper ator () takes zero, one or two arguments, and if it returns abool or non-bool value.

Generator: Takes no arguments, and returns a value of the desired type. A
RandomNumber Gener ator isa special case.

UnaryFunction: Takes a single argument of any type and returns a value which may be of a
different type.

BinaryFunction: Takes two arguments of any two types and returns a value of any type.

A specia case of the unary and binary functionsis the predicate, which simply means a
function that returns abool. A predicate is afunction you use to make atrue/false decision.

Predicate: Thiscan aso be called a UnaryPredicate. It takes a single argument of any type
and returns a bool.

BinaryPredicate: Takes two arguments of any two types and returns abool.

StrictWeakOrdering: A binary predicate that says that if you have two objects and neither
oneisless than the other, they can be regarded as equivalent to each other.

In addition, there are sometimes qualifications on object types that are passed to an agorithm.
These qualifications are given in the template argument type identifier name:

LessThanComparable: A classthat has aless-than operator <.
Assignable: A classthat has an assignment operator = for its own type.

EqualityComparable: A class that has an equivalence oper ator == for its own type.

Automatic creation of function objects

The STL has, in the header file <functional>, a set of templates that will automatically create
function objects for you. These generated function objects are admittedly simple, but the goal
isto provide very basic functionality that will allow you to compose more complicated
function objects, and in many situationsthisisall you'll need. Also, you'll see that there are
some function object adapters that allow you to take the simple function objects and make
them slightly more complicated.

Here are the templ ates that generate function objects, along with the expressions that they
effect.

Name Type Result produced by generated function
object

plus BinaryFunction | argl + arg2

minus BinaryFunction | argl - arg2

multiplies BinaryFunction | argl * arg2

Chapter 15: Multiple Inheritance
265

Name Type Result produced by generated function
object

divides BinaryFunction | argl/arg2

modulus BinaryFunction | argl % arg2

negate UnaryFunction | - argl

equal_to BinaryPredicate | argl == arg2

not_equal_to | BinaryPredicate | argl !=arg2

greater BinaryPredicate | argl > arg2

less BinaryPredicate | argl < arg2

greater_equal | BinaryPredicate | argl >=arg2

less equal BinaryPredicate | argl <= arg2

logical_and BinaryPredicate | argl & & arg2

logical_or BinaryPredicate | argl || arg2

logical_not UnaryPredicate | largl

not1() Unary Logical I(UnaryPredicate(argl))

not2() Binary Logical I(BinaryPredicate(argl, arg2))

The following example provides simple tests for each of the built-in basic function object
templates. Thisway, you can see how to use each one, along with their resulting behavior.

/1

/1

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

cout

/!l This wll
#i ncl ude "CGenerators. h"

<al gorithne
<vect or>
<i ostreane

<functi onal >
usi ng namespace std;

t enpl at e<t ypenane T>
voi d print(vector<T>& v,

if(*msg !'= 0)
<< mBg << ":"

CO5: Functi onObj ects. cpp
/1 Using the predefined function object tenplates
in the Standard C++ library

be defined shortly:

char* msg = "") {

<< endl ;

Chapter 15: Multiple Inheritance

266

copy(v. begin(), v.end(),
ostreamiterator<T>(cout, " "));:
cout << endl

}

t enpl at e<t ypenane Contai n, typenanme UnaryFunc>
voi d test Unary(Contain& source, Containé& dest,
UnaryFunc f) {
transformsource. begi n(), source.end(),
dest. begin(), f);
}

t enpl at e<t ypenane Contai nl, typenanme Contain2,
t ypenane Bi naryFunc>
voi d testBinary(Containl& srcl, Containl& src2
Cont ai n2& dest, BinaryFunc f) {
transform(srcl. begin(), srcl.end(),
src2. begin(), dest.begin(), f);
}

/1l Executes the expression, then stringizes the
/1 expression into the print statenent:

#define T(EXPR) EXPR print(r, "After " #EXPR)
/1 For Bool ean tests:

#defi ne B(EXPR) EXPR, print(br,"After " #EXPR)

/1 Bool ean random gener at or
struct BRand {
BRand() { srand(tine(0)); }
bool operator()() {
return rand() > RAND MAX / 2;
}

}s

int main() {
const int sz = 10;
const int max = 50;
vector<int> x(sz), y(sz), r(sz);
/1 An integer random number gener ator
URandGen ur g(max) ;
generate_n(x.begin(), sz, urg);
generate_n(y.begin(), sz, urg);
/1 Add one to each to guarantee nonzero divide:

Chapter 15: Multiple Inheritance
267

transformy. begin(), y.end(), y.begin(),
bi nd2nd(pl us<i nt>(), 1));
/1 Guarantee one pair of elements is ==

x[0] = y[O];
print(x, "x");
print(y, "y");

/1l Operate on each elenment pair of x &y,
/1 putting the result into r:
T(testBinary(x, y, r, plus<int>()));
T(testBinary(x, y, r, mnus<int>()));
T(testBinary(x, y, r, nultiplies<int>(
T(testBinary(x, y, r, divides<int>()))
T(testBinary(x, y, r, nodulus<int>()))
T(testUnary(x, r, negate<int>()));
vect or<bool > br(sz); // For Boolean results
B(testBinary(x, y, br, equal _to<int>()));
B(testBinary(x, y, br, not_equal to<int>()));
B(testBinary(x, y, br, greater<int>()));
B(testBinary(x, y, br, less<int>()));
B(testBinary(x, y, br, greater_equal<int>()));
B(testBinary(x, y, br, less equal<int>()));
B(testBinary(x, y, br,
not 2(greater_equal <int>())));
B(testBinary(x,y,br,not2(less_equal<int>())));
vect or <bool > bl(sz), b2(sz);
generate_n(bl. begin(), sz, BRand());
generate_n(b2.begin(), sz, BRand());
print(bl, "bil");
print(b2, "b2");
B(testBinary(bl, b2, br, logical and<int>()));
B(testBinary(bl, b2, br, logical _or<int>()));
B(test Unary(bl, br, logical _not<int>()));
B(test Unary(bl, br, notl(logical not<int>())));
Y I~

To keep this example small, some tools are created. The print() template is designed to print
any vector <T>, along with an optional message. Since print() usesthe STL copy()
algorithm to send objects to cout viaan ostream_iterator, the ostream_iterator must know
the type of object it is printing, and therefore the print(') template must know this type also.
However, you'll seein main() that the compiler can deduce the type of T when you hand it a
vector <T>, so you don’t have to hand it the template argument explicitly; you just say
print(x) to print the vector <T> x.

?));

Chapter 15: Multiple Inheritance
268

The next two template functions automate the process of testing the various function object
templates. There are two since the function objects are either unary or binary. In testUnary(),
you pass a source and destination vector, and a unary function object to apply to the source
vector to produce the destination vector. In testBinary(), there are two source vectors which
are fed to a binary function to produce the destination vector. In both cases, the template
functions simply turn around and call the transform() algorithm, although the tests could
certainly be more complex.

For each test, you want to see a string describing what the test is, followed by the results of
the test. To automate this, the preprocessor comesin handy; the T (') and B(') macros each
take the expression you want to execute. They call that expression, then call print(), passing
it the result vector (they assume the expression changes a vector named r and br,
respectively), and to produce the message the expression is “string-ized” using the
preprocessor. So that way you see the code of the expression that is executed followed by the
result vector.

The last little tool is a generator object that creates random bool values. To do this, it gets a
random number from rand() and teststo seeif it's greater than RAND_M AX/2. If the
random numbers are evenly distributed, this should happen half the time.

In main(), three vector <int> are created: x and y for source values, and r for results. To
initialize x and y with random values no greater than 50, a generator of type URandGen is
used; thiswill be defined shortly. Since there is one operation where elements of x are divided
by elements of y, we must ensure that there are no zero values of y. Thisis accomplished
using the transform() algorithm, taking the source values fromy and putting the results back
into y. The function object for thisis created with the expression:

bi nd2nd(pl us<i nt>(), 1)

This uses the plus function object that adds two objects together. It is thus a binary function
which requires two arguments; we only want to pass it one argument (the element fromy) and
have the other argument be the value 1. A “binder” does thetrick (we will look at these next).
The binder in this case says “make a new function object which is the plus function object
with the second argument fixed at 1.”

Another of the testsin the program compares the elements in the two vectors for equality, so
it isinteresting to guarantee that at least one pair of elementsis equivalent; in this case
element zero is chosen.

Once the two vectors are printed, T() is used to test each of the function objects that produces
anumerical value, and then B() is used to test each function object that produces a Boolean
result. Theresult is placed into a vector <bool>, and when this vector is printed it produces a
‘1’ for atruevalueand a*‘0’ for afalse value.

Binders

It's common to want to take a binary function object and to “bind” one of its argumentsto a
constant value. After binding, you get a unary function object.

Chapter 15: Multiple Inheritance
269

For example, suppose you want to find integers that are less than a particular value, say 20.
Sensibly enough, the STL algorithms have a function called find_if() that will search through
a sequence; however, find_if() requires aunary predicate to tell it if thisiswhat you're
looking for. This unary predicate can of course be some function object that you have written
by hand, but it can also be created using the built-in function object templates. In this case, the
less template will work, but that produces a binary predicate, so we need some way of

forming a unary predicate. The binder templates (which work with any binary function object,
not just binary predicates) give you two choices:

bind1st(const BinaryFunction& op, const T& t);
bind2nd(const BinaryFunction& op, const T& t);

Both bind t to one of the arguments of op, but bind1st() bindst to the first argument, and
bind2nd() bindst to the second argument. With less, the function object that provides the
solution to our exerciseis:

| bi nd2nd(1 ess<i nt >(), 20);

This produces a new function object that returnstrueif its argument isless than 20. Hereit is,
used with find_if():

//: CO5: Bi nder 1. cpp

/1 Using STL "binders"
#i ncl ude "Cenerators. h"
#i ncl ude "copy_if.h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >
usi ng nanmespace std;

int main() {

const int sz = 10;

const int max = 40;

vector<int> a(sz), r;

URandGen ur g(max) ;

ostream.iterator<int> out(cout, " ");

generate_n(a.begin(), sz, urg);

copy(a. begin(), a.end(), out);

int* d = find_if(a.begin(), a.end(),
bi nd2nd(Il ess<i nt>(), 20));

cout << "\n *d = " << *d << endl;

/1 copy_if() is not in the Standard C++ library

/1 but is defined later in the chapter:

copy_if(a.begin(), a.end(), back_inserter(r),
bi nd2nd(Il ess<i nt>(), 20));

Chapter 15: Multiple Inheritance
270

copy(r.begin(), r.end(), out);
cout << endl;
Y I~

The vector <int> a isfilled with random numbers between 0 and max. find_if() finds the first
element in a that satisfies the predicate (that is, which isless than 20) and returns an iterator to
it (here, the type of the iterator is actually just int* although | could have been more precise
and said vector <int>::iterator instead).

A more interesting algorithm to useis copy_if(), which isn't part of the STL but is defined at
the end of this chapter. This algorithm only copies an element from the source to the
destination if that element satisfies a predicate. So the resulting vector will only contain
elements that are less than 20.

Here's a second example, using a vector <string> and replacing strings that satisfy particular
conditions:

//: CO5: Bi nder 2. cpp
/1 More binders

#i ncl ude <al gorithne
#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp
#i ncl ude <functional >
usi ng nanmespace std;

int main() {
ostream.iterator<string> out(cout, " ");
vector<string> v, r;
v. push_back("H ");
v. push_back("H ");
v. push_back(" Hey") ;
v. push_back(" Hee");
v. push_back("H ");
copy(v. begin(), v.end(), out);
cout << endl
/'l Replace each "H " with "Ho":
repl ace_copy_if(v. begin(), v.end(),
back_inserter(r),
bi nd2nd(equal _to<string>(), "H "), "Ho");
copy(r.begin(), r.end(), out);
cout << endl
/1 Replace anything that's not "H " with "Ho":
repl ace_if(v.begin(), v.end(),
not 1(bi nd2nd(equal _to<string>(),"H ")), "Ho");

Chapter 15: Multiple Inheritance
271

copy(v.begin(), v.end(), out);
cout << endl
Y I~

This uses another pair of STL agorithms. The first, replace_copy_if(), copies each element
from a source range to a destination range, performing replacements on those that satisfy a
particular unary predicate. The second, replace if(), doesn’t do any copying but instead
performs the replacements directly into the original range.

A binder doesn’t have to produce a unary predicate; it can also create a unary function (that is,
afunction that returns something other than bool). For example, suppose you'd like to
multiply every element in avector by 10. Using a binder with the transform() algorithm
does the trick:

//: CO5: Bi nder 3. cpp

/1 Binders aren't limted to producing predicates
#i ncl ude "CGenerators. h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng namespace std;

int main() {
ostream.iterator<int> out(cout, " ");
vector<int> v(15);
generate(v. begin(), v.end(), URandGen(20));
copy(v. begin(), v.end(), out);
cout << endl
transformv. begin(), v.end(), v.begin(),

bi nd2nd(mul ti plies<int>(), 10));

copy(v. begin(), v.end(), out);
cout << endl

Y I~

Since the third argument to transform() is the same as the first, the resulting elements are
copied back into the source vector. The function object created by bind2nd() in this case
produces an int result.

The “bound” argument to a binder cannot be a function object, but it does not have to be a
compile-time constant. For example:

/1: CO5: Bi nder4. cpp

/1 The bound argunent does not have
/1 to be a conpile-tine constant

#i nclude "copy_if.h"

Chapter 15: Multiple Inheritance
272

#i
#i
#i
#i
#i
#i

}

ncl ude "Print Sequence. h"
nclude "../require.h"
ncl ude <i ostreane

ncl ude <al gorithnp

ncl ude <functional >

ncl ude <cstdlib>

usi ng namespace std;
i nt boundedRand() { return rand() % 100; }

int main(int argc, char* argv[]) {

requi reArgs(argc, 1, "usage: Binder4 int");
const int sz = 20;
int a[20], b[20] = {0};
generate(a, a + sz, boundedRand);
int* end = copy_if(a, a + sz, b,
bi nd2nd(greater<int>(), atoi(argv[1])));
/1 Sort for easier view ng:
sort(a, a + sz);
sort (b, end);

print(a, a + sz, "array a", " ");
print(b, end, "values greater than yours"," ");
111~

Here, an array isfilled with random numbers between 0 and 100, and the user provides a
value on the command line. In the copy_if() call, you can see that the bound argument to
bind2nd() istheresult of the function call atoi() (from <cstdlib>).

Function pointer adapters

Any place in an STL algorithm where a function object is required, it's very conceivable that
you'd like to use a function pointer instead. Actually, you can use an ordinary function
pointer —that’s how the STL was designed, so that a“function object” can actually be
anything that can be dereferenced using an argument list. For example, the rand() random
number generator can be passed to generate() or generate_n() as afunction pointer, like

this:

#i
#i
#i
#i
#i
#i

/1: CO5: RandGenTest . cpp
/1 Alittle test of the random nunber gener ator

ncl ude <al gorithnp
ncl ude <vect or >

ncl ude <i ostreanr
ncl ude <functi onal >
ncl ude <cstdli b>
ncl ude <cti nme>

Chapter 15: Multiple Inheritance

273

usi ng namespace std;

int main() {
const int sz = 10000;

int v[sz];
srand(time(0)); // Seed the random gener at or
for(int i =0; i < 300; i++) {

/1 Using a naked pointer to function:
generate(v, v + sz, std::rand);
int count = count _if(v, v + sz,
bi nd2nd(greater<int>(), RAND MAX/ 2));
cout << (((double)count)/((double)sz)) * 100
<< ' '

}
Y 11~

The “iterators” in this case are just the starting and past-the-end pointers for the array v, and
the generator isjust a pointer to the standard library rand() function. The program repeatedly
generates a group of random numbers, then it uses the STL algorithm count_if() and a
predicate that tells whether a particular element is greater than RAND_M AX/2. Theresultis
the number of elements that match this criterion; thisis divided by the total number of
elements and multiplied by 100 to produce the percentage of elements greater than the
midpoaint. If the random number generator is reasonable, this value should hover at around
50% (of course, there are many other tests to determine if the random number generator is
reasonable).

The ptr_fun() adapters take a pointer to afunction and turn it into a function object. They are
not designed for a function that takes no arguments, like the one above (that is, a generator).
Instead, they are for unary functions and binary functions. However, these could also be
simply passed asif they were function objects, so the ptr_fun() adapters might at first appear
to be redundant. Here' s an example where using ptr_fun() and simply passing the address of
the function both produce the same results:

//: CO5:PtrFunl. cpp

/1 Using ptr_fun() for single-argunent functions
#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng nanmespace std;

char* n[] = { "01.23", "91.370", "56.661",
"023.230", "19.959", "1.0", "3.14159" };
const int nsz = sizeof n / sizeof *n;

Chapter 15: Multiple Inheritance
274

t enpl at e<t ypenane | nputlter>
void print(lnputlter first, Inputlter last) {
while(first = last)
cout << *first++ << "\t";
cout << endl;

}

int main() {
print(n, n + nsz);
vect or <doubl e> vd
transform(n, n + nsz, back_inserter(vd), atof);
print(vd. begin(), vd.end());
transform(n,n + nsz,vd. begin(), ptr_fun(atof));
print(vd. begin(), vd.end());

Y I~

The goal of this program isto convert an array of char* which are ASCII representations of
floating-point numbers into a vector <double>. After defining this array and the print()
template (which encapsulates the act of printing a range of elements), you can see
transform(') used with atof() asa*“naked” pointer to afunction, and then a second time with
atof passed to ptr_fun(). The results are the same. So why bother with ptr_fun()? Well, the
actual effect of ptr_fun() isto create afunction object with an operator (). This function
object can then be passed to other template adapters, such as binders, to create new function
objects. Asyou'll see a hit later, the SGI extensions to the STL contain a number of other
function templates to enable this, but in the Standard C++ STL there are only the bind1st()
and bind2nd() function templates, and these expect binary function objects as their first
arguments. In the above example, only the ptr_fun() for aunary function is used, and that
doesn’t work with the binders. So ptr_fun() used with aunary function in Standard C++
really is redundant (note that Gnu g++ usesthe SGI STL).

With abinary function and a binder, things can be alittle more interesting. This program
produces the squares of the input vector d:

//: CO5:PtrFun2.cpp

/1 Using ptr_fun() for two-argument functions
#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

#i ncl ude <cnmat h>

usi ng nanmespace std;

doubl e d[] = { 01.23, 91.370, 56.661,
023.230, 19.959, 1.0, 3.14159 };
const int dsz = sizeof d / sizeof *d;

Chapter 15: Multiple Inheritance
275

int main() {
vect or <doubl e> vd;
transform(d, d + dsz, back_inserter(vd),
bi nd2nd(ptr_fun(pow), 2.0));
copy(vd. begin(), vd.end(),
ostream.terator<doubl e>(cout, " "));
cout << endl
Y I~

Here, ptr_fun() isindispensable; bind2nd() must have afunction object asits first argument

and a pointer to function won't cut it.

A trickier problem isthat of converting a member function into a function object suitable for
using in the STL algorithms. As a simple example, suppose we have the “shape” problem and

would like to apply the draw() member function to each pointer in a container of Shape:

/1: CO5: MenfFunl. cpp

/1 Applying pointers to nenber functions
#i nclude "../purge.h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng namespace std;

cl ass Shape {

public:
virtual void draw() = 0;
virtual ~Shape() {}

}s

class Circle : public Shape {
public:
virtual void draw() {
cout << "Circle::Draw()" << endl;
}

~Circle() {
cout << "Circle::~Circle()" << endl
}

b
class Square : public Shape {

public:
virtual void draw() {

Chapter 15: Multiple Inheritance
276

cout << "Square::Draw()" << endl;
}
~Square() {
cout << "Square::~Square()" << endl;
}
b

int main() {
vect or <Shape*> vs;
vs. push_back(new Circle);
vs. push_back(new Square);
for_each(vs. begin(), vs.end(),

mem f un(&Shape: : draw));

purge(vs);

Y I~

Thefor_each(') function does just what it sounds like it does: passes each element in the
range determined by the first two (iterator) arguments to the function object which isitsthird
argument. In this case we want the function object to be created from one of the member
functions of the classitself, and so the function object’ s “argument” becomes the pointer to
the object that the member function is called for. To produce such a function object, the
mem_fun() template takes a pointer to member as its argument.

The mem_fun() functions are for producing function objects that are called using a pointer to
the object that the member functionis called for, while mem_fun_ref() isused for calling the
member function directly for an object. One set of overloads of both mem_fun() and
mem_fun_ref() are for member functions that take zero arguments and one argument, and
thisis multiplied by two to handle const vs. non-const member functions. However,
templates and overloading takes care of sorting all of that out; all you need to remember is
when to use mem_fun() vs. mem_fun_ref().

Suppose you have a container of objects (not pointers) and you want to call a member
function that takes an argument. The argument you pass should come from a second container
of objects. To accomplish this, the second overloaded form of the transform() algorithmis
used:

/1: CO5: MenfFun2. cpp

/1 Applying pointers to nenber functions
#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng namespace std;

class Angle {
i nt degrees;

Chapter 15: Multiple Inheritance
277

public:
Angl e(int deg) : degrees(deg) {}
int mul (int times) {
return degrees *= tines;
}

}s

int main() {
vect or <Angl e> va
for(int i =0; i <50; i += 10)
va. push_back(Angle(i));
int x[] ={1, 2, 3, 4, 51};
transformva. begin(), va.end(), Xx,
ostream.iterator<int>(cout, " "),
mem fun_ref (&Angle::mul));
cout << endl
Y I~

Because the container is holding objects, mem_fun_ref() must be used with the pointer-to-
member function. This version of transform() takes the start and end point of the first range
(where the objects live), the starting point of second range which holds the arguments to the
member function, the destination iterator which in this case is standard output, and the
function object to call for each object; this function object is created with mem_fun_ref()
and the desired pointer to member. Notice the transform() and for_each() template
functions are incomplete; transform() requires that the function it calls return a value and
thereis no for_each() that passes two arguments to the function it calls. Thus, you cannot
call amember function that returns void and takes an argument using transform() or
for_each().

Any member function works, including those in the Standard libraries. For example, suppose
you'd like to read afile and search for blank lines; you can use the string::empty() member
function like this:

/1 : CO5: Fi ndBl anks. cpp

/1 Denpnstrate memfun_ref() with string::enmpty()
#include "../require. h"

#i ncl ude <al gorithne

#i nclude <list>

#i ncl ude <string>

#i ncl ude <fstreanr

#i ncl ude <functional >

usi ng nanmespace std;

typedef list<string>: :iterator LSI;

Chapter 15: Multiple Inheritance
278

LSl bl ank(LSI begin, LSI end) {
return find_if(begin, end,
mem fun_ref (&string::enpty));
}

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
list<string> I|s;
string s;
whil e(getline(in, s))
I s. push_back(s);
LSl Isi = blank(ls.begin(), Is.end());
while(lsi '=1Is.end()) {
*I'si = "A BLANK LI NE";
I'si = blank(lsi, Is.end());
}
string f(argv[1]);
f += ".out";
of streamout (f.c_str());
copy(ls.begin(), Is.end(),
ostream.iterator<string>(out, "\n"));
Y I~

The blank () function uses find_if() to locate the first blank line in the given range using
mem_fun_ref() with string::empty(). After thefileis opened and read into thelist, blank()
is called repeated times to find every blank line in the file. Notice that subsequent callsto
blank() use the current version of theiterator so it moves forward to the next one. Each time
ablank lineisfound, it is replaced with the characters “A BLANK LINE.” All you haveto do
to accomplish thisis dereference the iterator, and you select the current string.

SGI extensions

The SGI STL (mentioned at the end of the previous chapter) also includes additional function
object templates, which allow you to write expressions that create even more complicated
function objects. Consider a more involved program which converts strings of digitsinto
floating point numbers, like Ptr Fun2.cpp but more general. First, here’'s a generator that
creates strings of integers that represent floating-point values (including an embedded decimal
point):

//: CO5:NunBtringGen. h
/1 A random nunber generator that produces
/1 strings representing floating-point nunbers

Chapter 15: Multiple Inheritance
279

#i f ndef NUMSTRI NGGEN_H
#defi ne NUMSTRI NGGEN_H
#i ncl ude <string>

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

class NunBtringGen {
const int sz; // Nunmber of digits to make
public:
NunttringGen(int ssz = 5) : sz(ssz) {
std::srand(std::tinme(0));
}

std::string operator()() {
static char n[] = "0123456789";
const int nsz = 10;

std::string r(sz, ' ');
for(int i =0; i < sz; i++4)
if(i == sz/2)
r(il] =*."; I/ Insert a decimal point
el se
r[i] = n[std::rand() % nsz];
return r;

}
b
#endif // NUVBTRINGGEN H ///:~

Youtell it how big the strings should be when you create the NumStringGen object. The
random number generator isused to select digits, and a decimal point is placed in the middle.

The following program (which works with the Standard C++ STL without the SGI
extensions) uses NumStringGen to fill avector<string>. However, to use the Standard C
library function atof() to convert the strings to floating-point numbers, the string objects
must first be turned into char pointers, since there is no automatic type conversion from
string to char*. The transform(') agorithm can be used with mem_fun_ref() and

string:

atof:

#i
#i
#i
#i
#i
#i

:c_str() to convert al the stringsto char*, and then these can be transformed using

/1: CO5: MenFun3. cpp
/1 Using mem fun()

ncl ude "NunttringGen. h"
ncl ude <al gorithnp

ncl ude <vector>

ncl ude <string>

ncl ude <i ostreane

ncl ude <functional >

Chapter 15: Multiple Inheritance

280

usi ng namespace std;

int main() {
const int sz = 9;
vector<string> vs(sz);
/1 Fill it with random nunber strings:
generate(vs. begin(), vs.end(), NunStringGen());
copy(vs. begin(), vs.end(),
ostream.iterator<string>(cout, "\t"));
cout << endl
const char* vcp[sz];
transformvs. begin(), vs.end(), vcp,
mem fun_ref (&string::c_str));
vect or <doubl e> vd
transformvcp, vep + sz, back_inserter(vd),
std::atof);
copy(vd. begin(), vd.end(),
ostream.iterator<doubl e>(cout, "\t"));
cout << endl
Y I~

The SGI extensionsto the STL contain a number of additional function object templates that
accomplish more detailed activities than the Standard C++ function object templates,
including identity (returnsits argument unchanged), project1st and project2nd (to take two
arguments and return the first or second one, respectively), select1st and select2nd (to take a
pair object and return the first or second element, respectively), and the “compose” function
templates.

If you're using the SGI extensions, you can make the above program denser using one of the
two “compose” function templates. The first, composel(f1, f2), takes the two function objects
f1 and f2 asits arguments. It produces a function object that takes a single argument, passes it
to f2, then takes the result of the call to f2 and passesit to f1. Theresult of f1 is returned. By
using composel(), the process of converting the string objects to char*, then converting the
char* to afloating-point number can be combined into a single operation, like this:

//: CO5: MenfFun4. cpp

/1 Using the SA@ STL conposel function
#i ncl ude "NunttringGen. h"

#i ncl ude <al gorithne

#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp

#i ncl ude <functional >

usi ng nanmespace std;

Chapter 15: Multiple Inheritance
281

}

int main() {

const int sz = 9;

vector<string> vs(sz);

/1 Fill it with random nunber strings:

generate(vs. begin(), vs.end(), NunStringGen());

copy(vs. begin(), vs.end(),
ostream.iterator<string>(cout, "\t"));

cout << endl

vect or <doubl e> vd

transformvs. begin(), vs.end(), back_inserter(vd),
conposel(ptr_fun(atof),

mem fun_ref (&string::c_str)));

copy(vd. begin(), vd.end(),
ostream.iterator<doubl e>(cout, "\t"));

cout << endl

11~

Y ou can see there’s only asingle call to transform() now, and no intermediate holder for the
char pointers.

The second “compose” function is compose2(), which takes three function objects as its
arguments. The first function object is binary (it takes two arguments), and its arguments are
the results of the second and third function objects, respectively. The function object that
results from compose2() expects one argument, and it feeds that argument to the second and
third function objects. Here is an example:

#i
#i
#i
#i
#i
#i
#i

/1: CO05: Conpose2. cpp
/1 Using the SE@ STL comnpose2() function

ncl ude "copy_if.h"
ncl ude <al gorithnp
ncl ude <vector>

ncl ude <i ostreane
ncl ude <functional >
ncl ude <cstdlib>
ncl ude <cti nme>

usi ng namespace std;

int main() {

srand(tinme(0));
vector<int> v(100);
generate(v.begin(), v.end(), rand);
transformv. begin(), v.end(), v.begin(),

bi nd2nd(di vi des<i nt>(), RAND MAX/ 100));
vector<int> r;
copy_if(v.begin(), v.end(), back_ inserter(r),

Chapter 15: Multiple Inheritance

282

conpose2(| ogi cal _and<bool >(),
bi nd2nd(greater _equal <int>(), 30),
bi nd2nd(| ess_equal <i nt>(), 40)));
sort(r.begin(), r.end());
copy(r.begin(), r.end(),
ostreamiterator<int>(cout, " "));
cout << endl
Y I~

The vector <int> v isfirst filled with random numbers. To cut these down to size, the
transform() algorithmis used to divide each value by RAND_M AX/100, which will force
the values to be between 0 and 100 (making them more readable). The copy_if() algorithm
defined later in this chapter is then used, along with a composed function object, to copy all
the elements that are greater than or equal to 30 and less than or equal to 40 into the
destination vector <int>r. Just to show how easy it is, r is sorted, and then displayed.

The arguments of compose2() say, in effect:
| (x >= 30) && (X <= 40)

Y ou could also take the function object that comes from a composel() or compose2() call
and passit into another “compose” expression ... but this could rapidly get very difficult to
decipher.

Instead of all this composing and transforming, you can write your own function objects
(without using the SGI extensions) as follows:

/1: CO05: NoConpose. cpp
/1 Witing out the function objects explicitly
#i nclude "copy_if.h"
#i ncl ude <al gorithne
#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp
#i ncl ude <functional >
#i ncl ude <cstdlib>

#i ncl ude <cti nme>
usi ng namespace std;

class Rgen {
const int max;
public:
Rgen(int mx = 100) : nax(RAND _MAX/ nx) {
srand(tinme(0));
}

int operator()() { return rand() / max; }

Chapter 15: Multiple Inheritance
283

}s

cl ass BoundTest {
int top, bottom
public:
BoundTest (int b, int t) : bottonm(b), top(t) {}
bool operator()(int arg) {
return (arg >= botton) && (arg <= top);
}

}s

int main() {
vector<int> v(100);
generate(v. begin(), v.end(), Rgen());
vector<int> r;
copy_if(v.begin(), v.end(), back_ inserter(r),
BoundTest (30, 40));
sort(r.begin(), r.end());
copy(r.begin(), r.end(),
ostreamiterator<int>(cout, " "));
cout << endl
Y I~

There are afew more lines of code, but you can’t deny that it's much clearer and easier to
understand, and therefore to maintain.

We can thus observe two drawbacks to the SGI extensions to the STL. Thefirst is simply that
it's an extension; yes, you can download and use them for free so the barriersto entry are low,
but your company may be conservative and decide that if it's not in Standard C++, they don’t
want to use it. The second drawback is complexity. Once you get familiar and comfortable
with the idea of composing complicated functions from simple ones you can visually parse
complicated expressions and figure out what they mean. However, my guess is that most
people will find anything more than what you can do with the Standard, non-extended STL
function object notation to be overwhelming. At some point on the complexity curve you have
to bite the bullet and write a regular class to produce your function object, and that point
might as well be the point where you can’t use the Standard C++ STL. A stand-alone class for
afunction object is going to be much more readable and maintainabl e than a complicated
function-composition expression (although my sense of adventure does lure me into wanting
to experiment more with the SGI extensions...).

Asafinal note, you can’'t compose generators; you can only create function objects whose
oper ator () requires one or two arguments.

Chapter 15: Multiple Inheritance
284

A catalog of STL algorithms

This section provides a quick reference for when you' re searching for the appropriate
algorithm. | leave the full exploration of all the STL algorithmsto other references (see the
end of this chapter, and Appendix X X), along with the more intimate details of complexity,
performance, etc. My goal hereisfor you to become rapidly comfortable and facile with the
algorithms, and | will assume you will look into the more specialized references if you need
more depth of detail.

Although you will often see the algorithms described using their full template declaration
syntax, | am not doing that here because you aready know they are templates, and it's quite
easy to see what the template arguments are from the function declarations. The type names
for the arguments provide descriptions for the types of iterators required. | think you'll find
thisformis easier to read, while you can quickly find the full declaration in the template
header fileif for some reason you feel the need.

The names of the iterator classes describe the iterator type they must conform to. The iterator
types were described in the previous chapter, but here is a summary:

Inputlterator. You (or rather, the STL algorithm and any algorithms you write that
use | nputlterators) can increment this with operator ++ and dereference it with
oper ator* to read the value (and only read the value), but you can only read each
value once. I nputlterators can be tested with operator == and operator!=. That's
all. Because an I nputlterator isso limited, it can be used with istreams (via
istream_iterator).

Outputlterator. This can be incremented with oper ator ++, and dereferenced with
operator* to write the value (and only write the value), but you can only
dereference/write each value once. Outputlterators cannot be tested with

oper ator == and oper ator ! =, however, because you assume that you can just keep
sending elements to the destination and that you don’t have to seeif the destination’s
end marker has been reached. That is, the container that an Outputlterator
references can take an infinite number of objects, so no end-checking is necessary.
This requirement isimportant so that an Outputlterator can be used with ostreams
(viaostream iterator), but you'll also commonly use the “insert” iterators
insert_iterator, front_insert_iterator and back insert_iterator (generated by the
helper templatesinserter (), front_inserter() and back_inserter()).

With both Inputlterator and Outputlterator, you cannot have multiple iterators
pointing to different parts of the same range. Just think in terms of iteratorsto
support istreams and ostreams, and | nputlterator and Outputlterator will make
perfect sense. Also note that I nputlterator and Outputlterator put the weakest
restrictions on the types of iterators they will accept, which means that you can use
any “more sophisticated” type of iterator when you see I nputlterator or
Outputlterator used as STL agorithm template arguments.

Chapter 15: Multiple Inheritance
285

Forwardlterator. Inputlterator and Outputlterator are the most restricted, which
means they’ [| work with the largest number of actual iterators. However, there are
some operations for which they are too restricted; you can only read from an
Inputlterator and write to an Outputlterator, so you can't use them to read and
modify arange, for example, and you can’'t have more than one active iterator on a
particular range, or dereference such an iterator more than once. With a

Forwar dlterator these restrictions are relaxed; you can still only move forward
using oper ator ++, but you can both write and read and you can write/read multiple
times in each location. A Forwardlterator is much morelike aregular pointer,
whereas Inputlterator and Outputlterator are a bit strange by comparison.

Bidirectionallterator. Effectively, thisisaForwardlterator that can also go
backward. That is, aBidirectionallterator supportsall the operationsthat a
Forwardlterator does, but in addition it has an oper ator --.

RandomAccesslterator. Aniterator that is random access supports al the same
operations that a regular pointer does: you can add and subtract integral valuesto
move it forward and backward by jumps (rather than just one element at atime), you
can subscript it with operator|[], you can subtract one iterator from another, and
iterators can be compared to see which is greater using oper ator <, oper ator >, etc. If
you' re implementing a sorting routine or something similar, random access iterators
are necessary to be able to create an efficient algorithm.

The names used for the template parameter types consist of the above iterator types
(sometimeswitha ‘1’ or ‘2" appended to distinguish different template arguments), and may
also include other arguments, often function objects.

When describing the group of elements that an operation is performed on, mathematical
“range”’ notation will often be used. In this, the square bracket means “includes the end point”
while the parenthesis means “does not include the end point.” When using iterators, arangeis
determined by the iterator pointing to the initial element, and the “ past-the-end” iterator,
pointing past the last element. Since the past-the-end element is never used, the range
determined by a pair of iterators can thus be expressed as [first, last), where first isthe
iterator pointing to theinitial element and last is the past-the-end iterator.

Most books and discussions of the STL algorithms arrange them according to side effects:
non-mutating algorithms don’t change the elements in the range, mutating algorithms do
change the elements, etc. These descriptions are based more on the underlying behavior or
implementation of the algorithm —that is, the designer’s perspective. In practice, | don’t find
this a very useful categorization so | shall instead organize them according to the problem you
want to solve: are you searching for an element or set of elements, performing an operation on
each element, counting elements, replacing elements, etc. This should help you find the one
you want more easily.

Note that all the algorithms are in the namespace std. If you do not see a different header
such as <utility> or <numerics> above the function declarations, that meansit appearsin
<algorithm>.

Chapter 15: Multiple Inheritance
286

Support tools for example creation

It's useful to create some basic tools with which to test the algorithms.

Displaying arange is something that will be done constantly, so here is atemplatized function
that allows you to print any sequence, regardless of the type that’sin that sequence:

/1: CO5: PrintSequence. h

/1 Prints the contents of any sequence
#i f ndef PRI NTSEQUENCE_H

#def i ne PRI NTSEQUENCE_H

#i ncl ude <i ostreane

t enpl at e<t ypenane | nputlter>
void print(lnputlter first, Inputlter |ast,
char* nm="", char* sep = "\n",
std::ostream& os = std::cout) {
if(*nm!="\0") // Only if you provide a string
0S << nm<< ": " << sep; // is this printed
while(first = last)
0s << *first++ << sep;
0s << std::endl;

}

/1 Use tenplate-tenplates to allow type deduction
/1 of the typenane T:
tenpl at e<t ypenane T, tenpl at e<typenane> class C
void print(C<T>& ¢, char* nm="",

char* sep = "\n",

std::ostream& os = std::cout) {

if(*nm!="\0") // Only if you provide a string

0S << nm<< ": " << sep; // is this printed
std::copy(c. begin(), c.end(),
std::ostreamiterator<T>(os, " "));
cout << endl

}
#endif // PRINTSEQUENCE H ///: ~

There are two forms here, one that requires you to give an explicit range (this allows you to
print an array or a sub-sequence) and one that prints any of the STL containers, which
provides notational convenience when printing the entire contents of that container. The
second form performs template type deduction to determine the type of T so it can be used in
the copy() algorithm. That trick wouldn’t work with the first form, so the copy() agorithmis
avoided and the copying is just done by hand (this could have been done with the second form

Chapter 15: Multiple Inheritance
287

aswell, but it'sinstructive to see a template-template in use). Because of this, you never need
to specify the type that you' re printing when you call either template function.

The default isto print to cout with newlines as separators, but you can change that. Y ou may
also provide a message to print at the head of the output.

Next, it's useful to have some generators (classes with an oper ator () that returns values of
the appropriate type) which allow a sequence to be rapidly filled with different values.

/1. CO5:Generators.h

/1 Different ways to fill sequences
#i f ndef GENERATORS H

#def i ne GENERATORS H

#i ncl ude <set >

#i ncl ude <cstdlib>

#i ncl ude <cstring>

#i ncl ude <cti nme>

/1 A generator that can skip over nunbers:
cl ass SkipGen {
int i;
i nt skp;
publi c:
Ski pGen(int start = 0, int skip = 1)
i (start), skp(skip) {}
int operator()() {
int r =1i;
i += skp;
return r;
}
i

/1 Generate unique random nunmbers fromO to nod:
cl ass URandGen ({
std::set<int> used,
i nt modul us;
publi c:
URandGen(int nod) : nodul us(nod) {
std::srand(std::time(0));
}
int operator()() {
whil e(true) {
int i = (int)std::rand() % nodul us;
i f(used.find(i) == used.end()) {
used.insert(i);

Chapter 15: Multiple Inheritance
288

return i;

}
}
}s

/1 Produces random characters:
cl ass Char Gen {
static const char* source;
static const int |en;
public:
CharGen() { std::srand(std::tine(0)); }
char operator()() {
return source[std::rand() %l en];
}

}s

/1 Statics created here for convenience, but
/1 will cause problems if nmultiply included:
const char* Char Gen::source = "ABCDEFGH JK"

" LMNOPQRSTUVWKYZabcdef ghi j kl mmopqr st uvwxyz";
const int CharGen::len = std::strlen(source);
#endi f // GENERATORS H ///: ~

To create some interesting values, the SkipGen generator skips by the value skp each time its
operator () iscalled. You can initialize both the start value and the skip value in the
constructor.

URandGen (‘U’ for “unique”) isagenerator for random ints between 0 and mod, with the
additional constraint that each value can only be produced once (thus you must be careful not
to use up al the values). Thisis easily accomplished with a set.

Char Gen generates char s and can be used to fill up astring (when treating astring asa
sequence container). You'll note that the one member function that any generator implements
isoperator () (with no arguments). Thisiswhat is called by the “generate” functions.

The use of the generators and the print() functionsis shown in the following section.

Finally, anumber of the STL algorithms that move elements of a sequence around distinguish
between “stable” and “unstable” reordering of a sequence. This refersto preserving the
original order of the elements for those elements that are equivalent but not identical. For
example, consider a sequence { c(1), b(1), ¢(2), a(1), b(2), a(2) }. These elements are tested
for equivalence based on their letters, but their numbers indicate how they first appeared in
the sequence. If you sort (for example) this sequence using an unstable sort, there’ s no
guarantee of any particular order among equivalent letters, so you could end up with { a(2),

Chapter 15: Multiple Inheritance
289

a(1), b(1), b(2), c(2), c(2) }. However, if you used a stable sort, it guarantees you will get {
a(1), a(2), b(2), b(2), c(1), c(2) }.

To demonstrate the stability versusinstability of algorithms that reorder a sequence, we need
some way to keep track of how the elements originally appeared. The following is akind of
string object that keeps track of the order in which that particular object originally appeared,
using a static map that maps NStringsto Counters. Each NString then contains an
occurrence field that indicates the order in which this NString was discovered:

//: CO5:NString.h

/1 A "nunbered string" that indicates which
/1 occurrence this is of a particular word
#i f ndef NSTRI NG H

#defi ne NSTRI NG H

#i ncl ude <string>

#i ncl ude <map>

#i ncl ude <i ostreane

class NString {
std::string s;
i nt occurrence;
struct Counter {
int i;
Counter() : i(0) {}
Count er & operator++(int) {
i ++;
return *this;
} // Post-incr
operator int() { returni; }
i
/1 Keep track of the nunber of occurrences:
typedef std::map<std::string, Counter> csmap;
static csmap occur Map;
publi c:
NString() : occurrence(0) {}
NString(const std::string& x)
s(x), occurrence(occurMap[s]++) {}
NSt ri ng(const char* x)
s(x), occurrence(occurMap[s]++) {}
/1 The synthesized operator= and
/1 copy-constructor are OK here
friend std::ostream& operator<<(
std::ostream& os, const NString& ns) {
return os << ns.s << " ["

Chapter 15: Multiple Inheritance
290

<< ns.occurrence << "]";

}

/1 Need this for sorting. Notice it only

/1 conpares strings, not occurrences:

friend bool

operator<(const NString& |, const NString& r) {
returnl.s <r.s;

}

/1 For sorting with greater<NString>:

friend bool

operator>(const NString& |, const NString& r) {
returnl.s > r.s;

}

/1 To get at the string directly:

operator const std::string&) const {return s;}

}s

/1 Allocate static nmenber object. Done here for
/1 brevity, but should actually be done in a
/1 separate cpp file:

NString::csmap NString::occur Map;

#endif // NSTRINGH ///:~

In the constructors (one that takes a string, one that takes a char*), the simple-looking
initialization occur rence(occur M ap[s]++) performs all the work of maintaining and
assigning the occurrence counts (see the demonstration of the map classin the previous
chapter for more details).

To do an ordinary ascending sort, the only operator that’s necessary is
NString::operator<(), however to sort in reverse order the operator>() isaso provided so
that the greater template can be used.

Asthisisjust ademonstration class | am getting away with the convenience of putting the
definition of the static member occur M ap in the header file, but thiswill break down if the
header fileisincluded in more than one place, so you should normally relegate all static
definitionsto cpp files.

Filling & generating
These algorithms allow you to automatically fill arange with a particular value, or to generate
aset of values for a particular range (these were introduced in the previous chapter). The “fill”
functions insert a single value multiple timesinto the container, while the “ generate”
functions use an object called a generator (described earlier) to create the valuesto insert into
the container.

Chapter 15: Multiple Inheritance
291

void fill(ForwardIlterator first, Forwardlterator last, const T& value);
void fill_n(Outputlterator first, Size n, const T& value);

fill() assigns value to every element in the range [first, last). fill_n() assignsvalueton
elements starting at first.

void generate(Forwardlterator first, Forwardlterator last, Generator gen);
void generate n(Outputlterator first, Sizen, Generator gen);

generate() makes acall to gen() for each element in the range [fir , last), presumably to
produce a different value for each element. generate n() calsgen() n times and assigns
each result to n elements starting at fir st.

Example
The following example fills and generates into vectors. It also shows the use of print():

/1: CO5:Fill GenerateTest.cpp

/1 Denonstrates "fill" and "generate"
#i ncl ude "Generators. h"

#i ncl ude "Print Sequence. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <string>

usi ng namespace std;

int main() {
vector<string> v1(5);
fill(vl. begin(), vl.end(), "howdy");
print(vil, "v1", " ");
vector<string> v2
fill _n(back_inserter(v2), 7, "bye");
print(v2.begin(), v2.end(), "v2");
vector<int> v3(10);
generate(vS begin(), v3.end(), SkipGen(4,5));
print(v3, "v3", " ");
vect or<i nt > v4
generate_ n(back i nserter(v4), 15, URandGen(30));
pr|nt(v4 "v4', " "),

Y I

A vector<string> is created with a pre-defined size. Since storage has aready been created
for all the string objects in the vector, fill() can use its assignment operator to assign a copy
of “howdy” to each space in the vector. To print the result, the second form of print() is used
which simply needs a container (you don't have to give the first and last iterators). Also, the
default newline separator is replaced with a space.

Chapter 15: Multiple Inheritance
292

The second vector <string> v2 isnot given an initial size so back_inserter must be used to
force new elementsin instead of trying to assign to existing locations. Just as an example, the
other print() is used which requires arange.

The generate() and generate_n() functions have the same form as the “fill” functions except
that they use a generator instead of a constant value; here, both generators are demonstrated.

Counting

All containers have amethod size() that will tell you how many elements they hold. The
following two agorithms count objects only if they satisfy certain criteria.

IntegralValue count(Inputlterator first, Inputlterator last,
const EqualityComparable& value);

Produces the number of elementsin [first, last) that are equivalent to value (when tested
using oper ator==).

IntegralValue count_if(Inputlterator first, Inputlterator last, Predicate pred);

Produces the number of elementsin [first, last) which each cause pred to return true.

Example

Here, avector <char> v isfilled with random characters (including some duplicates). A
set<char> isinitialized fromv, so it holds only one of each letter represented inv. Thisset is
used to count all the instances of all the different characters, which are then displayed:

/1: CO05: Counting. cpp

/1 The counting al gorithns
#i ncl ude "Print Sequence. h"
#i ncl ude "Generators. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

usi ng nanmespace std;

int main() {
vect or <char > v;
generate_n(back_inserter(v), 50, CharGen());
print(v, "v", "");
/!l Create a set of the characters in v:
set <char> cs(v.begin(), v.end());
set<char>::iterator it = cs.begin();
while(it '= cs.end()) {
int n =count(v.begin(), v.end(), *it);
cout << *jt << ": " << n<< ", "
it++;

Chapter 15: Multiple Inheritance
293

}
int lc = count _if(v.begin(), v.end(),
bi nd2nd(greater<char>(), 'a'));
cout << "\nLowercase letters: " << |lc << endl;
sort(v.begin(), v.end());
print(v, "sorted", "");
Y I~

The count_if() algorithm is demonstrated by counting all the lowercase |etters; the predicate
is created using the bind2nd(') and greater function object templates.

Manipulating sequences

These algorithms allow you to move sequences around.

Outputlterator copy(Ilnputlterator, first Inputlterator last, Outputlterator destination);

Using assignment, copies from [first, last) to destination, incrementing destination after
each assignment. Works with almost any type of source range and almost any kind of
destination. Because assignment is used, you cannot directly insert elements into an empty
container or at the end of a container, but instead you must wrap the destination iterator in an
insert_iterator (typically by using back_inserter(), or inserter () in the case of an
associative container).

The copy algorithmis used in many examplesin this book.

Bidirectionallterator 2 copy_backwar d(Bidirectionallterator 1 fir st,
Bidirectionallterator 1 last, Bidirectionallterator 2 destinationEnd);

Like copy(), but performs the actual copying of the elementsin reverse order. That is, the
resulting sequence isthe same, it’s just that the copy happensin a different way. The source
range [first, last) is copied to the destination, but the first destination element is
destinationEnd - 1. Thisiterator isthen decremented after each assignment. The space in the
destination range must already exist (to allow assignment), and the destination range cannot
be within the source range.

void reverse(Bidirectionallterator first, Bidirectionallterator last);
Outputlterator reverse _copy(Bidirectionallterator first, Bidirectionallterator last,
Outputlterator destination);

Both forms of this function reverse the range [first, last). reverse() reversestherangein
place, whilereverse_copy() leavesthe origina range alone and copies the reversed elements
into destination, returning the past-the-end iterator of the resulting range.

Forwardlterator2 swap_ranges(Forwardlterator1 first1l, Forwardlterator 1 last],
Forwardlterator 2 first2);

Chapter 15: Multiple Inheritance
294

Exchanges the contents of two ranges of equal size, by moving from the beginning to the end
of each range and swapping each set of elements.

void rotate(Forwardlterator first, Forwardlterator middle, Forwardlterator last);
Outputlterator rotate copy(Forwardlterator first, Forwardlterator middle,
Forwardlterator last, Outputlterator destination);

Swaps the two ranges [first, middle) and [middle, last). With rotate(), the swap is
performed in place, and with rotate_copy() the original range is untouched and the rotated
version is copied into destination, returning the past-the-end iterator of the resulting range.
Note that while swap_ranges() requires that the two ranges be exactly the same size, the
“rotate” functions do not.

bool next_permutation(Bidirectionallterator first, Bidirectionallterator last);

bool next_permutation(Bidirectionallterator first, Bidirectionallterator last,
StrictWeakOrdering binary_pred);

bool prev_permutation(Bidirectionallterator first, Bidirectionallterator last);

bool prev_permutation(Bidirectionallterator first, Bidirectionallterator last,
StrictWeakOrdering binary_pred);

A permutation is one unique ordering of a set of elements. If you have n unique elements,
then there are n! (n factorial) distinct possible combinations of those elements. All these
combinations can be conceptually sorted into a sequence using a lexicographical ordering, and
thus produce a concept of a“next” and “previous’ permutation. Therefore, whatever the
current ordering of elementsin the range, there isadistinct “next” and “previous’

permutation in the sequence of permutations.

The next_permutation() and prev_per mutation() functions re-arrange the elements into
their next or previous permutation, and if successful return true. If there are no more “next”
permutations, it means that the elements are in sorted order so next_permutation() returns
false. If there are no more “previous’ permutations, it means that the elements are in
descending sorted order so previous_permutation() returns false.

The versions of the functions which have a StrictWeakOr dering argument perform the
comparisons using binary_pred instead of operator <.

void random_shuffle(RandomAccessl terator first, RandomAccesslterator last);
void random_shuffle(RandomAccesslterator first, RandomAccesslterator last
RandomNumber Gener ator & rand);

This function randomly rearranges the elementsin the range. It yields uniformly distributed
results. The first form uses an internal random number generator and the second uses a user-
supplied random-number generator.

Bidirectionallterator partition(Bidirectionallterator first, Bidirectionallterator last,
Predicate pred);
Bidirectionallterator stable partition(Bidirectionallterator first,
Bidirectionallterator last, Predicate pred);

Chapter 15: Multiple Inheritance
295

The “partition” functions use pred to organize the elementsin the range [fir , last) so they
are before or after the partition (a point in the range). The partition point is given by the
returned iterator. If pred(*i) istrue (wherei istheiterator pointing to a particular element),
then that element will be placed before the partition point, otherwise it will be placed after the
partition point.

With partition(), the order of the elementsis after the function call is not specified, but with
stable_parition() therelative order of the elements before and after the partition point will be
the same as before the partitioning process.

Example
This gives a basic demonstration of sequence manipulation:;

//: CO5: Mani pul ati ons. cpp

/1 Shows basi c mani pul ati ons
#i ncl ude "Print Sequence. h"
#i nclude "NString. h"

#i ncl ude "Generators. h"

#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <al gorithne

usi ng namespace std;

int main() {

vector<int> v1(10);

/1 Sinple counting:

generate(vl beg|n() vl.end(), SkipGen());

print(vl, "wvi", " ");

vect or<i nt > v2(v1.size());

copy_backmard(vl begin(), vl.end(), v2.end());

print(v2, "copy_backward", " ");

reverse_copy(vl begi n(), v1 end(), v2.begin());

print(v2, "reverse_copy", " ");

reverse(vl begi n(), vl. end())

print(vl, "reverse", " ");

int half = vi. S|ze() ! 2;

/1 Ranges must be exactly the sane size:

swap_ranges(vl. begin(), vl.begin() + half,
vl. begin() + half);

print(vl, "swap_ranges", " ");

/1 Start with fresh sequence:

generate(vl begin(), vl.end(), SkipGen());

print(vl, "vi", " ");

int third = vl.size() !/ 3;

Chapter 15: Multiple Inheritance
296

for(int i =0; i < 10; i++) {
rotate(vl. begin(), vl.begin() + third,
vl.end());
print(vl, "rotate", " ");
}
cout << "Second rotate exanple:" << endl
char c[] = "aabbccddeeffgghhiijj";
const char csz = strlen(c);

for(int i =0; i < 10; i++) {
rotate(c, ¢ + 2, ¢ + csz);
print(c, ¢ + csz, "", "");
}

cout << "Al'l n! permutations of abcd:" << endl
int nf =4* 3 * 2* 1,
char p[] = "abcd";

for(int i =0; i <nf; i++) {
next _pernutation(p, p + 4);
print(p, p + 4, "", "");
}
cout << "Using prev_pernutation:" << endl
for(int i =0; i <nf; i++) {
prev_permutation(p, p + 4);
print(p, p + 4, "", "");
}

cout << "random shuffling a word:" << endl
string s("hello");
cout << s << endl
for(int i =0; i <5; i++) {
random shuffl e(s. begin(), s.end());
cout << s << endl
}
NString sa[] =
"c", "d", "a" "b, "c¢", "d", "a", "b",
const int sasz sizeof sa / sizeof *sa;
vect or<NStri ng> ns(sa sa + sasz);
print(ns, "ns", ");
vector<NString>::iterator it =
partition(ns. begin(), ns.end(),
bind2nd(greater<NString>(), "b"));
cout << "Partition point: " << *it << endl
print(ns, "", " ");
/! Rel oad vector:
copy (sa, sa + sasz, ns.hbegin());

{ " "pb", "c", "d", "a", "b"
, "c

Chapter 15: Multiple Inheritance
297

it = stable_partition(ns.begin(), ns.end(),
bi nd2nd(greater<NString>(), "b"));
cout << "Stable partition" << endl;

cout << "Partition point: " << *it << endl;
print(ns, "", " ");
Y I~

The best way to see the results of the above program isto run it (you'll probably want to
redirect the output to afile).

The vector<int> vlisinitialy loaded with a simple ascending sequence and printed. You'll

see that the effect of copy_backward() (which copiesinto v2, which isthe same size asv1)
is the same as an ordinary copy. Again, copy_backwar d() does the same thing as copy(), it
just performs the operations in backward order.

reverse_copy(), however, actually does created areversed copy, whilerever se() performs
the reversal in place. Next, swap_ranges() swaps the upper half of the reversed sequence
with the lower half. Of course, the ranges could be smaller subsets of the entire vector, aslong
asthey are of equivalent size.

After re-creating the ascending sequence, rotate() is demonstrated by rotating one third of v1
multiple times. A second rotate() example uses characters and just rotates two characters at a
time. This also demonstrates the flexibility of both the STL algorithms and the print()
template, since they can both be used with arrays of char as easily aswith anything else.

To demonstrate next_per mutation() and prev_permutation(), aset of four characters
“abed” is permuted through al n! (n factorial) possible combinations. You'll see from the
output that the permutations move through a strictly-defined order (that is, permutingisa
deterministic process).

A quick-and-dirty demonstration of random_shuffle() isto apply it to astring and see what
words result. Because a string object has begin(') and end() member functions that return the
appropriate iterators, it too may be easily used with many of the STL agorithms. Of course,
an array of char could also have been used.

Finally, the partition(') and stable_partition() are demonstrated, using an array of NString.
You'll note that the aggregate initialization expression uses char arrays, but NString has a
char* constructor which is automatically used.

When partitioning a sequence, you need a predicate which will determine whether the object
belongs above or below the partition point. This takes a single argument and returns true (the
object is above the partition point) or false (it isn't). | could have written a separate function
or function object to do this, but for something simple, like “the object is greater than ‘b’
why not use the built-in function object templates? The expression is:

| bi nd2nd(great er <NStri ng>(), "b")
And to understand it, you need to pick it apart from the middle outward. First,
| greater<NString>()

Chapter 15: Multiple Inheritance
298

produces a binary function object which comparesits first and second arguments:
return first > second;

and returns abool. But we don’t want a binary predicate, and we want to compare against the
constant value “b.” So bind2nd() says: create a new function object which only takes one
argument, by taking this greater <NString>() function and forcing the second argument to
alwaysbe“b.” Thefirst argument (the only argument) will be the one from the vector ns.

You'll see from the output that with the unstable partition, the objects are correctly above and
below the partition point, but in no particular order, whereas with the stable partition their
original order is maintained.

Searching & replacing
All of these algorithms are used for searching for one or more objects within a range defined
by the first two iterator arguments.

Inputlterator find(Inputlterator first, Inputlterator last,
const EqualityComparable& value);

Searches for value within arange of elements. Returns an iterator in the range [fir st, last) that
points to the first occurrence of value. If valueisn't in the range, then find() returns last.
Thisisalinear search, that is, it starts at the beginning and looks at each sequential element
without making any assumptions about the way the elements are ordered. In contrast, a
binary_search() (defined later) works on a sorted sequence and can thus be much faster.

Inputlterator find_if(Inputlterator first, Inputlterator last, Predicate pred);

Just like find(), find_if() performs alinear search through the range. However, instead of
searching for value, find_if() looks for an element such that the Predicate pred returnstrue
when applied to that element. Returnslast if no such element can be found.

Forwardlterator adjacent_find(Forwardlterator first, Forwardlterator last);
Forwardlterator adjacent_find(Forwardlterator first, Forwardlterator last,
BinaryPredicate binary_pred);

Likefind(), performs alinear search through the range, but instead of looking for only one
element it searches for two elements that are right next to each other. The first form of the
function looks for two elements that are equivalent (via operator ==). The second form looks
for two adjacent elements that, when passed together to binary_pred, produce atrue result.
If two adjacent elements cannot be found, last is returned.

Forwardlteratorl find_first_of(Forwardlteratorl firstl, Forwardlteratorl last1,
Forwardlterator2 first2, Forwardlterator2 last2);

Forwardlteratorl find_first_of(Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 last2, BinaryPredicate binary_pred);

Chapter 15: Multiple Inheritance
299

Likefind(), performs alinear search through the range. The first form finds the first element
in the first range that is equivalent to any of the elements in the second range. The second
form finds the first element in the first range that produces tr ue when passed to binary_pred
along with any of the elementsin the second range. When aBinaryPredicate is used with
two ranges in the algorithms, the element from the first range becomes the first argument to
binary_pred, and the element from the second range becomes the second argument.

Forwardlterator1 search(Forwardlterator1 first1, Forwardlterator1lastl,
Forwardlterator2 first2, Forwardlterator2 last2);

Forwardlterator 1 search(Forwardlterator 1 firstl, Forwardlterator 1 lastl,
Forwardlterator2 first2, Forwardlterator2 last2 BinaryPredicate binary_pred);

Attempts to find the entire range [fir st2, last2) within therange [first1, lastl). That is, it
checksto seeif the second range occurs (in the exact order of the second range) within the
first range, and if so returns an iterator pointing to the place in the first range where the
second range begins. Returns last1 if no subset can be found. The first form performsiits test
using oper ator ==, while the second checks to see if each pair of objects being compared
causes binary_pred to return true.

Forwardlteratorl find_end(Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator 2 last2);

Forwardlteratorl find_end(Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 last2, BinaryPredicate binary_pred);

The forms and arguments are just like search() in that it looks for the second range within the
first range, but while sear ch() looks for the first occurrence of the second range, find_end()
looks for the last occurrence of the second range within the first.

Forwardlterator search_n(Forwardlterator first, Forwardlterator last,
Size count, const T& value);

Forwardlterator search_n(Forwardlterator first, Forwardlterator last,
Size count, const T& value, BinaryPredicate binary_pred);

Looks for a group of count consecutive valuesin [first, last) that are all equal to value (in the
first form) or that all cause areturn value of true when passed into binary_pred aong with
value (in the second form). Returnslast if such a group cannot be found.

Forwardlterator min_element(Forwardlterator first, Forwardlterator last);
Forwardlterator min_element(Forwardlterator first, Forwardlterator last,
BinaryPredicate binary_pred);

Returns an iterator pointing to the first occurrence of the smallest value in the range (there
may be multiple occurrences of the smallest value). Returns last if the range is empty. The
first version performs comparisons with operator < and the valuer returned is such that
*e<*r

isfalse for every element e in the range. The second version compares using binary_pred
and the valuer returned is such that binary_pred (*e, *r) isfalse for every element ein the
range.

Chapter 15: Multiple Inheritance
300

Forwardlterator max_element(Forwardlterator first, Forwardlterator last);
Forwardlterator max_element(Forwardlterator first, Forwardlterator last,
BinaryPredicate binary_pred);

Returns an iterator pointing to the first occurrence of the largest value in the range (there may
be multiple occurrences of the largest value). Returnslast if the range is empty. The first
version performs comparisons with operator < and the valuer returned is such that

*r < * e

isfalse for every element e in the range. The second version compares using binary_pred
and the valuer returned is such that binary_pred (*r, *e) isfalse for every element ein the
range.

void replace(Forwardlterator first, Forwardlterator last,
const T& old_value, const T& new_value);

void replace if(Forwardlterator first, Forwardlterator last,
Predicate pred, const T& new_value);

Outputlterator replace copy(lnputlterator first, Inputlterator last,
Outputlterator result, const T& old_value, const T& new_value);
Outputlterator replace copy_if(Inputlterator first, Inputlterator last,

Outputlterator result, Predicate pred, const T& new_value);

Each of the “replace” forms moves through the range [fir st, last), finding values that match a
criterion and replacing them with new_value. Both replace() and replace_copy() smply
look for old_value to replace, whilereplace_if() and replace_copy_if() look for values that
satisfy the predicate pred. The*copy” versions of the functions do not modify the original
range but instead make a copy with the replacements into result (incrementing result after
each assignment).

Example

To provide easy viewing of the results, this example will manipulate vectors of int. Again,
not every possible version of each algorithm will be shown (some that should be obvious have
been omitted).

/1: CO5: Sear chRepl ace. cpp

/1 The STL search and repl ace al gorithns
#i ncl ude "Print Sequence. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <functional >

usi ng namespace std;

struct PlusOne {
bool operator()(int i, int j) {
returnj =i + 1;

}

Chapter 15: Multiple Inheritance
301

}s

cl ass Ml MoreThan {
int val ue;
public:
Mul MoreThan(int val) : value(val) {}
bool operator()(int v, int m {
return v * m> val ue;
}
b

int main() {

int a[] ={ 1, 2, 3, 4, 5 6, 6, 7, 7, 7,
8, 8 8, 8, 11, 11, 11, 11, 11 };

const int asz = sizeof a / sizeof *a;

vector<int> v(a, a + asz);

print(v, "v"', " ");

vector<int>::iterator it =
find(v.begin(), v.end(), 4);

cout << "find: " << *it << endl

it =find_if(v.begin(), v.end(),
bi nd2nd(greater<int>(), 8));

cout << "find . if: " << *it << endl

it = adjacent _find(v.begin(), v.end());

while(it = v.end()) {

cout << "adjacent _find: " << *it
<< ", " << *(it + 1) << endl;
it = adjacent _find(it + 2, v.end());
}
it = adjacent _find(v.begin(), v.end(),
Pl usOne());
while(it !'= v.end()) {
cout << "adjacent_find PlusOne: " << *it
<< ", " << *(it + 1) << endl;
it = adjacent _find(it + 1, v.end(),
Pl usOne());

}
int b[] ={ 8, 11 };
const int bsz = sizeof b / sizeof *b;

pr|nt(b b + bsz, "b", " ");
it = find first_of(v.begin(), v.end(),
b, b + bsz);
print(it, it + bsz, "find first_of", " ");

Chapter 15: Multiple Inheritance
302

it = find first_of(v.begin(), v.end(),
b, b + bsz, PlusOne());

print(it,it + bsz,"find_first_of PlusOne"," ");
it = search(v.begin(), v.end(), b, b + bsz);
print(it, it + bsz, "search", " ");

int ¢c[] ={ 5, 6, 71},;
const int csz = sizeof c / sizeof *c;
print(c, ¢ + csz, "c¢c", " ");
it = search(v.begin(), v.end(),

C, ¢ + csz, PlusOne());
print(it, it + csz,"search PlusOne", " ");
int d[] ={ 11, 11, 11 };
const int dsz = sizeof d / sizeof *d;
print(d, d + dsz, "d", " ");

it = find_end(v.begin(), v.end(), d, d + dsz);
print(it, v.end(),"find_end", " ");
int e[] ={ 9, 91},
print(e, e + 2, "e", " ");
it = find_end(v.begin(), v.end(),

e, e + 2, PlusOne());
print(it, v.end(),"find_end PlusOne"," ");
it = search_n(v.begin(), v.end(), 3, 7);
print(it, it + 3, "search.n 3, 7", " ");
it = search_n(v.begin(), v.end(),

6, 15, Ml MoreThan(100));
print(it, it + 6,

"search_n 6, 15, Ml MoreThan(100)", " ");
cout << "min_elenment: " <<

*m n_el ement (v. begin(), v.end()) << endl
cout << "max_elenment: " <<

*max_el ement (v. begin(), v.end()) << endl
vector<int> v2
repl ace_copy(v. begin(), v.end(),

back _inserter(v2), 8, 47);
print(v2, "replace_copy 8 -> 47", " ");
replace_if(v.begin(), v.end(),

bi nd2nd(greater_equal <int>(), 7), -1);
print(v, "replace if >=7 -> -1", " ");

Y I~

The example begins with two predicates: PlusOne which is a binary predicate that returns
trueif the second argument is equivalent to one plus the first argument, and M ulMoreT han
which returns trueif the first argument times the second argument is greater than avalue
stored in the object. These binary predicates are used as tests in the example.

Chapter 15: Multiple Inheritance
303

Inmain(), an array a is created and fed to the constructor for vector<int> v. This vector will
be used as the target for the search and replace activities, and you'll note that there are
duplicate elements — these will be discovered by some of the search/replace routines.

The first test demonstrates find(), discovering the value 4 in v. The return value is the iterator
pointing to the first instance of 4, or the end of the input range (v.end()) if the search value is
not found.

find_if(') uses a predicate to determine if it has discovered the correct element. In the above
example, this predicate is created on the fly using greater <int> (that is, “see if thefirst int
argument is greater than the second”) and bind2nd() to fix the second argument to 8. Thus, it
returnstrueif thevaluein v is greater than 8.

Since there are anumber of casesin v where two identical objects appear next to each other,
the test of adjacent_find() isdesigned to find them all. It starts looking from the beginning
and then drops into awhile loop, making sure that the iterator it has not reached the end of the
input sequence (which would mean that no more matches can be found). For each match it
finds, the loop prints out the matches and then performs the next adjacent_find(), thistime
using it + 2 asthefirst argument (this way, it moves past the two elements that it already
found).

Y ou might look at the while loop and think that you can do it a bit more cleverly, to wit:

while(it '= v.end()) {
cout << "adjacent_find: " << *it++
<< ", " << *it++ << endl;
it = adjacent _find(it, v.end());
}

Of course, thisis exactly what | tried at first. However, | did not get the output | expected, on
any compiler. Thisis because there is no guarantee about when the increments occur in the
above expression. A hit of adisturbing discovery, | know, but the situation is best avoided
now that you're aware of it.

The next test uses adjacent_find() with the PlusOne predicate, which discovers al the
places where the next number in the sequence v changes from the previous by one. The same
while approach is used to find all the cases.

find_first_of (') requires a second range of objects for which to hunt; thisis provided in the
array b. Notice that, because the first range and the second rangein find_first_of() are
controlled by separate template arguments, those ranges can refer to two different types of
containers, as seen here. The second form of find_first_of() is also tested, using PlusOne.

sear ch() finds exactly the second range inside the first one, with the elements in the same
order. The second form of search() uses a predicate, which is typically just something that
defines equivalence, but it also opens some interesting possibilities — here, the PlusOne
predicate causes therange{ 4, 5, 6 } to be found.

Chapter 15: Multiple Inheritance
304

Thefind_end() test discoversthe last occurrence of the entire sequence { 11, 11, 11}. To
show that it hasin fact found the last occurrence, the rest of v starting from it is printed.

Thefirst search_n() test looks for 3 copies of the value 7, which it finds and prints. When
using the second version of sear ch_n(), the predicate is ordinarily meant to be used to
determine equival ence between two elements, but I’ ve taken some liberties and used a
function object that multiplies the value in the sequence by (in this case) 15 and checks to see
if it’'s greater than 100. That is, the search_n() test above says “find me 6 consecutive values
which, when multiplied by 15, each produce a number greater than 100.” Not exactly what
you normally expect to do, but it might give you some ideas the next time you have an odd
searching problem.

min_element() and max_element() are straightforward; the only thing that’s a bit odd is that
it looks like the function is being dereferenced with a‘*’. Actually, the returned iterator is
being dereferenced to produce the value for printing.

To test replacements, replace_copy() isused first (so it doesn’t modify the original vector) to
replace all values of 8 with the value 47. Notice the use of back_inserter (') with the empty
vector v2. To demonstrate replace_if(), afunction object is created using the standard
template greater_equal along with bind2nd to replace all the values that are greater than or
equal to 7 with the value -1.

Comparing ranges
These algorithms provide ways to compare two ranges. At first glance, the operations they
perform seem very close to the sear ch() function above. However, sear ch() tells you where
the second sequence appears within the first, while equal () and lexicographical_compare()
simply tell you whether or not two sequences are exactly identical (using different comparison
algorithms). On the other hand, mismatch() does tell you where the two sequences go out of
sync, but those sequences must be exactly the same length.

bool equal(Inputlterator firstl, Inputlterator lastl, Inputlterator first2);
bool equal(Inputlterator firstl, Inputlterator lastl, Inputlterator first2
BinaryPredicate binary_pred);

In both of these functions, the first range is the typical one, [firstl, lastl). The second range
starts at first2, but thereisno “last2” because its length is determined by the length of the first
range. The equal() function returnstrue if both ranges are exactly the same (the same
elements in the same order); in the first case, the operator == is used to perform the
comparison and in the second case binary_pred is used to decide if two elements are the
same.

bool lexicographical_compare(Inputlterator 1 firstl, Inputlteratorl lastl
Inputlterator2 first2, Inputlterator 2 last2);

bool lexicographical_compare(lnputlterator1 firstl, Inputlteratorl lastl
Inputlterator2 first2, Inputlterator2 last2, BinaryPredicate binary_pred);

Chapter 15: Multiple Inheritance
305

These two functions determine if the first range is “lexicographically less’ than the second
(they return trueif range 1 isless than range 2, and false otherwise. Lexicographical equality,
or “dictionary” comparison, means that the comparison is done the same way we establish the
order of stringsin adictionary, one element at atime. The first elements determine the result
if these elements are different, but if they’re equal the algorithm moves on to the next
elements and looks at those, and so on. until it finds a mismatch. At that point it looks at the
elements, and if the element from range 1 is less than the element from range two, then
lexicographical_compare() returnstrue, otherwise it returnsfalse. If it gets all the way
through one range or the other (the ranges may be different lengths for this algorithm) without
finding an inequality, then range 1 is not less than range 2 so the function returns fal se.

If the two ranges are different lengths, a missing element in one range acts as one that
“precedes’ an element that existsin the other range. So{‘a, ‘b’'} lexicographically precedes
{*a,'b,'a}.

In the first version of the function, operator < is used to perform the comparisons, and in the
second version binary_pred isused.

pair<lInputlteratorl, Inputlterator 2> mismatch(Inputlterator1 first1,
Inputlteratorl lastl, Inputlterator 2 first2);

pair<lInputlteratorl, Inputlterator 2> mismatch(Inputlterator1 first1,
Inputlteratorl lastl, Inputlterator2 first2, BinaryPredicate binary_pred);

Asinequal(), the length of both rangesis exactly the same, so only thefirst iterator in the
second range is necessary, and the length of the first range is used as the length of the second
range. Whereas equal() just tells you whether or not the two ranges are the same,

mismatch() tells you where they begin to differ. To accomplish this, you must be told (1) the
element in the first range where the mismatch occurred and (2) the element in the second
range where the mismatch occurred. These two iterators are packaged together into a pair
object and returned. If no mismatch occurs, the return value is last1 combined with the past-
the-end iterator of the second range.

Asinequal(), thefirst function tests for equality using oper ator == while the second one
uses binary_pred.

Example

Because the standard C++ string classis built like a container (it has begin() and end()
member functions which produce objects of type string::iterator), it can be used to
conveniently create ranges of charactersto test with the STL comparison algorithms.
However, you should note that string has afairly complete set of native operations, so you
should look at the string class before using the STL algorithms to perform operations.

/1: CO5: Conpari son. cpp

/1 The STL range conparison al gorithms
#i ncl ude "Print Sequence. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

Chapter 15: Multiple Inheritance
306

#i ncl ude <functional >
#i ncl ude <string>
usi ng namespace std;

int main() {
/1 strings provide a convenient way to create
/1 ranges of characters, but you should
/1 normally look for native string operations:
string s1("This is a test");
string s2("This is a Test");
cout << "sl: " << sl << end
<< "s§2: " << s2 << endl
cout << "conpare sl & sli:
<< equal (sl. begin(), sl.end(), sl.begin())
<< endl;
cout << "conpare sl & s2
<< equal (sl. begin(), sl.end(), s2.begin())
<< endl;
cout << "|exicographical _conpare sl & sl: " <<
| exi cographi cal _conpare(sl. begin(), sl1.end(),
sl.begin(), sl.end()) << endl
cout << "|exicographical _conpare sl & s2: " <<
| exi cographi cal _conpare(sl. begin(), sl1.end(),
s2.begin(), s2.end()) << endl
cout << "|exicographical _conpare s2 & sl: " <<
| exi cographi cal _conpare(s2.begin(), s2.end(),
sl.begin(), sl.end()) << endl
cout << "| exicographical _conpare shortened "
"sl & full-length s2: " << endl
string s3(sl);
while(s3.length() !'= 0) {

bool result = |exicographical conpare(

s3. begin(), s3.end(), s2.begin(),s2.end());
cout << s3 << endl << s2 << ", result ="

<< result << endl
if(result == true) break;

s3 = s3.substr (0, s3.length() - 1);
}

pair<string::iterator, string::iterator>p =
m smat ch(sl. begin(), sl.end(), s2.begin());

print(p.first, sl.end(), "p.first", "");
print(p.second, s2.end(), "p.second","");
Y I~

Chapter 15: Multiple Inheritance
307

Note that the only difference between sl and s2 isthe capital ‘T’ ins2's“Test.” Comparing sl
and s1 for equality yieldstrue, as expected, while s1 and s2 are not equal because of the
capital ‘T’.

To understand the output of the lexicographical_compar g() tests, you must remember two
things: first, the comparison is performed character-by-character, and second that capital
letters “precede” lowercase letters. In thefirst test, sl is compared to s1. These are exactly
equivalent, thus one is not lexicographically less than the other (which iswhat the comparison
islooking for) and thus the result is false. The second test is asking “does sl precede s27’
When the comparison getsto the ‘t’ in “test”, it discoversthat the lowercase ‘t’ inslis
“greater” than the uppercase ‘T’ in s2, so the answer is again false. However, if we test to see
whether s2 precedes sl, the answer istrue.

To further examine lexicographical comparison, the next test in the above example compares
sl with s2 again (which returned false before). But this time it repeats the comparison,
trimming one character off the end of sl (which isfirst copied into s3) each time through the
loop until the test evaluates to true. What you'll see isthat, as soon as the uppercase ‘T’ is
trimmed off of s3 (the copy of sl), then the characters, which are exactly equal up to that
point, no longer count and the fact that s3 is shorter than s2 is what makes it lexicographically
precede s2.

The final test uses mismatch(). In order to capture the return value, you must first create the
appropriate pair p, constructing the template using the iterator type from the first range and
theiterator type from the second range (in this case, both string::iterators). To print the
results, the iterator for the mismatch in the first range is p.first, and for the second rangeis
p.second. In both cases, the range is printed from the mismatch iterator to the end of the range
S0 you can see exactly where the iterator points.

Removing elements

Because of the genericity of the STL, the concept of removal isabit constrained. Since
elements can only be “removed” viaiterators, and iterators can point to arrays, vectors, lists,
etc., it isnot safe or reasonable to actually try to destroy the elements that are being removed,
and to change the size of the input range [fir <, last) (an array, for example, cannot have its
size changed). So instead, what the STL “remove’ functions do is rearrange the sequence so
that the “removed” elements are at the end of the sequence, and the “un-removed” elements
are at the beginning of the sequence (in the same order that they were before, minus the
removed elements —that is, thisis a stable operation). Then the function will return an iterator
to the “new last” element of the sequence, which isthe end of the sequence without the
removed elements and the beginning of the sequence of the removed elements. In other
words, if new_last isthe iterator that is returned from the “remove” function, then [fir s,
new_last) is the sequence without any of the removed elements, and [new_last, last) isthe
sequence of removed elements.

If you are simply using your sequence, including the removed elements, with more STL
algorithms, you can just use new_last as the new past-the-end iterator. However, if you're

Chapter 15: Multiple Inheritance
308

using aresizable container ¢ (not an array) and you actually want to eliminate the removed
elements from the container you can use eraseg() to do so, for example:

c.erase(renove(c. begin(), c.end(), value), c.end());

The return value of remove() isthe new_last iterator, so erase() will delete al the removed
elements from c.

Theiteratorsin [new_last, last) are dereferenceable but the element values are undefined and
should not be used.

Forwardlterator remove(Forwardlterator first, Forwardlterator last, const T& value);
Forwardlterator remove if(Forwardlterator first, Forwardlterator last,
Predicate pred);
Outputlterator remove_copy(Inputlterator first, Inputlterator last,
Outputlterator result, const T& value);
Outputlterator remove _copy_if(Inputlterator first, Inputlterator last,
Outputlterator result, Predicate pred);

Each of the “remove” forms moves through the range [fir t, last), finding values that match a
removal criterion and copying the un-removed elements over the removed el ements (thus
effectively removing them). The original order of the un-removed elements is maintained.
Thereturn value is an iterator pointing past the end of the range that contains none of the
removed elements. The values that thisiterator points to are unspecified.

The “if” versions pass each element to pred() to determine whether it should be removed or
not (if pred() returnstrue, the element is removed). The “copy” versions do not modify the
original sequence, but instead copy the un-removed values into a range beginning at r esult,
and return an iterator indicating the past-the-end value of this new range.

Forwardlterator unique(Forwardlterator first, Forwardlterator last);

Forwardlterator unique(Forwardlterator first, Forwardlterator last,
BinaryPredicate binary_pred);

Outputlterator unique_copy(lnputlterator first, Inputlterator last,
Outputlterator result);

Outputlterator unique_copy(lnputlterator first, Inputlterator last,
Outputlterator result, BinaryPredicate binary_pred);

Each of the “unique” functions moves through the range [fir st, last), finding adjacent values
that are equivalent (that is, duplicates) and “removing” the duplicate elements by copying
over them. The original order of the un-removed elements is maintained. The return valueis
an iterator pointing past the end of the range that has the adjacent duplicates removed.

Because only duplicates that are adjacent are removed, it's likely that you'll want to call
sort() before calling a“unique” algorithm, since that will guarantee that all the duplicates are
removed.

The versions containing binary_pred call, for each iterator valuei in the input range:
| bi nary_pred(*i, *(i-1));

Chapter 15: Multiple Inheritance
309

and if the result is true then *(i-1) is considered a duplicate.

The “copy” versions do not modify the original sequence, but instead copy the un-removed
values into arange beginning at result, and return an iterator indicating the past-the-end value
of this new range.

Example

This example gives a visual demonstration of the way the “remove”’ and “unique” functions
work.

/1: CO5: Rermovi ng. cpp

/1 The rempving al gorithns
#i ncl ude "Print Sequence. h"
#i ncl ude "Generators. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <cctype>

usi ng nanmespace std;

struct |sUpper {
bool operator()(char c) {
return isupper(c);
}
i

int main() {
vect or <char> v(50);
generate(v.begin(), v.end(), CharGen());
print(v, "v", "");
/] Create a set of the characters in v:
set <char> cs(v.begin(), v.end());
set<char>::iterator it = cs.begin();
vector<char>::iterator cit;
/1 Step through and renmpve everyt hing:
while(it '= cs.end()) {
cit = remove(v. begin(), v.end(), *it);
cout << *it << "[" << *cit << "] ",

print(v, "", "");

it++;
}
generate(v.begin(), v.end(), CharGen());
print(v, "v", "");

cit = renmove_if(v.begin(), v.end(), IsUpper());

Chapter 15: Multiple Inheritance
310

print(v.begin(), cit, "after renove_ if", "");
/1 Copying versions are not shown for renpve
/1 and renove_if.
sort(v.begin(), cit);
print(v.begin(), cit, "sorted", "");
vect or <char > v2
uni que_copy(v. begin(), cit, back_ inserter(v2));
print(v2, "unique_copy", "");
/1 Sanme behavi or:
cit = unique(v.begin(), cit, equal to<char>());
print(v.begin(), cit, "unique", "");

Y I~

The vector <char> v isfilled with randomly-generated characters and then copied into a set.
Each element of the set is used in aremove statement, but the entire vector v is printed out
each time so you can see what happens to the rest of the range, after the resulting endpoint
(which is stored in cit).

To demonstrate remove_if(), the address of the Standard C library function isupper () (in
<cctype> is called inside of the function object class I sUpper, an object of which is passed as
the predicate for remove_if(). Thisonly returnstrueif acharacter is uppercase, so only
lowercase characters will remain. Here, the end of the rangeis used in the call to print() so
only the remaining elements will appear. The copying versions of remove() and remove _if()
are not shown because they are a simple variation on the non-copying versions which you
should be able to use without an example.

The range of lowercase lettersis sorted in preparation for testing the “unique” functions (the
“unique” functions are not undefined if the rangeisn’t sorted, but it’s probably not what you
want). First, unique_copy() puts the unique elementsinto a new vector using the default
element comparison, and then the form of unique() that takes a predicate is used; the
predicate used is the built-in function object equal_to(), which produces the same results as
the default element comparison.

Sorting and operations on sorted ranges

Thereisasignificant category of STL algorithms which require that the range they operate on
be in sorted order.

Thereis actually only one “sort” algorithm used in the STL. This algorithm is presumably the
fastest one, but the implementer has fairly broad latitude. However, it comes packaged in
various flavors depending on whether the sort should be stable, partial or just the regular sort.
Oddly enough, only the partial sort has a copying version; otherwise you'll need to make your
own copy before sorting if that’s what you want. If you are working with a very large number
of items you may be better off transferring them to an array (or at least avector, which uses
an array internaly) rather than using them in some of the STL containers.

Chapter 15: Multiple Inheritance
3n

Once your sequence is sorted, there are many operations you can perform on that sequence,
from simply locating an element or group of elements to merging with another sorted
seguence or manipulating sequences as mathematical sets.

Each algorithm involved with sorting or operations on sorted sequences has two versions of
each function, the first that uses the object’s own operator < to perform the comparison, and
the second that uses an additional StrictWeakOrdering object’s operator ()(a, b) to compare
two objects for a < b. Other than this there are no differences, so the distinction will not be
pointed out in the description of each algorithm.

Sorting

One STL container (list) hasits own built-in sort() function which is aimost certainly going
to be faster than the generic sort presented here (especially since thelist sort just swaps
pointers rather than copying entire objects around). This meansthat you'll only want to use
the sort functions here if (a) you' re working with an array or a sequence container that doesn’t
have a sort() function or (b) you want to use one of the other sorting flavors, like a partia or
stable sort, which aren’t supported by list’s sort().

void sort(RandomAccessl terator first, RandomAccesslterator last);
void sort(RandomAccesslterator first, RandomAccesslterator last,
StrictWeakOrdering binary_pred);

Sorts [fir<t, last) into ascending order. The second form allows a comparator object to
determine the order.

void stable sort(RandomAccesslterator first, RandomAccesslterator last);
void stable sort(RandomAccesslterator first, RandomAccesslterator last,
StrictWeakOrdering binary_pred);

Sorts [firt, last) into ascending order, preserving the original ordering of equivalent elements
(thisisimportant if elements can be equivalent but not identical). The second form allows a
comparator object to determine the order.

void partial_sort(RandomAccesslterator first,
RandomA ccesslterator middle, RandomAccesslterator last);
void partial_sort(RandomAccesslterator first,
RandomA ccesslterator middle, RandomAccesslterator last,
StrictWeakOrdering binary_pred);

Sorts the number of elements from [first, last) that can be placed in the range [first, middle).
The rest of the elements end up in [middle, last), and have no guaranteed order. The second
form allows a comparator object to determine the order.

RandomAccesslterator partial_sort_copy(Inputlterator first, Inputlterator last,
RandomAccesslterator result_first, RandomAccesslterator result_last);
RandomAccesslterator partial_sort_copy(l nputlterator first,

Chapter 15: Multiple Inheritance
312

Inputlterator last, RandomAccesslterator result_first,
RandomAccesslterator result_last, StrictWeakOrdering binary_pred);

Sorts the number of elements from [first, last) that can be placed in the range [result_fir <,
result_last), and copies those elementsinto [result_first, result_last). If the range [fir <,
last) issmaller than [result_first, result_last), then the smaller number of elementsis used.
The second form allows a comparator object to determine the order.

void nth_element(RandomAccessl ter ator first,
RandomAccesslterator nth, RandomAccesslterator last);

void nth_element(RandomAccessl ter ator first,
RandomAccesslterator nth, RandomAccessl terator last,
StrictWeakOrdering binary_pred);

Just like partial_sort(), nth_element() partialy orders arange of elements. However, it's
much “less ordered” than partial_sort(). The only thing that nth_element() guaranteesis
that whatever location you choose will become a dividing point. All the elementsin the range
[first, nth) will be less than (they could & so be equivalent to) whatever element ends up at
location nth and all the elementsin the range (nth, last] will be greater than whatever element
ends up location nth. However, neither range isin any particular order, unlike partial_sort()
which has the first range in sorted order.

If al you need is this very weak ordering (if, for example, you' re determining medians,
percentiles and that sort of thing) this algorithm is faster than partial_sort().

Example

The StreamT okenizer class from the previous chapter is used to break afile into words, and
each word is turned into an NString and added to a deque<NString>. Once the input fileis
completely read, avector<NString> is created from the contents of the deque. The vector is
then used to demonstrate the sorting algorithms:

/1: CO5: Sort Test. cpp

/[1{L} ../CO4/ Streamlokeni zer

/1 Test different kinds of sorting
#i ncl ude "../C04/ StreaniTokeni zer. h"
#i nclude "NString. h"

#i ncl ude "Print Sequence. h"

#i ncl ude "Generators. h"

#include "../require. h"

#i ncl ude <al gorithne

#i ncl ude <fstreanp

#i ncl ude <queue>

#i ncl ude <vector>

#i ncl ude <cctype>

usi ng namespace std;

Chapter 15: Multiple Inheritance
313

/1 For sorting NStrings and ignore string case:
struct NoCase {
bool operator()(
const NString& x, const NString& y) {
/* Sonthing's wong with this approach but |
can't seemto see it. It would be much faster
const string& lv = x;
const string& rv =vy;
int len = mn(lv.size(), rv.size());
for(int i =0; i < len; i++)
if(tolower(lv[i]) < tolower(rv[i]))
return true
return false;

*/
/1 Brute force: copy, force to | owercase
string |v(x);
string rv(y);
| case(lv);
| case(rv);
return lv < rv;
}
void | case(string& s) {
int n=s.size();
for(int i =0; i <n; i++)
s[i] = tolower(s[i]);
}
1

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
ifstreamin(argv[1]);
assure(in, argv[1]);
St reanifokeni zer words(in);
deque<NStri ng> nstr;
string word;
whil e((word = words. next()).size() !'= 0)
nstr. push_back(NString(word));
print(nstr);
/! Create a vector fromthe contents of nstr:
vector<NString> v(nstr.begin(), nstr.end());
sort(v.begin(), v.end());
print(v, "sort");

Chapter 15: Multiple Inheritance
314

/1 Use an additional conparator object:
sort(v.begin(), v.end(), NoCase());
print(v, "sort NoCase");
copy(nstr.begin(), nstr.end(), v.begin());
stabl e_sort(v. begin(), v.end());
print(v, "stable sort");
/1 Use an additional conparator object:
stabl e_sort(v. begin(), v.end(),
greater<NString>());
print(v, "stable sort greater");
copy(nstr.begin(), nstr.end(), v.begin());
/1 Partial sorts. The additional conparator
/1 versions are obvious and not shown here.
partial _sort(v.begin(),
v.begin() + v.size()/2, v.end());
print(v, "partial _sort");
/1l Create a vector with a preallocated size:
vector<NString> v2(v.size()/2);
partial _sort_copy(v.begin(), v.end(),
v2. begin(), v2.end());
print(v2, "partial _sort_copy");
/1 Finally, the weakest form of ordering:
vector<int> v3(20);
generate(v3. begin(), v3.end(), URandGen(50));
print(v3, "v3 before nth_elenent");
int n = 10;
vector<int>::iterator vit = v3.begin() + n
nth_el enent (v3. begin(), vit, v3.end());

cout << "After ordering with nth =" << n
<< ", nth elenment is " << v3[n] << endl
print(v3, "v3 after nth_elenent");
Y I~

Thefirst classisabinary predicate used to compare two NString objects while ignoring the
case of the strings. Y ou can pass the object into the various sort routines to produce an
alphabetic sort (rather than the default lexicographic sort, which has all the capital lettersin
one group, followed by all the lowercase letters).

As an example, try the source code for the above file as input. Because the occurrence
numbers are printed along with the strings you can distinguish between an ordinary sort and a
stable sort, and you can also see what happens during a partial sort (the remaining unsorted
elements are in no particular order). Thereisno “partia stable sort.”

Chapter 15: Multiple Inheritance
315

You'll notice that the use of the second “comparator” forms of the functions are not
exhaustively tested in the above example, but the use of a comparator isthe same asin the
first part of the example.

The test of nth_element does not use the NString objects because it's simpler to see what's
going on if ints are used. Notice that, whatever the nth el ement turns out to be (which will
vary from one run to another because of URandGen), the elements before that are less, and
after that are greater, but the elements have no particular order other than that. Because of
URandGen, there are no duplicates but if you use a generator that allows duplicates you can
see that the elements before the nth element will be less than or equal to the nth element.

L ocating elements in sorted ranges

Once arange is sorted, there are a group of operations that can be used to find elements within
those ranges. In the following functions, there are always two forms, one that assumes the
intrinsic oper ator < has been used to perform the sort, and the second that must be used if
some other comparison function object has been used to perform the sort. Y ou must use the
same comparison for locating elements as you do to perform the sort, otherwise the results are
undefined. In addition, if you try to use these functions on unsorted ranges the results will be
undefined.

bool binary_search(Forwardlterator first, Forwardlterator last, const T& value);
bool binary_search(Forwardlterator first, Forwardlterator last, const T& value,
StrictWeakOrdering binary_pred);

Tells you whether value appears in the sorted range [fir <, last).

Forwardlterator lower_bound(Forwardlterator first, Forwardlterator last,
const T& value);

Forwardlterator lower_bound(Forwardlterator first, Forwardlterator last,
const T& value, StrictWeakOrdering binary_pred);

Returns an iterator indicating the first occurrence of value in the sorted range [fir st, last).
Returnslast if value is not found.

Forwardlterator upper_bound(Forwardlterator first, Forwardlterator last,
const T& value);

Forwardlterator upper_bound(Forwardlterator first, Forwardlterator last,
const T& value, StrictWeakOrdering binary_pred);

Returns an iterator indicating one past the last occurrence of value in the sorted range [fir <,
last). Returnslast if valueis not found.

pair<Forwardlterator, Forwardlterator>
equal_range(Forwardlterator first, Forwardlterator lagt,
const T& value);

pair<Forwardlterator, Forwardlterator>

Chapter 15: Multiple Inheritance
316

equal_range(Forwardlterator first, Forwardlterator last,
const T& value, StrictWeakOrdering binary_pred);

Essentially combines lower _bound() and upper_bound() to return apair indicating the
first and one-past-the-last occurrences of value in the sorted range [fir <t, last). Both iterators
indicate last if valueis not found.

Example
Here, we can use the approach from the previous example:

/1: CO5: SortedSearchTest. cpp

/1{L} ../CO04/ StreanmTokeni zer

/1 Test searching in sorted ranges
#i ncl ude "../C04/ StreaniTokeni zer. h"
#i ncl ude "Print Sequence. h"

#i nclude "NString. h"

#include "../require. h"

#i ncl ude <al gorithne

#i ncl ude <fstreanp

#i ncl ude <queue>

#i ncl ude <vector>

usi ng namespace std;

int main() {

ifstreamin("SortedSearchTest.cpp");

assure(in, "SortedSearchTest.cpp");

St reanifokeni zer words(in);

deque<NStri ng> dstr;

string word;

whil e((word = words. next()).size() !'= 0)
dstr. push_back(NString(word));

vector<NString> v(dstr.begin(), dstr.end());

sort(v.begin(), v.end());

print(v, "sorted");

typedef vector<NString>::iterator sit;

sit it, it2;

string f("include");

cout << "binary search
<< binary_search(v.begin(), v.end(), f)
<< endl;

it = lower_bound(v.begin(), v.end(), f);

it2 = upper_bound(v.begin(), v.end(), f);

print(it, it2, "found range");

pair<sit, sit>ip =

Chapter 15: Multiple Inheritance
317

equal range(v.begin(), v.end(), f);
print(ip.first, ip.second,
"equal _range");
Y I~

Theinput is forced to be the source code for this file because the word “include” will be used
for afind string (since “include” appears many times). The file is tokenized into words that
are placed into a deque (a better container when you don't know how much storage to
allocate), and left unsorted in the deque. The deque is copied into avector viathe
appropriate constructor, and the vector is sorted and printed.

The binary_search() function only tells you if the object is there or not; lower _bound() and
upper_bound() produce iterators to the beginning and ending positions where the matching
objects appear. The same effect can be produced more succinctly using equal_range() (as
shown in the previous chapter, with multimap and multiset).

Merging sorted ranges

As before, the first form of each function assumes the intrinsic oper ator < has been used to
perform the sort. The second form must be used if some other comparison function object has
been used to perform the sort. Y ou must use the same comparison for locating elements as
you do to perform the sort, otherwise the results are undefined. In addition, if you try to use
these functions on unsorted ranges the results will be undefined.

Outputlterator merge(Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator 2 last2, Outputlterator result);

Outputlterator merge(Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator 2 last2, Outputlterator result,
StrictWeakOrdering binary_pred);

Copies elements from [firstd, last1) and [first2, last2) into result, such that the resulting
range is sorted in ascending order. Thisis a stable operation.

void inplace_merge(Bidirectionallterator first,
Bidirectionallterator middle, Bidirectionallterator last);

void inplace_merge(Bidirectionallterator first,
Bidirectionallterator middle, Bidirectionallterator last,
StrictWeakOrdering binary_pred);

This assumes that [first, middle) and [middle, last) are each sorted ranges. The two ranges
are merged so that the resulting range [fir st, last) contains the combined ranges in sorted
order.

Example

It's easier to see what goes on with merging if ints are used; the following example also
emphasizes how the algorithms (and my own print template) work with arrays as well as
containers.

Chapter 15: Multiple Inheritance
318

/1: CO5: MergeTest. cpp

/1 Test nerging in sorted ranges
#i ncl ude <al gorithne

#i ncl ude "Print Sequence. h"

#i ncl ude "Generators. h"

usi ng namespace std;

int main() {
const int sz = 15;
int a[sz*2] = {0};
/1 Both ranges go in the sane array:
generate(a, a + sz, SkipGen(0, 2));
generate(a + sz, a + sz*2, SkipGen(1l, 3));
print(a, a + sz, "rangel", " ");
print(a + sz, a + sz*2, "range2", " ");
int b[sz*¥2] = {0}; // Initialize all to zero
nerge(a, a + sz, a + sz, a + sz*2, h);
print(b, b + sz*2, "nerge", " ");
/1 set _union is a nerge that renoves duplicates
set _union(a, a + sz, a + sz, a + sz*2, b);

print(b, b + sz*2, "set_union", " ");

i npl ace_nerge(a, a + sz, a + sz*2);

print(a, a + sz*2, "inplace_nerge", " ");
Y I~

In main(), instead of creating two separate arrays both ranges will be created end-to-end in
the same array a (this will comein handy for the inplace_merge). Thefirst call to merge()
places the result in a different array, b. For comparison, set_union() is also called, which has
the same signature and similar behavior, except that it removes the duplicates. Finally,
inplace_merge() isused to combine both parts of a.

Set operations on sorted ranges

Once ranges have been sorted, you can perform mathematical set operations on them.

bool includes(Inputlterator1 firstl, Inputlteratorl last1,
Inputlterator2 first2, Inputlterator 2 last2);

bool includes (Inputlterator1 firstl, Inputlterator 1 last1,
Inputlterator2 first2, Inputlterator2 last2,
StrictWeakOrdering binary_pred);

Returnstrueif [first2, last2) isasubset of [firstl, last1). Neither rangeis required to hold
only unique elements, but if [first2, last2) holds n elements of a particular value, then [firstd,
last1) must also hold n elements if the result isto betrue.

Chapter 15: Multiple Inheritance
319

Outputlterator set_union(Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator 2 last2, Outputlterator result);

Outputlterator set_union(Inputlteratorl firstl, Inputlterator1 lastl,
Inputlterator2 first2, Inputlterator 2 last2, Outputlterator result,
StrictWeakOrdering binary_pred);

Creates the mathematical union of two sorted ranges in the result range, returning the end of
the output range. Neither input range is required to hold only unique elements, but if a
particular value appears multiple times in both input sets, then the resulting set will contain
the larger number of identical values.

Outputlterator set_intersection (Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator 2 last2, Outputlterator result);

Outputlterator set_intersection (Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator 2 last2, Outputlterator result,
StrictWeakOrdering binary_pred);

Produces, in result, the intersection of the two input sets, returning the end of the output
range. That is, the set of values that appear in both input sets. Neither input range is required
to hold only unique elements, but if a particular value appears multiple timesin both input
sets, then the resulting set will contain the smaller number of identical values.

Outputlterator set_difference (Inputlterator 1 firstl, Inputlteratorl lastl,

Inputlterator2 first2, Inputlterator 2 last2, Outputlterator result);

Outputlterator set_difference (Inputlterator 1 first1, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator 2 last2, Outputlterator result,
StrictWeakOrdering binary_pred);

Produces, in result, the mathematical set difference, returning the end of the output range. All
the elementsthat arein [firstl, last1) but not in [first2, last2) are placed in the result set.
Neither input range is required to hold only unique elements, but if a particular value appears
multiple timesin both input sets (n timesin set 1 and m timesin set 2), then the resulting set
will contain max(n-m, 0) copies of that value.

Outputlterator set_symmetric_difference(Inputlterator1 first1,
Inputlteratorl lastl, Inputlterator2 first2, Inputlterator2 last2,
Outputlterator result);

Outputlterator set_symmetric_difference(Inputlterator1 first1,
Inputlteratorl lastl, Inputlterator2 first2, Inputlterator?2 last2,
Outputlterator result, StrictWeakOrdering binary_pred);

Congtructs, in result, the set containing:
e All theelementsin set 1 that are not in set 2
e All theelementsin set 2 that are not in set 1.

Neither input range is required to hold only unique elements, but if a particular value appears
multiple timesin both input sets (n timesin set 1 and m timesin set 2), then the resulting set

Chapter 15: Multiple Inheritance
320

will contain abs(n-m) copies of that value, where abs() is the absolute value. The return
value is the end of the output range

Example

It's easiest to see the set operations demonstrated using simple vectors of characters, so you
view the sets more easily. These characters are randomly generated and then sorted, but the
duplicates are not removed so you can see what the set operations do when duplicates are
involved.

/1: CO5: Set Operations. cpp

/1 Set operations on sorted ranges
#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude "Print Sequence. h"

#i ncl ude "Generators. h"

usi ng namespace std;

int main() {
vect or<char> v(50), v2(50);
Char Gen g;
generate(v.begin(), v.end(), 9);
generate(v2. begin(), v2.end(), 9);
sort(v.begin(), v.end());
sort(v2. beg|n() v2.end());

print(v, "v"', "");
print(v2, "v2", "");
bool b = includes(v.begin(), v.end(),
v.begin() + v.size()/2, v.end());
cout << "includes: " <<
(b ? "true" : "false") << endl

vect or<char> v3, v4, v5, v6
set _union(v. begin(), v.end(),

v2. begin(), v2.end(), back_ inserter(v3));
print(v3, "set_union", "");
set _intersection(v.begin(), v.end(),

v2. begin(), v2.end(), back_ inserter(v4d));
print(v4, "set _intersection", "");
set _difference(v. begin(), v.end(),

V2. begin() v2.end(), back inserter(v5));
print(v5, "set _difference", "");
set_symmetric_ d|fference(v begi n(), v.end(),

v2. begin(), v2.end(), back_ inserter(v6));
print(ve, "set_symetric_difference","");

Chapter 15: Multiple Inheritance
321

|}///:~

After v and v2 are generated, sorted and printed, the includes() algorithmis tested by seeing
if the entire range of v contains the last half of v, which of course it does so the result should
always be true. The vectors v3, v4, v5 and v6 are created to hold the output of set_union(),
set_intersection(), set_difference() and set_symmetric_difference(), and the results of
each are displayed so you can ponder them and convince yourself that the algorithms do
indeed work as promised.

Heap operations
The heap operations in the STL are primarily concerned with the creation of the STL
priority_queue, which provides efficient access to the “largest” element, whatever “largest”

happens to mean for your program. These were discussed in some detail in the previous
chapter, and you can find an example there.

Aswith the “sort” operations, there are two versions of each function, the first that uses the
object’s own oper ator < to perform the comparison, the second that uses an additional
StrictWeakOr dering object’s operator ()(a, b) to compare two objects for a < b.

void make_heap(RandomAccesslterator first, RandomAccesslterator last);
void make_heap(RandomAccesslterator first, RandomAccesslterator last,
StrictWeakOrdering binary_pred);

Turns an arbitrary range into a heap. A heap isjust arange that is organized in a particular
way.

void push_heap(RandomAccesslterator first, RandomAccesslterator last);
void push_heap(RandomAccesslterator first, RandomAccesslterator last,
StrictWeakOrdering binary_pred);

Adds the element *(last-1) to the heap determined by the range [first, last-1). Yes, it seems
like an odd way to do things but remember that the priority_queue container presents the
nice interface to a heap, as shown in the previous chapter.

void pop_heap(RandomAccesslterator first, RandomAccessiterator last);
void pop_heap(RandomAccesslterator first, RandomAccesslterator last,
StrictWeakOrdering binary_pred);

Places the largest element (which is actually in *fir st, before the operation, because of the
way heaps are defined) into the position * (last-1) and reorganizes the remaining range so that
it'sstill in heap order. If you simply grabbed *fir st, the next element would not be the next-
largest element so you must use pop_heap() if you want to maintain the heap in its proper
priority-queue order.

void sort_heap(RandomAccesslterator first, RandomAccesslterator last);
void sort_heap(RandomAccesslterator first, RandomAccesslterator last,
StrictWeakOrdering binary_pred);

Chapter 15: Multiple Inheritance
322

This could be thought of as the complement of make_heap(), sinceit takesarangethat isin
heap order and turnsit into ordinary sorted order, so it is no longer a heap. That means that if
you call sort_heap() you can no longer use push_heap() or pop_heap() on that range
(rather, you can use those functions but they won’t do anything sensible). Thisis not a stable
sort.

Applying an operation to each element
In arange

These algorithms move through the entire range and perform an operation on each element.
They differ in what they do with the results of that operation: for_each() discards the return
value of the operation (but returns the function object that has been applied to each element),

while transform() places the results of each operation into a destination sequence (which can
be the original sequence).

UnaryFunction for_each(Inputlterator first, Inputlterator last, UnaryFunction f);

Applies the function object f to each element in [fir<t, last), discarding the return value from
each individual application of f. If f isjust afunction pointer then you are typically not
interested in the return value, but if f is an object that maintains some internal state it can
capture the combined return value of being applied to the range. The final return value of
for_each() isf.

Outputlterator transform(lnputlterator first, Inputlterator last,
Outputlterator result, UnaryFunction f);

Outputlterator transform(lnputlterator1 first, Inputlteratorl last,
Inputlterator 2 first2, Outputlterator result, BinaryFunction f);

Likefor_each(), transform() applies afunction object f to each element in the range [fir <t,
last). However, instead of discarding the result of each function call, transform() copiesthe
result (using oper ator =) into *result, incrementing result after each copy (the sequence
pointed to by result must have enough storage, otherwise you should use an inserter to force
insertions instead of assignments).

The first form of transform() simply callsf() and passesit each object from the input range
as an argument. The second form passes an object from the first input range and one from the
second input range as the two arguments to the binary function f (note the length of the
second input range is determined by the length of the first). The return value in both casesis
the past-the-end iterator for the resulting output range.

Examples

Since much of what you do with objectsin a container isto apply an operation to all of those
objects, these are fairly important algorithms and merit several illustrations.

Chapter 15: Multiple Inheritance
323

First, consider for_each(). This sweeps through the range, pulling out each element and
passing it as an argument as it calls whatever function object it's been given. Thusfor_each()
performs operations that you might normally write out by hand. In Stishape.cpp, for

example:

for(lter j = shapes. begin();
j 1= shapes.end(); j++)
delete *j;
If you look in your compiler’s header file at the template defining for_each(), you'll see
something like this:

tenpl ate <class Inputlterator, class Function>
Function for_each(Inputlterator first,
Inputlterator |ast,
Function f) {
while (first I'= last) f(*first++);
return f;

}

Function f looks at first like it must be a pointer to a function which takes, as an argument, an
object of whatever Inputlterator selects. However, the above template actually only says that
you must be able to call f using parentheses and an argument. Thisistrue for afunction
pointer, but it's also true for a function object — any class that defines the appropriate

oper ator (). The following example shows several different ways this template can be
expanded. First, we need a class that keeps track of its objects so we can know that it's being
properly destroyed:

/1: CO05: Counted. h

/1 An object that keeps track of itself
#i f ndef COUNTED_H

#def i ne COUNTED_H

#i ncl ude <vector>

#i ncl ude <i ostreanp

class Counted {
static int count;
char* ident;
public:
Counted(char* id) : ident(id) { count++; }
~Count ed() {
std::cout << ident << " count ="
<< --count << std::endl;

Chapter 15: Multiple Inheritance
324

i nt Counted::count = 0;

cl ass Count edVect or
public std::vector<Counted*> {

public:
Count edVect or (char* id) {
for(int i =0; i <5; i++)

push_back(new Counted(id));
}
b
#endif // COUNTED H ///: ~

The class Counted keeps a static count of how many Counted objects have been created, and
tells you as they are destroyed. In addition, each Counted keeps a char* identifier to make
tracking the output easier.

The CountedVector isinherited from vector <Counted*>, and in the constructor it creates
some Counted objects, handing each one your desired char*. The CountedVector makes
testing quite simple, asyou'll see.

/1: CO5: For Each. cpp

/1 Use of STL for_each() algorithm
#i ncl ude "Counted. h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <al gorithne

usi ng namespace std;

/1 Sinple function:
voi d destroy(Counted* fp) { delete fp; }

/1 Function object:

t enpl at e<cl ass T>

class DeleteT {

public:

void operator()(T* x) { delete x; }

};

/1 Tenplate function:
tenpl ate <class T>
void wipe(T* x) { delete x; }

int main() {
Count edVect or A("one");
for_each(A begin(), A end(), destroy);

Chapter 15: Multiple Inheritance
325

Count edVect or B("two");
for_each(B. begin(), B.end(), Del et eT<Counted>());
Count edVector C("three");
for_each(C begin(), C. end(), w pe<Counted>);
Y I~

In main(), the first approach is the simple pointer-to-function, which works but has the
drawback that you must write a new Destr oy function for each different type. The obvious
solution is to make a template, which is shown in the second approach with a templatized
function object. On the other hand, approach three also makes sense: template functions work
aswell.

Since this is obviously something you might want to do alot, why not create an algorithm to
delete al the pointersin a container? This was accomplished with the purge() template
created in the previous chapter. However, that used explicitly-written code; here, we could
use transform(). The value of transform() over for_each() isthat transform() assignsthe
result of calling the function object into a resulting range, which can actually be the input
range. That case means aliteral transformation for the input range, since each element would
be a modification of its previous value. In the above exampl e this would be especially useful
since it's more appropriate to assign each pointer to the safe value of zero after calling delete
for that pointer. Transform() can easily do this;

[1: CO5: Transform cpp

/1 Use of STL transform() algorithm
#i ncl ude "Counted. h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <al gorithne

usi ng nanmespace std;

t enpl at e<cl ass T>
T* deleteP(T* x) { delete x; return 0; }

tenpl at e<cl ass T> struct Del eter {
T* operator()(T* x) { delete x; return O; }

IR

int main() {
Count edVect or cv("one");
transformcv. begin(), cv.end(), cv.begin(),
del et eP<Count ed>) ;
Count edVector cv2("two");
transformcv2. begin(), cv2.end(), cv2.begin(),
Del et er <Count ed>());
Y I~

Chapter 15: Multiple Inheritance
326

This shows both approaches: using atemplate function or atemplatized function object. After
the call to transform(), the vector contains zero pointers, which is safer since any duplicate
deletes will have no effect.

One thing you cannot do is delete every pointer in a collection without wrapping the call to
delete inside afunction or an object. That is, you don’'t want to say something like this:

for_each(a. begin(), a.end(), ptr_fun(operator delete));

You can say it, but what you'll get is a sequence of calls to the function that releases the
storage. You will not get the effect of calling delete for each pointer in a, however; the
destructor will not be called. Thisistypically not what you want, so you will need wrap your
calsto delete.

In the previous example of for_each(), the return value of the algorithm wasignored. This
return value is the function that is passed in to for_each(). If the function isjust a pointer to a
function, then the return value is not very useful, but if it is afunction object, then that
function object may have internal member data that it uses to accumulate information about

all the objectsthat it sees during for_each().

For example, consider a simple model of inventory. Each | nventory object has the type of
product it represents (here, single characters will be used for product names), the quantity of
that product and the price of each item:

[1: CO5:Inventory.h
#i f ndef | NVENTORY_H
#define | NVENTORY_H
#i ncl ude <i ostreanr
#i ncl ude <cstdlib>
#i ncl ude <cti me>

class Inventory {
char item
int quantity;
i nt val ue;

public:
Inventory(char it, int quant, int val)

item(it), quantity(quant), value(val) {}
/1 Synt hesi zed operator= & copy-constructor OK
char getltem() const { return itenm }
int getQuantity() const { return quantity; }
void setQuantity(int q) { quantity = q; }
int getValue() const { return value; }
void setValue(int val) { value = val; }
friend std::ostream& operator<<(
std::ostream& os, const Inventory& inv) {

Chapter 15: Multiple Inheritance
327

return os << inv.item<<
<< "quantity " << inv.quantity
<< ", val ue << inv.val ue;

}
}s

/1 A generator:
struct I nvenGen {
InvenGen() { std::srand(std::tine(0)); }
Inventory operator()() {
static char ¢ ="'
int q std::rand() % 100;
int v std::rand() % 500;
return Inventory(c++, q, V);

a

}
b
#endif // INVENTORY H ///]:~

There are member functions to get the item name, and to get and set quantity and value. An
oper ator << prints the Inventory object to an ostream. There's also a generator that creates
objects that have sequentially-labeled items and random quantities and values. Note the use of
the return value optimization in oper ator ().

To find out the total number of items and total value, you can create a function object to use
with for_each() that has data membersto hold the totals:

/1: CO5:Cal clnventory. cpp
/1 More use of for_each()
#i nclude "I nventory. h"

#i ncl ude "Print Sequence. h"
#i ncl ude <vector>

#i ncl ude <al gorithne
usi ng namespace std;

/1 To calculate inventory totals:
class I nvAccum {
int quantity;
int val ue;
public:
I nvAccum() : quantity(0), value(0) {}
voi d operator()(const Inventory& inv) {
quantity += inv.getQuantity();
val ue += inv.getQuantity() * inv.getValue();

}

friend ostream&

Chapter 15: Multiple Inheritance
328

oper at or<<(ostream& os, const InvAccum& ia) {
return os << "total quantity: "
<< ia.quantity
<< ", total val ue:

<< ja.val ue;

}
}s

int main() {
vect or<l nventory> vi;
generate_n(back_inserter(vi), 15, InvenGen());
print(vi, "vi");
InvAccumia = for_each(vi.begin(),vi.end(),
I nvAccum());
cout << jia << endl;
Y I~

InvAccum’s oper ator () takes a single argument, as required by for_each(). Asfor_each()
moves through its range, it takes each object in that range and passesit to
InvAccum::operator (), which performs calculations and saves the result. At the end of this
process, for_each() returnsthe InvAccum object which you can then examine; in this case it
issimply printed.

Y ou can do most things to the I nventory objects using for_each(). For example, if you
wanted to increase all the prices by 10%, for _each() could do this handily. But you'll notice
that the I nventory objects have no way to change the item value. The programmers who
designed I nventory thought this was a good idea, after al, why would you want to change the
name of an item? But marketing has decided that they want a*“new, improved” look by
changing all the item names to uppercase; they’ ve done studies and determined that the new
names will boost sales (well, marketing has to have something to do ...). So for_each() will
not work here, but transform(’) will:

/1: CO5: Transf or nNanes. cpp
/1 More use of transform)
#i nclude "I nventory. h"

#i ncl ude "Print Sequence. h"
#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <cctype>

usi ng nanmespace std;

struct Newl nproved {
I nventory operator()(const Inventory& inv) {
return Inventory(toupper(inv.getltem()),
inv.getQuantity(), inv.getValue());

Chapter 15: Multiple Inheritance
329

}s

int main() {
vect or<l nventory> vi;
generate_n(back_inserter(vi), 15, InvenGen());
print(vi, "vi");
transform(vi.begin(), vi.end(), vi.begin(),

Newl mpr oved());

print(vi, "vi");

Y I~

Notice that the resulting range is the same as the input range, that is, the transformation is
performed in-place.

Now suppose that the sales department needs to generate special price lists with different
discounts for each item. The original list must stay the same, and there need to be any number
of generated specia lists. Sales will give you a separate list of discounts for each new list. To
solve this problem we can use the second version of transform():

/1: CO5: Speci al Li st. cpp

/1 Using the second version of transform))
#i nclude "I nventory. h"

#i ncl ude "Print Sequence. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

usi ng namespace std;

struct Discounter {
I nventory operator()(const Inventory& inv,
float discount) {
return Inventory(inv.getltem(),
i nv.getQuantity(),
inv.getvalue() * (1 - discount));
}
b

struct DiscGen {
DiscGen() { srand(tine(0)); }
float operator()() {
float r = float(rand() % 10);
return r / 100.0;
}

}s

Chapter 15: Multiple Inheritance
330

int main() {
vect or<l nventory> vi;
generate_n(back_inserter(vi), 15, InvenGen());
print(vi, "vi");
vect or <f | oat > di sc;
generate_n(back_inserter(disc), 15, DiscGen());
print(disc, "D scounts:");
vect or <l nvent ory> di scount ed;
transformvi.begin(),vi.end(), disc.begin(),

back i nserter(di scounted), Discounter());

print (di scounted, "discounted");

Y I~

Discounter is afunction object that, given an Inventory object and a discount percentage,
produces a new Inventory with the discounted price. DiscGen just generates random discount
values between 1 and 10 percent to use for testing. In main(), two vector s are created, one
for Inventory and one for discounts. These are passed to transform() along with a
Discounter object, and transform() fills anew vector <Inventory> called discounted.

Numeric algorithms

These algorithms are all tucked into the header <numeric>, since they are primarily useful for
performing numerical calculations.

<numeric>

T accumulate(l nputlterator first, Inputlterator last, T result);

T accumulate(l nputlterator first, Inputlterator last, T result,
BinaryFunction f);

The first form is a generalized summation; for each element pointed to by an iterator i in
[firgt, last), it performs the operation result = result + *i, whereresult isof type T.
However, the second form is more general; it applies the function f(result, *i) on each
element *i in the range from beginning to end. The value result isinitialized in both cases by
resultl, and if the range is empty then resultl isreturned.

Note the similarity between the second form of transform() and the second form of
accumulate().

<numeric>

T inner_product(lnputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, T init);

T inner_product(lnputlterator1 firstl, Inputlteratorl lastl,
Inputlterator2 first2, T init
BinaryFunctionl op1, BinaryFunction2 op2);

Chapter 15: Multiple Inheritance
331

Calculates a generalized inner product of the two ranges [first1, last1) and [first2, first2 +
(lastl - first1)). Thereturn value is produced by multiplying the element from the first
sequence by the “parallel” element in the second sequence, and then adding it to the sum. So
if you have two sequences{1, 1, 2, 2} and {1, 2, 3, 4} the inner product becomes:

| (1) + (172) + (2*3) + (2%4)

Whichis 17. Theinit argument istheinitial value for theinner product; thisis probably zero
but may be anything and is especially important for an empty first sequence, because then it
becomes the default return value. The second sequence must have at least as many elements
asthefirgt.

While the first formis very specifically mathematical, the second form is simply amultiple
application of functions and could conceivably be used in many other situations. The opl
function is used in place of addition, and op2 is used instead of multiplication. Thus, if you
applied the second version of inner_product() to the above sequence, the result would be the
following operations:

init = opl(init, op2(1,1));
init = opl(init, op2(1,2));
init = opl(init, op2(2,3));
init = opl(init, op2(2,4));

Thusit’'ssimilar to transform() but two operations are performed instead of one.

<numeric>

Outputlterator partial_sum(lnputlterator first, Inputlterator last,
Outputlterator result);

Outputlterator partial_sum(lnputlterator first, Inputlterator last,
Outputlterator result, BinaryFunction op);

Calculates a generalized partial sum. This means that a new sequence is created, beginning at
result, where each element is the sum of all the elements up to the currently selected element
in[first, last). For example, if the original sequenceis{1, 1, 2, 2, 3} then the generated
sequenceis{l,1+1,1+1+2,1+1+1+2+2,1+1+1+2+2+3},thatis {1,2,4,6,
9.

In the second version, the binary function op is used instead of the + operator to take all the
“summation” up to that point and combine it with the new value. For example, if you use
multiplies<int>(') asthe object for the above sequence, the output is{1, 1, 2, 4, 12}. Note
that the first output value is always the same as the first input value.

The return value is the end of the output range [result, result + (last - first)).

<numeric>

Outputlterator adjacent_difference(Inputlterator first, Inputlterator last,
Outputlterator result);

Outputlterator adjacent_difference(Inputlterator first, Inputlterator last,
Outputlterator result, BinaryFunction op);

Chapter 15: Multiple Inheritance
332

Calculates the differences of adjacent elements throughout the range [fir st, last). This means
that in the new sequence, the value is the value of the difference of the current element and
the previous element in the original sequence (the first value isthe same). For example, if the
origina sequenceis{1, 1, 2, 2, 3}, the resulting sequenceis{1,1-1,2-1,2-2, 3-2}, that
is {1,0,1,0, 1}.

The second form uses the binary function op instead of the — operator to perform the
“differencing.” For example, if you use multiplies<int>() asthe function object for the above
sequence, the output is{1, 1, 2, 4, 6}.

The return value is the end of the output range [result, result + (last - first)).

Example

This program tests all the algorithmsin <numeric> in both forms, on integer arrays. You'll
notice that in the test of the form where you supply the function or functions, the function
objects used are the ones that produce the same result as form one so the results produced will
be exactly the same. This should also demonstrate a bit more clearly the operations that are
going on, and how to substitute your own operations.

//: CO5:NumericTest.cpp

#i ncl ude "Print Sequence. h"
#i ncl ude <numeric>

#i ncl ude <al gorithne

#i ncl ude <i ostreanp

#i nclude <iterator>

#i ncl ude <functional >
usi ng nanmespace std;

int main() {
int a[] ={ 1, 1, 2, 2, 3, 5, 7, 9, 11, 13 };
const int asz = sizeof a / sizeof a[0];
print(a, a + asz, "a", " ");
int r = accumul ate(a, a + asz, 0);
cout << "accunulate 1: " << r << endl
/1 Should produce the sane result:
r = accunul ate(a, a + asz, 0, plus<int>());
cout << "accunulate 2: " << r << endl
int b[] ={ 1, 2, 3, 4, 1, 2, 3, 4, 1, 2 };

print(b, b + sizeof b/ sizeof b[0O], "b", " ");
r = inner_product(a, a + asz, b, 0);

cout << "inner_product 1: " << r << endl;

/1 Should produce the sane result:

r = inner_product(a, a + asz, b, O,

plus<int>(), multiplies<int>());

Chapter 15: Multiple Inheritance
333

cout << "inner_product 2: << r << endl;
int* it = partial _suma, a + asz, b);
print(b, it, "partial _sum1", " ");

/1 Should produce the sane result:

it = partial_sum(a, a + asz, b, plus<int>());

print(b, it, "partial _sum2", " ");
it = adjacent_difference(a, a + asz, b);
print(b, it, "adjacent_difference 1"," ");

/1 Should produce the sane result:
it = adjacent _difference(a, a + asz, b,
m nus<i nt>());
print(b, it, "adjacent _difference 2"," ");
Y I~

Note that the return value of inner_product() and partial_sum() is the past-the-end iterator
for the resulting sequence, so it is used as the second iterator in the print() function.

Since the second form of each function allows you to provide your own function object, only
the first form of the functionsis purely “numeric.” Y ou could conceivably do some things that
are not intuitively numeric with something like inner_product().

Generd utilities

Finally, here are some basic tools that are used with the other algorithms; you may or may not
use them directly yourself.

<utility>
struct pair;
make pair();

This was described and used in the previous chapter and in this one. A pair is simply away to
package two objects (which may be of different types) together into a single object. Thisis
typically used when you need to return more than one object from a function, but it can also
be used to create a container that holds pair objects, or to pass more than one object asa
single argument. Y ou access the elements by saying p.first and p.second, where p is the pair
object. The function equal_range(), described in the last chapter and in this one, returnsits
result asapair of iterators. You caninsert() apair directly into amap or multimap; a pair
isthevalue_type for those containers.

If you want to create apair, you typically use the template function make_pair () rather than
explicitly constructing a pair object.

<iterator>
distance(lnputlterator first, Inputlterator last);

Chapter 15: Multiple Inheritance
334

Tells you the number of elements between first and last. More precisely, it returns an integral
value that tells you the number of timesfirst must be incremented beforeiit is equal to last.
No dereferencing of the iterators occurs during this process.

<iterator>
void advance(I nputlterator& i, Distance n);

Moves theiterator i forward by the value of n (theiterator can also be moved backward for
negative values of n if the iterator is also a bidirectional iterator). This algorithm is aware of
bidirectional iterators, and will use the most efficient approach.

<iterator>

back _insert_iterator<Container> back_inserter (Container& x);
front_insert_iterator<Container> front_inserter (Container& x);
insert_iterator<Container> inserter (Container& x, lterator i);

These functions are used to create iterators for the given containers that will insert elements
into the container, rather than overwrite the existing elements in the container using

oper ator = (which is the default behavior). Each type of iterator uses a different operation for
insertion: back_insert_iterator uses push_back(), front_insert_iterator uses
push_front() and insert_iterator usesinsert() (and thusit can be used with the associative
containers, while the other two can be used with sequence containers). These were shown in
some detail in the previous chapter, and also used in this chapter.

const L essThanComparable& min(const L essThanComparable& a,
const L essThanComparable& b);
const T& min(const T& a, const T& b, BinaryPredicate binary_pred);

Returns the lesser of its two arguments, or the first argument if the two are equivalent. The
first version performs comparisons using oper ator < and the second passes both arguments to
binary_pred to perform the comparison.

const LessThanComparable& max(const L essThanComparable& a,
const LessThanComparable& b);
const T& max(const T& a, const T& b, BinaryPredicate binary_pred);

Exactly like min(), but returns the greater of its two arguments.

void swap(Assignable& a, Assignable& b);
void iter_swap(Forwardlterator1 a, Forwardlterator?2 b);

Exchanges the values of a and b using assignment. Note that all container classes use
specialized versions of swap() that are typically more efficient than this general version.

iter_swap() is a backwards-compatible remnant in the standard; you can just use swap().

Chapter 15: Multiple Inheritance
335

Creating your own STL-style
algorithms

Once you become comfortable with the STL algorithm style, you can begin to create your
own STL-style algorithms. Because these will conform to the format of al the other
algorithmsin the STL, they're easy to use for programmers who are familiar with the STL,
and thus become away to “extend the STL vocabulary.”

The easiest way to approach the problem isto go to the <algorithm> header file and find
something similar to what you need, and modify that (virtually all STL implementations
provide the code for the templates directly in the header files). For example, an algorithm that
stands out by its absenceis copy_if() (the closest approximation is partition()), which was
used in Binder 1.cpp at the beginning of this chapter, and in severa other examplesin this
chapter. Thiswill only copy an element if it satisfies a predicate. Here' s an implementation:

/1: CO5:copy_if.h
/1 Roll your own STL-style algorithm
#i fndef COPY_IF_H
#define COPY_IF_H

t enpl at e<t ypenane Forwardlter,
typenane Qutputlter, typenane UnaryPred>
Qutputlter copy_ if(Forwardlter begin, Forwardlter end,
Qutputlter dest, UnaryPred f) {
whi | e(begin !'= end) {
i f(f(*begin))
*dest ++ = *begi n;
begi n++;
}

return dest;

}
#endif // COPY_IF H///:~

The return value is the past-the-end iterator for the destination sequence (the copied
sequence).

Now that you' re comfortable with the ideas of the various iterator types, the actual
implementation is quite straightforward. Y ou can imagine creating an entire additional library
of your own useful algorithms that follow the format of the STL.

Chapter 15: Multiple Inheritance
336

Summary

The goal of this chapter, and the previous one, was to give you a programmer’ s-depth
understanding of the containers and algorithmsin the Standard Template Library. That is, to
make you aware of and comfortable enough with the STL that you begin to use it on aregular
basis (or at least, to think of using it so you can come back here and hunt for the appropriate
solution). It is powerful not only because it’'s a reasonably complete library of tools, but also
because it provides a vocabulary for thinking about problem solutions, and becauseit isa
framework for creating additional tools.

Although this chapter and the last did show some examples of creating your own tools, | did
not go into the full depth of the theory of the STL that is necessary to completely understand
all the STL nooks and crannies to allow you to create tools more sophisticated than those
shown here. | did not do this partially because of space limitations, but mostly because it is
beyond the charter of this book; my goal hereisto give you practical understanding that will
affect your day-to-day programming skills.

There are anumber of books dedicated solely to the STL (these are listed in the appendices),
but the two that | learned the most from, in terms of the theory necessary for tool creation,
were first, Generic Programming and the STL by Matthew H. Austern, Addison-Wesley 1999
(this also coversall the SGI extensions, which Austern was instrumental in creating), and
second (older and somewhat out of date, but still quite valuable), C++ Programmer’s Guide
to the Sandard Template Library by Mark Nelson, IDG press 1995.

Exercises

1 Create a generator that returns the current value of clock() (in <ctime>).

Create alist<clock_t> and fill it with your generator using generate n().

Remove any duplicatesin thelist and print it to cout using copy().

Modify Stlshape.cpp from chapter XXX so that it usestransform() to

delete all its objects.

Using transform() and toupper () (in <cctype>) write asingle function

call that will convert astring to all uppercase |etters.

Create a Sum function object template that will accumulate all the valuesin

arange when used with for_each().

Write an anagram generator that takes a word as a command-line argument

and produces all possible permutations of the |etters.

Write a“ sentence anagram generator” that takes a sentence as a command-

line argument and produces all possible permutations of the wordsin the

sentence (it leaves the words alone, just moves them around).

7. Create a class hierarchy with abase class B and a derived class D. Put a
virtual member function void f() in B such that it will print a message

o g A~ W D

Chapter 15: Multiple Inheritance
337

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

indicating that B’ sf() has been called, and redefine this function for D to
print a different message. Create a deque<B*> and fill it with B and D
objects. Usefor_each() to call f() for each of the objectsin your deque.
Modify FunctionObjects.cpp so that it uses float instead of int.

Modify FunctionObjects.cpp so that it templatizes the main body of tests
so you can choose which type you're going to test (you'll have to pull most
of main() out into a separate template function).

Using transform(), toupper () and tolower () (in <ccytpe>), create two
functions such that the first takes a string object and returns that string with
all the lettersin uppercase, and the second returns a string with all the
lettersin lowercase.

Create a container of containers of Noisy objects, and sort them. Now write
atemplate for your sorting test (to use with the three basic sequence
containers), and compare the performance of the different container types.
Write a program that takes as a command line argument the name of atext
file. Open thisfile and read it aword at atime (hint: use >>). Store each
word into adeque<string>. Force all the words to lowercase, sort them,
remove all the duplicates and print the results.

Write a program that finds all the words that are in common between two
input files, using set_inter section(). Change it to show the words that are
not in common, using set_symmetric_difference().

Create a program that, given an integer on the command line, creates a
“factorial table” of all the factorials up to and including the number on the
command line. To do this, write agenerator to fill avector<int>, then use
partial_sum() with a standard function object.

Modify Calclnventory.cpp so that it will find all the objects that have a
guantity that’'s less than a certain amount. Provide this amount as a
command-line argument, and use copy_if() and bind2nd() to create the
collection of values |ess than the target value.

Create template function objects that perform bitwise operations for &, |, *
and ~. Test these with abitset.

Fill avector<double> with numbers representing angles in radians. Using
function object composition, take the sine of all the elements in your vector
(see <cmath>).

Create amap which is a cosine table where the keys are the anglesin
degrees and the values are the cosines. Use transform() with cos() (in
<cmath>) tofill thetable.

Write a program to compare the speed of sorting alist using list::sort() vs.
using std::sort() (the STL agorithm version of sort()). Hint: see the
timing examples in the previous chapter.

Create and test alogical_xor function object template to implement a
logical exclusive-or.

Chapter 15: Multiple Inheritance

338

21.

22.

23.

24.

Create an STL-style algorithm transform_if() following the first form of
transform() which only performs transformations on objects that satisfy a
unary predicate.

Create an STL-style algorithm which is an overloaded version of

for_each() that follows the second form of transform() and takes two
input ranges so it can pass the objects of the second input range ato a
binary function which it applies to each object of the first range.

Create aMatrix class which is made from a vector <vector <int> >. Provide
it with afriend ostreamé& operator <<(ostreamé&, const Matrix&) to
display the matrix. Create the following using the STL algorithms where
possible (you may need to look up the mathematical meanings of the matrix
operations if you don’t remember them): oper ator +(const M atrix& , const
Matrix&) for Matrix addition, oper ator*(const M atrix& , const

vector <int>&) for multiplying a matrix by avector, and oper ator* (const
Matrix&, const Matrix&) for matrix multiplication. Demonstrate each.
Templatize the M atrix class and associated operations from the previous
example so they will work with any appropriate type.

Chapter 15: Multiple Inheritance

339

Part 2: Advanced
Topics

6: Multiple
Inheritance

The basic concept of multiple inheritance (MI) sounds
simple enough.

[[[Notes:

1. Demo of use of MI, using Greenhouse example and different company’ s greenhouse
controller equipment.

2. Introduce concept of interfaces; toys and “tuckable” interface

11

Y ou create a new type by inheriting from more than one base class. The syntax is exactly
what you' d expect, and as long as the inheritance diagrams are simple, Ml is simple as well.

However, M| can introduce a number of ambiguities and strange situations, which are covered
in this chapter. But first, it helps to get a perspective on the subject.

Perspective

Before C++, the most successful object-oriented language was Smalltalk. Smalltalk was
created from the ground up as an OO language. It is often referred to as pure, whereas C++,
because it was built on top of C, is called hybrid. One of the design decisions made with
Smalltalk was that all classes would be derived in asingle hierarchy, rooted in a single base
class (called Object —thisisthe model for the object-based hierarchy). Y ou cannot create a
new class in Smalltalk without inheriting it from an existing class, which iswhy it takes a
certain amount of time to become productive in Smalltalk — you must learn the class library
before you can start making new classes. So the Smalltalk class hierarchy is always asingle
monolithic tree.

Classesin Smalltalk usually have a number of things in common, and always have some
things in common (the characteristics and behaviors of Object), so you amost never run into
a situation where you need to inherit from more than one base class. However, with C++ you
can create as many hierarchy trees as you want. Therefore, for logical completeness the

342

language must be able to combine more than one class at a time — thus the need for multiple
inheritance.

However, thiswas not a crystal-clear case of afeature that no one could live without, and
there was (and till is) alot of disagreement about whether M1 isreally essential in C++. Ml
was added in AT&T cfront release 2.0 and was the first significant change to the language.
Since then, a number of other features have been added (notably templates) that change the
way we think about programming and place M| in a much less important role. Y ou can think
of Ml asa“minor” language feature that shouldn’t be involved in your daily design decisions.

One of the most pressing issues that drove M1 involved containers. Suppose you want to
create a container that everyone can easily use. One approach isto use void* asthe type
inside the container, as with PStash and Stack. The Smalltalk approach, however, isto make
a container that holds Objects. (Remember that Object is the base type of the entire Smalltalk
hierarchy.) Because everything in Smalltalk is ultimately derived from Object, any container
that holds Objects can hold anything, so this approach works nicely.

Now consider the situation in C++. Suppose vendor A creates an object-based hierarchy that
includes a useful set of containersincluding one you want to use called Holder. Now you
come across vendor B’s class hierarchy that contains some other class that isimportant to
you, a BitImage class, for example, which holds graphic images. The only way to make a
Holder of Bitlmagesisto inherit a new class from both Object, so it can be held in the
Holder, and Bitl mage:

holder
~ (Contains Objects)

This was seen as an important reason for M1, and a number of class libraries were built on this
model. However, as you saw in Chapter XX, the addition of templates has changed the way
containers are created, so this situation isn’t adriving issue for MI.

The other reason you may need Ml islogical, related to design. Unlike the above situation,
where you don't have control of the base classes, in this one you do, and you intentionally use
MI to make the design more flexible or useful. (At least, you may believe thisto be the case.)
An example of thisisin the original iostream library design:

Chapter 15: Multiple Inheritance
343

Both istream and ostream are useful classes by themselves, but they can also be inherited
into a class that combines both their characteristics and behaviors.

Regardless of what motivates you to use M1, anumber of problems arise in the process, and
you need to understand them to use it.

Duplicate subobjects

When you inherit from a base class, you get a copy of all the data members of that base class
in your derived class. This copy isreferred to as a subobject. If you multiply inherit from class
d1 and class d2 into class mi, class mi contains one subobject of d1 and one of d2. So your

mi object looks like this:

Now consider what happensif d1 and d2 both inherit from the same base class, called Base:

Chapter 15: Multiple Inheritance
344

mi
di

base

d2

base

In the above diagram, both d1 and d2 contain a subobject of Base, so mi contains two
subobjects of Base. Because of the path produced in the diagram, thisis sometimes called a
“diamond” in the inheritance hierarchy. Without diamonds, multiple inheritance is quite
straightforward, but as soon as a diamond appears, trouble starts because you have duplicate
subobjectsin your new class. This takes up extra space, which may or may not be a problem
depending on your design. But it also introduces an ambiguity.

Ambiguous upcasting

What happens, in the above diagram, if you want to cast a pointer to an mi to a pointer to a
Base? There are two subobjects of type Base, so which address does the cast produce? Here's
the diagram in code:

[/: CO6:Multiplelnheritancel.cpp
/1 M & anmbiguity

#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

usi ng nanmespace std;

cl ass MBase {

publi c:
virtual char* vf() const = O;
virtual ~MBase() {}

Chapter 15: Multiple Inheritance
345

}s

class DLl : public MBase {
public:
char* vf() const { return "D1"; }

};

class D2 : public MBase {
public:
char* vf() const { return "D2"; }

};

/1 Causes error: anbiguous override of vf():
/1" class M : public D1, public D2 {};

int main() {

vect or <MBase*> b;

b. push_back(new D1);

b. push_back(new D2);

/1 Cannot upcast: which subobject?:
/1" b.push_back(new m);

for(int i =0; i < b.size(); i++)
cout << b[i]->vf() << endl;
purge(b);
Y I~

Two problems occur here. First, you cannot even create the class mi because doing so would
cause a clash between the two definitions of vf() in D1 and D2.

Second, in the array definition for b[] this code attempts to create a new mi and upcast the
addressto a M Base*. The compiler won't accept this because it has no way of knowing
whether you want to use D1's subobject M Base or D2’ s subobject M Base for the resulting
address.

virtual base classes

To solve thefirst problem, you must explicitly disambiguate the function vf() by writing a
redefinition in the class mi.

The solution to the second problem is alanguage extension: The meaning of the virtual
keyword is overloaded. If you inherit a base class as virtual, only one subobject of that class
will ever appear as abase class. Virtua base classes are implemented by the compiler with
pointer magic in away suggesting the implementation of ordinary virtual functions.

Chapter 15: Multiple Inheritance
346

Because only one subobject of avirtual base classwill ever appear during multiple
inheritance, there is no ambiguity during upcasting. Here's an example:

/1: CO06:Miltiplelnheritance2.cpp
/1 Virtual base classes

#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

usi ng namespace std;

cl ass MBase {

public:

virtual char* vf() const = O;
virtual ~MBase() {}

};

class DL : virtual public MBase {
public:
char* vf() const { return "D1"; }

};

class D2 : virtual public MBase {
public:
char* vf() const { return "D2"; }

};

/1 MUST explicitly disanbiguate vf():
class M : public D1, public D2 {
public:

char* vf() const { return D1:.:vf();}

};

int main() {
vect or <MBase*> b;
b. push_back(new D1);
b. push_back(new D2);
b. push_back(new M); // K

for(int i =0; i < b.size(); i++)
cout << b[i]->vf() << endl;
purge(b);
Yy I~

The compiler now accepts the upcast, but notice that you must still explicitly disambiguate the
function vf() in M1; otherwise the compiler wouldn’t know which version to use.

Chapter 15: Multiple Inheritance
347

The "most derived" class and virtual
base initialization
The use of virtual base classesisn’t quite as simple asthat. The above example uses the

(compiler-synthesized) default constructor. If the virtual base has a constructor, things
become a bit strange. To understand this, you need a new term: most-derived class.

The most-derived classis the one you're currently in, and is particularly important when

you' re thinking about constructors. In the previous example, M Base is the most-derived class
inside the M Base constructor. Inside the D1 constructor, D1 is the most-derived class, and
inside the M| constructor, M1 is the most-derived class.

When you are using a virtual base class, the most-derived constructor is responsible for
initializing that virtual base class. That means any class, no matter how far away it is from the
virtual base, isresponsible for initializing it. Here' s an example:

//: CO6: Multiplelnheritance3.cpp

/1 Virtual base initialization

/1 Virtual base classes nust always be

/1 Initialized by the "nost-derived" class
#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

usi ng nanmespace std;

cl ass MBase {

publi c:

MBase(int) {}

virtual char* vf() const = O;
virtual ~MBase() {}

IR

class D1 : virtual public MBase {
publi c:

D1() : MBase(l) {}

char* vf() const { return "D1"; }

IR

class D2 : virtual public MBase {
publi c:

D2() : MBase(2) {}

char* vf() const { return "D2"; }

IR

Chapter 15: Multiple Inheritance
348

class M : public D1, public D2 {
public:
M () : MBase(3) {}
char* vf() const {
return DL::vf(); // MJST disanbiguate
}
b

class X : public M {

public:

/1 You must ALWAYS init the virtual base:
X() : MBase(4) {}

}s

int main() {
vect or <MBase*> b;
b. push_back(new D1);
b. push_back(new D2);
b. push_back(new M); // K
b. push_back(new X);

for(int i =0; i < b.size(); i++)
cout << b[i]->vf() << endl;
purge(b);
Yy I~

As you would expect, both D1 and D2 must initialize M Base in their constructor. But so must
M1 and X, even though they are more than one layer away! That’s because each onein turn
becomes the most-derived class. The compiler can’'t know whether to use D1’ sinitialization
of MBase or to use D2’ s version. Thus you are always forced to do it in the most-derived
class. Note that only the single selected virtual base constructor is called.

"Tying off" virtual bases with a default
constructor

Forcing the most-derived classto initialize a virtual base that may be buried deep in the class
hierarchy can seem like atedious and confusing task to put upon the user of your class. It's
better to make thisinvisible, which is done by creating a default constructor for the virtual
base class, like this:

/1: CO06:Miltiplelnheritance4. cpp

/1 "Tying off" virtual bases

/1 so you don't have to worry about them
/1 in derived cl asses

Chapter 15: Multiple Inheritance
349

#i nclude "../purge.h"
#i ncl ude <i ostreanp
#i ncl ude <vector>
usi ng namespace std;

cl ass MBase {

public:

/1 Default constructor
MBase(int = 0) {}

virtual ~MBase() {}
b

class DL :
public:
D1() : MBase(l) {}

};

class D2 :
public:
D2() : MBase(2) {}

};

class M
public:

char* vf() const {

}
}s

class X : public M {
public:

int main() {
vect or <MBase*> b;
b. push_back(new D1);
b. push_back(new D2);
b. push_back(new M);

renoves

virtual char* vf() const

/1

oK

0;

virtual public MBase
char* vf() const { return "Dl";
virtual public MBase

char* vf() const { return "D2"

responsi bility:

{

public D1, public D2 {
M() {} // Calls default constructor for

return DL::vf(); // MJST disanbiguate

MBase

X() {} /! Calls default constructor for MBase

Chapter 15: Multiple Inheritance
350

b. push_back(new X);

for(int i =0; i < b.size(); i++)
cout << b[i]->vf() << endl;
purge(b);
Y I~

If you can always arrange for avirtual base classto have a default constructor, you'll make
things much easier for anyone who inherits from that class.

Overhead

The term “pointer magic” has been used to describe the way virtual inheritanceis
implemented. Y ou can see the physical overhead of virtual inheritance with the following
program:

/1: CO6: Over head. cpp

/1 Virtual base class overhead
#i ncl ude <fstreanr

usi ng nanmespace std;

of stream out (" over head. out ") ;

cl ass MBase {

publi c:
virtual void f() const {};
virtual ~MBase() {}

b

cl ass NonVirtual | nheritance
public MBase {};

class Virtual I nheritance
virtual public MBase {};

class Virtual I nheritance2
virtual public MBase {};

class M
public Virtual |l nheritance,
public Virtual | nheritance2 {};

#def i ne WRI TE(ARG) \
out << #ARG << " = " << ARG << endl;

Chapter 15: Multiple Inheritance
351

int main() {
MBase b;
WRI TE(si zeof (b)) ;
NonVi rtual | nheritance nonv_inheritance;
WRI TE(si zeof (nonv_i nheritance));
Virtual I nheritance v_inheritance;
WRI TE(si zeof (v_i nheri tance));
M m;
WRI TE(si zeof (m)) ;
Y I~

Each of these classes only contains a single byte, and the “core size” isthat byte. Because all
these classes contain virtual functions, you expect the object size to be bigger than the core
size by apointer (at least — your compiler may also pad extra bytesinto an object for
alignment). The results are a bit surprising (these are from one particular compiler; yours may
do it differently):

sizeof (b) = 2

si zeof (nonv_i nheritance) = 2

si zeof (v_inheritance) = 6

sizeof (M) = 12
Both b and nonv_inheritance contain the extra pointer, as expected. But when virtual
inheritance is added, it would appear that the VPTR plus two extra pointers are added! By the
time the multiple inheritance is performed, the object appears to contain five extra pointers
(however, one of these is probably a second VPTR for the second multiply inherited
subobject).

The curious can certainly probe into your particular implementation and look at the assembly
language for member selection to determine exactly what these extra bytes are for, and the
cost of member selection with multiple inheritancel®. The rest of you have probably seen
enough to guess that quite a bit more goes on with virtual multiple inheritance, so it should be
used sparingly (or avoided) when efficiency is an issue.

Upcasting

When you embed subobjects of a classinside anew class, whether you do it by creating
member objects or through inheritance, each subobject is placed within the new object by the
compiler. Of course, each subobject hasits own this pointer, and as long as you're dealing
with member objects, everything is quite straightforward. But as soon as multiple inheritance

19 See also Jan Gray, “ C++ Under the Hood” , a chapter in Black Belt C++ (edited by Bruce
Eckel, M&T Press, 1995).

Chapter 15: Multiple Inheritance
352

isintroduced, a funny thing occurs. An object can have more than one this pointer because
the object represents more than one type during upcasting. The following example
demonstrates this point:

/1: CO6:Mthis.cpp

/1 M and the "this" pointer
#i ncl ude <fstreanr

usi ng nanmespace std;

of streamout ("mthis.out");

cl ass Basel {
char c[0x10];
publi c:
void printthisl() {
out << "Basel this
}

b

<< this << endl;

cl ass Base2 {
char c[0x10];
publi c:
void printthis2() {
out << "Base2 this
}

b

cl ass Memberl {
char c[0x10];

<< this << endl;

publi c:
void printthisml() {
out << "Menberl this =" << this << endl;
}
b

cl ass Member2 {
char c[0x10];

publi c:
void printthisnm() {
out << "Menber2 this =" << this << endl;
}
b

class M : public Basel, public Base2 {
Menber1 ni;

Chapter 15: Multiple Inheritance
353

Menber 2 ne;

public:
void printthis() {
out << "M this = " << this << endl;

printthisl();
printthis2();
ml. printthisml();
n2. printthism();

}

b

int main() {
M m;

out << "sizeof(m) =

<< hex << sizeof (m) << " hex" << endl;
m.printthis();
/1 A second denonstration:
Basel* bl = &mi; // Upcast
Base2* b2 = &nmi; // Upcast
out << "Base 1 pointer =" << bl << endl;
out << "Base 2 pointer = " << b2 << endl;

Y 11~

The arrays of bytesinside each class are created with hexadecimal sizes, so the output
addresses (which are printed in hex) are easy to read. Each class has a function that printsits
this pointer, and these classes are assembled with both multiple inheritance and composition
into the class M I, which printsits own address and the addresses of all the other subobjects.
Thisfunctioniscalled in main(). You can clearly see that you get two different this pointers
for the same object. The address of the M| object is taken and upcast to the two different

types. Here' s the output: 20

sizeof (m) =

Basel this =
Base2 this =
Member 1 this
Mermber2 this

Base 1 pointer
Base 2 pointer

40 hex

m this = 0x223e

0x223e
0x224e

= 0x225e

= 0x226e
0x223e
0x224e

20 For easy readability the code was generated for a small-model Intel processor.

Chapter 15: Multiple Inheritance

354

Although object layouts vary from compiler to compiler and are not specified in Standard
C++, thisoneisfairly typical. The starting address of the object corresponds to the address of
the first classin the base-class list. Then the second inherited class is placed, followed by the
member objectsin order of declaration.

When the upcast to the Basel and Base2 pointers occur, you can see that, even though they're
ostensibly pointing to the same object, they must actually have different this pointers, so the
proper starting address can be passed to the member functions of each subobject. The only
way things can work correctly isif thisimplicit upcasting takes place when you call a member
function for a multiply inherited subobject.

Persistence

Normally thisisn't a problem, because you want to call member functions that are concerned
with that subobject of the multiply inherited object. However, if your member function needs
to know the true starting address of the object, multiple inheritance causes problems.
Ironically, this happensin one of the situations where multiple inheritance seems to be useful:
persistence.

Thelifetime of alocal object isthe scopein which it is defined. The lifetime of a global
object isthe lifetime of the program. A persistent object lives between invocations of a
program: Y ou can normally think of it as existing on disk instead of in memory. One
definition of an object-oriented database is “a collection of persistent objects.”

To implement persistence, you must move a persistent object from disk into memory in order
to call functionsfor it, and later store it to disk before the program expires. Four issues arise
when storing an object on disk:

1. The object must be converted from its representation in memory to a series of bytes
on disk.
2. Because the values of any pointersin memory won’'t have meaning the next time the

program is invoked, these pointers must be converted to something meaningful.
3. What the pointers point to must also be stored and retrieved.

4. When restoring an object from disk, the virtual pointersin the object must be
respected.

Because the object must be converted back and forth between a layout in memory and a seria
representation on disk, the processis called serialization (to write an object to disk) and
deserialization (to restore an object from disk). Although it would be very convenient, these
processes require too much overhead to support directly in the language. Class libraries will
often build in support for serialization and deserialization by adding special member functions
and placing requirements on new classes. (Usually some sort of serialize() function must be
written for each new class.) Also, persistence is generally not automatic; you must usually
explicitly write and read the objects.

Chapter 15: Multiple Inheritance
355

M -based persistence

Consider sidestepping the pointer issues for now and creating a class that installs persistence
into simple objects using multiple inheritance. By inheriting the per sistence class along with
your new class, you automatically create classes that can be read from and written to disk.
Although this sounds great, the use of multiple inheritance introduces a pitfall, as seen in the
following example.

/1: CO06: Persistl.cpp

/1 Sinple persistence with M
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

usi ng namespace std;

cl ass Persistent {
int objSize; // Size of stored object
public:
Persistent(int sz) : objSize(sz) {}
void wite(ostream& out) const {
out.wite((char*)this, objSize);
}

void read(istreanm& in) {
in.read((char*)this, objSize);
}

}s

class Data {

float f[3];

public:

Data(float fO = 0.0, float f1 = 0.0,
float f2 = 0.0) {

f[0] = fO0;
f[1 = f1;
f[2] = f2;
}
void print(const char* msg = "") const {
if(*msg) cout << meBg << " "
for(int i =0; i < 3; i++)
cout << "f[" << i << "] ="
<< f[i] << endl;
}

Chapter 15: Multiple Inheritance
356

class Woatal : public Persistent, public Data {
public:
WDat al(float fO = 0.0, float f1 = 0.0,
float f2 = 0.0) : Data(fo, f1, f2),
Per si stent (si zeof (WDatal)) {}
b

class Woata2 : public Data, public Persistent {
public:
WDat a2(float fO = 0.0, float f1 = 0.0,
float f2 = 0.0) : Data(fo, f1, f2),
Per si stent (si zeof (WData2)) {}
b

int main() {

of streamf1("fl.dat"), f2("f2.dat");
assure(f1, "fl.dat"); assure(f2, "f2.dat");
Woatal di1(1.1, 2.2, 3.3);
What a2 d2(4.4, 5.5, 6.6);
dl.print("dl before storage");
d2.print("d2 before storage");
di.wite(fl);
d2. wite(f2);

} // Coses files

ifstreamfl("fl.dat"), f2("f2.dat");

assure(f1, "fl.dat"); assure(f2, "f2.dat");

WDat al di;

Woat a2 d2;

dl.read(f1);

d2. read(f2);

dl.print("dl after storage");

d2.print("d2 after storage");

Y I~

In this very simple version, the Persistent::read() and Persistent::write() functions take the
this pointer and call iostream read(') and write() functions. (Note that any type of iostream
can be used). A more sophisticated Persistent classwould call avirtual write() function for
each subobject.

With the language features covered so far in the book, the number of bytesin the object
cannot be known by the Persistent class so it isinserted as a constructor argument. (In
Chapter XX, run-time type identification shows how you can find the exact type of an object

Chapter 15: Multiple Inheritance
357

given only a base pointer; once you have the exact type you can find out the correct size with
the sizeof operator.)

The Data class contains no pointers or VPTR, so there is no danger in simply writing it to
disk and reading it back again. And it works finein class WDatal when, in main(), it's
written to file F1.DAT and later read back again. However, when Per sistent is second in the
inheritance list of WData2, the this pointer for Persistent is offset to the end of the object, so
it reads and writes past the end of the object. This not only produces garbage when reading
the abject from thefile, it's dangerous because it walks over any storage that occurs after the
object.

This problem occurs in multiple inheritance any time a class must produce the this pointer for
the actual object from a subobject’s this pointer. Of course, if you know your compiler always
lays out objectsin order of declaration in the inheritance list, you can ensure that you always
put the critical class at the beginning of the list (assuming there’ s only one critical class).
However, such a class may exist in the inheritance hierarchy of another class and you may
unwittingly put it in the wrong place during multiple inheritance. Fortunately, using run-time
type identification (the subject of Chapter XX) will produce the proper pointer to the actua
object, even if multiple inheritance is used.

Improved persistence

A more practical approach to persistence, and one you will see employed more often, isto
create virtual functionsin the base class for reading and writing and then require the creator of
any new class that must be streamed to redefine these functions. The argument to the function
is the stream object to write to or read from.2! Then the creator of the class, who knows best
how the new parts should be read or written, is responsible for making the correct function
calls. This doesn’t have the “magical” quality of the previous example, and it requires more
coding and knowledge on the part of the user, but it works and doesn’t break when pointers
are present:

/1: CO06: Persist2.cpp

/1 1nproved M persistence
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <cstring>

usi ng namespace std;

cl ass Persistent {
public:
virtual void wite(ostream& out) const = O;

21 sometimes there's only a single function for streaming, and the argument contains
information about whether you' re reading or writing.

Chapter 15: Multiple Inheritance
358

virtual void read(istrean& in) = 0;
virtual ~Persistent() {}

}s

class Data {

pr ot ect ed:

float f[3];

public:

Data(float fO = 0.0, float f1 = 0.0,
float f2 = 0.0) {

f[0] = fO0;
f[1 = f1;
f[2] = f2;
}
void print(const char* msg = "") const {
if(*msg) cout << meg << endl;
for(int i =0; i <3; i++)
cout << "f[" << i << "] ="
<< f[i] << endl;
}

}s

class Woatal : public Persistent, public Data {
public:
WDat al(float fO = 0.0, float f1 = 0.0,
float f2 = 0.0) : Data(fo, f1, f2) {}
void wite(ostream& out) const {
out << f[0] << " "
<< f[1] << " " << f[2] << " "
}
voi d read(istream& in) {
in>>f[0] > f[1] >> f[2];
}
b

class Woata2 : public Data, public Persistent {
public:
WDat a2(float fO = 0.0, float f1 = 0.0,
float f2 = 0.0) : Data(fo, f1, f2) {}
void wite(ostream& out) const {
out << f[0] << " "
<< f[1] << " " << f[2] << " "

Chapter 15: Multiple Inheritance
359

void read(istreanm& in) {
in>> f[0] > f[1] > f[2];
}

b
cl ass Congl onerate : public Data,

public Persistent {
char* nane; // Contains a pointer

WDat al di;

WDat a2 d2;

public:

Congl orer at e(const char* nm= "",
float fO = 0.0, float f1 = 0.0,
float f2 = 0.0, float f3 = 0.0,
float f4 = 0.0, float f5 = 0.0,
float f6 = 0.0, float f7 = 0.0,
float f8= 0.0) : Data(fo, f1, f2),

di(f3, f4, f5), d2(fe, f7, £8) {
nane = new char[strlen(nm + 1];
strcpy(nane, nnj;

}
void wite(ostream& out) const {
int i = strlen(nanme) + 1;
out << i << " "; /] Store size of string
out << nanme << endl;
di.wite(out);
d2.wite(out);
out << f[0] << " " << f[1] << " " << f[2];
}

/1 Must read in same order as wite:
void read(istreanm& in) {
delete []name; // Renobve ol d storage
int i;
in>>1i > ws; // Get int, strip whitespace
nane = new char[i];
in.getline(nanme, i);
dl.read(in);
d2. read(in);
in>> f[0] > f[1] > f[2];
}
void print() const {
Dat a: : print (nane);
dil.print();

Chapter 15: Multiple Inheritance
360

d2.print();

int main() {

of stream dat a("data. dat");
assure(data, "data.dat");
Congl onerate C("This is Congl onerate C',
1.1, 2.2, 3.3, 4.4, 5.5,
6.6, 7.7, 8.8, 9.9);
cout << "C before storage" << endl;
Cprint();
Cwite(data);
} // Closes file
i fstream data("data.dat");
assure(data, "data.dat");
Congl onerate C;
C.read(data);
cout << "after storage:
Cprint();
Y I~

The pure virtual functionsin Persistent must be redefined in the derived classes to perform
the proper reading and writing. If you already knew that Data would be persistent, you could
inherit directly from Per sistent and redefine the functions there, thus eliminating the need for
multiple inheritance. This example is based on the idea that you don’t own the code for Data,
that it was created el sewhere and may be part of another class hierarchy so you don’t have
control over itsinheritance. However, for this scheme to work correctly you must have access
to the underlying implementation so it can be stored; thus the use of protected.

<< endl ;

The classes WDatal and WData2 use familiar iostream inserters and extractors to store and
retrieve the protected datain Data to and from the iostream object. In write(), you can see

that spaces are added after each floating point number is written; these are necessary to allow
parsing of the data on input.

The class Conglomer ate not only inherits from Data, it also has member objects of type
WDatal and WData2, as well as a pointer to a character string. In addition, all the classes
that inherit from Per sistent also contain a VPTR, so this example shows the kind of problem
you' Il actually encounter when using persistence.

When you create write() and read() function pairs, the read() must exactly mirror what
happens during the write(), so read() pulls the bits off the disk the same way they were
placed there by write(). Here, the first problem that’ s tackled is the char*, which pointsto a
string of any length. The size of the string is cal culated and stored on disk as an int (followed

Chapter 15: Multiple Inheritance
361

by a space to enable parsing) to allow the read() function to allocate the correct amount of
storage.

When you have subobjects that have read() and write() member functions, al you need to
do iscall those functions in the new read() and write() functions. Thisis followed by direct
storage of the membersin the base class.

People have gone to great lengths to automate persistence, for example, by creating modified
preprocessors to support a “persistent” keyword to be applied when defining a class. One can
imagine a more elegant approach than the one shown here for implementing persistence, but it
has the advantage that it works under all implementations of C++, doesn’t require special
language extensions, and is relatively bulletproof.

Avoiding M|

The need for multiple inheritance in Persist2.cpp is contrived, based on the concept that you
don’t have control of some of the code in the project. Upon examination of the example, you
can see that M| can be easily avoided by using member objects of type Data, and putting the
virtual read()and write() membersinside Data or WDatal and WData2 rather thanin a
separate class. There are many situations like this one where multiple inheritance may be
avoided; the language feature isincluded for unusual, special-case situations that would
otherwise be difficult or impossible to handle. But when the question of whether to use
multiple inheritance comes up, you should ask two questions:

1. Do I need to show the public interfaces of both these classes, or could one
class be embedded with some of itsinterface produced with member
functions in the new class?

2. Do | need to upcast to both of the base classes? (This applies when you
have more than two base classes, of course.)

If you can’t answer “no” to both questions, you can avoid using M| and should probably do
0.

One situation to watch for is when one class only needs to be upcast as a function argument.

In that case, the class can be embedded and an automatic type conversion operator provided in
your new class to produce a reference to the embedded object. Any time you use an object of
your new class as an argument to a function that expects the embedded object, the type
conversion operator is used. However, type conversion can’t be used for normal member
selection; that requires inheritance.

Mixin types

Rodents & pets(play)

Chapter 15: Multiple Inheritance
362

interfacesin general

Repairing an interface

One of the best arguments for multiple inheritance involves code that’s out of your control.
Suppose you' ve acquired a library that consists of a header file and compiled member
functions, but no source code for member functions. Thislibrary is a class hierarchy with
virtual functions, and it contains some global functions that take pointers to the base class of
thelibrary; that is, it uses the library objects polymorphically. Now suppose you build an
application around this library, and write your own code that uses the base class
polymorphically.

Later in the development of the project or sometime during its maintenance, you discover that
the base-class interface provided by the vendor isincomplete: A function may be nonvirtual
and you need it to be virtual, or avirtual function is completely missing in the interface, but
essential to the solution of your problem. If you had the source code, you could go back and
put it in. But you don’t, and you have alot of existing code that depends on the original
interface. Here, multiple inheritance is the perfect solution.

For example, here’ s the header file for alibrary you acquire:

/1: C06: Vendor. h

/1 Vendor - supplied class header

/1 You only get this & the conpiled Vendor. obj
#i f ndef VENDOR H

#defi ne VENDOR H

cl ass Vendor {

public:

virtual void v() const;
void f() const;
~Vendor () ;

};

class Vendorl : public Vendor {
public:

void v() const;

void f() const;

~Vendor 1();

};

voi d A(const Vendor &) ;
voi d B(const Vendor&);
/1 Etc.

Chapter 15: Multiple Inheritance
363

#endif // VENDOR H ///:~

Assume the library is much bigger, with more derived classes and alarger interface. Notice
that it also includes the functions A(') and B(), which take a base pointer and treat it
polymorphically. Here' s the implementation file for the library:

/1: CO6: Vendor.cpp {C

/1 1mplenentati on of VENDOR H

/1 This is conpiled and unavailable to you
#i ncl ude "Vendor. h"

#i ncl ude <fstreanr

usi ng nanmespace std;

extern ofstreamout; // For trace info

voi d Vendor::v() const {
out << "Vendor::v()\n";

}

voi d Vendor::f() const {
out << "Vendor::f()\n";

}

Vendor : : ~Vendor () {
out << "~Vendor()\n";

}

voi d Vendor1::v() const {
out << "Vendorl::v()\n";

}

void Vendor1::f() const {
out << "Vendorl::f()\n";

}

Vendor 1: : ~Vendor 1() {
out << "~Vendor1()\n";

}

void A(const Vendor& V) {

v():
f0)

<<Z

~

/

Chapter 15: Multiple Inheritance
364

}

voi d B(const Vendor& V) {
/1 .
Vov();
f0);

/..
Y 11~

In your project, this source code is unavailable to you. Instead, you get a compiled file as
Vendor.obj or Vendor.lib (or the equivalent for your system).

The problem occurs in the use of this library. First, the destructor isn't virtual. Thisis actually
adesign error on the part of the library creator. In addition, f() was not made virtual; assume
the library creator decided it wouldn't need to be. And you discover that the interface to the
base classis missing a function essential to the solution of your problem. Also suppose
you've aready written afair amount of code using the existing interface (not to mention the
functions A() and B(), which are out of your control), and you don’t want to change it.

To repair the problem, create your own class interface and multiply inherit a new set of
derived classes from your interface and from the existing classes:

/1: CO6: Paste.cpp

/1{L} Vendor

/1l Fixing a mess with M
#i ncl ude "Vendor. h"

#i ncl ude <fstreanr

usi ng nanmespace std;

of stream out (" paste. out");

cl ass MyBase { // Repair Vendor interface
public:

virtual void v() const 0;

virtual void f() const 0;

/1 New interface function:

virtual void g() const = 0;

virtual ~MyBase() { out << "~MyBase()\n"; }

b

cl ass Pastel : public MyBase, public Vendorl {
publi c:
void v() const {
out << "Pastel::v()\n";
Vendor 1::v();

Chapter 15: Multiple Inheritance
365

}

void f() const {
out << "Pastel::f()\n";
Vendor 1:: f ();
}
void g() const {
out << "Pastel::g()\n";
}

~Pastel() { out << "~Pastel()\n"; }
b

int main() {
Pastel& plp = *new Pastel;
MyBase& np = plp; // Upcast
out << "calling f()\n";
nmp.f(); // Right behavior
out << "calling g()\n";
np.g(); // New behavi or
out << "calling A(plp)\n";
A(plp); // Same ol d behavi or
out << "calling B(plp)\n";
B(plp); // Same ol d behavi or
out << "delete mp\n";
/1 Deleting a reference to a heap object:
del ete ∓ // Right behavior
Y I~

In MyBase (which does not use M1), both f(') and the destructor are now virtual, and a new
virtual function g() has been added to the interface. Now each of the derived classesin the
original library must be recreated, mixing in the new interface with MI1. The functions
Pastel::v() and Pastel::f()need to call only the original base-class versions of their
functions. But now, if you upcast to MyBase asin main()

MyBase* np = plp; // Upcast
any function calls made through mp will be polymorphic, including delete. Also, the new
interface function g(') can be called through mp. Here' s the output of the program:

calling f()
Pastel:: f()
Vendor 1:: f ()
calling g()
Pastel:: g()
calling A(plp)
Pastel::v()

Chapter 15: Multiple Inheritance
366

Vendor 1: : v()
Vendor :: f ()
calling B(plp)
Pastel::v()
Vendor 1: : v()
Vendor :: f ()
delete np
~Past el()
~Vendor 1()
~Vendor ()

~MyBase()

The origina library functions A() and B() still work the same (assuming the new v() calsits
base-class version). The destructor is now virtual and exhibits the correct behavior.

Although thisis a messy example, it does occur in practice and it's a good demonstration of
where multiple inheritance is clearly necessary: Y ou must be able to upcast to both base
classes.

Summary

Thereason MI existsin C++ and not in other OOP languages is that C++ is a hybrid language
and couldn’t enforce a single monolithic class hierarchy the way Smalltalk does. Instead, C++
allows many inheritance trees to be formed, so sometimes you may need to combine the
interfaces from two or more treesinto a new class.

If no “diamonds’ appear in your class hierarchy, Ml isfairly simple (although identical
function signatures in base classes must be resolved). If adiamond appears, then you must
deal with the problems of duplicate subobjects by introducing virtual base classes. This not
only adds confusion, but the underlying representation becomes more complex and less
efficient.

Multiple inheritance has been called the “goto of the 90’s’.22 This seems appropriate because,
like agoto, Ml is best avoided in normal programming, but can occasionally be very useful.
It'sa“minor” but more advanced feature of C++, designed to solve problemsthat arisein
special situations. If you find yourself using it often, you may want to take alook at your
reasoning. A good Occam’'s Razor isto ask, “Must | upcast to al of the base classes?’ If not,
your lifewill be easier if you embed instances of al the classes you don’t need to upcast to.

22 A phrase coined by Zack Urlocker.

Chapter 15: Multiple Inheritance
367

Exercises

1.

These exercises will take you step-by-step through the traps of MI. Create a
base class X with a single constructor that takes an int argument and a
member function f(), that takes no arguments and returnsvoid. Now inherit
X intoY and Z, creating constructors for each of them that takes asingle
int argument. Now multiply inherit Y and Z into A. Create an object of
class A, and call f() for that object. Fix the problem with explicit
disambiguation.

Starting with the results of exercise 1, create a pointer to an X called px,
and assign to it the address of the object of type A you created before. Fix
the problem using a virtual base class. Now fix X so you no longer have to
call the constructor for X inside A.

Starting with the results of exercise 2, remove the explicit disambiguation
for f(), and seeif you can call f(') through px. Traceit to see which
function gets called. Fix the problem so the correct function will be called
in aclass hierarchy.

Chapter 15: Multiple Inheritance

368

/. Exception
handling

Improved error recovery is one of the most powerful ways
you can increase the robustness of your code.

Unfortunately, it's almost accepted practice to ignore error conditions, asif we'rein a state of
denial about errors. Some of the reason is no doubt the tediousness and code bloat of checking
for many errors. For example, printf() returns the number of characters that were
successfully printed, but virtually no one checks this value. The proliferation of code alone
would be disgusting, not to mention the difficulty it would add in reading the code.

The problem with C's approach to error handling could be thought of as one of coupling — the
user of afunction must tie the error-handling code so closely to that function that it becomes
too ungainly and awkward to use.

One of the major featuresin C++ is exception handling, which is a better way of thinking
about and handling errors. With exception handling,

1. Error-handling code is not nearly so tedious to write, and it doesn't become
mixed up with your "normal” code. Y ou write the code you want to happen;
later in a separate section you write the code to cope with the problems. If you
make multiple calls to a function, you handle the errors from that function once,
in one place.

2. Errors cannot be ignored. If afunction needs to send an error message to the
caller of that function, it “throws’ an object representing that error out of the
function. If the caller doesn't “catch” the error and handleit, it goes to the next
enclosing scope, and so on until someone catches the error.

This chapter examines C’'s approach to error handling (such asit is), why it did not work very
well for C, and why it won't work at all for C++. Then you'll learn about try, throw, and
catch, the C++ keywords that support exception handling.

Error handling in C

In most of the examplesin this book, assert() was used as it was intended: for debugging
during development with code that could be disabled with #define NDEBUG for the shipping

369

product. Runtime error checking uses the require.h functions developed in Chapter XX.
These were a convenient way to say, “There’' s a problem here you'll probably want to handle
with some more sophisticated code, but you don't need to be distracted by it in this example.”
The require.h functions may be enough for small programs, but for complicated products you
may need to write more sophisticated error-handling code.

Error handling is quite straightforward in situations where you check some condition and you
know exactly what to do because you have all the necessary information in that context. Of
course, you just handle the error at that point. These are ordinary errors and not the subject of
this chapter.

The problem occurs when you don’t have enough information in that context, and you need to
pass the error information into alarger context where that information does exist. There are
three typical approachesin C to handle this situation.

1 Return error information from the function or, if the return value cannot be
used thisway, set aglobal error condition flag. (Standard C provides errno
and perror () to support this.) As mentioned before, the programmer may
simply ignore the error information because tedious and obfuscating error
checking must occur with each function call. In addition, returning from a
function that hits an exceptional condition may not make sense.

2. Use the little-known Standard C library signal-handling system,
implemented with the signal() function (to determine what happens when
the event occurs) and raise() (to generate an event). Again, this has high
coupling because it requires the user of any library that generates signalsto
understand and install the appropriate signal-handling mechanism; also in
large projects the signal numbers from different libraries may clash with
each other.

3. Use the nonlocal goto functions in the Standard C library: setjmp() and
longjmp(). With setjmp() you save a known good state in the program,
and if you get into trouble, longjmp() will restore that state. Again, thereis
high coupling between the place where the state is stored and the place
where the error occurs.

When considering error-handling schemes with C++, there’ s an additional very critical
problem: The C techniques of signals and setjmp/longjmp do not call destructors, so objects
aren't properly cleaned up. This makesit virtually impossible to effectively recover from an
exceptional condition because you'll always leave objects behind that haven’t been cleaned
up and that can no longer be accessed. The following example demonstrates this with
setjmp/longjmp:

/1: CO7: Nonl ocal . cpp

Il setjnp() & Iongjm()
#i ncl ude <i ostreanr

#i ncl ude <csetj np>

Chapter 16: Exception Handling
370

usi ng namespace std;

cl ass Rai nbow {

public:

Rai nbow() { cout << "Rainbow()" << endl; }
~Rai nbow() { cout << "~Rainbow)" << endl; }

}1
j mp_buf kansas;

void oz() {
Rai nbow r b;
for(int i =0; i < 3; i++)
cout << "there's no place |ike hone\n";
| ongj np(kansas, 47);

int main() {
i f(setjnp(kansas) == 0) {
cout << "tornado, witch, munchkins...\n";

0z();
} else {
cout << "Auntie Em
<< "I had the strangest dream.."
<< endl;
}
Y I~

setjmp() isan odd function because if you call it directly, it stores all the relevant
information about the current processor state in the jmp_buf and returns zero. In that case it
has the behavior of an ordinary function. However, if you call longjmp() using the same
jmp_buf, it'sasif you're returning from setjmp() again — you pop right out the back end of
the setjmp(). Thistime, the value returned is the second argument to longjmp(), so you can
detect that you're actually coming back from alongjmp(). Y ou can imagine that with many
different jmp_bufs, you could pop around to many different placesin the program. The
difference between alocal goto (with alabel) and this nonlocal goto isthat you can go
anywhere with setjmp/longjmp (with some restrictions not discussed here).

Chapter 16: Exception Handling
371

The problem with C++ is that longjmp() doesn’t respect objects; in particular it doesn't call
destructors when it jumps out of a scope.23 Destructor calls are essential, so this approach
won't work with C++.

Throwing an exception

If you encounter an exceptional situation in your code — that is, one where you don’t have
enough information in the current context to decide what to do — you can send information
about the error into alarger context by creating an object containing that information and
“throwing” it out of your current context. Thisis called throwing an exception. Here' s what it
looks like:

t hrow nyerror (“sonet hi ng bad happened”);

myerror isan ordinary class, which takesachar* asitsargument. Y ou can use any type
when you throw (including built-in types), but often you'll use special types created just for
throwing exceptions.

The keyword throw causes a number of relatively magical things to happen. First it creates an
object that isn't there under normal program execution, and of course the constructor is called
for that object. Then the object is, in effect, “returned” from the function, even though that
object type isn’'t normally what the function is designed to return. A simplistic way to think
about exception handling is as an aternate return mechanism, although you get into trouble if
you take the analogy too far — you can also exit from ordinary scopes by throwing an
exception. But avalueis returned, and the function or scope exits.

Any similarity to function returns ends there because where you return to is someplace
completely different than for anormal function call. (Y ou end up in an appropriate exception
handler that may be miles away from where the exception was thrown.) In addition, only
objects that were successfully created at the time of the exception are destroyed (unlike a
normal function return that assumes all the objects in the scope must be destroyed). Of course,
the exception object itself is also properly cleaned up at the appropriate point.

In addition, you can throw as many different types of objects as you want. Typically, you'll
throw a different type for each different type of error. Theideaisto store the information in
the object and the type of object, so someone in the bigger context can figure out what to do
with your exception.

23 You may be surprised when you run the example — some C++ compilers have extended
longjmp(') to clean up objects on the stack. This is nonportable behavior.

Chapter 16: Exception Handling
372

Catching an exception

If afunction throws an exception, it must assume that exception is caught and dealt with. As
mentioned before, one of the advantages of C++ exception handling isthat it allows you to
concentrate on the problem you're actually trying to solve in one place, and then deal with the
errors from that code in another place.

Thetry block

If you're inside a function and you throw an exception (or a called function throws an
exception), that function will exit in the process of throwing. If you don’t want athrow to
leave afunction, you can set up a special block within the function where you try to solve
your actual programming problem (and potentially generate exceptions). Thisis called thetry
block because you try your various function calls there. The try block is an ordinary scope,
preceded by the keyword try:

try {
/1 Code that nmay generate exceptions

}

If you were carefully checking for errors without using exception handling, you'd have to
surround every function call with setup and test code, even if you call the same function
severa times. With exception handling, you put everything in atry block without error
checking. This means your codeisalot easier to write and easier to read because the goal of
the code is not confused with the error checking.

Exception handlers

Of course, the thrown exception must end up someplace. Thisis the exception handler, and
there’ s one for every exception type you want to catch. Exception handlersimmediately
follow the try block and are denoted by the keyword catch:

try {
/1 code that nmay generate exceptions

} catch(typel idl) {

/1 handl e exceptions of typel
} catch(type2 id2) {

/1 handl e exceptions of type2

}
!/l etc...

Each catch clause (exception handler) islike alittle function that takes a single argument of
one particular type. The identifier (id1, id2, and so on) may be used inside the handler, just

Chapter 16: Exception Handling
373

like a function argument, although sometimes there is no identifier because it’s not needed in
the handler — the exception type gives you enough information to deal with it.

The handlers must appear directly after the try block. If an exception is thrown, the exception-
handling mechanism goes hunting for the first handler with an argument that matches the type
of the exception. Then it entersthat catch clause, and the exception is considered handled.
(The search for handlers stops once the catch clause is finished.) Only the matching catch
clause executes; it’'s not like a switch statement where you need a break after each case to
prevent the remaining ones from executing.

Notice that, within the try block, a number of different function calls might generate the same
exception, but you only need one handler.

Termination vs. resumption

There are two basic modelsin exception-handling theory. In termination (which iswhat C++
supports) you assume the error is so critical there’s no way to get back to where the exception
occurred. Whoever threw the exception decided there was no way to salvage the situation, and
they don’t want to come back.

The alternative is called resumption. It means the exception handler is expected to do
something to rectify the situation, and then the faulting function is retried, presuming success
the second time. If you want resumption, you still hope to continue execution after the
exception is handled, so your exception is more like a function call —which is how you should
set up situations in C++ where you want resumption-like behavior (that is, don’t throw an
exception; call afunction that fixes the problem). Alternatively, place your try block inside a
while loop that keeps reentering the try block until the result is satisfactory.

Historically, programmers using operating systems that supported resumptive exception
handling eventually ended up using termination-like code and skipping resumption. So
although resumption sounds attractive at firgt, it seemsit isn’t quite so useful in practice. One
reason may be the distance that can occur between the exception and its handler; it’s one thing
to terminate to a handler that's far away, but to jump to that handler and then back again may
be too conceptually difficult for large systems where the exception can be generated from
many points.

The exception specification

You're not required to inform the person using your function what exceptions you might
throw. However, this is considered very uncivilized because it means he cannot be sure what
code to write to catch all potential exceptions. Of course, if he has your source code, he can
hunt through and look for throw statements, but very often alibrary doesn’t come with
sources. C++ provides a syntax to allow you to politely tell the user what exceptions this
function throws, so the user may handle them. Thisis the exception specification and it's part
of the function declaration, appearing after the argument list.

Chapter 16: Exception Handling
374

The exception specification reuses the keyword thr ow, followed by a parenthesized list of all
the potential exception types. So your function declaration may look like

| void f() throw(toobig, toosmall, divzero);
With exceptions, the traditional function declaration
| void f();

means that any type of exception may be thrown from the function. If you say

| void f() throw):
it means that no exceptions are thrown from a function.

For good coding policy, good documentation, and ease-of-use for the function caller, you
should always use an exception specification when you write a function that throws
exceptions.

unexpected()

If your exception specification claims you' re going to throw a certain set of exceptions and
then you throw something that isn't in that set, what’s the penalty? The special function
unexpected() is called when you throw something other than what appears in the exception
specification.

set_unexpected()

unexpected() isimplemented with a pointer to a function, so you can change its behavior.
Y ou do so with afunction called set_unexpected() which, like set_new_handler (), takes
the address of a function with no arguments and void return value. Also, it returns the
previous value of the unexpected() pointer so you can save it and restore it later. To use
set_unexpected(), you must include the header file <exception>. Here's an example that
shows a simple use of all the features discussed so far in the chapter:

/1: CO7:Except.cpp

/1 Basic exceptions

/1 Exception specifications & unexpected()
#i ncl ude <exception>

#i ncl ude <i ostreanp

#i ncl ude <cstdlib>

#i ncl ude <cstring>

usi ng namespace std;

class Up {};
class Fit {};
void g();

void f(int i) throw (Up, Fit) {

Chapter 16: Exception Handling
375

switch(i) {
case 1: throw Up():
case 2: throw Fit();
}
a();
}

/1 void g() {} // Version 1
void g() { throw 47; } // Version 2
/1 (Can throw built-in types)

void ny_unexpected() {
cout << "unexpected exception thrown";
exit(1);

}

int main() {
set _unexpect ed(my_unexpect ed) ;
/1 (ignores return val ue)
for(int i =1; i <=3; i++)
try {
fCi);
} catch(Up) {
cout << "Up caught" << endl
} catch(Fit) {
cout << "Fit caught" << endl

}
Y 11~

The classes Up and Fit are created solely to throw as exceptions. Often exception classes will
be this small, but sometimes they contain additional information so that the handlers can
guery them.

f() isafunction that promises in its exception specification to throw only exceptions of type
Up and Fit, and from looking at the function definition this seems plausible. Version one of
g(), caled by f(), doesn't throw any exceptions so thisis true. But then someone changes g()
so it throws exceptions and the new g() islinked in with f()). Now f() beginsto throw a new
exception, unbeknown to the creator of f(). Thus the exception specification is violated.

The my_unexpected() function has no arguments or return value, following the proper form
for a custom unexpected() function. It simply prints a message so you can see it has been
called, then exits the program. Y our new unexpected() function must not return (that is, you
can write the code that way but it's an error). However, it can throw another exception (you
can even rethrow the same exception), or call exit() or abort(). If unexpected() throws an

Chapter 16: Exception Handling
376

exception, the search for the handler starts at the function call that threw the unexpected
exception. (This behavior is unique to unexpected().)

Although the new_handler (') function pointer can be null and the system will do something
sensible, the unexpected() function pointer should never be null. The default valueis
terminate() (mentioned later), but whenever you use exceptions and specifications you
should write your own unexpected() to log the error and either rethrow it, throw something
new, or terminate the program.

Inmain(), thetry block iswithin afor loop so all the possibilities are exercised. Note that
thisis away to achieve something like resumption — nest the try block inside afor, while, do,
or if and cause any exceptions to attempt to repair the problem; then attempt the try block
again.

Only the Up and Fit exceptions are caught because those are the only ones the programmer of
f() said would be thrown. Version two of g() causes my_unexpected() to be called because
f() then throws an int. (Y ou can throw any type, including a built-in type.)

Inthe call to set_unexpected(), the return value isignored, but it can also be saved in a
pointer to function and restored later.

Better exception specifications?

Y ou may feel the existing exception specification rules aren't very safe, and that
| void f();

should mean that no exceptions are thrown from this function. If the programmer wants to
throw any type of exception, you may think he or she should have to say

| void f() throwm(...); // Not in C++

Thiswould surely be an improvement because function declarations would be more explicit.
Unfortunately you can’t always know by looking at the code in a function whether an
exception will be thrown — it could happen because of a memory allocation, for example.
Worse, existing functions written before exception handling was introduced may find
themselves inadvertently throwing exceptions because of the functions they call (which may
be linked into new, exception-throwing versions). Thus, the ambiguity, so

| void f();

means “Maybe I’ ll throw an exception, maybe | won't.” This ambiguity is necessary to avoid
hindering code evolution.

Catching any exception
Asmentioned, if your function has no exception specification, any type of exception can be

thrown. One solution to this problemis to create a handler that catches any type of exception.
Y ou do this using the ellipses in the argument list (ala C):

Chapter 16: Exception Handling
377

catch(...) {
cout << "an exception was thrown" << endl;

}

Thiswill catch any exception, so you'll want to put it at the end of your list of handlersto
avoid pre-empting any that follow it.

The ellipses give you no possibility to have an argument or to know anything about the type
of the exception. It'sa catch-all.

Rethrowing an exception

Sometimes you' [l want to rethrow the exception that you just caught, particularly when you
use the ellipses to catch any exception because there’ s no information available about the
exception. Thisis accomplished by saying thr ow with no argument:

catch(...) {
cout << "an exception was thrown" << endl;
t hr ow;

}

Any further catch clauses for the same try block are still ignored — the throw causes the
exception to go to the exception handlers in the next-higher context. In addition, everything
about the exception object is preserved, so the handler at the higher context that catches the
specific exception type is able to extract al the information from that object.

Uncaught exceptions

If none of the exception handlers following a particular try block matches an exception, that
exception moves to the next-higher context, that is, the function or try block surrounding the
try block that failed to catch the exception. (The location of this higher-context try block is
not always obvious at first glance.) This process continues until, at some level, a handler
matches the exception. At that point, the exception is considered “caught,” and no further
searching occurs.

If no handler at any level catches the exception, it is“uncaught” or “unhandled.” An uncaught
exception also occurs if a new exception is thrown before an existing exception reaches its
handler — the most common reason for thisis that the constructor for the exception object
itself causes a new exception.

terminate()

If an exception is uncaught, the special function terminate() is automatically called. Like
unexpected(), terminate is actually a pointer to a function. Its default value is the Standard C
library function abort(), which immediately exits the program with no calls to the normal

Chapter 16: Exception Handling
378

termination functions (which means that destructors for global and static objects might not be
called).

No cleanups occur for an uncaught exception; that is, no destructors are called. If you don't
wrap your code (including, if necessary, all the codein main()) in atry block followed by
handlers and ending with a default handler (catch(...)) to catch all exceptions, then you will
take your lumps. An uncaught exception should be thought of as a programming error.

set_terminate()

You can ingtall your own ter minate() function using the standard set_terminate() function,
which returns a pointer to the terminate() function you are replacing, so you can restore it
later if you want. Y our custom ter minate() must take no arguments and have avoid return
value. In addition, any terminate() handler you install must not return or throw an exception,
but instead must call some sort of program-termination function. If terminate() is called, it
means the problem is unrecoverable.

Like unexpected(), the terminate() function pointer should never be null.

Here's an example showing the use of set_terminate(). Here, the return valueis saved and
restored so the terminate() function can be used to help isolate the section of code where the
uncaught exception is occurring:

/1: CO7: Term nator.cpp

/1 Use of set_term nate()

/1 Al so shows uncaught exceptions
#i ncl ude <exception>

#i ncl ude <i ostreanp

#i ncl ude <cstdlib>

usi ng namespace std;

void term nator() {
cout << "I'Il be back!" << endl;
abort ();

}

void (*old term nate) ()
= set _termnate(termnator);

class Botch {

public:
class Fruit {};
void f() {

cout << "Botch::f()" << endl;
throw Fruit();

}

Chapter 16: Exception Handling
379

~Botch() { throw'c'; }
b

int main() {
try{
Bot ch b;
b.f();
} catch(...) {
cout << "inside catch(...)" << endl;
}

Y 11~

The definition of old_ter minate looks a bit confusing at first: It not only creates a pointer to a
function, but it initializes that pointer to the return value of set_ter minate(). Even though
you may be familiar with seeing a semicolon right after a pointer-to-function definition, it's
just another kind of variable and may be initialized when it is defined.

The class Botch not only throws an exception inside f(), but also in its destructor. Thisis one
of the situations that causes a call to terminate(), asyou can see in main(). Even though the
exception handler says catch(...), which would seem to catch everything and leave no cause
for terminate() to be called, terminate() is called anyway, because in the process of
cleaning up the objects on the stack to handle one exception, the Botch destructor is called,
and that generates a second exception, forcing acall to terminate(). Thus, a destructor that
throws an exception or causes one to be thrown is a design error.

Function-level try blocks

/1: CO7:FunctionTryBl ock. cpp
/1l Function-level try bl ocks
#i ncl ude <i ostreanp
usi ng namespace std;

int min() try {
throw "mai n";
} catch(const char* nsg) {
cout << nmsg << endl;
Y I~

Cleaning up

Part of the magic of exception handling isthat you can pop from normal program flow into
the appropriate exception handler. Thiswouldn’t be very useful, however, if things weren't

Chapter 16: Exception Handling
380

cleaned up properly as the exception was thrown. C++ exception handling guarantees that as
you leave a scope, all objectsin that scope whose constructors have been completed will have
destructors called.

Here's an example that demonstrates that constructors that aren’t completed don’t have the
associated destructors called. It also shows what happens when an exception is thrown in the
middle of the creation of an array of objects, and an unexpected() function that rethrows the
unexpected exception:

//: CO7:C eanup. cpp

/1 Exceptions clean up objects
#i ncl ude <fstreanr

#i ncl ude <exception>

#i ncl ude <cstring>

usi ng nanmespace std;

of stream out (" cl eanup. out");

cl ass Noi sy {
static int i;
i nt obj num
static const int sz = 40;
char nane[sz];

public:
Noi sy(const char* nm"array elenl') throw(int){
obj num = i ++;

nmenset (name, 0, sz);

strncpy(name, nm sz - 1);

out << "constructing Noi sy << obj num
<< " pane [" << nane << "]" << endl;

i f(objnum==5) throw int(5);

/1 Not in exception specification:

if(*nm=="2") throw char('z');
}
~Noi sy() {
out << "destructing Noisy " << objnum
<< " npane [" << nane << "]" << endl;
}

voi d* operator new](size_t sz) {
out << "Noisy::new]" << endl;
return ::new char[sz];

}

voi d operator delete[](void* p) {
out << "Noisy::delete[]" << endl;
c:delete []p;

Chapter 16: Exception Handling
381

}
}s

int Noisy::i = 0;

voi d unexpected rethrow) {
out << "inside unexpected rethrow()" << endl;
throw, // Rethrow same exception

}

int main() {
set _unexpect ed(unexpected _rethrow);
try {
Noi sy nl("before array");
/1 Throws exception:
Noi sy* array = new Noi sy[7];
Noi sy n2("after array");
} catch(int i) {
out << "caught " << i << endl;

}
out << "testing unexpected:" << endl;
try {

Noi sy n3("before unexpected");

Noi sy n4("z");

Noi sy n5("after unexpected");
} catch(char c¢) {

out << "caught " << ¢ << endl;
}

Y 11~

The class Noisy keeps track of objects so you can trace program progress. It keeps a count of
the number of objects created with a static data member i, and the number of the particular
object with objnum, and a character buffer called name to hold an identifier. This buffer is
first set to zeroes. Then the constructor argument is copied in. (Note that a default argument
string is used to indicate array elements, so this constructor also acts as a default constructor.)
Because the Standard C library function strncpy()stops copying after a null terminator or the
number of characters specified by its third argument, the number of characters copiedinis
one minus the size of the buffer, so the last character is aways zero, and a print statement will
never run off the end of the buffer.

There are two cases where athrow can occur in the constructor. The first case happensiif this
is the fifth object created (not areal exception condition, but demonstrates an exception
thrown during array construction). The type thrown isint, which is the type promised in the
exception specification. The second case, also contrived, happensif the first character of the

Chapter 16: Exception Handling
382

argument string is‘Z', in which case a char isthrown. Because char isnot listed in the
exception specification, thiswill cause acall to unexpected().

The array versions of new and delete are overloaded for the class, so you can see when
they're called.

The function unexpected_rethrow() prints a message and rethrows the same exception. It is
installed as the unexpected() function in thefirst line of main(). Then some objects of type
Noisy are created in atry block, but the array causes an exception to be thrown, so the object
N2 isnever created. Y ou can see the results in the output of the program:

constructing Noisy 0 nane [before array]
Noi sy: : new]
constructing Noi sy
constructing Noi sy
constructing Noi sy
constructing Noi sy
constructing Noi sy nane [array el eni
destructing Noisy 4 nane [array el eni
destructing Noisy 3 nane [array el eni

2

1

nane [array el eni
nane [array el eni
nane [array el eni
nane [array el eni

abhwNE

destructing Noi sy nane [array el eni
destructing Noi sy nane [array el eni

Noi sy: : del ete[]

destructing Noisy 0 nane [before array]
caught 5

testi ng unexpect ed:

constructing Noisy 6 nane [before unexpected]
constructing Noisy 7 name [2z]

i nsi de unexpected_rethrow()

destructing Noisy 6 nane [before unexpected]
caught z

Four array elements are successfully created, but in the middle of the constructor for the fifth
one, an exception is thrown. Because the fifth constructor never compl etes, only the
destructors for objects 14 are called.

The storage for the array is allocated separately with asingle cal to the global new. Notice
that even though delete is never explicitly called anywhere in the program, the exception-
handling system knows it must call delete to properly release the storage. This behavior
happens only with “normal” versions of operator new. If you use the placement syntax
described in Chapter XX, the exception-handling mechanism will not call delete for that
object because then it might release memory that was not allocated on the heap.

Finally, object n1 is destroyed, but not object n2 because it was never created.

In the section testing unexpected_rethrow(), the n3 object is created, and the constructor of
n4 is begun. But before it can complete, an exception isthrown. This exception is of type

Chapter 16: Exception Handling
383

char, which violates the exception specification, so the unexpected() functioniscalled
(which isunexpected_rethrow(), in this case). This rethrows the same exception, whichis
expected this time, because unexpected_rethrow() can throw any type of exception. The
search begins right after the constructor for n4, and the char exception handler catches it
(after destroying n3, the only successfully created object). Thus, the effect of
unexpected_rethrow() isto take any unexpected exception and make it expected; used this
way it provides afilter to allow you to track the appearance of unexpected exceptions and
pass them through.

Constructors

When writing code with exceptions, it's particularly important that you always be asking, “If
an exception occurs, will this be properly cleaned up?’ Most of the time you're fairly safe, but
in constructors there’ s a problem: If an exception is thrown before a constructor is compl eted,
the associated destructor will not be called for that object. This means you must be especially
diligent while writing your constructor.

The general difficulty is allocating resources in constructors. If an exception occursin the
constructor, the destructor doesn’t get a chance to deall ocate the resource. This problem
occurs most often with “naked” pointers. For example,

/1: CO7:Nudep. cpp

/1 Naked pointers

#i ncl ude <fstreanp

#i ncl ude <cstdlib>

usi ng namespace std;

of stream out (" nudep. out");

class Cat {

public:

Cat () { out << "Cat()" << endl; }
~Cat() { out << "~Cat()" << endl; }
b

cl ass Dog {
public:
voi d* operator new(size t sz) {
out << "allocating a Dog" << endl;
throw int(47);
}
voi d operator del ete(void* p) {
out << "deal locating a Dog" << endl;
.. delete p;

Chapter 16: Exception Handling
384

}
}s

cl ass UseResources {
Cat* bp;
Dog* op;
public:
UseResources(int count = 1) {
out << "UseResources()" << endl;
bp new Cat[count];
op new Dog;

}

~UseResources() {
out << "~UseResources()" << endl;
delete []bp; // Array delete
del ete op;
}
b

int main() {

try {
UseResources ur(3);

} catch(int) {
out << "inside handler" << endl;
}
Y I~

he output is the following:

—

UseResour ces()
Cat ()

Cat ()

Cat ()

al l ocating a Dog
i nsi de handl er

The UseResour ces constructor is entered, and the Cat constructor is successfully completed
for the array objects. However, inside Dog::operator new, an exception is thrown (as an
example of an out-of-memory error). Suddenly, you end up inside the handler, without the
UseResour ces destructor being called. Thisis correct because the UseResour ces constructor
was unable to finish, but it means the Cat object that was successfully created on the heap is
never destroyed.

Chapter 16: Exception Handling
385

Making everything an object
To prevent this, guard against these “raw” resource allocations by placing the allocations
inside their own objects with their own constructors and destructors. Thisway, each allocation
becomes atomic, as an object, and if it fails, the other resource all ocation objects are properly
cleaned up. Templates are an excellent way to modify the above example:

/1: CO7: Wapped. cpp

/1 Safe, atomic pointers

#i ncl ude <fstreanp

#i ncl ude <cstdlib>

usi ng namespace std;

of stream out ("w apped. out");

/1 Sinplified. Yours nay have other argunents.
tenplate<class T, int sz = 1> class PWap {
T ptr;
public:
cl ass RangeError {}; // Exception class
PWap() {
ptr = new T[sz];
out << "PWap constructor" << endl;
}
~PWap() {
delete []ptr;
out << "PWap destructor" << endl;
}
T& operator[](int i) throw(RangeError) ({
if(i >>0 & & i < sz) return ptr[i];
t hrow RangeError();
}
b

class Cat {

public:

Cat () { out << "Cat()" << endl; }
~Cat() { out << "~Cat()" << endl; }
\ void g() {}

cl ass Dog {
public:
voi d* operator new](size_t sz) {

Chapter 16: Exception Handling
386

out << "allocating an Dog" << endl;
throw int(47);

}

voi d operator delete[](void* p) {
out << "deal | ocating an Dog" << endl;
::delete p;

}

b

cl ass UseResources {
PW ap<Cat, 3> Bonk;
PW ap<Dog> Oy;
public:
UseResources() : Bonk(), Og() {
out << "UseResources()" << endl;

}
~UseResources() {
out << "~UseResources()" << endl;
}
void f() { Bonk[1].g(); }

}s

int main() {
try {
UseResources ur;
} catch(int) {
out << "inside handler" << endl;
} catch(...) {
out << "inside catch(...)
}

Y 11~

The difference is the use of the template to wrap the pointers and make them into objects. The
constructors for these objects are called before the body of the UseResour ces constructor, and
any of these constructors that complete before an exception is thrown will have their
associated destructors called.

<< endl ;

The PWrap template shows amore typical use of exceptions than you've seen so far: A
nested class called RangeError iscreated to usein operator| | if itsargument is out of range.
Because oper ator[| returns areference it cannot return zero. (There are no null references.)
Thisisatrue exceptional condition —you don’'t know what to do in the current context, and
you can't return an improbable value. In this example, RangeError isvery simple and
assumes all the necessary information isin the class name, but you may also want to add a
member that contains the value of the index, if that is useful.

Chapter 16: Exception Handling
387

Now the output is

Cat ()

Cat ()

Cat ()

PW ap constructor
al l ocating a Dog

~Cat ()

~Cat ()

~Cat ()

PW ap destructor

i nsi de handl er

Again, the storage alocation for Dog throws an exception, but this time the array of Cat
objectsis properly cleaned up, so thereis no memory leak.

Exception matching

When an exception is thrown, the exception-handling system looks through the “ nearest”
handlersin the order they are written. When it finds a match, the exception is considered
handled, and no further searching occurs.

Matching an exception doesn’'t require a perfect match between the exception and its handler.
An object or reference to a derived-class object will match a handler for the base class.
(However, if the handler isfor an object rather than a reference, the exception object is
“diced” asit is passed to the handler; this does no damage but loses all the derived-type
information.) If a pointer isthrown, standard pointer conversions are used to match the
exception. However, no automatic type conversions are used to convert one exception type to
another in the process of matching. For example,

/1: CO7: Aut oexcp. cpp
/1 No matching conversions
#i ncl ude <i ostreanp
usi ng namespace std;

cl ass Exceptl {};

cl ass Except2 {
public:

Except 2(Except 1&) {}
b

void f() { throw Except1(); }

int main() {

Chapter 16: Exception Handling
388

try { £0);
} catch (Except2) {

cout << "inside catch(Except2)" << endl;
} catch (Exceptl) {

cout << "inside catch(Exceptl)" << endl;
}

Y 11~

Even though you might think the first handler could be used by converting an Except1 object
into an Except2 using the constructor conversion, the system will not perform such a
conversion during exception handling, and you'll end up at the Except1 handler.

The following example shows how a base-class handler can catch a derived-class exception:

/1: CO7:Basexcpt.cpp

/1 Exception hierarchies
#i ncl ude <i ostreane

usi ng nanmespace std;

class X {
publi c:
cl ass Trouble {};
class Small : public Trouble {};

class Big : public Trouble {};
void f() { throw Big(); }

b

int main() {
X X;
try {
x.£();
} catch(X: :Trouble) {
cout << "caught Trouble" << endl;
/1 Hi dden by previous handl er:
} catch(X: :Small) {
cout << "caught Small Trouble" << endl;
} catch(X :Big) {
cout << "caught Big Trouble" << endl;

}
Y 110~

Here, the exception-handling mechanism will always match a Trouble object, or anything
derived from Trouble, to the first handler. That means the second and third handlers are never
called because the first one captures them all. It makes more sense to catch the derived types

Chapter 16: Exception Handling
389

first and put the base type at the end to catch anything less specific (or aderived class
introduced later in the development cycle).

In addition, if Small and Big represent larger objects than the base class Trouble (which is
often true because you regularly add data membersto derived classes), then those objects are
dliced to fit into the first handler. Of course, in this example it isn't important because there
are no additional membersin the derived classes and there are no argument identifiersin the
handlers anyway. You'll usually want to use reference arguments rather than objectsin your
handlers to avoid slicing off information.

Standard exceptions

The set of exceptions used with the Standard C++ library are also available for your own use.
Generally it's easier and faster to start with a standard exception class than to try to define
your own. If the standard class doesn’t do what you need, you can derive from it.

The following tables describe the standard exceptions:

exception The base class for all the exceptions thrown
by the C++ standard library. Y ou can ask
what() and get aresult that can be
displayed as a character representation.

logic_error Derived from exception. Reports program
logic errors, which could presumably be
detected before the program executes.

runtime_error Derived from exception. Reports runtime
errors, which can presumably be detected
only when the program executes.

The iostream exception classios::failureis also derived from exception, but it has no further
subclasses.

The classes in both of the following tables can be used as they are, or they can act as base
classes to derive your own more specific types of exceptions.

Exception classes derived from logic_error

domain_error Reports violations of a precondition.

invalid_argument Indicates an invalid argument to the
function it’s thrown from.

length_error Indicates an attempt to produce an object
whose length is greater than or equal to
NPOS (the largest representable value of
type size t).

Chapter 16: Exception Handling
390

Exception classes derived from logic_error

out_of range Reports an out-of-range argument.

bad_cast Thrown for executing an invalid
dynamic_cast expression in run-time
type identification (see Chapter XX).

bad_typeid Reports anull pointer p in an expression
typeid(*p). (Again, arun-timetype
identification feature in Chapter XX).

Exception classes derived fromruntime_error

range error Reports violation of a postcondition.

overflow _error Reports an arithmetic overflow.

bad_alloc Reports a failure to allocate storage.

Programming with exceptions

For most programmers, especially C programmers, exceptions are not available in their
existing language and take a it of adjustment. Here are some guidelines for programming
with exceptions.

When to avoid exceptions

Exceptions aren’t the answer to all problems. In fact, if you simply go looking for something
to pound with your new hammer, you'll cause trouble. The following sections point out
situations where exceptions are not warranted.

Not for asynchronous events

The Standard C signal() system, and any similar system, handles asynchronous events:
events that happen outside the scope of the program, and thus events the program cannot
anticipate. C++ exceptions cannot be used to handle asynchronous events because the
exception and its handler are on the same call stack. That is, exceptions rely on scoping,
whereas asynchronous events must be handled by completely separate code that is not part of
the normal program flow (typically, interrupt service routines or event loops).

Thisis not to say that asynchronous events cannot be associated with exceptions. But the
interrupt handler should do itsjob as quickly as possible and then return. Later, at some well-
defined point in the program, an exception might be thrown based on the interrupt.

Chapter 16: Exception Handling
391

Not for ordinary error conditions

If you have enough information to handle an error, it's not an exception. Y ou should take care
of it in the current context rather than throwing an exception to a larger context.

Also, C++ exceptions are not thrown for machine-level events like divide-by-zero. It's
assumed these are dealt with by some other mechanism, like the operating system or
hardware. That way, C++ exceptions can be reasonably efficient, and their use isisolated to
program-level exceptional conditions.

Not for flow-of-control

An exception looks somewhat like an alternate return mechanism and somewhat like a switch
statement, so you can be tempted to use them for other than their original intent. Thisis abad
idea, partly because the exception-handling system is significantly less efficient than normal
program execution; exceptions are arare event, so the normal program shouldn’t pay for
them. Also, exceptions from anything other than error conditions are quite confusing to the
user of your class or function.

Y ou’re not forced to use exceptions

Some programs are quite simple, many utilities, for example. Y ou may only need to take
input and perform some processing. In these programs you might attempt to allocate memory
and fail, or try to open afile and fail, and so on. It is acceptable in these programs to use
assert() or to print amessage and abort() the program, allowing the system to clean up the
mess, rather than to work very hard to catch all exceptions and recover all the resources
yourself. Basically, if you don’t need to use exceptions, you don’t have to.

New exceptions, old code

Another situation that arises is the modification of an existing program that doesn’t use
exceptions. Y ou may introduce alibrary that does use exceptions and wonder if you need to
modify all your code throughout the program. Assuming you have an acceptable error-
handling scheme aready in place, the most sensible thing to do here is surround the largest
block that uses the new library (this may be all the code in main()) with atry block, followed
by acatch(...) and basic error message. Y ou can refine this to whatever degree necessary by
adding more specific handlers, but, in any case, the code you' re forced to add can be minimal.

Y ou can aso isolate your exception-generating codein atry block and write handlers to
convert the exceptions into your existing error-handling scheme.

It's truly important to think about exceptions when you're creating alibrary for someone else
to use, and you can't know how they need to respond to critical error conditions.

Typical uses of exceptions

Do use exceptions to

Chapter 16: Exception Handling
392

4. Fix the problem and call the function (which caused the exception) again.
5. Patch things up and continue without retrying the function.

6. Calculate some alternative result instead of what the function was supposed
to produce.

1. Do whatever you can in the current context and rethrow the same exception
to a higher context.

8. Do whatever you can in the current context and throw a different exception
to a higher context.

9. Terminate the program.

10. Wrap functions (especialy C library functions) that use ordinary error
schemes so they produce exceptions instead.

11. Simplify. If your exception scheme makes things more complicated, then it
ispainful and annoying to use.

12. Make your library and program safer. Thisis a short-term investment (for
debugging) and along-term investment (for application robustness).

Always use exception specifications

The exception specification is like afunction prototype: It tells the user to write exception-
handling code and what exceptions to handle. It tells the compiler the exceptions that may
come out of this function.

Of course, you can't always anticipate by looking at the code what exceptions will arise from
a particular function. Sometimes the functions it calls produce an unexpected exception, and
sometimes an old function that didn’t throw an exception is replaced with a new one that
does, and you'll get acall to unexpected(). Anytime you use exception specifications or call
functions that do, you should create your own unexpected() function that logs a message and
rethrows the same exception.

Start with standard exceptions

Check out the Standard C++ library exceptions before creating your own. If a standard
exception does what you need, chances areit’s alot easier for your user to understand and
handle.

If the exception type you want isn't part of the standard library, try to derive one from an
existing standard exception. It'snice for your usersif they can always write their code to
expect the what() function defined in the exception() class interface.

Chapter 16: Exception Handling
393

Nest your own exceptions

If you create exceptions for your particular class, it's a very good idea to nest the exception
classesinside your class to provide a clear message to the reader that this exception is used
only for your class. In addition, it prevents the pollution of the namespace.

Y ou can nest your exceptions even if you' re deriving them from C++ standard exceptions.

Use exception hierarchies

Exception hierarchies provide a valuable way to classify the different types of critical errors
that may be encountered with your class or library. This gives helpful information to users,
assists them in organizing their code, and gives them the option of ignoring all the specific
types of exceptions and just catching the base-class type. Also, any exceptions added |ater by
inheriting from the same base class will not force all existing code to be rewritten — the base-
class handler will catch the new exception.

Of course, the Standard C++ exceptions are a good example of an exception hierarchy, and
one that you can use to build upon.

Multiple inheritance

You'll remember from Chapter XX that the only essential place for Ml isif you need to
upcast a pointer to your object into two different base classes —that is, if you need
polymorphic behavior with both of those base classes. It turns out that exception hierarchies
are a useful place for multiple inheritance because a base-class handler from any of the roots
of the multiply inherited exception class can handle the exception.

Catch by reference, not by value

If you throw an object of aderived classand it is caught by value in a handler for an object of
the base class, that object is“sliced” —that is, the derived-class elements are cut off and you'll
end up with the base-class object being passed. Chances are thisis not what you want because
the object will behave like a base-class object and not the derived class object it realy is (or
rather, was — before it was sliced). Here's an example:

[1: CO7:Catchref.cpp
/1 Why catch by reference?
#i ncl ude <i ostreanp
usi ng nanmespace std;

cl ass Base {
publi c:
virtual void what () {
cout << "Base" << endl;

}
b

Chapter 16: Exception Handling
394

class Derived : public Base {
public:
voi d what () {
cout << "Derived" << endl;
}
b

void f() { throw Derived(); }

int main() {
try {
f();
} catch(Base b) {
b. what ();

y {

fO);

} catch(Base& b) {
b. what ();

}
Y 11~

he output is

}
t

r

—

Base
Deri ved

because, when the object is caught by value, it isturned into a Base object (by the copy-
constructor) and must behave that way in all situations, whereas when it's caught by
reference, only the address is passed and the object isn’t truncated, so it behaves like what it
really is, aDerived in this case.

Although you can also throw and catch pointers, by doing so you introduce more coupling —
the thrower and the catcher must agree on how the exception object is allocated and cleaned
up. Thisis a problem because the exception itself may have occurred from heap exhaustion. If
you throw exception objects, the exception-handling system takes care of all storage.

Throw exceptions in constructors

Because a constructor has no return value, you' ve previously had two choicesto report an
error during construction:

13. Set anonlocal flag and hope the user checksit.

14. Return an incompletely created object and hope the user checksiit.

Chapter 16: Exception Handling
395

Thisis a serious problem because C programmers have come to rely on an implied guarantee
that object creation is always successful, which is not unreasonable in C where types are so
primitive. But continuing execution after construction failsin a C++ program is a guaranteed
disaster, so constructors are one of the most important places to throw exceptions — now you
have a safe, effective way to handle constructor errors. However, you must also pay attention
to pointers inside objects and the way cleanup occurs when an exception is thrown inside a
constructor.

Don’t cause exceptions in destructors

Because destructors are called in the process of throwing other exceptions, you'll never want
to throw an exception in a destructor or cause another exception to be thrown by some action
you perform in the destructor. If this happens, it means that a new exception may be thrown
before the catch-clause for an existing exception is reached, which will cause acall to
terminate().

Thismeansthat if you call any functions inside a destructor that may throw exceptions, those
calls should be within atry block in the destructor, and the destructor must handle all
exceptions itself. None must escape from the destructor.

Avoid naked pointers

See Wrapped.cpp. A naked pointer usually means vulnerability in the constructor if
resources are allocated for that pointer. A pointer doesn’'t have a destructor, so those resources
won't be released if an exception is thrown in the constructor.

Overhead

Of course it costs something for this new feature; when an exception is thrown there's
considerable runtime overhead. Thisis the reason you never want to use exceptions as part of
your normal flow-of-control, no matter how tempting and clever it may seem. Exceptions
should occur only rarely, so the overhead is piled on the exception and not on the normally
executing code. One of the important design goals for exception handling was that it could be
implemented with no impact on execution speed when it wasn't used; that is, aslong as you
don’t throw an exception, your code runs as fast as it would without exception handling.
Whether or not thisis actually true depends on the particular compiler implementation you're
using.

Exception handling also causes extra information to be put on the stack by the compiler, to aid
in stack unwinding.

Exception objects are properly passed around like any other objects, except that they can be
passed into and out of what can be thought of as a specia “exception scope” (which may just
be the global scope). That's how they go from one place to another. When the exception
handler is finished, the exception objects are properly destroyed.

Chapter 16: Exception Handling
396

Summary

Error recovery is afundamental concern for every program you write, and it’s especially
important in C++, where one of the goalsisto create program components for othersto use.
To create arobust system, each component must be robust.

The goals for exception handling in C++ are to simplify the creation of large, reliable
programs using less code than currently possible, with more confidence that your application
doesn’t have an unhandled error. This is accomplished with little or no performance penalty,
and with low impact on existing code.

Basic exceptions are not terribly difficult to learn, and you should begin using them in your
programs as soon as you can. Exceptions are one of those features that provide immediate and
significant benefits to your project.

Exercises

1.

Create a class with member functions that throw exceptions. Within this
class, make a nested classto use as an exception object. It takesasingle
char* asitsargument; this represents a description string. Create a member
function that throws this exception. (State this in the function’s exception
specification.) Write atry block that calls this function and a catch clause
that handl es the exception by printing out its description string.

Rewrite the Stash class from Chapter XX so it throws out-of-range
exceptions for operator([].

Write ageneric main() that takes all exceptions and reports them as errors.

Create aclasswith its own operator new. This operator should allocate 10
objects, and on the 11th “run out of memory” and throw an exception. Also
add a static member function that reclaims this memory. Now create a
main() with atry block and a catch clause that calls the memory-
restoration routine. Put these inside awhile loop, to demonstrate recovering
from an exception and continuing execution.

Create a destructor that throws an exception, and write code to prove to
yourself that thisis abad idea by showing that if a new exception is thrown
before the handler for the existing one is reached, terminate() is called.
Prove to yourself that all exception objects (the ones that are thrown) are
properly destroyed.

Prove to yourself that if you create an exception object on the heap and
throw the pointer to that object, it will not be cleaned up.

(Advanced). Track the creation and passing of an exception using a class
with a constructor and copy-constructor that announce themselves and
provide as much information as possible about how the object is being

Chapter 16: Exception Handling

397

created (and in the case of the copy-constructor, what object it's being
created from). Set up an interesting situation, throw an object of your new
type, and analyze the result.

Chapter 16: Exception Handling
398

8. Run-time type
Identification

type of an object when you have only a pointer or reference
to the base type.

This can be thought of asa*secondary” feature in C++, a pragmatism to help out when you
get into messy situations. Normally, you'll want to intentionally ignore the exact type of an
object and let the virtual function mechanism implement the correct behavior for that type.
But occasionally it’s useful to know the exact type of an object for which you only have a
base pointer. Often this information allows you to perform a special-case operation more
efficiently or prevent a base-class interface from becoming ungainly. It happens enough that
most class libraries contain virtual functions to produce run-time type information. When
exception handling was added to C++, it required the exact type information about objects. It
became an easy next step to build access to that information into the language.

This chapter explainswhat RTTI isfor and how to useit. In addition, it explains the why and
how of the new C++ cast syntax, which has the same appearance as RTTI.

The “Shape’ example

Thisis an example of aclass hierarchy that uses polymorphism. The generic type is the base
class Shape, and the specific derived types are Circle, Square, and Triangle:

399

Thisisatypical class-hierarchy diagram, with the base class at the top and the derived classes
growing downward. The normal goal in object-oriented programming is for the bulk of your
code to manipulate pointers to the base type (Shape, in this case) so if you decide to extend
the program by adding a new class (rhomboid, derived from Shape, for example), the bulk of
the code is not affected. In this example, the virtual function in the Shape interface isdraw(),
so theintent is for the client programmer to call draw() through a generic Shape pointer.
draw() isredefined in all the derived classes, and because it isavirtual function, the proper
behavior will occur even though it is called through a generic Shape pointer.

Thus, you generally create a specific object (Circle, Square, or Triangle), take its address
and cast it to a Shape* (forgetting the specific type of the object), and use that anonymous
pointer in the rest of the program. Historically, diagrams are drawn as seen above, so the act
of casting from a more derived type to a base type is called upcasting.

What iIsRTTI?

But what if you have a specia programming problem that’s easiest to solve if you know the
exact type of a generic pointer? For example, suppose you want to allow your usersto
highlight all the shapes of any particular type by turning them purple. This way, they can find
all the triangles on the screen by highlighting them. Y our natural first approach may be to try
avirtua function like TurnColor IfYouAreA(), which allows enumerated arguments of
some type color and of Shape::Circle, Shape::Square, or Shape:: Triangle.

To solve this sort of problem, most class library designers put virtual functions in the base
class to return type information about the specific object at runtime. Y ou may have seen
library member functions with names like isA() and typeOf(). These are vendor-defined
RTTI functions. Using these functions, as you go through the list you can say, “If you're a
triangle, turn purple.”

When exception handling was added to C++, the implementation required that some run-time
type information be put into the virtual function tables. This meant that with a small language
extension the programmer could also get the run-time type information about an object. All
library vendors were adding their own RTTI anyway, o it was included in the language.

RTTI, like exceptions, depends on type information residing in the virtual function table. If
you try to use RTTI on aclass that has no virtual functions, you'll get unexpected results.

Two syntaxesfor RTTI

There are two different ways to use RTTI. The first actslike sizeof() because it looks like a
function, but it’s actually implemented by the compiler. typeid() takes an argument that’s an
object, areference, or a pointer and returns a reference to a global const object of type
typeinfo. These can be compared to each other with the oper ator== and operator!=, and you
can also ask for the name() of the type, which returns a string representation of the type
name. Note that if you hand typeid() a Shape*, it will say that the type is Shape*, so if you

Chapter 17: Run-Time Type Identification
400

want to know the exact typeit is pointing to, you must dereference the pointer. For example,
if sisa Shape*,

cout << typeid(*s).nane() << endl;
will print out the type of the object s points to.

You can aso ask atypeinfo object if it precedes another typeinfo object in the
implementation-defined “ collation sequence,” using befor e(typeinfo&), which returns true or
false. When you say,

| i f(typeid(ne).before(typeid(you))) //
you're asking if me occurs before you in the collation sequence.

The second syntax for RTTI is called a“type-safe downcast.” The reason for the term
“downcast” is (again) the historical arrangement of the class hierarchy diagram. If casting a
Circle* to a Shape* isan upcast, then casting a Shape* to a Circle* isadowncast. However,
you know a Circle* isaso a Shape* ,and the compiler freely allows an upcast assignment, but
you don’'t know that a Shape* is necessarily a Circle*, so the compiler doesn’t allow you to
perform a downcast assignment without using an explicit cast. Y ou can of course force your
way through using ordinary C-style casts or a C++ static_cast (described at the end of this
chapter), which says, “I hope thisis actually aCircle*, and I’'m going to pretend it is.”
Without some explicit knowledge that it isin fact a Circle, thisis atotally dangerous thing to
do. A common approach in vendor-defined RTTI isto create some function that attemptsto
assign (for this example) a Shape* to a Circle*, checking the type in the process. If this
function returns the address, it was successful; if it returns null, you didn’t have a Circle*.

The C++ RTTI typesafe-downcast follows this “attempt-to-cast” function form, but it uses
(very logically) the template syntax to produce the special function dynamic_cast. So the
example becomes

Shape* sp = new Circle;
Circle* cp = dynanic_cast<Circl e*>(sp);
i f(cp) cout << "cast successful";

The template argument for dynamic_cast is the type you want the function to produce, and
thisisthe return value for the function. The function argument is what you are trying to cast
from.

Normally you might be hunting for one type (triangles to turn purple, for instance), but the
following example fragment can be used if you want to count the number of various shapes.

Circle* cp = dynanic_cast<Circl e*>(sh);
Squar e* sp = dynani c_cast <Squar e*>(sh);
Triangl e* tp = dynam c_cast <Tri angl e*>(sh);

Of course thisis contrived — you'd probably put a static data member in each type and
increment it in the constructor. Y ou would do something like that if you had control of the

Chapter 17: Run-Time Type Identification
401

source code for the class and could change it. Here's an example that counts shapes using
both the static member approach and dynamic_cast:

/1: CO08: Rt shapes. cpp
/1 Counting shapes

#i nclude "../purge.h"
#i ncl ude <i ostreanp
#i ncl ude <cti nme>

#i ncl ude <typei nfo>
#i ncl ude <vector>
usi ng namespace std;

cl ass Shape {

pr ot ect ed:
static int count;
public:
Shape() { count++; }
virtual ~Shape() { count--; }

virtual void draw() const = O;
static int quantity() { return count; }

} y
i nt Shape::count = 0;

cl ass SRectangle : public Shape {
voi d operator=(SRectangle&); // Disallow
pr ot ect ed:
static int count;
public:
SRect angl e() { count++; }
SRect angl e(const SRectangl e& { count ++;}
~SRectangl e() { count--; }
void draw() const {
cout << "SRectangle::drawm)" << endl
}

static int quantity() { return count; }

b
i nt SRectangl e::count = 0;

class SEllipse : public Shape {

voi d operator=(SEllipse&); // D sallow
pr ot ect ed:

static int count;

Chapter 17: Run-Time Type Identification
402

public:
SEll'i pse() { count++; }
SEl i pse(const SEllipse& { count++; }
~SEl | i pse() { count--; }
void draw() const {
cout << "SEllipse::draw()" << endl;
}

static int quantity() { return count; }

b
int SEllipse::count = 0;

class SCircle : public SEllipse {
voi d operator=(SCircle&); // Disallow
pr ot ect ed:
static int count;
public:
SCircle() { count++; }
SCircle(const SCircle& { count++; }
~SCircle() { count--; }
void draw() const {
cout << "SCircle::dram)" << endl;
}

static int quantity() { return count; }

}s
int SCircle::count = 0;

int main() {

vect or <Shape*> shapes;

srand(tinme(0)); // Seed random nunber generator

const int nod = 12;

/!l Create a random quantity of each type:

for(int i =0; i <rand() %nod; i++)
shapes. push_back(new SRect angl e) ;

for(int j =0; j <rand() %nod; j++)
shapes. push_back(new SEl | i pse);

for(int k = 0; k <rand() % nod; k++)
shapes. push_back(new SCircle);

int nCircles = 0;

int nEllipses = 0;

int nRects = 0;

i nt nShapes = 0;

Chapter 17: Run-Time Type Identification
403

for(int u=0; u < shapes.size(); u++) {
shapes|[u] - >draw() ;
i f(dynam c_cast <SCircl e*>(shapes[u]))
nCi rcl es++;
i f(dynam c_cast <SEl | i pse*>(shapes[u]))
nEl | i pses++;
i f (dynam c_cast <SRect angl e*>(shapes[u]))
nRect s++,;
i f (dynam c_cast <Shape*>(shapes[u]))
nShapes++;
}
cout << endl << endl
<< "Circles =" << nCircles << endl
<< "Ellipses = " << nHllipses << endl
<< "Rectangles = " << nRects << endl
<< "Shapes = " << nShapes << endl
<< endl
<< "SCircle::quantity() ="
<< SCircle::quantity() << endl
<< "SEl lipse::quantity() ="
<< SEllipse::quantity() << endl
<< "SRectangle::quantity() ="
<< SRectangle::quantity() << endl
<< "Shape::quantity() ="
<< Shape::quantity() << endl;
pur ge(shapes) ;
Yy I~

Both types work for this example, but the static member approach can be used only if you
own the code and have installed the static members and functions (or if a vendor provides
them for you). In addition, the syntax for RTTI may then be different from one class to
another.

Syntax specifics

This section looks at the details of how the two forms of RTTI work, and how they differ.

typeid() with built-in types
For consistency, the typeid() operator works with built-in types. So the following
expressions are true:

| //: ©08: Typei dAndBui | tins. cpp

Chapter 17: Run-Time Type Identification
404

#i ncl ude <cassert>
#i ncl ude <typei nfo>
usi ng namespace std;

int main() {
assert(typei d(47) == typeid(int));
assert(typeid(0) == typeid(int));
int i;
assert(typeid(i) == typeid(int));
assert(typeid(&) == typeid(int*));
Y I~

Producing the proper type name

typeid() must work properly in all situations. For example, the following class contains a
nested class:

//: CO08: RTTl andNesti ng. cpp
#i ncl ude <i ostreanp
#i ncl ude <typei nfo>
usi ng namespace std;

class One {
cl ass Nested {};
Nest ed* n;
public:
One() : n(new Nested) {}
~One() { delete n; }
Nest ed* nested() { return n; }

}1
int main() {

One o;

cout << typeid(*o.nested()).nane() << endl;
Yy I~

The typeinfo::name() member function will still produce the proper class name; the result is
One::Nested.

Nonpolymorphic types

Although typeid() works with nonpolymorphic types (those that don’t have avirtual function
in the base class), the information you get this way is dubious. For the following class
hierarchy,

Chapter 17: Run-Time Type Identification
405

/1: CO08: RTTI Wt hout Pol yrmor phi sm cpp
#i ncl ude <cassert>

#i ncl ude <typei nfo>

usi ng namespace std;

class X {
int i;
public:
/1

b

class Y : public X {
int j;

public:

/1

b

int main() {
X* Xp = newY;
assert(typeid(*xp) == typeid(X));
assert(typeid(*xp) !'= typeid(Y));
Yy I~

If you create an object of the derived type and upcast it,

| X* xp = new Y;
The typeid() operator will produce results, but not the ones you might expect. Because
there’ s no polymorphism, the static type information is used:
typei d(*xp) == typeid(X)
typeid(*xp) !'= typeid(Y)

RTTI isintended for use only with polymorphic classes.

Casting to intermediate levels

dynamic_cast can detect both exact types and, in an inheritance hierarchy with multiple
levels, intermediate types. For example,

/1: CO08: Dynami cCast. cpp

/1 Using the standard dynam c_cast operation
#i ncl ude <cassert>

#i ncl ude <typei nfo>

usi ng namespace std;

Chapter 17: Run-Time Type Identification
406

class D1 {

public:

virtual void func() {}
virtual ~D1() {}

};

class D2 {
public:
virtual void bar() {}

}s

class M : public D1, public D2 {};
class M2 : public M {};

int main() {

D2* d2 = new M 2;

M 2* m 2 = dynam c_cast <M 2*>(d2);
M* m = dynanm c_cast<M *>(d2);
D1* dl1 = dynanmi c_cast <D1*>(d2);

assert(typeid(d2) !'= typeid(M2*));
assert (typei d(d2) == typeid(D2*%));
Y I~
This has the extra complication of multiple inheritance. If you create an mi2 and upcast it to

theroot (in this case, one of the two possible roots is chosen), then the dynamic_cast back to
either of the derived levelsM | or mi2 is successful.

Y ou can even cast from one root to the other:
| D1* d1 = dynani c_cast <D1*>(d2);

Thisis successful because D2 is actually pointing to an mi2 object, which contains a
subobject of type d1.

Casting to intermediate levels brings up an interesting difference between dynamic_cast and
typeid(). typeid() always produces areference to atypeinfo object that describes the exact
type of the object. Thusit doesn’t give you intermediate-level information. In the following
expression (which istrue), typeid() doesn't see d2 as a pointer to the derived type, like
dynamic_cast does:

| typei d(d2) != typeid(M 2*)
The type of D2 is simply the exact type of the pointer:
| typei d(d2) == typei d(D2*)

Chapter 17: Run-Time Type Identification
407

void pointers

Run-time type identification doesn’t work with void pointers:

//: CO8:Voidrtti.cpp

/1 RTTlI & void pointers
#i ncl ude <i ostreane

#i ncl ude <typeinfo>

usi ng nanmespace std;

class Stinpy {

public:
virtual void happy() {}
virtual void joy() {}
virtual ~Stinmy() {}

}s

int main() {
voi d* v = new Sti nmpy;

/1 Error:

/1T Stinpy* s = dynam c_cast<Stimpy*>(v);
/1 Error:

/1" cout << typeid(*v).name() << endl;

Y I~

A void* truly means “no type information at all.”

Using RTTI with templates

Templates generate many different class names, and sometimes you'd like to print out
information about what classyou'rein. RTTI provides a convenient way to do this. The
following example revisits the code in Chapter XX to print out the order of constructor and
destructor calls without using a preprocessor macro:

//: CO08: ConstructorOder.cpp
/1 Order of constructor calls
#i ncl ude <i ostreanp

#i ncl ude <typei nfo>

usi ng namespace std;

tenpl ate<int id> class Announce {
public:
Announce() {
cout << typeid(*this).name()

Chapter 17: Run-Time Type Identification
408

<< " constructor " << endl;

}

~Announce() {
cout << typeid(*this).name()
<< " destructor " << endl;
}

}s

class X : public Announce<0> {
Announce<1> i,
Announce<2> n2;
public:
X() { cout << "X :X()" << endl; }
~X() { cout << "X :~X()" << endl; }
b

int min() { Xx; } ///:~

The <typeinfo> header must be included to call any member functions for the typeinfo object
returned by typeid(). The template uses a constant int to differentiate one class from another,
but class arguments will work as well. Inside both the constructor and destructor, RTTI
information is used to produce the name of the classto print. The class X uses both
inheritance and composition to create a class that has an interesting order of constructor and
destructor calls.

Thistechnique is often useful in situations when you' re trying to understand how the
language works.

References

RTTI must adjust somewhat to work with references. The contrast between pointers and
references occurs because a reference is always dereferenced for you by the compiler,
whereas a pointer’ s type or the type it points to may be examined. Here's an example:

//: CO08: RTTIw thRef erences. cpp
#i ncl ude <cassert>

#i ncl ude <typei nfo>

usi ng namespace std;

class B {

public:

virtual float f() { return 1.0;}
virtual ~B() {}

b

Chapter 17: Run-Time Type Identification
409

class D: public B{ /* ... *| };

int main() {
B* p = new D
B& r = *p;
assert(typeid(p) == typeid(B*));
assert(typeid(p) != typeid(D*));
assert(typeid(r) == typeid(D));
assert(typeid(*p) == typeid(D));
assert(typeid(*p) !'= typeid(B));
assert(typeid(&) == typeid(B*));
assert(typeid(&) !'= typeid(D"));
assert(typeid(r.f()) == typeid(float));
Yy I~

Whereas the type of pointer that typeid() seesis the base type and not the derived type, the
type it seesfor the reference is the derived type:

typei d(p) == typeid(B*)
typeid(p) != typeid(D")
typeid(r) == typei d(D)

Conversely, what the pointer points to is the derived type and not the base type, and taking the
address of the reference produces the base type and not the derived type:

typei d(*p) == typeid(D)
typeid(*p) != typeid(B)
typei d(&) == typeid(B*)
typeid(&) != typeid(Dr)

Expressions may also be used with the typeid() operator because they have atype as well:
| typeid(r.f()) == typeid(float)

Exceptions

When you perform adynamic_cast to areference, the result must be assigned to a reference.
But what happens if the cast fails? There are no null references, so thisisthe perfect place to
throw an exception; the Standard C++ exception typeis bad_cast, but in the following
example the ellipses are used to catch any exception:

//: CO8: RTTIw t hExceptions. cpp
#i ncl ude <typeinfo>
#i ncl ude <i ostreanp
usi ng nanmespace std;

Chapter 17: Run-Time Type Identification
410

class X { public: virtual ~X
class B { public: virtual ~B
class D: public B {};

int main() {
D d;
B &b =4d; // Upcast to reference
try {
X& xr = dynam c_cast <X&>(b);
} catch(...) {
cout << "dynam c_cast <X&>(hb) failed"

<< endl ;
}
X* xp = 0;
try {

typei d(*xp); // Throws exception
} catch(bad_typeid) {

cout << "Bad typeid() expression" << endl;
}

Y 11~

The failure, of course, is because b doesn’t actually point to an X object. If an exception was
not thrown here, then xr would be unbound, and the guarantee that all objects or references
are constructed storage would be broken.

An exception isaso thrown if you try to dereference a null pointer in the process of calling
typeid(). The Standard C++ exceptionis caled bad_typeid.

Here (unlike the reference example above) you can avoid the exception by checking for a
nonzero pointer value before attempting the operation; thisis the preferred practice.

Multiple inheritance

Of course, the RTTI mechanisms must work properly with all the complexities of multiple
inheritance, including virtual base classes:

//: CO08: RTTlandMul ti pl el nheritance. cpp
#i ncl ude <i ostreanp
#i ncl ude <typei nfo>
usi ng namespace std;

class BB {
public:
virtual void f() {}

Chapter 17: Run-Time Type Identification
411

virtual ~BB() {}
i
class Bl : virtual public BB {};
class B2 : virtual public BB {};
class M : public Bl, public B2 {};

int main() {

BB* bbp = new M; // Upcast

/1 Proper nane detection:

cout << typeid(*bbp).name() << endl;

/1 Dynam c_cast works properly:

M* mp = dynam c_cast <M *>(bbp);

/1l Can't force old-style cast:

/1T M* mp2 = (M*)bbp; // Conpile error
Y I~

typeid() properly detects the name of the actual object, even through the virtual base class
pointer. The dynamic_cast also works correctly. But the compiler won't even alow you to
try to force a cast the old way:

| M* mip = (M*)bbp; // Conpile-tinme error

It knows thisis never the right thing to do, so it requires that you use adynamic_cast.

Sensible usesfor RTTI

Because it allows you to discover type information from an anonymous polymorphic pointer,
RTTI isripe for misuse by the novice because RTTI may make sense before virtual functions
do. For many people coming from a procedural background, it’s very difficult not to organize
their programs into sets of switch statements. They could accomplish thiswith RTTI and thus
lose the very important value of polymorphism in code development and maintenance. The
intent of C++ isthat you use virtual functions throughout your code, and you only use RTTI
when you must.

However, using virtual functions as they are intended requires that you have control of the
base-class definition because at some point in the extension of your program you may
discover the base class doesn’t include the virtual function you need. If the base class comes
from alibrary or is otherwise controlled by someone else, a solution to the problemis RTTI:
Y ou can inherit a new type and add your extra member function. Elsewhere in the code you
can detect your particular type and call that member function. This doesn’'t destroy the
polymorphism and extensibility of the program, because adding a new type will not require
you to hunt for switch statements. However, when you add new code in your main body that
requires your new feature, you'll have to detect your particular type.

Chapter 17: Run-Time Type Identification
412

Putting a feature in a base class might mean that, for the benefit of one particular class, al the
other classes derived from that base require some meaningless stub of avirtual function. This
makes the interface less clear and annoys those who must redefine pure virtual functions

when they derive from that base class. For example, suppose that in the Wind5.cpp program
in Chapter XX you wanted to clear the spit valves of al the instruments in your orchestra that
had them. One option isto put avirtual Clear SpitValve() function in the base class
Instrument, but thisis confusing because it implies that Per cussion and electronic
instruments also have spit valves. RTTI provides a much more reasonable solution in this case
because you can place the function in the specific class (Wind in this case) whereit's

appropriate.

Finally, RTTI will sometimes solve efficiency problems. If your code uses polymorphismin a
nice way, but it turns out that one of your objects reacts to this general-purpose codein a
horribly inefficient way, you can pick that type out using RTTI and write case-specific code
to improve the efficiency.

Revisiting the trash recycler

Here' s the trash recycling simulation from Chapter XX, rewritten to use RTTI instead of
building the information into the class hierarchy:

/1: CO08: Recycl e2.cpp

/1 Chapter XX exanple w RTTI
#i nclude "../purge.h"

#i ncl ude <fstreanp

#i ncl ude <vector>

#i ncl ude <typei nfo>

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

usi ng namespace std;

of stream out ("recycl e2. out");

class Trash {
float _weight;
public:
Trash(float wt) : _weight(w) {}
virtual float value() const = 0;
float weight() const { return weight; }
virtual ~Trash() { out << "~Trash()\n"; }

}s

class Alum num: public Trash {
static float val;
public:

Chapter 17: Run-Time Type Identification
413

Alumi num(float w) : Trash(w) {}
float value() const { return val; }
static void value(int newal) {

val = newal ;
}

}s
float Alum num:val = 1.67

cl ass Paper : public Trash {
static float val;
public:
Paper (float w) : Trash(w) {}
float value() const { return val; }
static void value(int newal) {
val = newal ;
}

b
float Paper::val = 0.10;

class dass : public Trash {
static float val;
public:
d ass(float wt) : Trash(wt) {}
float value() const { return val; }
static void value(int newal) {
val = newal ;
}
1

float dass::val = 0.23;

/1 Sunms up the value of the Trash in a bin
t enpl at e<cl ass Cont ai ner> voi d
sunval ue(Cont ai ner & bin, ostream& os) {
typenane Container::iterator tally =
bi n. begi n();
float val = 0;
while(tally !'= bin.end()) {
val += (*tally)->weight() * (*tally)->value();
0s << "wei ght of
<< typeid(*tally).nane()

Chapter 17: Run-Time Type Identification
414

<< " =" o<k (*taIIy)->WE'i ght() << endl;
tal |l y++;
}

0s << "Total value =" << val << endl

}

int main() {
srand(tinme(0)); // Seed random nunber generator
vect or <Trash*> bin;
/1 Fill up the Trash bin:

for(int i =0; i < 30; i++)
switch(rand() % 3) {
case O :
bi n. push_back(new Al um num(rand() % 100));
br eak;
case 1 :
bi n. push_back(new Paper (rand() % 100));
br eak;
case 2 :
bi n. push_back(new d ass(rand() % 100));
br eak;
}

/1 Note difference w chapter 14: Bins hold
/1 exact type of object, not base type:
vect or<d ass*> gl assBin
vect or <Paper *> paper Bi n;
vect or <Al um nunt> al Bi n;
vector<Trash*>::iterator sorter = bin.begin();
/1 Sort the Trash:
whil e(sorter !'= bin.end()) {
Al um nunr ap =
dynam c_cast <Al um nunt>(*sorter);
Paper* pp =
dynam c_cast <Paper*>(*sorter);
d ass* gp =
dynam c_cast <d ass*>(*sorter);
i f(ap) al Bi n. push_back(ap);
i f(pp) paperBin. push_back(pp);
i f(gp) gl assBin.push_back(gp);
sorter++;
}
sunVal ue(al Bin, out);
sunval ue(paperBi n, out);

Chapter 17: Run-Time Type Identification
415

sunval ue(gl assBi n, out);
sunval ue(bi n, out);
purge(bin);

Y I~

The nature of this problem isthat the trash is thrown unclassified into asingle bin, so the
specific type information islost. But later, the specific type information must be recovered to
properly sort the trash, and so RTTI isused. In Chapter XX, an RTTI system was inserted into
the class hierarchy, but as you can see here, it's more convenient to use C++'s built-in RTTI.

Mechanism & overhead of
RTTI

Typically, RTTI isimplemented by placing an additional pointer inthe VTABLE. This
pointer pointsto the typeinfo structure for that particular type. (Only one instance of the
typeinfo structure is created for each new class.) So the effect of atypeid() expressionis
quite simple: The VPTR is used to fetch the typeinfo pointer, and areference to the resulting
typeinfo structure is produced. Also, this is a deterministic process — you always know how
long it’s going to take.

For adynamic_cast<destination*>(source_pointer), most cases are quite straightforward:
source_pointer’sRTTI information isretrieved, and RTTI information for the type
destination* isfetched. Then alibrary routine determines whether sour ce_pointer’stypeis
of type destination* or a base class of destination*. The pointer it returns may be dightly
adjusted because of multiple inheritance if the base typeisn’t the first base of the derived
class. The situation is (of course) more complicated with multiple inheritance where a base
type may appear more than once in an inheritance hierarchy and where virtual base classes are
used.

Because the library routine used for dynamic_cast must check through alist of base classes,
the overhead for dynamic_cast is higher than typeid() (but of course you get different
information, which may be essential to your solution), and it’s nondeterministic because it
may take more time to discover a base class than aderived class. In addition, dynamic_cast
allows you to compare any type to any other type; you aren’t restricted to comparing types
within the same hierarchy. This adds extra overhead to the library routine used by
dynamic_cast.

Creating your own RTTI

If your compiler doesn't yet support RTTI, you can build it into your class libraries quite
easily. This makes sense because RTTI was added to the language after observing that
virtually all class libraries had some form of it anyway (and it wasrelatively “free” after

Chapter 17: Run-Time Type Identification
416

exception handling was added because exceptions require exact knowledge of type
information).

Essentially, RTTI requires only avirtual function to identify the exact type of the class, and a
function to take a pointer to the base type and cast it down to the more derived type; this
function must produce a pointer to the more derived type. (Y ou may also wish to handle
references.) There are a number of approaches to implement your own RTTI, but all require a
unique identifier for each class and a virtual function to produce type information. The
following uses a static member function called dynacast() that calls a type information
function dynamic_type(). Both functions must be defined for each new derivation:

/1: CO8:Selfrtti.cpp

/1 Your own RTTI system
#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

usi ng nanmespace std;

class Security {
pr ot ect ed:
static const int baselD = 1000;
public:
virtual int dynamc_type(int id) {
if(id == baselD) return 1;

return O;
}
b
class Stock : public Security {
pr ot ect ed:
static const int typelD = baselD + 1;
public:

int dynamc_type(int id) {
if(id == typelD) return 1;
return Security::dynam c_type(id);
}
static Stock* dynacast(Security* s) {
i f(s->dynam c_type(typel D))
return (Stock*)s;
return O;
}
}s

class Bond : public Security {

Chapter 17: Run-Time Type Identification
417

pr ot ect ed:
static const int typelD = baselD + 2 ;
public:
int dynamc_type(int id) {
if(id == typelD) return 1
return Security::dynam c_type(id);
}
static Bond* dynacast(Security* s) {
i f(s->dynam c_type(typel D))
return (Bond*)s;
return O;
}
b

class Commodity : public Security {
pr ot ect ed:
static const int typelD = baselD + 3;
public:
int dynamc_type(int id) {
if(id == typelD) return 1
return Security::dynam c_type(id);
}
static Comodity* dynacast(Security* s) {
i f(s->dynam c_type(typel D))
return (Comodity*)s;
return O;
}
voi d special () {
cout << "special Commodity function\n";
}

}s

class Metal : public Commodity ({
pr ot ect ed:
static const int typelD = baselD + 4;
public:
int dynamc_type(int id) {
if(id == typelD) return 1
return Comuodity::dynam c_type(id);
}
static Metal * dynacast(Security* s) {
i f(s->dynam c_type(typel D))
return (Metal *)s;

Chapter 17: Run-Time Type Identification
418

return O;

}
}s

int main() {
vect or<Security*> portfolio;
portfolio.push back(new Metal);
portfolio.push back(new Conmodity);
portfolio.push _back(new Bond);
portfolio.push back(new Stock);
vector<Security*>::iterator it =
portfolio.begin();
while(it !'= portfolio.end()) {
Commodi ty* cm = Commodi ty::dynacast(*it);
if(cm cm>special();
el se cout << "not a Comuodity" << endl;
it++;
}
cout << "cast frominternedi ate pointer:\n";
Security* sp = new Metal;
Commodi ty* cp = Commodity:: dynacast (sp);
if(cp) cout << "it's a Comuodity\n";
Metal * np = Metal ::dynacast(sp);
if(mp) cout << "it's a Metal too!\n";
purge(portfolio);
Yy I~

Each subclass must create its own typel D, redefine the virtual dynamic_type() function to
return that typel D, and define a static member called dynacast(), which takes the base
pointer (or apointer at any level in a deeper hierarchy —in that case, the pointer is simply
upcast).

In the classes derived from Security, you can see that each definesits own typel D
enumeration by adding to basel D. It's essential that basel D be directly accessiblein the
derived class because the enum must be evaluated at compile-time, so the usua approach of
reading private data with an inline function would fail. Thisis a good example of the need for
the protected mechanism.

The enum basel D establishes a base identifier for al types derived from Security. That way,
if anidentifier clash ever occurs, you can change al the identifiers by changing the base
value. (However, because this scheme doesn’t compare different inheritance trees, an
identifier clash isunlikely). In al the classes, the class identifier number is protected, soit’s
directly available to derived classes but not to the end user.

This example illustrates what built-in RTTI must cope with. Not only must you be able to
determine the exact type, you must also be able to find out whether your exact typeis derived

Chapter 17: Run-Time Type Identification
419

from the type you're looking for. For example, M etal is derived from Commodity, which has
afunction called special(), so if you have aM etal object you can call special() for it. If
dynamic_type() told you only the exact type of the object, you could ask it if a M etal were a
Commodity, and it would say “no,” which isuntrue. Therefore, the system must be set up so
it will properly cast to intermediate typesin a hierarchy as well as exact types.

The dynacast() function determines the type information by calling the virtual
dynamic_type() function for the Security pointer it's passed. This function takes an
argument of the typel D for the class you're trying to cast to. It'savirtual function, so the
function body is the one for the exact type of the object. Each dynamic_type() function first
checksto seeif the identifier it was passed is an exact match for its own type. If that isn’t true,
it must check to seeif it matches a base type; thisis accomplished by making a call to the
base class dynamic_type(). Just like arecursive function call, each dynamic_type() checks
against its own identifier. If it doesn't find a match, it returns the result of calling the base
classdynamic_type(). When the root of the hierarchy is reached, zero is returned to indicate
no match was found.

If dynamic_type() returns one (for “true”) the object pointed to is either the exact type
you're asking about or derived from that type, and dynacast() takes the Security pointer and
castsit to the desired type. If the return value isfalse, dynacast() returns zero to indicate the
cast was unsuccessful. In thisway it works just like the C++ dynamic_cast operator.

The C++ dynamic_cast operator does one more thing the above scheme can't do: It compares
types from one inheritance hierarchy to another, completely separate inheritance hierarchy.
This adds generality to the system for those unusual cases where you want to compare across
hierarchies, but it also adds some complexity and overhead.

Y ou can easily imagine how to create a DYNAMIC_CAST macro that uses the above scheme
and allows an easier transition to the built-in dynamic_cast operator.

Explicit cast syntax

Whenever you use a cast, you're breaking the type system. 24 Y ou’ re telling the compiler that
even though you know an object is a certain type, you're going to pretend it is a different
type. Thisis an inherently dangerous activity, and a clear source of errors.

Unfortunately, each cast is different: the name of the pretender type surrounded by
parentheses. So if you are given a piece of code that isn't working correctly and you know
you want to examine all caststo seeif they're the source of the errors, how can you guarantee
that you find all the casts? In a C program, you can’t. For one thing, the C compiler doesn’'t
always require acast (it's possible to assign dissimilar types through avoid pointer without

24 See Josée Lajoie, “The new cast notation and the bool datatype,” C++ Report, September,
1994 pp. 46-51.

Chapter 17: Run-Time Type Identification
420

being forced to use a cast), and the casts al look different, so you can’'t know if you've
searched for every one.

To solve this problem, C++ provides a consistent casting syntax using four reserved words:
dynamic_cast (the subject of thefirst part of this chapter), const_cast, static_cast, and
reinterpret_cast. Thiswindow of opportunity opened up when the need for dynamic_cast
arose — the meaning of the existing cast syntax was already far too overloaded to support any
additional functionality.

By using these casts instead of the (newtype) syntax, you can easily search for all the castsin
any program. To support existing code, most compilers have various levels of error/warning
generation that can be turned on and off. But if you turn on full errors for the explicit cast
syntax, you can be guaranteed that you'll find all the places in your project where casts occur,
which will make bug-hunting much easier.

The following table describes the different forms of casting:

static_cast For “well-behaved” and “reasonably well-
behaved” casts, including things you
might now do without a cast (e.g., an
upcast or automatic type conversion).

const_cast To cast away const and/or volatile.

dynamic_cast For type-safe downcasting (described
earlier in the chapter).

reinterpret_cast To cast to a completely different meaning.
The key isthat you'll need to cast back to
the original typeto useit safely. The type
you cast to istypically used only for bit
twiddling or some other mysterious
purpose. Thisisthe most dangerous of all
the casts.

The three explicit casts will be described more completely in the following sections.

Summary

RTTI isaconvenient extrafeature, abit of icing on the cake. Although normally you upcast a
pointer to a base class and then use the generic interface of that base class (via virtual
functions), occasionally you get into a corner where things can be more effective if you know
the exact type of the object pointed to by the base pointer, and that’s what RTTI provides.
Because some form of virtual-function-based RTTI has appeared in almost all classlibraries,
thisis auseful feature because it means

1 Y ou don't have to build it into your own libraries.

Chapter 17: Run-Time Type Identification
421

2. Y ou don't have to worry whether it will be built into someone else’s library.

3. Y ou don't have the extra programming overhead of maintaining an RTTI
scheme during inheritance.

4. The syntax is consistent, so you don’t have to figure out a new one for each
library.

While RTTI isaconvenience, like most features in C++ it can be misused by either a naive or
determined programmer. The most common misuse may come from the programmer who
doesn’t understand virtual functions and uses RTTI to do type-check coding instead. The
philosophy of C++ seemsto be to provide you with powerful tools and guard for type
violations and integrity, but if you want to deliberately misuse or get around alanguage
feature, there's nothing to stop you. Sometimes a slight burn is the fastest way to gain
experience.

The explicit cast syntax will be abig help during debugging because casting opens a hole into
your type system and allows errorsto dlip in. The explicit cast syntax will allow you to more
easily locate these error entryways.

Exercises

1 Modify C16: AutoCounter.h in volume 1 of this book so that it becomes a
useful debugging tool. It will be used as a nested member of each class that
you are interested in tracing. Turn AutoCounter into atemplate that takes
the class name of the surrounding class as the template argument, and in all
the error messages use RTTI to print out the name of the class.

2. Use RTTI to assist in program debugging by printing out the exact name of
atemplate using typeid(). Instantiate the template for various types and see
what the results are.

3. Implement the function TurnColor IfYouAreA() described earlier in this
chapter using RTTI.

4. Modify the Instrument hierarchy from Chapter XX by first copying
Wind5.cpp to anew location. Now add avirtual Clear SpitValve()
function to the Wind class, and redefine it for all the classesinherited from
Wind. Instantiate a T Stash to hold | nstrument pointers and fill it up with
various types of Instrument objects created using new. Now use RTTI to
move through the container looking for objectsin class Wind, or derived
from Wind. Call the Clear SpitValve() function for these objects. Notice
that it would unpleasantly confuse the I nstrument base classif it contained
a Clear SpitValve() function.

Chapter 17: Run-Time Type Identification
422

O: Building stable
systems

Shared objects & reference
counting

Reference-counted class hierarchies

Fi nd| ng memory leaks

For array bounds checking, use the Array template in C16:Array3.cpp of Volume 1
for al arrays. Y ou can turn off the checking and increase efficiency when you're
ready to ship. (This doesn't deal with the case of taking a pointer to an array, though
— perhaps that could be templatized somehow as well).

2. Usethe C10:MemCheck (wrong chapter number) to guarantee that dynamic memory
isreleased properly.

3. Check for non-virtua destructorsin base classes.

423

The canonical object & singly-
rooted hierarchies

An extended canonical form
Design by contract

ntegrated unit testing
Dynamic aggregation

[[This may actually be the “builder” design pattern in some form]]

The examples we' ve seen so far are illustrative, but fairly simple. It's useful to see an
example that has more complexity so you can see that the STL will work in all situations.

[[Add afactory method that takes a vector of string]]

The class that will be created as the example will be reasonably complex: it's a bicycle which
can have a choice of parts. In addition, you can change the parts during the lifetime of a
Bicycle object; thisincludes the ability to add new parts or to upgrade from standard-quality
partsto “fancy” parts. The BicyclePart classis abase class with many different types, and the
Bicycle class contains a vector <BicyclePart*> to hold the various combination of parts that
may be attached to a Bicycle:

/1: C09:Bicycle.h

/1 Conpl ex class involving dynam c aggregation
#i f ndef BI CYCLE_H

#define BlI CYCLE H

#i ncl ude <vector>

#i ncl ude <string>

#i ncl ude <i ostreanp

#i ncl ude <typeinfo>

cl ass LeakChecker ({
int count;
publi c:
LeakChecker () : count(0) {}

Chapter 16: Design Patterns 424

void print() {
std::cout << count << std::endl

}

~LeakChecker () { print(); }

voi d operator++(int) { count++; }
void operator--(int) { count--; }

}s

class BicyclePart ({
static LeakChecker Ic;
public:
BicyclePart () { lc++; }
virtual BicyclePart* clone() = 0;
virtual ~BicyclePart() { lc--; }
friend std::ostrean&
operator<<(std::ostream& os, BicyclePart* bp) {
return os << typeid(*bp). name();

}

friend class Bicycle;

}s

enum BPart {
Frame, Wheel, Seat, Handl eBar
Sprocket, Derail eur

};

tenpl at e<BPart id>

class Part : public BicyclePart {

public:

Bi cyclePart* clone() { return new Part<id>; }

};

class Bicycle {
public:
t ypedef std::vector<BicyclePart*> VBP;
Bi cycl e();
Bi cycl e(const Bicycl e& ol d);
Bi cycl e& operator=(const Bicycle& old);
/1 [her operators as needed go here:]
I[...]
I[...]
~Bicycle() { purge(); }
/1 So you can change parts on a bi ke (but be
/1 careful: you nust clean up any objects you

Chapter 16: Design Patterns 425

/1 renove fromthe bicycle!)
VBP& bi keParts() { return parts; }
friend std::ostrean&
operator<<(std::ostream& os, Bicycle* b);
static void print(std::vector<Bicycle*>& vb,
std::ostream& os = std::cout);
private:
static int counter;
int id;
VBP parts;
voi d purge();
1

/1 Both the Bicycle and the generator should
/1 provide nore variety than this. But this gives
/1 you the idea.
struct Bicycl eGenerator {
Bi cycl e* operator()() {
return new Bicycl e;
}

b
#endif // BICYCLEH ///:~

The operator << for ostream and Bicycle moves through and calls the oper ator << for each
BicyclePart, and that prints out the class name of the part so you can see what a Bicycle
contains. The BicyclePart::clone() member function is necessary in the copy-constructor of
Bicycle, sinceit just has a vector <BicyclePar t*> and wouldn’t otherwise know how to copy
the BicycleParts correctly. The cloning process, of course, will be more involved when there
are data membersin a BicyclePart.

BicyclePart::partcount is used to keep track of the number of parts created and destroyed
(so you can detect memory leaks). It isincremented every time a new BicyclePart is created
and decremented when one is destroyed; also, when par tcount goes to zero thisis reported
and if it goes below zero there will be an assert() failure.

If you want to change BicycleParts on aBicycle, you just call Bicycle::bikeParts() to get
the vector <BicyclePart* > which you can then modify. But whenever you remove a part from
aBicycle, you must call delete for that pointer, otherwise it won’'t get cleaned up.

Here' s the implementation:

/1: C09:Bicycle.cpp {O
/1 Bicycle inplenentation
#i ncl ude "Bicycle.h"

#i ncl ude <map>

#i ncl ude <al gorithne

#i ncl ude <cassert >

Chapter 16: Design Patterns 426

usi ng namespace std;

/1 Static menber definitions:
LeakChecker BicyclePart::|c;
int Bicycle::counter = 0;

Bi cycle::Bicycle() : id(counter++) {
Bi cyclePart *bp[] = {
new Part <Fr ame>,
new Part <Wheel >, new Part <Weel >,
new Part <Seat >, new Part<Handl eBar >,
new Part <Sprocket>, new Part<Derail eur>,
b
const int bplen = sizeof bp / sizeof *bp
parts = VBP(bp, bp + bplen);
}

Bi cycl e:: Bi cycl e(const Bicycl e& ol d)
parts(ol d. parts. begin(), old.parts.end()) {
for(int i = 0; i < parts.size(); i++)
parts[i] = parts[i]->clone();
}

Bi cycl e& Bicycl e::operator=(const Bicycle& old) {
purge(); // Renove old |val ues
parts.resize(old. parts.size());
copy(ol d. parts. begin(),

ol d. parts.end(), parts.begin());
for(int i = 0; i < parts.size(); i++)

parts[i] = parts[i]->clone();
return *this;

}

voi d Bicycle::purge() {
for(VBP::iterator it = parts.begin();
it = parts.end(); it++) {
delete *it;
*it = 0; // Prevent nmultiple deletes
}
}

ost ream& oper at or<<(ostream& os, Bicycle* b) {
copy(b->parts.begin(), b->parts.end(),
ostream.iterator<BicyclePart*>(os, "\n"));

Chapter 16: Design Patterns 427

0S << "-------- " << endl
return os;

}

voi d Bicycle::print(vector<Bicycle*>& vb,
ostream& o0s) {
copy(vb. begin(), vb.end(),
ostream.iterator<Bicycle*>(os, "\n"));
cout << "-------- " << endl;
Y I~

Here's atest:

/1: CO09: Bi keTest . cpp
/1{L} Bicycle

#i ncl ude "Bicycle.h"
#i ncl ude <al gorithne
usi ng nanmespace std;

int main() {
vect or <Bi cycl e*> bi kes;
Bi cycl eGener at or bg;
generate_n(back_i nserter(bikes), 12, bg);
Bi cycl e: : print (bi kes);

Y I~
1. Create a heap compactor for all dynamic memory in a particular program.

Thiswill require that you control how objects are dynamically created and
used (do you overload operator new or does that approach work?). The
typically heap-compaction scheme requires that all pointers are doubly-
indirected (that is, pointers to pointers) so the “middle tier” pointer can be
mani pulated during compaction. Consider overloading oper ator -> to
accomplish this, since that operator has specia behavior which will
probably benefit your heap-compaction scheme. Write a program to test
your heap-compaction scheme.

Chapter 16: Design Patterns 428

10: Design patterns

“... describes a problem which occurs over and over again
in our environment, and then describes the core of the
solution to that problem, in such away that you can use this
solution amillion times over, without ever doing it the same
way twice” — Christopher Alexander

This chapter introduces the important and yet non-traditional
“patterns’ approach to program design.

[[Much of the prose in this chapter still needs work, but the examples all compile. Also, more
patterns and examples are forthcoming]]

Probably the most important step forward in object-oriented design is the “ design patterns’
movement, chronicled in Design Patterns, by Gamma, Helm, Johnson & Vlissides (Addison-
Wesley 1995).25 That book shows 23 different solutions to particular classes of problems. In
this chapter, the basic concepts of design patterns will be introduced aong with examples.
This should whet your appetite to read Design Patterns (a source of what has now become an
essential, almost mandatory, vocabulary for OOP programmers).

The latter part of this chapter contains an example of the design evolution process, starting
with an initial solution and moving through the logic and process of evolving the solution to
more appropriate designs. The program shown (a trash recycling simulation) has evolved over
time, and you can look at that evolution as a prototype for the way your own design can start
as an adequate solution to a particular problem and evolve into a flexible approach to aclass
of problems.

The pattern concept

Initially, you can think of a pattern as an especially clever and insightful way of solving a
particular class of problems. That is, it looks like alot of people have worked out all the
angles of a problem and have come up with the most general, flexible solution for it. The
problem could be one you have seen and solved before, but your solution probably didn’t
have the kind of completeness you'll see embodied in a pattern.

25 Conveniently, the examples are in C++.

429

Although they're called “design patterns,” they really aren’t tied to the realm of design. A
pattern seems to stand apart from the traditional way of thinking about analysis, design, and
implementation. Instead, a pattern embodies a complete idea within a program, and thus it can
sometimes appear at the analysis phase or high-level design phase. Thisis interesting because
a pattern has a direct implementation in code and so you might not expect it to show up before
low-level design or implementation (and in fact you might not realize that you need a
particular pattern until you get to those phases).

The basic concept of a pattern can also be seen as the basic concept of program design: adding
layers of abstraction. Whenever you abstract something you' re isolating particular details, and
one of the most compelling motivations behind thisisto separate things that change from
things that stay the same. Another way to put thisis that once you find some part of your
program that’s likely to change for one reason or another, you' Il want to keep those changes
from propagating other modifications throughout your code. Not only does this make the code
much cheaper to maintain, but it also turns out that it is usually simpler to understand (which
resultsin lowered costs).

Often, the most difficult part of developing an elegant and cheap-to-maintain designisin
discovering what | call “the vector of change.” (Here, “vector” refers to the maximum
gradient and not a container class.) This means finding the most important thing that changes
in your system, or put another way, discovering where your greatest cost is. Once you
discover the vector of change, you have the focal point around which to structure your design.

So the goal of design patternsisto isolate changesin your code. If you look at it this way,
you' ve been seeing some design patterns already in this book. For example, inheritance could
be thought of as a design pattern (albeit one implemented by the compiler). It allows you to
express differences in behavior (that’'s the thing that changes) in objectsthat all have the same
interface (that’s what stays the same). Composition could also be considered a pattern, since it
allows you to change — dynamically or statically — the objects that implement your class, and
thus the way that class works. Normally, however, features that are directly supported by a
programming language are not classified as design patterns.

You've aso already seen another pattern that appears in Design Patterns: the iterator. Thisis
the fundamental tool used in the design of the STL; it hides the particular implementation of
the container as you' re stepping through and sel ecting the elements one by one. The iterator
allows you to write generic code that performs an operation on all of the elementsin arange
without regard to the container that holds the range. Thus your generic code can be used with
any container that can produce iterators.

The singleton

Possibly the simplest design pattern is the singleton, which is away to provide one and only
one instance of an object:

//: CO09: SingletonPattern.cpp
#i ncl ude <i ostreanp
usi ng nanmespace std;

Chapter 16: Design Patterns 430

class Singleton {
static Singleton s;
int i;
Singleton(int x) : i(x) { }
voi d operat or=(Singl eton&);
Si ngl et on(const Si ngl etong&);

public:
static Singleton& getHandl e() {
return s;
}
int getvalue() { returni; }
void setValue(int x) { i =x; }
}s

Si ngl eton Si ngl eton::s(47);

int main() {
Si ngl eton& s = Singl eton:: get Handl e();
cout << s.getValue() << endl;
Si ngl eton& s2 = Singl eton::getHandl e();
s2. set Val ue(9);
cout << s.getValue() << endl;

Y I~

The key to creating a singleton isto prevent the client programmer from having any way to
create an object except the ways you provide. To do this, you must declare all constructors as
private, and you must create at least one constructor to prevent the compiler from
synthesizing a default constructor for you.

At this point, you decide how you' re going to create your object. Here, it's created statically,
but you can also wait until the client programmer asks for one and create it on demand. In any
case, the object should be stored privately. Y ou provide access through public methods. Here,
getHandle() produces a reference to the Singleton object. The rest of the interface
(getValue() and setValue()) isthe regular class interface.

Note that you aren’t restricted to creating only one object. This technique easily supports the
creation of alimited pool of objects. In that situation, however, you can be confronted with
the problem of sharing objectsin the pool. If thisis an issue, you can create a solution
involving a check-out and check-in of the shared objects.

Variations on singleton

Any static member object inside a classis an expression of singleton: one and only one will
be made. So in a sense, the language has direct support for the idea; we certainly useit ona
regular basis. However, there's a problem associated with static objects (member or not), and
that’s the order of initialization, as described in Volume 1 of this book. If one static object
depends on ancther, it's important that the order of initialization proceed correctly.

Chapter 16: Design Patterns 431

In Volume 1, you were shown how a static object defined inside a function can be used to
control initialization order. This delays the initialization of the object until the first time the
function is called. If the function returns a reference to the static object, it gives you the effect
of a singleton while removing much of the worry of static initialization. For example, suppose
you want to create alodfile upon the first call to a function which returns areference to that
logfile. This header file will do the trick:

/1: CO09:LogFile.h
#i f ndef LOGFI LE H
#define LOGFI LE H
#i ncl ude <fstreanr

inline std::ofstream& logfile() {
static std::ofstreamlog("Logfile.log");
return | og;

}
#endif // LOGFILE H ///:~

The implementation must not be inlined, because that would mean that the whole function,
including the static object definition within, could be duplicated in any trandation unit where
it'sincluded, and you'd end up with multiple copies of the static object. Thiswould most
certainly foil the attempts to control the order of initialization (but potentialy in avery subtle
and hard-to-detect fashion). So the implementation must be separate:

/1: CO09:LogFile.cpp {O

#i ncl ude "LogFile.h"

std::of stream& | ogfile() {
static std::ofstreamlog("Logfile.log");
return | og;

Y I~

Now the log object will not be initialized until the first time logfile() is called. So if you use
the function in one file:

/1: C09: UselLogl. h

#i f ndef USELOGL_H

#defi ne USELOGL_H

void f();

#endif // USELOGL_H ///:~

//: C09: UseLogl.cpp {OG
#i ncl ude "UselLogl. h"
#i nclude "LogFile.h"

void f() {
logfile() << __FILE _ << std::endl;
Y I~

And again in another file;

Chapter 16: Design Patterns 432

/1: C09: UselLog2. cpp
/1{L} UselLogl LogFile
#i ncl ude "UselLogl. h"
#i nclude "LogFile.h"
usi ng namespace std;

void g() {
logfile() << __FILE _ << endl;

}

int main() {
fO);

a();
Y 1]~

Then the log object doesn't get created until the first call to f().

Y ou can easily combine the creation of the static object inside a member function with the
singleton class. SingletonPattern.cpp can be modified to use this approach:

[1: CO09: Si ngl et onPattern2. cpp
#i ncl ude <i ostreanp
usi ng namespace std;

class Singleton {

int i;

Singleton(int x) : i(x) { }

voi d operator=(Singl eton&);

Si ngl et on(const Si ngl eton&);
public:

static Singleton& getHandl e() {

static Singleton s(47);

return s;
}
int getvValue() { return i; }
void setValue(int x) { i =x; }

b

int main() {
Si ngl eton& s = Singl eton::getHandl e();
cout << s.getValue() << endl;
Si ngl eton& s2 = Singleton::getHandl e();
s2. set Val ue(9);
cout << s.getValue() << endl;

Y I~

An especially interesting case isif two of these singletons depend on each other, like this:

Chapter 16: Design Patterns 433

/1: C09: FunctionStaticSingl eton. cpp

class Singletonl {
Si ngl etonl() {}
public:
static Singletonl& ref() {
static Singletonl single;
return single;
}
1

cl ass Singleton2 {
Si ngl et onl& si;
Si ngl et on2(Si ngl etonl& s) : si(s) {}
public:
static Singleton2& ref() {
static Singleton2 single(Singletonl::ref());
return single;
}
Singletonl& f() { return si1; }
1

int main() {
Singl etonl& s1 = Singleton2::ref().f();
Y I~

When Singleton2::ref() is called, it causesits sole Singleton2 object to be created. In the
process of this creation, Singletonl::ref() iscalled, and that causes the sole Singleton1
object to be created. Because this technique doesn't rely on the order of linking or loading, the
programmer has much better control over initialization, leading to less problems.

You'll see further examples of the singleton pattern in the rest of this chapter.

Classifying patterns

The Design Patterns book discusses 23 different patterns, classified under three purposes (all
of which revolve around the particular aspect that can vary). The three purposes are:

1. Creational: how an object can be created. This often involves isolating the details of
object creation so your code isn’'t dependent on what types of objects there are and thus
doesn't have to be changed when you add a new type of object. The aforementioned
Sngleton is classified as a creational pattern, and later in this chapter you'll see examples
of Factory Method and Prototype.

Chapter 16: Design Patterns 434

2. Structural: designing objects to satisfy particular project constraints. These work with
the way objects are connected with other objects to ensure that changes in the system
don't require changes to those connections.

3. Behavioral: objects that handle particular types of actions within a program. These
encapsulate processes that you want to perform, such as interpreting a language, fulfilling
arequest, moving through a sequence (asin an iterator), or implementing an algorithm.
This chapter contains examples of the Observer and the Visitor patterns.

The Design Patterns book has a section on each of its 23 patterns along with one or more
examples for each, typically in C++ but sometimes in Smalltalk. This book will not repeat all
the details of the patterns shown in Design Patterns since that book stands on its own and
should be studied separately. The catalog and examples provided here are intended to rapidly
give you a grasp of the patterns, so you can get a decent feel for what patterns are about and
why they are so important.

[[Describe different form of categorization, based on what you want to accomplish rather
than the way the patterns look. More categories, but should result in easier-to-understand,
faster selection]]]

Features, idioms, patterns

How things have gotten confused; conflicting pattern descriptions, naive “ patterns,” patterns
are not trivial nor are they represented by features that are built into the language, nor are they
things that you do almost all the time. Constructors and destructors, for example, could be
called the “guaranteed initialization and cleanup design pattern.” Thisisan important and
essential idea, but it’s built into the language.

Another example comes from various forms of aggregation. Aggregation is a completely
fundamental principle in object-oriented programming: you make objects out of other objects
[[make reference to basic tenets of OO]]. Y et sometimes thisideais classified as a pattern,
which tends to confuse the issue. Thisis unfortunate because it pollutes the idea of the design
pattern and suggest that anything that surprises you the first time you see it should be a design
pattern.

Another misguided example is found in the Java language; the designers of the “ JavaBeans’
specification decided to refer to a simple naming convention as a design pattern (you say
getInfo() for amember function that returns an I nfo property and setlnfo() for one that
changes the internal I nfo property; the use of the “get” and “set” strings is what they decided
congtituted calling it a design pattern).

Basic complexity hiding
You'll often find that messy code can be cleaned up by putting it inside aclass. Thisis more

than fastidiousness — if nothing else, it aids readability and therefore maintainability, and it
can often lead to reusability.

Simple Veneer (facade, Adapter (existing system), Bridge (designed in),

Chapter 16: Design Patterns 435

Hiding types (polymorphism, iterators, proxy)

Hiding connections (mediator,)

Factories. encapsulating object
creation

When you discover that you need to add new types to a system, the most sensiblefirst step to
take is to use polymorphism to create a common interface to those new types. This separates
the rest of the code in your system from the knowledge of the specific types that you are
adding. New types may be added without disturbing existing code ... or so it seems. At first it
would appear that the only place you need to change the code in such a design is the place
where you inherit a new type, but thisis not quite true. Y ou must still create an object of your
new type, and at the point of creation you must specify the exact constructor to use. Thus, if
the code that creates objectsis distributed throughout your application, you have the same
problem when adding new types — you must still chase down all the points of your code where
type matters. It happens to be the creation of the type that matters in this case rather than the
use of the type (which is taken care of by polymorphism), but the effect is the same: adding a
new type can cause problems.

The solution is to force the creation of objects to occur through a common factory rather than
to allow the creational code to be spread throughout your system. If all the code in your
program must go through this factory whenever it needs to create one of your objects, then all
you must do when you add a new object is to modify the factory.

Since every object-oriented program creates objects, and since it’s very likely you will extend
your program by adding new types, | suspect that factories may be the most universally useful
kinds of design patterns.

Asan example, let’ srevisit the Shape system. One approach isto make the factory a static
method of the base class:

/1: C09: ShapeFactoryl. cpp
#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <string>

#i ncl ude <excepti on>

#i ncl ude <vector>

usi ng nanmespace std;

cl ass Shape {

public:
virtual void draw() = O;
virtual void erase() = 0;
virtual ~Shape() {}

Chapter 16: Design Patterns 436

cl ass BadShapeCreation : public exception {
string reason;

public:
BadShapeCreation(string type) {
reason = "Cannot create type " + type;
}

const char *what () const {
return reason.c_str();
}

b
static Shape* factory(string type)
t hr om(BadShapeCr eat i on) ;

}s

class Circle : public Shape {
Crcle() {} /! Private constructor
friend class Shape;

public:
void draw() { cout << "Circle::drawhn"; }
void erase() { cout << "Circle::erase\n"; }
~Circle() { cout << "Circle::~Circle\n"; }

}s

class Square : public Shape {
Square() {}
friend class Shape;

public:
void draw() { cout << "Square::drawn"; }
void erase() { cout << "Square::erase\n"; }
~Square() { cout << "Square::~Square\n"; }

}s

Shape* Shape::factory(string type)
t hr ow(Shape: : BadShapeCreation) {

if(type == "Circle") return new Crcle;
if(type == "Square") return new Square;
t hr ow BadShapeCreation(type);

}

char* shlist[] ={ "Circle", "Square", "Square",
"Circle", "Circle", "Crcle", "Square", "" };

int main() {
vect or <Shape*> shapes;

Chapter 16: Design Patterns 437

try {
for(char** cp = shlist; **cp; cp++)
shapes. push_back(Shape:: factory(*cp));
} cat ch(Shape: : BadShapeCreation e) {
cout << e.what() << endl;

return 1,

}

for(int i = 0; i < shapes.size(); i++) {
shapes[i]->draw();
shapes[i]->erase();

}

pur ge(shapes);

Y I~

The factory() takes an argument that allows it to determine what type of Shape to create; it
happens to be astring in this case but it could be any set of data. The factory() is now the
only other code in the system that needs to be changed when a new type of Shape is added
(the initialization data for the objects will presumably come from somewhere outside the
system, and not be a hard-coded array as in the above example).

To ensure that the creation can only happen in the factory(), the constructors for the specific
types of Shape are made private, and Shapeis declared afriend so that factory() has access
to the constructors (you could a so declare only Shape::factory() to be afriend, but it seems
reasonably harmless to declare the entire base class as afriend).

Polymorphic factories

The static factory() method in the previous example forces all the creation operations to be
focused in one spot, to that’s the only place you need to change the code. Thisis certainly a
reasonable solution, asit throws a box around the process of creating objects. However, the
Design Patterns book emphasizes that the reason for the Factory Method pattern is so that
different types of factories can be subclassed from the basic factory (the above design is
mentioned as a special case). However, the book does not provide an example, but instead just
repeats the example used for the Abstract Factory. Here is ShapeFactoryl.cpp modified so
the factory methods are in a separate class as virtual functions:

/1: C09: ShapeFactory2. cpp

/1 Pol ymor phi c factory met hods
#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <string>

#i ncl ude <exception>

#i ncl ude <vector>

#i ncl ude <map>

usi ng nanmespace std;

Chapter 16: Design Patterns 438

cl ass Shape {

public:
virtual void draw() = 0;
virtual void erase() = 0;
virtual ~Shape() {}

}s

cl ass ShapeFactory {

virtual Shape* create() = O;

static map<string, ShapeFactory*> factories;
public:

virtual ~ShapeFactory() {}

friend class ShapeFactorylnizializer;

cl ass BadShapeCreation : public exception {

string reason;

public:
BadShapeCreation(string type) {
reason = "Cannot create type " + type;
}

const char *what () const {
return reason.c_str();
}
1
static Shape*
creat eShape(string id) throwBadShapeCreation){

if(factories.find(id) !'= factories.end())
return factories[id]->create();
el se

t hr ow BadShapeCreation(i d);

}
}s

/1 Define the static object:
map<string, ShapeFactory*>
ShapeFactory: : factories;

class Circle : public Shape {
Crcle() {} /! Private constructor

public:
void draw() { cout << "Circle::drawhn"; }
void erase() { cout << "Circle::erase\n"; }
~Circle() { cout << "Circle::~Circle\n"; }
cl ass Factory;
friend class Factory;

Chapter 16: Design Patterns 439

class Factory : public ShapeFactory {
public:

Shape* create() { return new Circle; }
b
1

class Square : public Shape {
Square() {}
public:
void draw() { cout << "Square::drawn"; }
void erase() { cout << "Square::erase\n"; }
~Square() { cout << "Square::~Square\n"; }
cl ass Factory;
friend class Factory;
class Factory : public ShapeFactory {
public:
Shape* create() { return new Square; }
1
1

/1 Singleton to initialize the ShapeFactory:
cl ass ShapeFactorylnizializer {
static ShapeFactorylnizializer si;
ShapeFactorylnizializer() {
ShapeFactory::factories["Circle"]
new Circle:: Factory;
ShapeFactory: : factories["Square"]
new Square: : Factory;

}
}s

/] Static menber definition
ShapeFactoryl ni zi al i zer
ShapeFactorylni zializer::si;

char* shlist[] ={ "Crcle", "Square", "Square",
“"Circle", "Circle", "Circle", "Square", "" };

int main() {
vect or <Shape*> shapes;
try {
for(char** cp = shlist; **cp; cp++)
shapes. push_back(
ShapeFact ory: : cr eat eShape(*cp));

Chapter 16: Design Patterns 440

} cat ch(ShapeFactory:: BadShapeCreation e) {
cout << e.what() << endl;
return 1,

}

for(int i = 0; i < shapes.size(); i++) {
shapes[i]->draw();
shapes[i]->erase();

}

pur ge(shapes);

Y I~

Now the factory method appearsin its own class, ShapeFactory, asthe virtual create().
Thisis aprivate method which means it cannot be called directly, but it can be overridden.
The subclasses of Shape must each create their own subclasses of ShapeFactory and
override the create() method to create an object of their own type. The actual creation of
shapesis performed by calling ShapeFactory::createShape(), which is a static method that
uses the map in ShapeFactory to find the appropriate factory object based on an identifier
that you passit. The factory isimmediately used to create the shape object, but you could
imagine a more complex problem where the appropriate factory object is returned and then
used by the caller to create an object in a more sophisticated way. However, it seems that
much of the time you don’t need the intricacies of the polymorphic factory method, and a
single static method in the base class (as shown in ShapeFactoryl.cpp) will work fine.

Notice that the ShapeFactory must be initialized by loading its map with factory objects,
which takes place in the singleton ShapeFactorylnizializer. So to add a new typeto this
design you must inherit the type, create a factory, and modify ShapeFactorylnizializer so
that an instance of your factory isinserted in the map. This extra complexity again suggests
the use of a static factory method if you don’t need to create individual factory objects.

Abstract factories

The Abstract Factory pattern looks like the factory objects we' ve seen previoudly, with not
one but several factory methods. Each of the factory methods creates a different kind of
object. Theideaisthat at the point of creation of the factory object, you decide how all the
objects created by that factory will be used. The example given in Design Patterns
implements portability across various graphical user interfaces (GUIs): you create a factory
object appropriate to the GUI that you' re working with, and from then on when you ask it for
amenu, button, dlider, etc. it will automatically create the appropriate version of that item for
the GUI. Thusyou're able to isolate, in one place, the effect of changing from one GUI to
another.

As another exampl e suppose you are creating a general-purpose gaming environment and you
want to be able to support different types of games. Here’ s how it might look using an
abstract factory:

[1: C09: Abstract Factory. cpp
/1 A gami ng environnent

Chapter 16: Design Patterns 441

#i ncl ude <i ostreanp
usi ng namespace std;

class Cbstacle {
public:
virtual void action() = O;

}s

cl ass Pl ayer {
public:
virtual void interact Wth(Cbstacle*) = 0;

}s

class Kitty: public Player {
virtual void interact Wth(Obstacle* ob) {
cout << "Kitty has encountered a "
ob->action();
}
1

cl ass KungFuGuy: public Player {
virtual void interact Wth(CObstacle* ob) {
cout << "KungFuGuy now battl es agai nst a
ob->action();
}
}s

class Puzzle: public Qostacle {
public:
void action() { cout << "Puzzle\n"; }

};

cl ass Nast yWeapon: public Oostacle {

public:

void action() { cout << "NastyWapon\n"; }
b

/1l The abstract factory:

cl ass GaneEl enent Factory {

public:
virtual Player* nakePl ayer() = O;
virtual Obstacl e* nakebhstacle() = 0;

}s

Chapter 16: Design Patterns

442

/1 Concrete factories:
class KittiesAndPuzzles :
public GanmeEl enent Factory ({
public:
virtual Player* nakePl ayer() {
return new Kitty;
}

virtual Obstacle* makeQbstacl e() {
return new Puzzl e;
}

}s

cl ass Kill AndDi snmenber
public GanmeEl ement Factory {
public:
virtual Player* nakePl ayer() {
return new KungFuCGuy;
}

virtual Obstacle* makeQbstacl e() {
return new NastyWapon;
}

}s

cl ass GaneEnvi ronnent {
GaneEl enent Fact ory* gef;

Pl ayer* p;
Qobst acl e* ob;
public:

GaneEnvi r onnment (GaneEl enent Fact ory* factory)
gef (factory), p(factory->nakePlayer()),
ob(factory->nakeCbstacle()) {}

void play() {
p->i nteract Wth(ob);
}

~GneEnvi ronnent () {
del ete p;
del ete ob;
del et e gef;
}
b

int main() {
GaneEnvi r onnent
gl(new Kitti esAndPuzzl es),

Chapter 16: Design Patterns 443

g2(new Ki | | AndDi smenber);
gl.play();

g2.play();
Y I~

In this environment, Player objects interact with Obstacle objects, but there are different
types of players and obstacles depending on what kind of game you're playing. You
determine the kind of game by choosing a particular GameElementFactory, and then the
GameEnvironment controls the setup and play of the game. In this example, the setup and
play isvery simple, but those activities (the initial conditions and the state change) can
determine much of the game’s outcome. Here, GameEnvir onment is not designed to be
inherited, although it could very possibly make sense to do that.

This also contains examples of Double Dispatching and the Factory Method, both of which
will be explained later.

Virtual constructors

One of the primary goals of using a factory is so that you can organize your code so you don’t
have to select an exact type of constructor when creating an object. That is, you can say, “I
don’t know precisely what type of object you are, but here's the information: Create
yourself.”

In addition, during a constructor call the virtual mechanism does not operate (early binding
occurs). Sometimes thisis awkward. For example, in the Shape program it seemslogical that
inside the constructor for a Shape object, you would want to set everything up and then
draw() the Shape. draw() should be avirtual function, a message to the Shape that it should
draw itself appropriately, depending on whether it isacircle, square, line, and so on.
However, this doesn’t work inside the constructor, for the reasons given in Chapter XX:
Virtual functions resolve to the “local” function bodies when called in constructors.

If you want to be ableto call avirtual function inside the constructor and have it do the right
thing, you must use atechnique to simulate a virtual constructor (which isavariation of the
Factory Method). Thisis a conundrum. Remember the idea of a virtual function is that you
send a message to an object and let the object figure out the right thing to do. But a
constructor builds an object. So avirtual constructor would be like saying, “1 don’'t know
exactly what type of object you are, but build yourself anyway.” In an ordinary constructor,
the compiler must know which VTABLE address to bind to the VPTR, and if it existed, a
virtual constructor couldn’t do this because it doesn’t know all the type information at
compile-time. It makes sense that a constructor can’t be virtual because it is the one function
that absolutely must know everything about the type of the object.

And yet there are times when you want something approximating the behavior of a virtual
constructor.

In the Shape example, it would be nice to hand the Shape constructor some specific
information in the argument list and let the constructor create a specific type of Shape (a
Circle, Square) with no further intervention. Ordinarily, you'd have to make an explicit call
to the Circle, Squar e constructor yourself.

Chapter 16: Design Patterns 444

Coplien?® calls his solution to this problem “envelope and letter classes.” The “envelope”
classisthe base class, a shell that contains a pointer to an object of the base class. The
congtructor for the “envelope” determines (at runtime, when the constructor is called, not at
compile-time, when the type checking is normally done) what specific type to make, then
creates an object of that specific type (on the heap) and assigns the object to its pointer. All
the function calls are then handled by the base class through its pointer. So the base classis
acting as a proxy for the derived class:

//: C09:Virtual Constructor.cpp
#i ncl ude <i ostreanp

#i ncl ude <string>

#i ncl ude <exception>

#i ncl ude <vector>

usi ng namespace std;

cl ass Shape {
Shape* s;
/1l Prevent copy-construction & operator=
Shape(Shapeé&) ;
Shape oper at or =(Shapeg&) ;
pr ot ect ed:
Shape() { s = 0; };
public:
virtual void draw() { s->draw(); }
virtual void erase() { s->erase(); }
virtual void test() { s->test(); };
virtual ~Shape() {
cout << "~Shape\n";
if(s) {
cout << "Making virtual call: ";
s->erase(); // Virtual cal
}
cout << "delete s: ";
delete s; // The pol ynorphic deletion
}
cl ass BadShapeCreation : public exception {
string reason;

public:
BadShapeCreation(string type) {
reason = "Cannot create type " + type
}

const char *what () const {

26 James O. Coplien, Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992.

Chapter 16: Design Patterns 445

return reason.c_str();
}
b
Shape(string type) throw BadShapeCreation);
1

class Circle : public Shape {
Crcle(Circleg&);
Crcle operator=(Circle&);
Crcle() {} /! Private constructor
friend class Shape;
public:
void draw() { cout << "Circle::drawhn"; }
void erase() { cout << "Circle::erase\n"; }
void test() { drawm); }
~Circle() { cout << "Circle::~Circle\n"; }

};

class Square : public Shape {

Squar e(Squar eg&) ;

Squar e oper at or =(Squar eg&) ;

Square() {}

friend class Shape;
public:

void draw() { cout << "Square::drawn"; }
void erase() { cout << "Square::erase\n"; }
void test() { drawm); }

~Square() { cout << "Square::~Square\n"; }

};

Shape: : Shape(string type)
t hr ow(Shape: : BadShapeCreation) {

if(type == "Circle")
s = new Circle;
el se if(type == "Square")

S = new Squar e;
el se throw BadShapeCreation(type);

drawm(); // Virtual call in the constructor

}

char* shlist[] ={ "Circle", "Square", "Square",
"Circle", "Circle", "Crcle", "Square", "" };

int main() {

Chapter 16: Design Patterns

vect or <Shape*> shapes;
cout << "virtual constructor calls:
try {
for(char** cp = shlist; **cp; cp++)
shapes. push_back(new Shape(*cp));
} cat ch(Shape: : BadShapeCreation e) {
cout << e.what() << endl;
return 1,

<< endl ;

}
for(int i = 0; i < shapes.size(); i++) {
shapes[i]->draw();
cout << "test\n";
shapes[i]->test();
cout << "end test\n";
shapes[i]->erase();
}
Shape c("Circle"); // Create on the stack
cout << "destructor calls:" << endl
for(int j = 0; j < shapes.size(); j++) {
del et e shapes[j];
cout << "

\n-------- - - \n";

}
Y 11~

The base class Shape contains a pointer to an object of type Shape as its only data member.
When you build a“virtual constructor” scheme, you must exercise special care to ensure this
pointer is always initialized to alive object.

Each time you derive a new subtype from Shape, you must go back and add the creation for
that type in one place, inside the “virtual constructor” in the Shape base class. Thisis not too
onerous atask, but the disadvantage is you now have a dependency between the Shape class
and all classes derived from it (a reasonable trade-off, it seems). Also, because it is a proxy,
the base-class interface istruly the only thing the user sees.

In this example, the information you must hand the virtual constructor about what type to
createisvery explicit: It'sastring that names the type. However, your scheme may use other
information — for example, in a parser the output of the scanner may be handed to the virtual
congtructor, which then uses that information to determine which token to create.

The virtual constructor Shape(type) can only be declared inside the class; it cannot be defined
until after all the derived classes have been declared. However, the default constructor can be
defined inside class Shape, but it should be made protected so temporary Shape objects
cannot be created. This default constructor is only called by the constructors of derived-class
objects. You are forced to explicitly create a default constructor because the compiler will
create one for you automatically only if there are no constructors defined. Because you must
define Shape(type), you must also define Shape().

Chapter 16: Design Patterns 447

The default constructor in this scheme has at least one very important chore — it must set the
value of the s pointer to zero. This sounds strange at first, but remember that the default
constructor will be called as part of the construction of the actual object —in Coplien’sterms,
the “letter,” not the “envelope.” However, the “letter” is derived from the “envelope,” so it
also inherits the data member s. In the “envelope,” sisimportant because it points to the
actual object, but in the “letter,” sis simply excess baggage. Even excess baggage should be
initialized, however, and if sis not set to zero by the default constructor called for the “letter,”
bad things happen (as you'll see later).

The virtual constructor takes as its argument information that completely determines the type
of the object. Notice, though, that this type information isn’t read and acted upon until
runtime, whereas normally the compiler must know the exact type at compile-time (one other
reason this system effectively imitates virtual constructors).

Inside the virtual constructor there’s a switch statement that uses the argument to construct
the actual (“letter”) object, which is then assigned to the pointer inside the “envelope.” At that
point, the construction of the “letter” has been completed, so any virtual callswill be properly
directed.

As an example, consider the call to draw() inside the virtual constructor. If you trace this call
(either by hand or with a debugger), you can see that it startsin the draw() function in the
base class, Shape. This function callsdraw() for the “envelope” s pointer to its “letter.” All
types derived from Shape share the same interface, so thisvirtual call is properly executed,
even though it seemsto be in the constructor. (Actually, the constructor for the “letter” has
already completed.) Aslong as all virtual callsin the base class simply make calls to identical
virtual function through the pointer to the “letter,” the system operates properly.

To understand how it works, consider the code in main(). Tofill the vector shapes, “virtua
constructor” calls are made to Shape. Ordinarily in asituation like this, you would call the
constructor for the actua type, and the VPTR for that type would be installed in the object.
Here, however, the VPTR used in each case is the one for Shape, not the one for the specific
Circle, Square, or Triangle.

Inthe for loop where the draw() and erase() functions are called for each Shape, the virtual
function call resolves, through the VPTR, to the corresponding type. However, thisis Shape
in each case. In fact, you might wonder why draw() and erase() were made virtual at all.
The reason shows up in the next step: The base-class version of draw() makes acall, through
the “letter” pointer s, to the virtual function draw() for the “letter.” This time the call
resolves to the actual type of the object, not just the base class Shape. Thus the runtime cost
of using virtual constructorsis one more virtual call every time you make a virtual function
cal.

In order to create any function that is overridden, such asdraw(), erase() or test(), you must
proxy all calls to the s pointer in the base class implementation, as shown above. Thisis
because, when the call is made, the call to the envelope’s member function will resolve as
being to Shape, and not to a derived type of Shape. Only when you make the proxy call to s
will the virtual behavior take place. In main(), you can see that everything works correctly,
even when calls are made inside constructors and destructors.

Chapter 16: Design Patterns 448

Destructor operation

The activities of destruction in this scheme are also tricky. To understand, let’s verbally walk
through what happens when you call delete for a pointer to a Shape object — specifically, a
Squar e — created on the heap. (Thisis more complicated than an object created on the stack.)
Thiswill be adelete through the polymorphic interface, asin the statement delete shapeq]i]
inmain().

The type of the pointer shapeq[i] is of the base class Shape, so the compiler makes the call
through Shape. Normally, you might say that it's avirtual call, so Squar €'s destructor will be
called. But with the virtual constructor scheme, the compiler is creating actual Shape objects,
even though the constructor initializes the letter pointer to a specific type of Shape. The
virtual mechanism is used, but the VPTR inside the Shape object is Shape's VPTR, not
Square's. Thisresolves to Shape's destructor, which calls delete for the letter pointer s,
which actually points to a Squar e object. Thisis again avirtual call, but thistime it resolves
to Squar €' s destructor.

With a destructor, however, C++ guarantees, via the compiler, that all destructorsin the
hierarchy are called. Squar €' s destructor is called first, followed by any intermediate
destructors, in order, until finally the base-class destructor is called. This base-class destructor
has code that says delete s. When this destructor was called originaly, it was for the
“envelope” s, but now it'sfor the “letter” s, which isthere because the “letter” was inherited
from the “envelope,” and not because it contains anything. So this call to delete should do
nothing.

The solution to the problem isto make the “letter” s pointer zero. Then when the “letter”
base-class destructor is called, you get delete 0, which by definition does nothing. Because
the default constructor is protected, it will be called only during the construction of a“letter,”
so that’ sthe only situation where sis set to zero.

Y our most common tool for hiding construction will probably be ordinary factory methods
rather than the more complex approaches. The idea of adding new types with minimal effect
on the rest of the system will be further explored later in this chapter.

Cdllbacks

Decoupling code behavior

Chapter 16: Design Patterns 449

Functor/Command
Strategy
Observer

Like the other forms of callback, this contains a hook point where you can change code. The
differenceisin the observer’s completely dynamic nature. It is often used for the specific case
of changes based on other abject’s change of state, but is also the basis of event management.
Anytime you want to decouple the source of the call from the called code in a completely
dynamic way.

The observer pattern solves a fairly common problem: What if a group of objects needsto
update themselves when some other object changes state? This can be seen in the “model-
view” aspect of Smalltalk’s MV C (model-view-controller), or the almost-equival ent
“Document-View Architecture.” Suppose that you have some data (the “document”) and
more than one view, say a plot and atextual view. When you change the data, the two views
must know to update themselves, and that’ s what the observer facilitates.

There are two types of objects used to implement the observer pattern in the following code.
The Observable class keeps track of everybody who wants to be informed when a change
happens, whether the “state” has changed or not. When someone says “ OK, everybody should
check and potentially update themselves,” the Obser vable class performs this task by calling
the notifyObser ver s() member function for each observer onthelist. The

notifyObservers() member function is part of the base class Observable.

There are actually two “things that change” in the observer pattern: the quantity of observing
objects and the way an update occurs. That is, the observer pattern allows you to modify both
of these without affecting the surrounding code.

There are a number of ways to implement the observer pattern, but the code shown here will
create a framework from which you can build your own observer code, following the
example. Firgt, thisinterface describes what an observer looks like:

//: C09: Qbserver.h
/1 The Observer interface
#i f ndef OBSERVER_H
#defi ne OBSERVER H

cl ass (Observabl e;
cl ass Argunent {};

cl ass Cbserver ({

publi c:
/1 Called by the observed object, whenever
/1 the observed object is changed:

Chapter 16: Design Patterns 450

virtual void
updat e(Cbservabl e* o, Argunent * arg) = O;

}1
#endif // OBSERVER H ///:~

Since Obser ver interacts with Obser vable in this approach, Obser vable must be declared
first. In addition, the Argument classis empty and only acts as a base class for any type of
argument you wish to pass during an update. If you want, you can simply pass the extra
argument as avoid*; you'll have to downcast in either case but some folks find void*
objectionable.

Observer isan “interface” class that only has one member function, update(). This function
is called by the object that’s being observed, when that object decides its time to update all

it's observers. The arguments are optional; you could have an update() with no arguments
and that would still fit the observer pattern; however thisis more general — it allows the
observed object to pass the object that caused the update (since an Observer may be
registered with more than one observed object) and any extrainformation if that’s helpful,
rather than forcing the Observer object to hunt around to see who is updating and to fetch any
other information it needs.

The “observed object” that decides when and how to do the updating will be called the
Observable:

//: C09: Cbservabl e. h

/1 The Observabl e cl ass
#i f ndef OBSERVABLE H
#def i ne OBSERVABLE H

#i ncl ude " CObserver.h"
#i ncl ude <set >

cl ass Cbservabl e {
bool changed;
std::set<Cbserver*> observers;
pr ot ect ed:
virtual void setChanged() { changed = true; }
virtual void cl earChanged(){ changed = fal se; }
publi c:
virtual void addObserver(Cbserver& o) {
observers.insert(&o);
}
virtual void del eteCbserver (Cbserver& o) {
observers. erase(&o);
}
virtual void del eteCbservers() {
observers.clear();

}

virtual int countQobservers() {

Chapter 16: Design Patterns 451

return observers. size();
}
virtual bool hasChanged() { return changed; }
/1 1f this object has changed, notify al
/1 of its observers:
virtual void notifyGObservers(Argunment* arg=0) {
i f(!hasChanged()) return;
cl ear Changed(); // Not "changed" anynore
std::set<Cbserver*>::iterator it;
for(it = observers. begin();
it |= observers.end(); it++)
(*it)->update(this, arg);
}
1
#endi f // OBSERVABLE H ///: ~

Again, the design here is more elaborate than is necessary; aslong as there's away to register
an Observer with an Observable and for the Observable to update its Obser vers, the set of
member functions doesn’t matter. However, this design is intended to be reusable (it was
lifted from the design used in the Java standard library). As mentioned elsewhere in the book,
there is no support for multithreading in the Standard C++ libraries, so this design would need
to be modified in a multithreaded environment.

Observable has a flag to indicate whether it’'s been changed. In asimpler design, there would
be no flag; if something happened, everyone would be naotified. The flag allows you to wait,
and only notify the Obser ver s when you decide the time isright. Notice, however, that the
control of the flag's state is protected, so that only an inheritor can decide what constitutes a
change, and not the end user of the resulting derived Observer class.

The collection of Observer objectsis kept in a set<Obser ver* > to prevent duplicates; the set
insert(), erase(), clear () and size() functions are exposed to alow Observer sto be added
and removed at any time, thus providing runtime flexibility.

Most of the work is donein notifyObserver (). If the changed flag has not been set, this
does nothing. Otherwise, it first clears the changed flag so repeated callsto
notifyObservers() won't waste time. This is done before notifying the observersin case the
callsto update() do anything that causes a change back to this Obser vable object. Then it
moves through the set and calls back to the update() member function of each Observer.

At first it may appear that you can use an ordinary Obser vable object to manage the updates.
But this doesn’t work; to get an effect, you must inherit from Obser vable and somewherein
your derived-class code call setChanged(). Thisis the member function that sets the
“changed” flag, which means that when you call notifyObservers() al of the observerswill,
in fact, get notified. Where you call setChanged() depends on the logic of your program.

Now we encounter a dilemma. An object that should notify its observers about things that
happen to it — events or changes in state — might have more than one such item of interest. For
example, if you're dealing with a graphical user interface (GUI) item — a button, say — the
items of interest might be the mouse clicked the button, the mouse moved over the button, and

Chapter 16: Design Patterns 452

(for some reason) the button changed its color. So we'd like to be able to report all of these
eventsto different observers, each of which isinterested in a different type of event.

The problem is that we would normally reach for multiple inheritance in such a situation: “I'll
inherit from Obser vable to deal with mouse clicks, and I'll ... er ... inherit from Observable
to deal with mouse-overs, and, well, ... hmm, that doesn’'t work.”

The“interface” idiom
The“inner class’ idiom

Here's a situation where we do actually need to (in effect) upcast to more than one type, but in
this case we need to provide several different implementations of the same base type. The
solution is something I’ ve lifted from Java, which takes C++'s nested class one step further.
Java has a built-in feature called inner classes, which look like C++'s nested classes, but they
do two other things:

1. A Javainner class automatically has accessto the private elements of the classit is nested
within.

2. Anobject of aJavainner class automatically grabsthe “this’ to the outer class object it
was created within. In Java, the “outer this’ isimplicitly dereferenced whenever you
name an element of the outer class.

[Insert the definition of aclosure]]. So to implement the inner classidiomin C++, we must
do these things by hand. Here's an example:

/1: C09:Innerd assldiomcpp

/1 Exanple of the "inner class" idiom
#i ncl ude <i ostreanp

#i ncl ude <string>

usi ng namespace std;

cl ass Poi ngabl e {
public:
virtual void poing() = O;

}s

voi d cal | Poi ng(Poi ngabl e& p) {
p. poi ng();

cl ass Bingabl e {
public:

virtual void bing() = 0;
b

voi d cal | Bi ng(Bi ngabl e& b) {

Chapter 16: Design Patterns 453

b. bi ng();
}

class Quter {
string naneg;
/1 Define one inner class:
class Innerl;
friend class Quter::I|nnerl;
class Innerl : public Poingable {
Quter* parent;
public:
Innerl(Quter* p) : parent(p) {}
void poing() {
cout << "poing called for
<< parent->name << endl
/1 Accesses data in the outer class object
}
} inneril;
/1 Define a second inner class:
cl ass I nner2;
friend class Quter::|nner2;
class Inner2 : public Bingable {
Quter* parent;
public:
I nner2(Quter* p) : parent(p) {}
void bing() {
cout << "bing called for
<< parent->name << endl
}
} inner2;
public:
Quter(const string& nm : name(nm,
i nnerl(this), inner2(this) {}
/1 Return reference to interfaces
/1 inplenmented by the inner classes:
operator Poingable&() { return innerl; }
operator Bingable&() { return inner2; }

};

int main() {
Quter x("Ping Pong");
/1 Like upcasting to nultiple base types!:
cal | Poi ng(x);
cal | Bi ng(x);

Chapter 16: Design Patterns

454

|}///:~

The example begins with the Poingable and Bingable interfaces, each of which contain a
single member function. The services provided by callPoing() and callBing() require that
the object they receive implement the Poingable and Bingable interfaces, respectively, but
they put no other requirements on that object so as to maximize the flexibility of using
callPoing() and callBing(). Note the lack of virtual destructorsin either interface — the
intent is that you never perform object destruction via the interface.

Outer contains some private data (name) and it wishes to provide both a Poingable interface
and a Bingable interface so it can be used with callPoing() and callBing(). Of course, in this
situation we could simply use multiple inheritance. This exampleisjust intended to show the
simplest syntax for the idiom; we'll see areal use shortly. To provide a Poingable object
without inheriting Outer from Poingable, theinner classidiom is used. First, the declaration
classInner saysthat, somewhere, there is a nested class of this name. This allowsthe friend
declaration for the class, which follows. Finally, now that the nested class has been granted
access to all the private elements of Outer, the class can be defined. Notice that it keeps a
pointer to the Outer which created it, and this pointer must be initialized in the constructor.
Finally, the poing() function from Poingable isimplemented. The same process occurs for
the second inner class which implements Bingable. Each inner class hasasingle private
instance created, which isinitialized in the Outer constructor. By creating the member objects
and returning references to them, issues of object lifetime are eliminated.

Notice that both inner class definitions are private, and in fact the client programmer doesn’t
have any access to details of the implementation, since the two access methods oper ator
Poingable& () and operator Bingable& () only return areference to the upcast interface, not
to the object that implementsit. In fact, since the two inner classes are private, the client
programmer cannot even downcast to the implementation classes, thus providing complete
isolation between interface and implementation.

Just to push a point, I’ ve taken the extra liberty here of defining the automatic type conversion
operators operator Poingable& () and operator Bingable& (). In main(), you can see that
these actually allow a syntax that looks like Outer is multiply inherited from Poingable and
Bingable. The difference isthat the castsin this case are one way. Y ou can get the effect of
an upcast to Poingable or Bingable, but you cannot downcast back to an Outer. In the
following example of observer, you'll see the more typical approach: you provide access to
the inner class objects using ordinary member functions, not automatic type conversion
operations.

The observer example

Armed with the Observer and Observable header files and the inner class idiom, we can
look at an example of the observer pattern:

/1: C09: CbservedFl ower. cpp

/1 Denonstration of "observer" pattern
#i ncl ude " Cbservabl e. h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

Chapter 16: Design Patterns 455

#i ncl ude <al gorithne
#i ncl ude <string>
usi ng namespace std;

cl ass Fl ower {

bool isOpen;
public:
Fl ower () : isOpen(false),

openNotifier(this), closeNotifier(this) {}
void open() { // Opens its petals
i sOpen = true;
openNotifier.notifyCbservers();
cl oseNotifier.open();
}
void close() { // Coses its petals
i sOpen = fal se;
cl oseNotifier.notifyGObservers();
openNotifier.close();
}
/1 Using the "inner class" idiom
cl ass OpenNotifier
friend class Flower:: OpenNotifier
class OpenNotifier : public Observable {
Fl ower* parent;
bool al readyQpen;
public:
penNotifier(Flower* f) : parent(f),
al readyOpen(fal se) {}
voi d notifyGCbservers(Argunent* arg=0) {
i f(parent->i sOpen && !al readyQpen) {
set Changed() ;
observabl e:: noti fyQoservers();
al readyOpen = true;

}

}

void close() { alreadyOpen = fal se; }
} openNotifier;
class C oseNotifier;
friend class Flower::C oseNotifier
class CloseNotifier : public Cbservable {

Fl ower * parent;

bool al readyd osed,;
public:

CloseNotifier(Flower* f) : parent(f),

Chapter 16: Design Patterns 456

al readyC osed(fal se) {}
voi d notifyGCbservers(Argunent* arg=0) {
i f(!parent->isQpen && !al readyd osed) {
set Changed() ;
observabl e:: noti fyQoservers();
al readyC osed = true;
}
}

voi d open() { alreadyd osed = fal se; }
} closeNotifier;

};

cl ass Bee {
string naneg;
/1 An "inner class" for observing openings:
cl ass OpenGbserver;
friend class Bee:: QpenChserver;
cl ass OpenCbserver : public OCbserver {
Bee* parent;
public:
penQbserver (Bee* b) : parent(b) {}
voi d updat e(Cbservabl e*, Argunent *) {
cout << "Bee " << parent->nane
<< "'s breakfast tine!\n";
}

} openQbsryv;
/1 Another "inner class" for closings:
cl ass O oseObserver;
friend class Bee::C oseQbserver;
cl ass Cl oseCbserver : public Coserver {
Bee* parent;
public:
Cl ose(oserver (Bee* b) : parent(b) {}
voi d updat e(Cbservabl e*, Argunent *) {
cout << "Bee " << parent->nane
<< "'s bed tinme!\n";
}

} closebsryv;
public:
Bee(string nm : nane(nnj,

openQobsrv(this), closeCbsrv(this) {}
observer & openCbserver() { return openCbsrv; }
observer & cl oseCbserver() { return closeCbsryv;}

};

Chapter 16: Design Patterns 457

cl ass Hunmmi ngbird {
string nane;
cl ass OpenChserver;
friend class Hunm ngbird:: OpenChserver;
cl ass OpenCbserver : public OCbserver {
Hurmm ngbi rd* parent;
public:
penQbser ver (Hunm ngbird* h) : parent(h) {}
voi d updat e(Cbservabl e*, Argunent *) {
cout << "Humm ngbird " << parent->nane
<< "'s breakfast tine!\n";
}
} openQbsryv;
cl ass O oseObserver;
friend class Hunmm ngbird:: d oseChserver;
cl ass Cl oseCbserver : public Coserver {
Hurmm ngbi rd* parent;
public:
Cl oseoserver (Humm ngbird* h) : parent(h) {}
voi d updat e(Cbservabl e*, Argunent *) {
cout << "Humm ngbird " << parent->nane
<< "'s bed tinme!\n";
}
} cl oseObsryv;
public:
Humm ngbi rd(string nm : nanme(nnj,
openQbsrv(this), closeCbsrv(this) {}
observer & openCbserver() { return openCbsrv; }
observer & cl oseCbserver() { return closeCbsryv;}

}s

int main() {

Fl ower f;

Bee ba("A"), bb("B");

Hurmmi ngbi rd ha("A"), hb("B");
.openNotifier.addOoserver (ha. openCbserver())
.openNotifier.addOoserver (hb. openCbserver())
.openNotifier.addOoserver (ba. openCbserver())
.openNotifier.addOoserver (bb. openCbserver())

(
(
(
(

.closeNotifier.addObserver (ha.cl oseGoserver());
.closeNotifier.addObserver (hb. cl oseCoserver());
.closeNotifier.addCbserver (ba. cl oseCbserver())
))

.closeNotifier.addCbserver (bb. cl oseCbserver

—h —h —h —h —h —h —h —h

Chapter 16: Design Patterns 458

/1 Humm ngbird B decides to sleep in
f.openNotifier.del eteCbserver (hb. openCoserver());
/1 Sonet hing changes that interests observers:
f.open();
f.open(); // 1t's already open, no change.
/1 Bee A doesn't want to go to bed:
f.closeNotifier.deleteCbuserver(
ba. cl oseGbserver());
.close();
.close(); // It's already closed; no change
.openNotifier.del eteCoservers();
. open() ;

f.close();
Y I~

The events of interest are that a Flower can open or close. Because of the use of the inner
classidiom, both these events can be separately-observable phenomena. OpenNotifier and
CloseNotifier both inherit Observable, so they have access to setChanged() and can be
handed to anything that needs an Observable. Y ou'll notice that, contrary to

Inner Classl diom.cpp, the Obser vable descendants are public. Thisis because some of their
member functions must be available to the client programmer. There’s nothing that says that
aninner class must be private; in Inner Classl diom.cpp | was simply following the design
guideline “make things as private as possible.” Y ou could make the classes private and
expose the appropriate methods by proxy in Flower, but it wouldn’t gain much.

—h —h —h —h

Theinner classidiom also comesin handy to define more than one kind of Observer, in Bee
and Hummingbird, since both those classes may want to independently observe Flower
openings and closings. Notice how the inner class idiom provides something that has most of
the benefits of inheritance (the ability to access the private data in the outer class, for
example) without the same restrictions.

In main(), you can see one of the prime benefits of the observer pattern: the ability to change
behavior at runtime by dynamically registering and un-registering Obser ver s with
Observables.

If you study the code above you'll see that OpenNatifier and CloseNotifier use the basic
Observable interface. This means that you could inherit other completely different Obser ver
classes; the only connection the Obser ver s have with Flowersisthe Observer interface.

Multiple dispatching

When dealing with multiple types which are interacting, a program can get particularly messy.
For example, consider a system that parses and executes mathematical expressions. Y ou want
to be able to say Number + Number, Number * Number, etc., where Number is the base
classfor afamily of numerical objects. But when you say a + b, and you don’t know the exact
type of either a or b, so how can you get them to interact properly?

Chapter 16: Design Patterns 459

The answer starts with something you probably don’t think about; C++ performs only single
dispatching. That is, if you are performing an operation on more than one object whose type is
unknown, C++ can invoke the dynamic binding mechanism on only one of those types. This
doesn’t solve the problem, so you end up detecting some types manually and effectively
producing your own dynamic binding behavior.

The solution is called multiple dispatching. Remember that polymorphism can occur only via
member function calls, so if you want double dispatching to occur, there must be two member
function calls: the first to determine the first unknown type, and the second to determine the
second unknown type. With multiple dispatching, you must have avirtual call to determine
each of the types. Generally, you'll set up a configuration such that a single member function
call produces more than one dynamic member function call and thus determines more than
one type in the process. To get this effect, you need to work with more than one virtual
function: you'll need avirtual function call for each dispatch. The virtual functionsin the
following example are called compete() and eval(), and are both members of the same type.
(In this case there will be only two dispatches, which isreferred to as double dispatching). If
you are working with two different type hierarchies that are interacting, then you'll have to
have avirtua call in each hierarchy.

Here's an example of multiple dispatching:

[1: CO09: Paper Sci ssor sRock. cpp

/1 Denmonstration of multiple dispatching
#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti ne>

usi ng nanmespace std;

cl ass Paper;
cl ass Sci ssors;
cl ass Rock;

enum Qutcone { win, |lose, draw };

ostreami
oper at or <<(ostrean& os, const Qutcone out) {
swi tch(out) {
defaul t:
case win: return os << "win";
case lose: return os << "l ose";
case draw. return os << "draw';

Chapter 16: Design Patterns 460

class Item{

public:
virtual Qutcone conpete(const ltent) = O;
virtual Qutcone eval (const Paper*) const = 0;

virtual Qutcone eval (const Rock*) const = O;

virtual ostream& print(ostrean& os) const = O;

virtual ~ltem() {}

friend ostreamk

operator<<(ostrean& os, const Itent it) {
return it->print(os);

}

}s

class Paper : public Item{
public:
Qut come conpete(const Itent it) {
return it->eval (this);
}

Qut conme eval (const Paper*) const {
return draw,
}

Qut cone eval (const Scissors*) const {
return win;
}

Qut conme eval (const Rock*) const {
return | ose;
}

ostream& print(ostream& os) const {

}

return os << "Paper ;

class Scissors : public Item{
public:
Qut come conpete(const Itent it) {
return it->eval (this);
}

Qut conme eval (const Paper*) const {
return | ose;
}

Qut cone eval (const Scissors*) const {
return draw,
}

virtual Qutcone eval (const Scissors*) const= 0;

Chapter 16: Design Patterns

461

Qut conme eval (const Rock*) const {
return win;

}

ostream& print(ostream& os) const {
return os << "Scissors";

}
}s

class Rock : public Item{
public:
Qut come conpete(const Itent it) {
return it->eval (this);
}
Qut conme eval (const Paper*) const {
return win;
}
Qut cone eval (const Scissors*) const {
return | ose;
}
Qut conme eval (const Rock*) const {
return draw,

}

ostream& print(ostream& os) const {

return os << "Rock ;

}
}s

struct ltemGen {
Itenzen() { srand(tinme(0)); }
Itent operator()() {
switch(rand() % 3) {
defaul t:
case O:
return new Scissors;
case 1:
return new Paper;
case 2:
return new Rock;
}
}
}s

struct Conpete {
Qut conme operator()(ltenr a, Itent b) {

Chapter 16: Design Patterns 462

cout << a << "\t" << b << "\t";
return a->conpete(b);
}
}s

int main() {
const int sz = 20;
vector<ltem> v(sz*2);
generate(v.begin(), v.end(), ltenGen());
transformv. begin(), v.begin() + sz,
v. begin() + sz,
ostream.iterator<Qutconme>(cout, "\n"),
Conpete());
purge(v);
Y I~

Visitor, atype of multiple dispatching

The assumption is that you have a primary class hierarchy that is fixed; perhapsit’s from
another vendor and you can’t make changesto that hierarchy. However, you'd like to add new
polymorphic methods to that hierarchy, which means that normally you' d have to add
something to the base class interface. So the dilemmaiis that you need to add methods to the
base class, but you can’t touch the base class. How do you get around this?

The design pattern that solves thiskind of problemis called a“visitor” (the fina one in the
Design Patterns book), and it builds on the double dispatching scheme shown in the last
section.

The visitor pattern allows you to extend the interface of the primary type by creating a
separate class hierarchy of type Visitor to virtualize the operations performed upon the
primary type. The objects of the primary type simply “accept” the visitor, then call the
visitor’s dynamically-bound member function.

/1: C09: BeeAndFl owers. cpp

/1 Denonstration of "visitor" pattern
#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <string>

#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <cstdlib>

#i ncl ude <cti nme>

usi ng namespace std;

cl ass d adi ol us;

Chapter 16: Design Patterns 463

cl ass Renucul us;
cl ass Chrysant henum

class Visitor {

public:
virtual void visit(d adi ol us* f) 0;
virtual void visit(Renucul us* f) 0;
virtual void visit(Chrysanthemunr f) =
virtual ~Visitor() {}

}s

cl ass Fl ower {

public:
virtual void accept(Visitor& = O;
virtual ~Flower() {}

}s

class d adiolus : public Flower {
public:
virtual void accept(Visitor& v) {
v.visit(this);
}
}s

class Renuculus : public Flower {
public:
virtual void accept(Visitor& v) {
v.visit(this);
}
1

class Chrysanthemum : public Flower {
public:
virtual void accept(Visitor& v) {
v.visit(this);
}
b

/! Add the ability to produce a string:

class StringVval : public Visitor {
string s;

public:
operator const string&) { return s; }
virtual void visit(d adiolus*) {

0;

Chapter 16: Design Patterns

464

s = "d adi ol us";

}

virtual void visit(Renuculus*) {
s = "Renucul us";

}

virtual void visit(Chrysanthemunr) ({
s = "Chrysant hemuni;
}

}s

/1 Add the ability to do "Bee" activities:
class Bee : public Visitor {
public:
virtual void visit(d adiolus*) {
cout << "Bee and d adi ol us\ n";
}

virtual void visit(Renuculus*) {
cout << "Bee and Renucul us\n";
}

virtual void visit(Chrysanthemunr) ({
cout << "Bee and Chrysant henmum n";
}

}s

struct Fl ower Gen {
Fl oner Gen() { srand(tinme(0)); }
Fl oner* operator()() {
switch(rand() % 3) {
def aul t:
case 0: return new d adi ol us;
case 1: return new Renucul us;
case 2: return new Chrysant hemum
}
}
b

int main() {
vect or <Fl ower *> v(10);
generate(v.begin(), v.end(), FlowerGen());
vector<Flower*>::iterator it;
/1 It's alnmost as if | added a virtual function
/1 to produce a Flower string representation:
StringVal sval;
for(it = v.begin(); it !'=v.end(); it++) {

Chapter 16: Design Patterns 465

(*it)->accept(sval);
cout << string(sval) << endl

}

/1 Perform "Bee" operation on all Flowers:

Bee bee;

for(it = v.begin(); it !'=v.end(); it++)
(*it)->accept (bee);

purge(v);

Y I~

Efficiency
FHyweight
The composite

Evolving adesign: the trash
recycler

The nature of this problem (modeling a trash recycling system) isthat the trash is thrown
unclassified into a single bin, so the specific type information is lost. But later, the specific
type information must be recovered to properly sort the trash. In theinitia solution, RTTI
(described in Chapter XX) is used.

Thisisnot atrivial design because it has an added constraint. That's what makes it interesting
—it'smore like the messy problems you're likely to encounter in your work. The extra
congtraint is that the trash arrives at the trash recycling plant all mixed together. The program
must model the sorting of that trash. Thisiswhere RTTI comesin: you have a bunch of
anonymous pieces of trash, and the program figures out exactly what type they are.

One of the objectives of this program is to sum up the weight and value of the different types
of trash. The trash will be kept in (potentially different types of) containers, so it makes sense
to templatize the “ summation” function on the container holding it (assuming that container
exhibits basic STL-like behavior), so the function will be maximally flexible:

/1: C09:sunVal ue. h
/1 Suns the value of Trash in any type of STL
/1 container of any specific type of Trash:

Chapter 16: Design Patterns 466

#i f ndef SUWALUE_H
#defi ne SUWALUE H
#i ncl ude <typei nfo>
#i ncl ude <vector>

t enpl at e<t ypenanme Cont >
voi d sumval ue(const Conté& bin) {
doubl e val = 0.0f;
typenane Cont::iterator tally = bin.begin();
while(tally !'= bin.end()) {
val +=(*tally)->weight() * (*tally)->value();
out << "weight of "
<< typeid(*(*tally)).name()

<< " =" << (*tally)->weight()
<< endl;
tal |l y++;
}
out << "Total value = " << val << endl;

}
#endif // SUWALUE H ///:~

When you look at a piece of code like this, it can beinitially disturbing because you might
wonder “how can the compiler know that the member functions I’'m calling here are valid?’
But of course, all the template saysis “ generate this code on demand,” and so only when you
call the function will type checking come into play. This enforces that *tally produces an
object that has member functions weight(') and value(), and that out isaglobal ostream.

The sumValue() function is templatized on the type of container that’s holding the Trash
pointers. Notice there’ s nothing in the template signature that says “this container must
behave like an STL container and must hold Trash*”; that isall implied in the code that’s
generated which uses the container.

Thefirst version of the example takes the straightforward approach: creating a
vector<Trash*>, filling it with Trash objects, then using RTTI to sort them out:

/1: C09: Recycl el. cpp
/1 Recycling with RTTI
#i ncl ude "sunwal ue. h"
#i nclude "../purge.h"
#i ncl ude <fstreanr

#i ncl ude <vector>

#i ncl ude <typeinfo>

#i ncl ude <cstdlib>

#i ncl ude <cti me>
usi ng nanmespace std;
of stream out ("Recycl el. out");

Chapter 16: Design Patterns 467

class Trash {
doubl e _wei ght;
static int _count; // # created
static int _dcount; // # destroyed
/1 disallow automatic creation of
/1 assignnment & copy-constructor
voi d operator=(const Trash&);
Trash(const Trash&);

public:
Trash(double wt) : _weight(wt) {
_count ++;
}

virtual double value() const = 0;

doubl e wei ght () const { return _weight; }
static int count() { return _count; }
static int dcount() { return _dcount;}
virtual ~Trash() { _dcount++; }

}s

int Trash:: _count = O;
int Trash:: dcount = O;
class Alum num: public Trash {
static double val;
public:
Al um num(double wt) : Trash(wt) {}
doubl e value() const { return val; }
static void val ue(doubl e newal) {
val = newal ;

~Al um num() { out << "~Alum numn"; }

}s
doubl e Al um num :val = 1.67F

cl ass Paper : public Trash {
static double val;
public:
Paper (double wt) : Trash(wt) {}
doubl e value() const { return val; }
static void val ue(doubl e newal) {
val = newal ;

}

~Paper () { out <<

~Paper\n"; }

Chapter 16: Design Patterns 468

1
doubl e Paper::val = 0.10F;

class dass : public Trash {
static double val;
public:
d ass(double w) : Trash(wt) {}
doubl e value() const { return val; }
static void val ue(doubl e newal) {
val = newal ;

~d ass() { out << "~dass\n"; }

}s
doubl e d ass::val = 0.23F;

class TrashGen {

public:
TrashGen() { srand(tine(0)); }
static double frand(int nod) {

}
Trash* operator()() {

for(int i =0; i < 30; i++4)
switch(rand() % 3) {
case O :
return new Al um nun{frand(100));
case 1 :
return new Paper (frand(100));
case 2 :
return new d ass(frand(100));
}
return new Al um nun{0);
/1 O throw exeception...
}
b

int main() {
vect or <Trash*> bi n;
/1 Fill up the Trash bin:

vect or <Al um nunt> al Bi n;
vect or <Paper *> paper Bi n;

return static_cast<doubl e>(rand() % nod);

generate_n(back_inserter(bin), 30, TrashGen());

Chapter 16: Design Patterns

469

vect or<d ass*> gl assBin
vector<Trash*>::iterator sorter = bin.begin();
/1 Sort the Trash:
whil e(sorter !'= bin.end()) {
Al um nunr ap =
dynam c_cast <Al um nunt>(*sorter);
Paper* pp = dynam c_cast <Paper*>(*sorter);
d ass* gp = dynam c_cast<d ass*>(*sorter);
i f(ap) al Bi n. push_back(ap);
i f(pp) paperBin. push_back(pp);
i f(gp) gl assBin.push_back(gp);
sorter++;
}
sunVal ue(al Bi n);
sunVal ue(paper Bi n);
sunVal ue(gl assBin);
sunVal ue(bi n);
out << "total created ="
<< Trash::count() << endl
purge(bin);
out << "total destroyed ="
<< Trash::dcount () << endl
Y I~

This usesthe classic structure of virtual functionsin the base class that are redefined in the
derived class. In addition, there are two static data membersin the base class: _count to
indicate the number of Trash objects that are created, and _dcount to keep track of the
number that are destroyed. This verifies that proper memory management occurs. To support
this, the oper ator = and copy-constructor are disallowed by declaring them private (no
definitions are necessary; this simply prevents the compiler from synthesizing them). Those
operations would cause problems with the count, and if they were allowed you'd have to
define them properly.

The Trash objects are created, for the sake of this example, by the generator TrashGen,
which uses the random number generator to choose the type of Trash, and also to provide it
with a“weight” argument. The return value of the generator’s operator () is upcast to
Trash*, so all the specific type information islost. In main(), avector<Trash*> called bin
is created and then filled using the STL algorithm generate_n(). To perform the sorting,
three vector s are created, each of which holds a different type of Trash*. An iterator moves
through bin and RTTI is used to determine which specific type of Trash the iterator is
currently selecting, placing each into the appropriate typed bin. Finaly, sumValue() is
applied to each of the containers, and the Trash objects are cleaned up using purge()
(defined in Chapter XX). The creation and destruction counts ensure that things are properly
cleaned up.

Of coursg, it seems silly to upcast the types of Trash into a container holding base type
pointers, and then to turn around and downcast. Why not just put the trash into the appropriate

Chapter 16: Design Patterns 470

receptaclein the first place? (indeed, thisis the whole enigma of recycling). In this program it
might be easy to repair, but sometimes a system’s structure and flexibility can benefit greatly
from downcasting.

The program satisfies the design requirements: it works. Thismay be fineaslong asit'sa
one-shot solution. However, a good program will evolve over time, so you must ask: what if
the situation changes? For example, cardboard is now a valuable recyclable commodity, so
how will that be integrated into the system (especially if the program islarge and
complicated). Since the above type-check coding in the switch statement and in the RTTI
statements could be scattered throughout the program, you'd have to go find all that code
every time a new type was added, and if you miss one the compiler won't help you.

The key to the misuse of RTTI hereisthat every typeistested. If you're only looking for a
subset of types because that subset needs special treatment, that’s probably fine. But if you're
hunting for every type inside a switch statement, then you' re probably missing an important
point, and definitely making your code less maintainable. In the next section we'll look at
how this program evolved over several stages to become much more flexible. This should
prove a valuable example in program design.

Improving the design

The solutionsin Design Patterns are organized around the question “What will change as this
program evolves?’ Thisis usually the most important question that you can ask about any
design. If you can build your system around the answer, the results will be two-pronged: not
only will your system allow easy (and inexpensive) maintenance, but you might also produce
components that are reusable, so that other systems can be built more cheaply. Thisisthe
promise of object-oriented programming, but it doesn’t happen automatically; it requires
thought and insight on your part. In this section we'll see how this process can happen during
the refinement of a system.

The answer to the question “What will change?’ for the recycling system is a common one:
more types will be added to the system. The goal of the design, then, isto make this addition
of types as painless as possible. In the recycling program, we'd like to encapsulate al places
where specific type information is mentioned, so (if for no other reason) any changes can be
localized inside those encapsulations. It turns out that this process also cleans up the rest of
the code considerably.

“Make more objects’

This brings up a general object-oriented design principle that | first heard spoken by Grady
Booch: “If the design is too complicated, make more objects.” Thisis simultaneously
counterintuitive and ludicrously simple, and yet it’'s the most useful guideline I’ ve found.
(You might observe that “ make more objects’ is often equivalent to “add another level of
indirection.”) In general, if you find a place with messy code, consider what sort of class
would clean things up. Often the side effect of cleaning up the code will be a system that has
better structure and is more flexible.

Chapter 16: Design Patterns 471

Consider first the place where Trash objects are created. In the above example, we're
conveniently using a generator to create the objects. The generator nicely encapsulates the
creation of the objects, but the neatness is an illusion because in general we'll want to create
the objects based on something more than a random number generator. Some information will
be available which will determine what kind of Trash object this should be. Because you
generally need to make your objects by examining some kind of information, if you' re not
paying close attention you may end up with switch statements (asin TrashGen) or cascaded
if statements scattered throughout your code. This is definitely messy, and also a place where
you must change code whenever a new type is added. If new types are commonly added, a
better solution is a single member function that takes all of the necessary information and
produces an object of the correct type, already upcast to a Trash pointer. In Design Patterns
thisis broadly referred to as a creational pattern (of which there are several). The specific
pattern that will be applied here is avariant of the Factory Method (“ method” being a more
OOPish way to refer to amember function). Here, the factory method will be a static member
of Trash, but more commonly it is a member function that is overridden in the derived class.

Theidea of the factory method isthat you passit the essential information it needs to know to
create your object, then stand back and wait for the pointer (already upcast to the base type) to
pop out as the return value. From then on, you treat the object polymorphically. Thus, you
never even need to know the exact type of object that’s created. In fact, the factory method
hidesit from you to prevent accidental misuse. If you want to use the object without
polymorphism, you must explicitly use RTTI and casting.

But there' s alittle problem, especially when you use the more complicated approach (not
shown here) of making the factory method in the base class and overriding it in the derived
classes. What if the information required in the derived class requires more or different
arguments? “ Creating more objects’ solves this problem. To implement the factory method,
the Trash class gets a new member function called factory(). To hide the creational data,
there’'sanew class called I nfo that contains all of the necessary information for the factory()
method to create the appropriate Trash object. Here's a simple implementation of I nfo:

class Info {
int type;
/1 Must change this to add another type:
static const int maxnum = 3;
doubl e dat a;
public:
Info(int typeNum double dat)
type(typeNum % maxnum), data(dat) {}

b

An Info object’s only job isto hold information for the factory() method. Now, if there'sa
situation in which factory() needs more or different information to create a new type of
Trash object, the factory() interface doesn’t need to be changed. The Info class can be
changed by adding new data and new constructors, or in the more typical object-oriented
fashion of subclassing.

Chapter 16: Design Patterns 472

Here' s the second version of the program with the factory method added. The object-counting
code has been removed; we'll assume proper cleanup will take placein al the rest of the
examples.

/1: C09: Recycl e2. cpp

/1 Adding a factory method
#i ncl ude "sunwal ue. h"

#i nclude "../purge.h"

#i ncl ude <fstreanr

#i ncl ude <vector>

#i ncl ude <typeinfo>

#i ncl ude <cstdlib>

#i ncl ude <cti me>

usi ng nanmespace std;

of stream out ("Recycl e2. out");

class Trash {
doubl e _wei ght;
voi d operator=(const Trashé&);
Trash(const Trash&);
public:
Trash(double w) : _weight(wt) { }
virtual double value() const = 0;
doubl e wei ght () const { return _weight; }
virtual ~Trash() {}
/1 Nested class because it's tightly coupled

/1 to Trash:
class Info {
int type;

/1 Must change this to add another type:
static const int maxnum = 3;
doubl e dat a;
friend class Trash;
public:
Info(int typeNum double dat)
type(typeNum % maxnum), data(dat) {}
I3
static Trash* factory(const Info& info);

b

class Alum num: public Trash {
static double val;

public:
Al um num(double wt) : Trash(wt) {}
doubl e value() const { return val; }

Chapter 16: Design Patterns 473

static void val ue(doubl e newal) {
val = newal ;

~Al um num() { out << "~Alum numn"; }

}s
doubl e Al um num :val = 1.67F;

cl ass Paper : public Trash {
static double val;

public:
Paper (double wt) : Trash(wt) {}
doubl e value() const { return val; }
static void val ue(doubl e newal) {

val = newal ;

}
~Paper () { out << "~Paper\n"; }

1

doubl e Paper::val = 0.10F;

class dass : public Trash {
static double val;
public:
d ass(double w) : Trash(wt) {}
doubl e value() const { return val; }
static void val ue(doubl e newal) {
val = newal ;

}

~d ass() { out << "~dass\n"; }

}s
doubl e d ass::val = 0.23F;

/1 Definition of the factory nethod. It nust know
/1 all the types, so is defined after all the
/1l subtypes are defined:
Trash* Trash::factory(const Info& info) {
switch(info.type) {
default: // In case of overrun
case O:
return new Al um nun{info. data);
case 1:
return new Paper (i nfo.data);

Chapter 16: Design Patterns 474

case 2:
return new d ass(info.data);
}
}

/1 Generator for Info objects:
class InfoGen {
int typeQuantity;
i nt maxWei ght;
public:
I nfoGen(int typeQuant, int nmaxW)
. typeQuantity(typeQuant), maxWei ght (maxW) {
srand(tinme(0));
}
Trash::Info operator()() {
return Trash::Info(rand() %typeQuantity,
static_cast <doubl e>(rand() % maxWei ght));
}
1

int main() {
vect or <Trash*> bin;
/1 Fill up the Trash bin
I nfoGen infoGen(3, 100);
for(int i =0; i < 30; i++)
bi n. push_back(Trash::factory(infoGen()));
vect or <Al um nunt> al Bi n;
vect or <Paper *> paper Bi n;
vect or<d ass*> gl assBin
vector<Trash*>::iterator sorter = bin.begin();
/1 Sort the Trash:
whil e(sorter !'= bin.end()) {
Al um nunr ap =
dynam c_cast <Al um nunt>(*sorter);
Paper* pp = dynam c_cast <Paper*>(*sorter);
d ass* gp = dynam c_cast<d ass*>(*sorter);
i f(ap) al Bi n. push_back(ap);
i f(pp) paperBin. push_back(pp);
i f(gp) gl assBin.push_back(gp);
sorter++;
}
sunVal ue(al Bi n);
sunVal ue(paper Bi n);
sunVal ue(gl assBi n);

Chapter 16: Design Patterns 475

sunval ue(bi n);
purge(bin); // d eanup
Y I~

In the factory method Trash::factory(), the determination of the exact type of object is
simple, but you can imagine a more complicated system in which factory() uses an elaborate
algorithm. The point is that it’s now hidden away in one place, and you know to come to this
place to make changes when you add new types.

The creation of new objectsis now more general in main(), and depends on “real” data
(albeit created by another generator, driven by random numbers). The generator object is
created, telling it the maximum type number and the largest “data’ value to produce. Each call
to the generator creates an I nfo object which is passed into Trash::factory(), which in turn
produces some kind of Trash object and returns the pointer that’s added to the
vector<Trash*> bin.

The constructor for the I nfo object is very specific and restrictive in this example. However,
you could also imagine a vector of arguments into the Info constructor (or directly into a
factory() call, for that matter). This requires that the arguments be parsed and checked at
runtime, but it does provide the greatest flexibility.

Y ou can see from this code what “vector of change” problem the factory is responsible for
solving: if you add new types to the system (the change), the only code that must be modified
iswithin the factory, so the factory isolates the effect of that change.

A pattern for prototyping creation

A problem with the above design isthat it still requires a central location where all the types
of the objects must be known: inside the factory(') method. If new types are regularly being
added to the system, the factory() method must be changed for each new type. When you
discover something like this, it is useful to try to go one step further and move all of the
activities involving that specific type —including its creation — into the class representing that
type. Thisway, the only thing you need to do to add a new type to the systemisto inherit a
single class.

To move the information concerning type creation into each specific type of Trash, the
“prototype” pattern will be used. The general ideais that you have a master container of
objects, one of each type you're interested in making. The “prototype objects’ in this
container are used only for making new objects. In this case, we'll name the object-creation
member function clone(). When you' re ready to make a new object, presumably you have
some sort of information that establishes the type of object you want to create. The factory()
method (it’ s not required that you use factory with prototype, but they commingle nicely)
moves through the master container comparing your information with whatever appropriate
information is in the prototype objects in the master container. When a match is found,
factory() returns aclone of that object.

In this scheme there is no hard-coded information for creation. Each object knows how to
expose appropriate information to allow matching, and how to clone itself. Thus, the
factory() method doesn’t need to be changed when a new type is added to the system.

Chapter 16: Design Patterns 476

The prototypes will be contained in a static vector<Trash*> called prototypes. Thisisa
private member of the base class Trash. Thefriend class TrashPrototypel nit is responsible
for putting the Trash* prototypes into the prototype list.

You'll aso note that the I nfo class has changed. It now usesastring to act astype
identification information. Asyou shall see, thiswill allow usto read object information from
afile when creating Trash objects.

[1: C09: Trash. h

/1 Base class for Trash recycling exanpl es
#i f ndef TRASH H

#defi ne TRASH H

#i ncl ude <i ostreanp

#i ncl ude <excepti on>

#i ncl ude <vector>

#i ncl ude <string>

class TypedBin; // For a |later exanple
class Visitor; // For a later exanple

class Trash {
doubl e _wei ght;
voi d operator=(const Trashé&);
Trash(const Trash&);
public:
Trash(double w) : _weight(wt) {}
virtual double value() const = O;
doubl e wei ght () const { return _weight; }
virtual ~Trash() {}
class Info {
std::string _id;
doubl e _data;
public:
Info(std::string ident, double dat)
_id(ident), _data(dat) {}
doubl e data() const { return _data; }
std::string id() const { return _id; }
friend std::ostream& operat or<<(
std::ostream& os, const Info& info) {
return os << info. id << ':' << info._data;
}
I3
pr ot ect ed:
/1 Remai nder of class provides support for
/1 prototyping:
static std::vector<Trash*> prototypes;

Chapter 16: Design Patterns 477

friend class TrashPrototypelnit;
Trash() : _weight(0) {}
public:
static Trash* factory(const Info& info);
virtual std::string id() =0; // type ident
virtual Trash* clone(const Info& = O;
/1 Stubs, inserted for later use:
vi rtual bool
addToBi n(std: : vect or<TypedBi n*>&) {
return false;
}
virtual void accept(Visitor& {};
b
#endif // TRASHH ///:~

The basic part of the Trash class remains as before. The rest of the class supports the
prototyping pattern. Theid() member function returns a string that can be compared with the
id() of an Info object to determine whether thisis the prototype that should be cloned (of
course, the evaluation can be much more sophisticated than that if you need it). Both id(') and
clone() are pure virtual functions so they must be overridden in derived classes.

The last two member functions, addToBin() and accept(), are “stubs’” which will be used in
later versions of the trash sorting problem. It's necessary to have these virtual functionsin the
base class, but in the early examples there’ s no need for them, so they are not pure virtuals so
as not to intrude.

The factory() member function has the same declaration, but the definition is what handles
the prototyping. Here is the implementation file:

[/: C09:Trash.cpp {O
#i ncl ude "Trash. h"
usi ng nanespace std;

Trash* Trash::factory(const Info& info) {
vector<Trash*>::iterator it;
for(it = prototypes. begin();
it !'= prototypes.end(); it++) {
/1 Sonmehow determ ne the new type
/!l to create, and clone one:
if (info.id() == (*it)->id())
return (*it)->clone(info);
}
cerr << "Prototype not found for
<< info << endl
/1 "Default" to first one in the vector
return (*prototypes. begin())->clone(info);
Y I~

Chapter 16: Design Patterns 478

The string inside the I nfo object contains the type name of the Trash to be created; this
string is compared to the id() values of the objectsin prototypes. If there’'s a match, then
that’s the object to create.

Of course, the appropriate prototype object might not be in the prototypes list. In this case,
thereturn in theinner loop is never executed and you'll drop out at the end, where a default
value is created. It might be more appropriate to throw an exception here.

Asyou can see from the code, there' s nothing that knows about specific types of Trash. The
beauty of this design is that this code doesn’t need to be changed, regardless of the different
situationsit will be used in.

Trash subclasses

To fit into the prototyping scheme, each new subclass of Trash must follow some rules. First,
it must create a protected default constructor, so that no one but TrashPrototypel nit may
useit. TrashPrototypel nit isasingleton, creating one and only one prototype object for each
subtype. This guarantees that the Trash subtype will be properly represented in the
prototypes container.

After defining the “ordinary” member functions and data that the Trash object will actually
use, the class must also override the id() member (whichin this case returnsastring for
comparison) and the clone() function, which must know how to pull the appropriate
information out of the I nfo object in order to create the object correctly.

Here are the different types of Trash, eachin their own file.

/1: C09: Al umi num h
/1 The Al um num class with prototyping
#i f ndef ALUM NUM_H
#define ALUM NUM H
#i nclude "Trash. h"

class Alumi num: public Trash {
static double val;
pr ot ect ed:
Al um num() {}
friend class TrashPrototypelnit;
public:
Al umi num(double wt) : Trash(wt) {}
doubl e value() const { return val; }
static void val ue(doubl e newal) {
val = newval ;
}

std::string id() { return "A um nun'; }

Trash* clone(const Info& info) {
return new Al um nun{info.data());

}

Chapter 16: Design Patterns 479

1

#endif // ALUMNUMH ///:~

/1: C09: Paper. h

/1 The Paper class with prototyping
#i f ndef PAPER_H

#defi ne PAPER H

#i ncl ude "Trash. h"

cl ass Paper : public Trash {
static double val;

pr ot ect ed:

Paper () {}

friend class TrashPrototypelnit;
publi c:

Paper (double wt) : Trash(wt) {}

doubl e val ue() const { return val; }

static void val ue(doubl e newal) ({
val = newval ;

}

std::string id() { return "Paper"; }

Trash* cl one(const Info& info) {
return new Paper (info.data());

}
1
#endif // PAPER H ///:~
/1: C09:d ass. h
/1 The dass class with prototyping
#i f ndef GLASS H
#define GLASS H
#i nclude "Trash. h"

class dass : public Trash {
static double val;

pr ot ect ed:

Gass() {}

friend class TrashPrototypelnit;
publi c:

d ass(double w) : Trash(wt) {}

doubl e value() const { return val; }

static void val ue(doubl e newal) {
val = newval ;

}
std::string id() { return "d ass"; }

Chapter 16: Design Patterns 480

—

Trash* cl one(const Info& info) {
return new @ ass(info.data());
}

b
#endif // GLASS H///:~

And here’sanew type of Trash:

/1: CO09: Cardboard. h

/1 The Cardboard class with prototyping
#i f ndef CARDBOARD H

#defi ne CARDBOARD H

#i ncl ude "Trash. h"

cl ass Cardboard : public Trash {
static double val;
pr ot ect ed:
Cardboard() {}
friend class TrashPrototypelnit;
public:
Car dboard(double wt) : Trash(w) {}
doubl e value() const { return val; }
static void val ue(doubl e newal) {
val = newval ;
}

std::string id() { return "Cardboard";

Trash* cl one(const Info& info) {
return new Cardboard(info.data());
}

b
#endif // CARDBOARD H ///:~

/1: C09: TrashStatics.cpp {O

/!l Contains the static definitions for
/1 the Trash type's "val" data nmenbers
#i ncl ude "Trash. h"

#i ncl ude "A um num h"

#i ncl ude "Paper.h"

#i ncl ude "d ass. h"

#i ncl ude "Cardboard. h"

doubl e Al um num :val = 1.67
doubl e Paper::val = 0.10;
doubl e d ass::val = 0.23;

}

he static val data members must be defined and initialized in a separate code file:

Chapter 16: Design Patterns

481

doubl e Cardboard::val = 0.14;
111~

There' s one other issue: initialization of the static data members. TrashPrototypel nit must
create the prototype objects and add them to the static Trash::prototypes vector. Soit’s very
important that you control the order of initialization of the static objects, so the prototypes
vector is created before any of the prototype objects, which depend on the prior existence of
prototypes. The most straightforward way to do thisisto put all the definitionsin asingle
file, in the order in which you want them initialized.

TrashPrototypel nit must be defined separately because it inserts the actual prototypesinto

the vector, and throughout the chapter we' |l be inheriting new types of Trash from the

existing types. By making this one class in a separate file, a different version can be created

and linked in for the new situations, leaving the rest of the code in the system alone.

/1
/1

/1
#i
#i
#i
#i
#i

/1
st

cl

b

: Q09: TrashPrototypelnit.cpp {O

Performs initialization of all the prototypes.
/1l Create a different version of this file to

make different kinds of Trash.
ncl ude "Trash. h"

ncl ude " Al um num h"

ncl ude "Paper.h"

ncl ude "d ass. h"

ncl ude " Cardboard. h"

All ocate the static menber object:
d: :vector<Trash*> Trash:: prototypes;

ass TrashPrototypelnit {

Al umi num a;

Paper p;

d ass g;

Car dboard c;

TrashPrototypelnit() {
Trash: : prot ot ypes. push_back(&a) ;
Trash: : prot ot ypes. push_back(&p) ;
Trash: : prot ot ypes. push_back(&g) ;
Trash: : prot ot ypes. push_back(&c);

}

static TrashPrototypelnit singleton;

TrashPr ot ot ypel ni t

TrashPrototypelnit::singleton; ///:~

Chapter 16: Design Patterns

482

Thisistaken a step further by making TrashPrototypel nit a singleton (the constructor is
private), even though the class definition is not available in a header file so it would seem
safe enough to assume that no one could accidentally make a second instance.

Unfortunately, thisis one more separate piece of code you must maintain whenever you add a
new type to the system. However, it’s not too bad since the linker should give you an error
message if you forget (since prototypesis defined in thisfile aswell). Thereally difficult
problems come when you don’'t get any warnings or errorsif you do something wrong.

Parsing Trash from an external file

Theinformation about Trash objects will be read from an outside file. The file has all of the
necessary information about each piece of trash in asingle entry in the form Trash:weight.
There are multiple entries on aline, separated by commeas:

[/:1 Q09: Trash. dat

A ass: 54, Paper:22, Paper:11, dass: 17,

Al um num 89, Paper:88, Al um num 76, Cardboard: 96,
Al umi num 25, Al um num 34, d ass: 11, d ass: 68,

d ass: 43, Al umi num 27, Cardboard: 44, Al um num 18,
Paper:91, d ass:63, dass:50, dass: 80,

Al umi num 81, Cardboard: 12, d ass: 12, d ass: 54,

Al umi num 36, Al umi num 93, d ass: 93, Paper: 80,

d ass: 36, dass: 12, d ass: 60, Paper: 66,

Al umi num 36, Cardboard: 22,

11~

To parserthis, thelineisread and the string member function find() produces the index of the
“:". Thisisfirst used with the string member function substr () to extract the name of the
trash type, and next to get the weight that is turned into a double with the atof() function
(from <cstdlib>).

The Trash file parser is placed in a separate file since it will be reused throughout this
chapter. To facilitate this reuse, the function fillBin(') which does the work takes asits first
argument the name of the file to open and read, and as its second argument a reference to an
object of type Fillable. This uses what I’ ve named the “interface” idiom at the beginning of
the chapter, and the only attribute for this particular interface is that “it can befilled,” viaa
member function addTrash(). Here' s the header file for Fillable:

[1: CO9:Fillable.h
/1 Any object that can be filled with Trash
#i f ndef FILLABLE_H
#define FILLABLE_H

class Fillable {
publi c:

virtual void addTrash(Trash* t) = O;
i

Chapter 16: Design Patterns 483

#endif // FILLABLE_H ///:~

Notice that it follows the interface idiom of having no non-static data members, and al pure
virtual member functions.

Thisway, any class which implements this interface (typically using multiple inheritance) can
befilled using fillBin(). Here' s the header file:

[/: Q9:fillBin.h

/1 Open a file and parse its contents into
/1 Trash objects, placing each into a vector
#i f ndef FILLBIN_H

#define FILLBIN_H

#i nclude "Fill abl evector.h"

#i ncl ude <vector>

#i ncl ude <string>

voi d
fillBin(std::string filename, Fillable& bin);

/1l Special case to handl e vector

inline void fillBin(std::string fil enane,
std::vector<Trash*>& bin) {
Fil |l abl evector fv(bin);
fillBin(filenane, fv);

}
#endif // FILLBIN.H ///:~

—

he overloaded version will be discussed shortly. First, here is the implementation:

/[1: CO9:fillBin.cpp {O

/1 1nplenmentation of fillBin()
#include "fillBin.h"

#include "Fillable.h"

#include "../C01/trimh"
#include "../require. h"

#i ncl ude <fstreanp

#i ncl ude <string>

#i ncl ude <cstdlib>

usi ng namespace std;

void fillBin(string filenane, Fillable& bin) {
ifstreamin(filenane.c_str());
assure(in, filenane.c_str());
string s;
whil e(getline(in, s)) {
int comma = s.find(',");

Chapter 16: Design Patterns 484

/] Parse each line into entries:
whi l e(comma ! = string::npos) {
string e = trin(s.substr(0,comm));
/1 Parse each entry:
int colon = e.find(':");
string type = e.substr(0, colon);
doubl e wei ght =
atof (e.substr(colon + 1).c_str());
bi n. addTr ash(
Trash: : factory(
Trash::Info(type, weight)));
/1 Move to next part of |ine:
s = s.substr(comma + 1);
comma = s.find(',");
}
}
|
After thefileis opened, each lineis read and parsed into entries by looking for the separating
comma, then each entry is parsed into its type and weight by looking for the separating colon.
Note the convenience of using the trim(') function from chapter 17 to remove the white space
from both ends of a string. Once the type and weight are discovered, an Info object is created
from that data and passed to the factory(). Theresult of thiscall isaTrash* which is passed
to the addTrash() function of the bin (which is the only function, remember, that aFillable
guarantees).

Anything that supports the Fillable interface can be used with fillBin(). Of course, vector
doesn’t implement Fillable, so it won't work. Since vector isused in most of the examples, it
makes sense to add the second overloaded fillBin() function that takes a vector, as seen
previoudly in fillBin.h. But how to make a vector <Trash*> adapt to the Fillable interface,
which saysit must have an addTrash() member function? The key isin the word “adapt”;
we use the adapter pattern to create a class that has avector and is also Fillable.

By saying “isalso Fillable,” the hint is strong (is-a) to inherit from Fillable. But what about
the vector <Trash*>? Should this new class inherit from that? We don't actually want to be
making a new kind of vector, which would force everyone to only use our vector in this
situation. Instead, we want someone to be able to have their own vector and say “please fill
this.” So the new class should just keep areference to that vector:

/1. CO9:Fillablevector.h

/1 Adapter that nakes a vector<Trash*> Fill abl e
#i f ndef FI LLABLEVECTOR H

#defi ne FI LLABLEVECTOR H

#i ncl ude "Trash. h"

#include "Fill able. h"

#i ncl ude <vector>

Chapter 16: Design Patterns 485

class Fillablevector : public Fillable {
std::vector<Trash*>& v;

public:
Fi || abl evector(std::vector<Trash*>& vv)
v(vv) {}
voi d addTrash(Trash* t) { v.push_back(t); }
1

#endi f // FILLABLEVECTOR H ///:~

Y ou can see that the only job of thisclassisto connect Fillable'saddTrash() member
function to vector’s push_back() (that’s the “adapter” motivation). With this classin hand,
the overloaded filIBin() member function can be used with avector infillBin.h:

inline void fillBin(std::string fil enane,
std::vector<Trash*>& bin) {
Fill abl evector fv(bin);
fillBin(filenane, fv);

}

Notice that the adapter object fv only exists for the duration of the function call, and it wraps
bin in an interface that works with the other fillBin() function.

This approach works for any container class that’s used frequently. Alternatively, the
container can multiply inherit from Fillable. (You'll seethislater, in DynaTrash.cpp.)

Recycling with prototyping
Now you can see the new version of the recycling solution using the prototyping technique:

/1: C09: Recycl e3. cpp

/1{L} TrashPrototypelnit

[1{L} fillBin Trash TrashStatics
/1 Recycling with RTTI and Prototypes
#i ncl ude "Trash. h"

#i ncl ude " Al um num h"

#i ncl ude "Paper.h"

#i ncl ude "d ass. h"

#include "fillBin.h"

#i ncl ude "sunwval ue. h"

#i nclude "../purge.h"

#i ncl ude <fstreanp

#i ncl ude <vector>

usi ng namespace std;

of stream out ("Recycl e3. out");

int main() {
vect or <Trash*> bi n;
/1 Fill up the Trash bin:

Chapter 16: Design Patterns 486

fillBin("Trash.dat", bin);
vect or <Al um nunt> al Bi n;
vect or <Paper *> paper Bi n;
vect or<d ass*> gl assBi n;
vector<Trash*>::iterator it = bin.begin();
while(it !'= bin.end()) {
/1 Sort the Trash:
Al um nunr ap =
dynam c_cast <Al um nunt>(*it);
Paper* pp = dynam c_cast <Paper*>(*it);
d ass* gp = dynami c_cast<d ass*>(*it);
i f(ap) al Bi n. push_back(ap);
i f(pp) paperBin. push_back(pp);
i f(gp) gl assBin.push_back(gp);
it++;
}
sunVal ue(al Bi n);
sunVal ue(paper Bi n);
sunVal ue(gl assBin);
sunVal ue(bi n);
pur ge(bin);
Yy I~

The process of opening the data file containing Trash descriptions and the parsing of that file
have been wrapped into fillBin('), so now it's no longer a part of our design focus. Y ou will
see that throughout the rest of the chapter, no matter what new classes are added, fillBin()
will continue to work without change, which indicates a good design.

In terms of object creation, this design does indeed severely localize the changes you need to
make to add a new type to the system. However, there’ s a significant problem in the use of
RTTI that shows up clearly here. The program seemsto run fine, and yet it never detects any
cardboard, even though thereis cardboard in the list of trash datal This happens because of
the use of RTTI, which looks for only the types that you tell it to look for. The clue that RTTI
is being misused isthat every type in the systemis being tested, rather than a single type or
subset of types. But if you forget to test for your new type, the compiler has nothing to say
about it.

Asyou will seelater, there are ways to use polymorphism instead when you' re testing for
every type. But if you use RTTI alot in this fashion, and you add a new type to your system,
you can easily forget to make the necessary changes in your program and produce a difficult-
to-find bug. So it’sworth trying to eliminate RTTI in this case, not just for aesthetic reasons —
it produces more maintainable code.

Chapter 16: Design Patterns 487

Abstracting usage

With creation out of the way, it's time to tackle the remainder of the design: where the classes
are used. Since it sthe act of sorting into bins that’s particularly ugly and exposed, why not
take that process and hide it inside a class? Thisis simple “complexity hiding,” the principle
of “If you must do something ugly, at least localize the ugliness.” In an OOP language, the

best place to hide complexity isinside aclass. Here' s afirst cut:

vect or <Al um nunt >

TrashSorter ;
/ ~===> vect or <Paper *>

vector of [T77777] [/
Trash bins |f--—--—--] F~o vect or <d ass*>

\
‘----» vect or <Car dboar d* >

A TrashSorter object holds avector that somehow connects to vector s holding specific
types of Trash. The most convenient solution would be a vector <vector<Trash*>>, but it's

too early to tell if that would work out best.

In addition, we' d like to have a sort(') function as part of the TrashSorter class. But, keeping
in mind that the goal is easy addition of new types of Trash, how would the statically-coded
sort() function deal with the fact that a new type has been added? To solve this, the type
information must be removed from sort() so al it needsto do is call ageneric function which
takes care of the details of type. This, of course, is another way to describe avirtual function.
So sort(') will simply move through the vector of Trash binsand cal avirtual function for
each. I'll call the function grab(Trash*), so the structure now looks like this:

vect or <Al uni nunt >
bool grab(Trash*);

!
TrashSorter / vect or <Paper *>
1 ~~="> bool grab(Trash*);
4
________ 1
vector of f-——-__] L/
Trash bins T “ vect or <@ ass*>
B » bool grab(Trash*);
\\
\
\\
___,| vector <Car dboar d* >

bool grab(Trash*);

488

Chapter 16: Design Patterns

However, TrashSorter needsto call grab() polymorphically, through a common base class
for al the vectors. Thisbase classis very simple, sinceit only needs to establish the interface
for the grab() function.

Now there's a choice. Following the above diagram, you could put avector of trash pointers
as amember object of each subclassed Thin. However, you will want to treat each Thin asa
vector, and perform all the vector operationson it. Y ou could create a new interface and
forward all those operations, but that produces work and potential bugs. The type we're
creating isreally a Thin and avector, which suggests multiple inheritance. However, it turns
out that’s not quite necessary, for the following reason.

Each time a new type is added to the system the programmer will have to go in and derive a
new class for the vector that holds the new type of Trash, along with its grab() function.
The code the programmer writes will actually be identical code except for the typeit’'s
working with. That last phrase is the key to introduce a template, which will do all the work of
adding a new type. Now the diagram |ooks more complicated, although the process of adding
anew type to the system will be simple. Here, TrashBin can inherit from TBin, which
inherits from vector <Trash*> like this (the multiple-lined arrows indicated template
instantiation):

TBin : public vector<Trash*>
virtual bool grab(Trash*);

i

tenpl ate TrashBi n<TrashType>
(inplenents grab();)

m A A A
TrashSorter 7 TrashBi n<Paper >
vect or of s B > Tr ashBi n<d ass>
TrashBi ns L

] T---» TrashBi n<Al uni nun®
bool sort(Trash*); |d.

~~---» Tr ashBi n<Car dboar d>

The reason TrashBin must be atemplate is so it can automatically generate the grab()
function. A further templatization will allow the vector s to hold specific types.

That said, we can look at the whole program to see how all thisisimplemented.

/1: C09: Recycl e4d. cpp

/1{L} TrashPrototypelnit

/[1{L} fillBin Trash TrashStatics

/1 Adding TrashBins and TrashSorters

Chapter 16: Design Patterns 489

#i ncl ude "Trash. h"

#i ncl ude "A um num h"
#i ncl ude "Paper.h"

#i ncl ude "d ass. h"

#i ncl ude "Cardboard. h"
#include "fillBin.h"
#i ncl ude "sunwval ue. h"
#i nclude "../purge.h"
#i ncl ude <fstreanp

#i ncl ude <vector>
usi ng namespace std;
of stream out ("Recycl e4. out");

class TBin : public vector<Trash*> {
public:
virtual bool grab(Trash*) = 0O;

};

t enpl at e<cl ass TrashType>
class TrashBin : public TBin {
public:
bool grab(Trash* t) {
TrashType* tp = dynam c_cast <TrashType*>(t);
if('tp) return false; // Not grabbed
push_back(tp);
return true; // Object grabbed

}
1
class TrashSorter : public vector<TBi n*> {
public:
bool sort(Trash* t) {
for(iterator it = begin(); it != end(); it++)

if((*it)->grab(t))
return true
return fal se;
}
voi d sortBin(vector<Trash*>& bin) {
vector<Trash*>::iterator it;
for(it = bin.begin(); it !'= bin.end(); it++)
if(!sort(*it))
cerr << "bin not found" << endl

}
~TrashSorter() { purge(*this); }

Chapter 16: Design Patterns 490

}s

int main() {
vect or <Trash*> bin;
/1 Fill up the Trash bin:
fillBin("Trash.dat", bin);
TrashSorter tbins;
t bi ns. push_back(new TrashBi n<Al um nunp) ;
t bi ns. push_back(new TrashBi n<Paper >) ;
t bi ns. push_back(new TrashBi n<d ass>);
t bi ns. push_back(new TrashBi n<Car dboar d>) ;
t bi ns. sort Bi n(bi n);
for(TrashSorter::iterator it = tbins.begin();
it !=thins.end(); it++)
sunval ue(**it);
sunval ue(bi n);

purge(bin);
Y I~
Tbi ns
> Al um num Vect or
......... e o ST
Trash Sorter
4 Paper Vect or
Vect or of L p
Trash Bins bool ean grab(Trash)

R » | d ass Vect or

bool ean grab(Trash)

TrashSorter needsto call each grab() member function and get a different result depending
on what type of Trash the current vector isholding. That is, each vector must be aware of
the type it holds. This“awareness’ is accomplished with avirtual function, the grab()
function, which thus eliminates at |east the outward appearance of the use of RTTI. The
implementation of grab() does use RTTI, but it's templatized so as long as you put a new
TrashBin in the TrashSorter when you add a type, everything elseis taken care of.

Memory is managed by denoting bin as the “master container,” the one responsible for
cleanup. With thisrule in place, calling purge() for bin cleans up al the Trash objects. In
addition, TrashSorter assumesthat it “owns’ the pointersit holds, and cleans up all the
TrashBin objects during destruction.

Chapter 16: Design Patterns 491

A basic OOP design principle is“Use data members for variation in state, use polymorphism
for variation in behavior.” Y our first thought might be that the grab() member function
certainly behaves differently for avector that holds Paper than for one that holds Glass. But
what it doesis strictly dependent on the type, and nothing else.

1. ThinList holdsaset of Thin pointers, so that sort() can iterate through the Tbins when
it'slooking for amatch for the Trash object you' ve handed it.

2. sortBin() allowsyou to pass an entire Thin in, and it moves through the Tbin, picks out
each piece of Trash, and sorts it into the appropriate specific Thin. Notice the genericity
of this code: it doesn’t change at all if new types are added. If the bulk of your code
doesn’t need changing when a new type is added (or some other change occurs) then you
have an easily-extensible system.

3. Now you can see how easy it isto add a new type. Few lines must be changed to support
the addition. If it's really important, you can squeeze out even more by further
manipulating the design.

4. One member function call causes the contents of bin to be sorted into the respective
specifically-typed bins.

Applying double dispatching

The above design is certainly satisfactory. Adding new types to the system consists of adding
or modifying distinct classes without causing code changes to be propagated throughout the
system. In addition, RTTI is not as “misused” asit wasin Recyclel.cpp. However, it's
possible to go one step further and eliminate RTTI altogether from the operation of sorting the
trash into bins.

To accomplish this, you must first take the perspective that all type-dependent activities —
such as detecting the type of a piece of trash and putting it into the appropriate bin — should be
controlled through polymorphism and dynamic binding.

The previous examples first sorted by type, then acted on sequences of elements that were all
of aparticular type. But whenever you find yourself picking out particular types, stop and
think. The whole idea of polymorphism (dynamically-bound member function calls) isto
handl e type-specific information for you. So why are you hunting for types?

The multiple-dispatch pattern demonstrated at the beginning of this chapter uses virtual
functions to determine all type information, thus eliminating RTTI.

| mplementing the double dispatch

In the Trash hierarchy we will now make use of the “stub” virtual function addToBin() that
was added to the base class Trash but unused up until now. This takes an argument of a

TypedBin
add(Al um num
add(Paper)

add(d ass)
Chapter 16: Design Patterns Add(Car dhoar d) 492

)i

container of TypedBin. A Trash object uses addToBin() with this container to step through
and try to add itself to the appropriate bin, and thisiswhere you'll see the double dispatch.

Tr ash
addToBi n(TypedBi n[])

Aluminum || Paper d ass Car dboard
addToBi n() "addToBi n() |[laddToBin() [|addToBin()

The new hierarchy is TypedBin, and it contains its own member function called add() that is
also used polymorphically. But here's an additional twist: add() is overloaded to take
arguments of the different types of Trash. So an essential part of the double dispatching
scheme also involves overloading (or at least having a group of virtual functionsto call;
overloading happens to be particularly convenient here).

/1: C09: TypedBin. h

#i f ndef TYPEDBI N H
#defi ne TYPEDBI N H

#i ncl ude "Trash. h"

#i ncl ude "A um num h"
#i ncl ude "Paper.h"

#i ncl ude "d ass. h"

#i ncl ude "Cardboard. h"
#i ncl ude <vector>

/1 Tenplate to generate doubl e-di spatching
/1 trash types by inheriting fromoriginals:
t enpl at e<cl ass TrashType>
class DD : public TrashType {
pr ot ect ed:
DD() : TrashType(0) {}
friend class TrashPrototypelnit;
public:
DD(double wt) : TrashType(wt) {}
bool addToBi n(std::vector<TypedBi n*>& th) {
for(int i =0; i <th.size(); i++)
if(tb[i]->add(this))
return true;
return false;
}
/1 COverride clone() to create this new type:
Trash* cl one(const Trash::Info& info) {

Chapter 16: Design Patterns 493

return new DD(info.data());

}
}s

/1l vector<Trash*> that knows how to
/1 grab the right type
class TypedBin : public std::vector<Trash*> {
pr ot ect ed:
bool addlt(Trash* t) {
push_back(t);
return true
}
public:
virtual bool add(DD<Al um nunmp*) {
return fal se;
}
virtual bool add(DD<Paper>*) {
return fal se;
}
virtual bool add(DD<d ass>*) {
return fal se;
}
virtual bool add(DD<Cardboard>*) {
return fal se;
}
}s

/1 Tenplate to generate specific TypedBins:

t enpl at e<cl ass TrashType>

class BinOF : public TypedBin {

public:
/1 Only overrides add() for this specific type:
bool add(TrashType* t) { return addlt(t); }

b

#endif // TYPEDBIN H ///:~

In each particular subtype of Aluminum, Paper, Glass, and Cardboard, the addToBin()
member function isimplemented, but it looks like the code is exactly the same in each case.
The code in each addT oBin() callsadd() for each TypedBin object in the array. But notice
the argument: this. The type of thisis different for each subclass of Trash, so the codeis
different. So thisisthe first part of the double dispatch, because once you're inside this
member function you know you're Aluminum, or Paper, etc. During the call to add(), this
information is passed via the type of this. The compiler resolves the cal to the proper
overloaded version of add(). But since tb[i] produces a pointer to the base type TypedBin,

Chapter 16: Design Patterns 494

this call will end up calling a different member function depending on the type of TypedBin
that's currently selected. That isthe second dispatch.

Y ou can see that the overloaded add() methods al return false. If the member function is not
overloaded in aderived class, it will continue to return false, and the caller (addToBin(), in
this case) will assume that the current Trash object has not been added successfully to a
container, and continue searching for the right container.

In each of the subclasses of TypedBin, only one overloaded member function is overridden,
according to the type of bin that’s being created. For example, Car dboar dBin overrides
add(DD<Car dboard>). The overridden member function adds the Trash pointer to its
container and returnstrue, while al the rest of the add() methodsin Car dboardBin
continue to return false, since they haven't been overridden. With C++ templates, you don't
have to explicitly write the subclasses or place the addToBin() member functionin Trash.

To set up for prototyping the new types of trash, there must be a different initializer file:

/1: C09: DDTrashPrototypelnit.cpp {O
#i ncl ude "TypedBin. h"

#i ncl ude "Al um num h"

#i ncl ude "Paper.h"

#i nclude "d ass. h"

#i ncl ude " Cardboard. h"

std::vector<Trash*> Trash:: prototypes;

class TrashPrototypelnit {

DD<Al um nun a;

DD<Paper > p;

DD<d ass> g;

DD<Car dboar d> c;

TrashPrototypelnit() {
Trash: : prot ot ypes. push_back(&a) ;
Trash: : prot ot ypes. push_back(&p) ;
Trash: : prot ot ypes. push_back(&g) ;
Trash: : prot ot ypes. push_back(&c);

}

static TrashPrototypelnit singleton;
b
TrashPr ot ot ypel ni t
TrashPrototypelnit::singleton; ///:~
Here' sthe rest of the program:

//: C09: Doubl eDi spat ch. cpp
/1{L} DDTrashPrototypelnit
[1{L} fillBin Trash TrashStatics

Chapter 16: Design Patterns 495

/1 Using nmultiple dispatching to handle nore than
/1 one unknown type during a nenber function cal
#i ncl ude "TypedBin. h"

#include "fillBin.h"

#i ncl ude "sunwval ue. h"

#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

usi ng namespace std;

of stream out (" Doubl eDi spatch. out");

class TrashBi nSet : public vector<TypedBi n*> {
public:
TrashBi nSet () {
push_back(new Bi nOf <DD<Al umi nunme >);
push_back(new Bi nOf <DD<Paper > >);
push_back(new Bi nOf <DD<d ass> >);
push_back(new Bi nCf <DD<Car dboar d> >);
1
voi d sortlntoBins(vector<Trash*>& bin) {
vector<Trash*>::iterator it;
for(it = bin.begin(); it !'= bin.end(); it++)
/1 Performthe double dispatch
if(!(*it)->addToBi n(*this))
cerr << "Couldn't add " << *it << endl
}
~TrashBi nSet () { purge(*this); }
1

int main() {
vect or <Trash*> bi n;
TrashBi nSet bi ns;
/1 fillBin() still works, w thout changes, but
/1 different objects are cloned:
fillBin("Trash.dat", bin);
/1 Sort fromthe master bin into the
/1 individually-typed bins:
bi ns. sort | ntoBi ns(bin);
TrashBinSet::iterator it;

for(it = bins.begin(); it !'= bins.end(); it++)
sunval ue(**it);

/1 ... and for the master bin

sunval ue(bi n);

purge(bin);

Chapter 16: Design Patterns

496

|}///:~

TrashBinSet encapsulates all of the different types of TypedBins, along with the
sortlntoBins() member function, which iswhere all the double dispatching takes place. Y ou
can see that once the structure is set up, sorting into the various TypedBinsis remarkably
easy. In addition, the efficiency of two virtual calls and the double dispatch is probably better
than any other way you could sort.

Notice the ease of use of this systemin main(), as well as the complete independence of any
specific type information within main(). All other methods that talk only to the Trash base-
classinterface will be equally invulnerable to changesin Trash types.

The changes necessary to add a new type are relatively isolated: you inherit the new type of
Trash with itsaddToBin() member function, then make a small modification to TypedBin,
and finally you add a new type into the vector in TrashBinSet and modify
DDTrashPrototypel nit.cpp.

Applying the visitor pattern

Now consider applying a design pattern with an entirely different goal to the trash-sorting
problem. As demonstrated earlier in this chapter, the visitor pattern’s goal isto alow the
addition of new polymorphic operations to a frozen inheritance hierarchy.

For this pattern, we are no longer concerned with optimizing the addition of new types of
Trash to the system. Indeed, this pattern makes adding a new type of Trash more
complicated. It looks like this:

Trash Visitor
accept(Visitor&); vi sit (Al um nunt);
vi si t (Paper*);
visit(d ass*);

vi sit (Cardboard*);
Al um num 7
accept (Visitoré& v){

v.visit(this); PriceVisitor
} vi sit (Al un nunt){
/1 Alum num
/1 specific work

A

}
vi sit(Paper*) {

/'l Paper -

/1 specific work

}

Chapter 16: Design Patterns 497

Trash Visitor
accept (Visitor) Vi sit (A um num
Vi sit (Paper)
Visit(d ass)
I | *
Paper d ass | |
Wei ght Vi si t or etc.
Al um num
accept (Visitor v) { PriceVisitor
v.visit(this); vi sit (Alum num {
} /1 Perform Al uni num
/1 specific work
}

vi si t (Paper) {

/1 Perform Paper -
/1 specific work

hl

Now, if t isaTrash pointer to an Aluminum object, the code:

PriceVisitor pv;
t->accept (pv);

causes two polymorphic member function calls: the first one to select Aluminum’s version of
accept(), and the second one within accept() when the specific version of visit() iscalled
dynamically using the base-class Visitor pointer v.

This configuration means that new functionality can be added to the system in the form of
new subclasses of Visitor. The Trash hierarchy doesn’t need to be touched. Thisisthe prime
benefit of the visitor pattern: you can add new polymorphic functionality to a class hierarchy
without touching that hierarchy (once the accept() methods have been installed). Note that
the benefit is helpful here but not exactly what we started out to accomplish, so at first blush
you might decide that thisisn’t the desired solution.

But look at one thing that’ s been accomplished: the visitor solution avoids sorting from the
master Trash sequence into individual typed sequences. Thus, you can leave everything in the
single master sequence and simply pass through that sequence using the appropriate visitor to
accomplish the goal. Although this behavior seemsto be a side effect of visitor, it does give
us what we want (avoiding RTTI).

The double dispatching in the visitor pattern takes care of determining both the type of Trash
and the type of Visitor. In the following example, there are two implementations of Visitor:

Chapter 16: Design Patterns 498

PriceVisitor to both determine and sum the price, and WeightVisitor to keep track of the

weights.

You can see al of thisimplemented in the new, improved version of the recycling program.

Aswith DoubleDispatch.cpp, the Trash class has had an extra member function stub

(accept()) inserted in it to allow for this example.

Since there's nothing concrete in the Visitor base class, it can be created as an inter face:

//: C09:Visitor.h

/'l The base interface for visitors

/1 and tenmplate for visitable Trash types
#i f ndef VISITOR H

#define VISITOR H

#i ncl ude "Trash. h"

#i ncl ude "Al um num h"

#i ncl ude "Paper.h"

#i nclude "d ass. h"

#i ncl ude " Cardboard. h"

class Visitor {
public:
virtual void visit(A um num a) = O;
virtual void visit(Paper* p)
virtual void visit(d ass* Q)
virtual void visit(Cardboard* c

b

0;
0;
) =0;

/1 Tenplate to generate visitable
/1 trash types by inheriting fromoriginals:
t enpl at e<cl ass TrashType>
class Visitable : public TrashType {
pr ot ect ed:
Visitable () : TrashType(0) {}
friend class TrashPrototypelnit;
public:
Vi sitabl e(double wt) : TrashType(wt) {}

void accept(Visitor& v) { v.visit(this); }

Trash* cl one(const Trash::Info& info) {
return new Visitable(info.data());

}
s
#endif // VISITORH ///:~

/1 Remenmber "this" is pointer to current type:

/1 Override clone() to create this new type:

Chapter 16: Design Patterns

499

As before, adifferent version of the initialization file is necessary:

/1: C09:VisitorTrashPrototypelnit.cpp {O
#include "Visitor.h"

std::vector<Trash*> Trash:: prototypes;

class TrashPrototypelnit {

Vi si t abl e<Al umi nun® a;

Vi si t abl e<Paper > p;

Vi si t abl e<d ass> g;

Vi si t abl e<Car dboar d> c;

TrashPrototypelnit() {
Trash: : prot ot ypes. push_back(&a) ;
Trash: : prot ot ypes. push_back(&p) ;
Trash: : prot ot ypes. push_back(&g) ;
Trash: : prot ot ypes. push_back(&c);

}

static TrashPrototypelnit singleton;

}s

TrashProt ot ypel ni t
TrashPrototypelnit::singleton; ///:~

he rest of the program creates specific Visitor types and sends them through a single list of
rash objects:

[1: CO09: TrashVisitor.cpp

/1{L} VisitorTrashPrototypelnit
/[1{L} fillBin Trash TrashStatics
/1 The "visitor" pattern

#i nclude "Visitor.h"

#include "fillBin.h"

#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

usi ng nanmespace std;

of stream out ("TrashVisitor.out");

— -

/1 Specific group of algorithns packaged
/1 in each inplenentation of Visitor:
class PriceVisitor : public Visitor {

doubl e al Sunmy // Al um num

doubl e pSum // Paper

double gSum // d ass

doubl e cSum // Cardboard

Chapter 16: Design Patterns 500

public:
void visit(A um nunt al) {

al Sum += v;

}
void visit(Paper* p) {

out <<
"val ue of Paper= " << v << endl;
pSum += v;
}
void visit(dass* g) {

out <<
"value of dass=" << v << endl;
gSum += v;

}
voi d visit(Cardboard* c) {

out <<
"val ue of Cardboard
cSum += v;

<< vV <<

void total (ostream& os) {
0Ss <<
“"Total Alum num $" << al Sum <<
“Total Paper: $" << pSum << "\n"
"Total dass: $" << gSum << "\n"
"Total Cardboard: $" << cSum <<

}
}s

class WeightVisitor : public Visitor {
doubl e al Sum // Al um num
doubl e pSum // Paper
double gSum // d ass
doubl e cSum // Cardboard
public:
void visit(A um nunt al) {
al Sum += al ->wei ght () ;
out << "weight of Al umnum="
<< al ->wei ght () << endl;

double v = al ->weight() * al->val ue();
out << "value of Alum nunk " << v << endl;

double v = p->weight() * p->value();

double v = g->weight() * g->value();

double v = c->weight() * c->value();

endl ;

"\ "
<<
<<

endl ;

<<

Chapter 16: Design Patterns

501

void visit(Paper* p) {
pSum += p->wei ght ();
out << "weight of Paper ="
<< p->wei ght () << endl
}
void visit(dass* g) {
gSum += g->wei ght () ;
out << "weight of dass ="
<< g->wei ght () << endl
}
voi d visit(Cardboard* c) {
cSum += c->wei ght();
out << "weight of Cardboard ="
<< c->wei ght () << endl
}
void total (ostream& os) {
0s << "Total weight Alum num"
<< al Sum << endl
0s << "Total weight Paper:™
<< pSum << endl
0s << "Total weight d ass:"
<< gSum << endl
0s << "Total weight Cardboard:"
<< ¢cSum << endl
}
1

int main() {
vect or <Trash*> bin;
/1 fillBin() still works, w thout changes, but
/1 different objects are prototyped:
fillBin("Trash.dat", bin);
/1 You could even iterate through
/1 a list of visitors!
PriceVisitor pv;
Wei ght Vi sitor w;
vector<Trash*>::iterator it = bin.begin();
while(it !'= bin.end()) {
(*it)->accept(pv);
(*it)->accept(w);
it++;
}
pv.total (out);
wv. total (out);

Chapter 16: Design Patterns 502

purge(bin);
Y I~

Note that the shape of main() has changed again. Now there’sonly asingle Trash bin. The
two Visitor objects are accepted into every element in the sequence, and they perform their
operations. The visitors keep their own internal datato tally the total weights and prices.

Finally, there's no run-time type identification other than the inevitable cast to Trash when
pulling things out of the sequence.

One way you can distinguish this solution from the double dispatching solution described
previously isto note that, in the double dispatching solution, only one of the overloaded
methods, add(), was overridden when each subclass was created, while here each one of the
overloaded visit() methodsis overridden in every subclass of Visitor.

More coupling?

There’'salot more code here, and there's definite coupling between the Trash hierarchy and
the Visitor hierarchy. However, there’' s also high cohesion within the respective sets of
classes: they each do only one thing (Trash describes trash, while Visitor describes actions
performed on Trash), which isan indicator of agood design. Of course, in this case it works
well only if you're adding new Visitors, but it getsin the way when you add new types of
Trash.

Low coupling between classes and high cohesion within aclass is definitely an important
design goal. Applied mindlessly, though, it can prevent you from achieving a more el egant
design. It seemsthat some classes inevitably have a certain intimacy with each other. These
often occur in pairs that could perhaps be called couplets, for example, containers and
iterators. The Trash-Visitor pair above appears to be another such couplet.

RTTI considered harmful ?

Various designs in this chapter attempt to remove RTTI, which might give you the impression
that it's “considered harmful” (the condemnation used for poor goto). Thisisn’t true; it isthe
misuse of RTTI that isthe problem. The reason our designs removed RTTI is because the
misapplication of that feature prevented extensibility, which contravened the stated goal of
adding a new type to the system with aslittle impact on surrounding code as possible. Since
RTTI is often misused by having it look for every single type in your system, it causes code to
be non-extensible: when you add a new type, you have to go hunting for all the code in which
RTTI isused, and if you miss any you won't get help from the compiler.

However, RTTI doesn't automatically create non-extensible code. Let’ srevisit the trash
recycler once more. Thistime, anew tool will be introduced, which | call aTypeM ap. It
inherits from amap that holds a variant of type_info object as the key, and vector <Trash*>
asthevalue. The interface is simple: you call addTrash() to add anew Trash pointer, and
the map class providesthe rest of the interface. The keys represent the types contained in the
associated vector. The beauty of this design (suggested by Larry O’ Brien) isthat the

TypeM ap dynamically adds a new key-value pair whenever it encounters a new type, so

Chapter 16: Design Patterns 503

whenever you add a new type to the system (even if you add the new type at runtime), it
adapts.

The example will again build on the structure of the Trash types, and will usefillBin() to
parse and insert the values into the TypeM ap. However, TypeM ap is not avector<Trash*>,
and so it must be adapted to work with fillBin() by multiply inheriting from Fillable. In
addition, the Standard C++ type_info classis too restrictive to be used as akey, so akind of
wrapper class Typel nfo is created, which simply extracts and stores the type _info char*
representation of the type (making the assumption that, within the realm of a single compiler,
this representation will be unique for each type).

/1: C09: DynaTrash. cpp

/1{L} TrashPrototypelnit

/1{L} fillBin Trash TrashStatics

/1 Using a nap of vectors and RTTI
/1 to automatically sort Trash into
/1 vectors. This solution, despite the
/1 use of RTTI, is extensible.

#i ncl ude "Trash. h"

#include "fillBin.h"

#i ncl ude "sunwval ue. h"

#i nclude "../purge.h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <vector>

#i ncl ude <map>

#i ncl ude <typei nfo>

usi ng namespace std;

of stream out ("DynaTrash. out");

/1 Must adapt fromtype info in Standard C++,
/1 since type_info is too restrictive:
tenpl ate<class T> // T should be a base cl ass
class Typelnfo {
string id;
public:
Typelnfo(T* t) : id(typeid(*t).name()) {}
const string& name() { return id; }
friend bool operator<(const Typelnfo& |v,
const Typel nfo& rv){
return lv.id < rv.id,;
}
b

class TypeMap :
publ i c map<Typel nf o<Trash>, vector<Trash*> >,

Chapter 16: Design Patterns 504

public Fillable {
public:
/1 Satisfies the Fillable interface:
voi d addTrash(Trash* t) {
(*this)[Typel nfo<Trash>(t)]. push_back(t);

}
~TypeMap() {
for(iterator it = begin(); it != end(); it++)
purge((*it).second);

}s

int main() {
TypeMap bi n;
fillBin("Trash.dat", bin); // Sorting happens
TypeMap::iterator it;
for(it = bin.begin(); it !'= bin.end(); it++)
sunval ue((*it).second);
Y I~

Typelnfo is templatized because typeid() does not allow the use of void*, which would be
the most general way to solve the problem. So you are required to work with some specific
class, but this class should be the most base of all the classes in your hierarchy. Typel nfo
must define an oper ator < because a map needsit to order its keys.

Although powerful, the definition for TypeM ap is simple; the addTrash() member function
does most of the work. When you add a new Trash pointer, the a Typel nfo<Trash> object
for that type is generated. Thisis used as a key to determine whether avector holding objects
of that typeis already present in the map. If so, the Trash pointer is added to that vector. If
not, the Typel nfo object and a new vector are added as a key-value pair.

An iterator to the map, when dereferenced, produces a pair object where the key (Typel nfo)
isthe first member, and the value (Vector <Trash*>) is the second member. And that’s all
thereistoit.

The TypeM ap takes advantage of the design of fillBin('), which doesn’t just try to fill a
vector but instead anything that implements the Fillable interface with itsaddTrash()
member function. Since TypeM ap is multiply inherited from Fillable, it can be used as an
argument to fillBin() like this:

fillBin("Trash.dat", bin);

An interesting thing about this design is that even though it wasn’t created to handle the
sorting, fillBin() is performing a sort every timeit inserts a Trash pointer into bin. When the
Trash isthrown into bin it'simmediately sorted by TypeM ap’sinternal sorting mechanism.
Stepping through the TypeM ap and operating on each individual vector becomesasimple
matter, and uses ordinary STL syntax.

Chapter 16: Design Patterns 505

Asyou can see, adding a new type to the system won't affect this code at all, nor the codein
TypeM ap. Thisis certainly the smallest solution to the problem, and arguably the most
elegant aswell. It does rely heavily on RTTI, but notice that each key-value pair inthe map is
looking for only one type. In addition, there’ s no way you can “forget” to add the proper code
to this system when you add a new type, since there isn’t any code you need to add, other than
that which supports the prototyping process (and you'll find out right away if you forget that).

Summary

Coming up with adesign such as TrashVisitor.cpp that contains alarger amount of code
than the earlier designs can seem at first to be counterproductive. It pays to notice what you're
trying to accomplish with various designs. Design patternsin general strive to separate the
things that change from the things that stay the same. The “things that change” can refer to
many different kinds of changes. Perhaps the change occurs because the program is placed
into a new environment or because something in the current environment changes (this could
be: “The user wants to add a new shape to the diagram currently on the screen”). Or, asin this
case, the change could be the evolution of the code body. While previous versions of the
trash-sorting example emphasized the addition of new types of Trash to the system,
TrashVisitor.cpp alows you to easily add new functionality without disturbing the Trash
hierarchy. There’s more code in TrashVisitor.cpp, but adding new functionality to Visitor is
cheap. If thisis something that happens alot, then it's worth the extra effort and code to make
it happen more easily.

The discovery of the vector of changeis no trivial matter; it's not something that an analyst
can usually detect before the program sees itsinitial design. The necessary information will
probably not appear until later phases in the project: sometimes only at the design or
implementation phases do you discover a deeper or more subtle need in your system. In the
case of adding new types (which was the focus of most of the “recycle” examples) you might
realize that you need a particular inheritance hierarchy only when you are in the maintenance
phase and you begin extending the system!

One of the most important things that you'll learn by studying design patterns seemsto be an
about-face from what has been promoted so far in this book. That is: “OOP is all about
polymorphism.” This statement can produce the “two-year-old with a hammer” syndrome
(everything looks like a nail). Put another way, it's hard enough to “get” polymorphism, and
once you do, you try to cast all your designs into that one particular mold.

What design patterns say isthat OOP isn't just about polymorphism. It's about “separating the
things that change from the things that stay the same.” Polymorphism is an especialy
important way to do this, and it turns out to be helpful if the programming language directly
supports polymorphism (so you don’'t have to wire it in yourself, which would tend to make it
prohibitively expensive). But design patterns in general show other ways to accomplish the
basic goal, and once your eyes have been opened to this you will begin to search for more
creative designs.

Since the Design Patterns book came out and made such an impact, people have been
searching for other patterns. Y ou can expect to see more of these appear as time goes on. Here

Chapter 16: Design Patterns 506

are some sites recommended by Jim Coplien, of C++ fame (http: //mww.bell-labs.com/~cope),
who is one of the main proponents of the patterns movement:

http://st-www.cs.uiuc.edu/users/patterns
http://c2.com/cgi/wiki

http://c2.com/ppr

http://www.bell-1abs.com/peopl e/cope/Patterns/Process/index. html
http://mwww.bell-1abs.com/cgi-user/OrgPatterns/OrgPatterns
http://st-www.cs.uiuc.edu/cgi-bin/wikic/wikic
http://www.cs.wustl.edu/~schmidt/patterns.html
http://www.espinc.com/patterns/overview.html

Also note there has been a yearly conference on design patterns, called PLOP, that
produces a published proceedings. The third one of these proceedings came out in
late 1997 (all published by Addison-Wedley).

Exercises

1.

N o ogks W

Using SingletonPatter n.cpp as a starting point, create a class that manages
afixed number of its own objects. Assume the objects are database
connections and you only have alicense to use afixed quantity of these at
any onetime.

Create aminimal Observer-Observable design in two classes, without base
classes and without the extra arguments in Obser ver .h and the member
functionsin Observable.h. Just create the bare minimum in the two classes,
then demonstrate your design by creating one Obser vable and many
Observers, and cause the Obser vable to update the Observers.

Change | nner Classl diom.cpp so that Outer uses multiple inheritance
instead of the inner class idiom.

Add aclass Plastic to TrashVisitor.cpp.
Add aclass Plastic to DynaT rash.cpp.

Explain how AbstractFactory.cpp demonstrates Double Dispatching and
the Factory Method.

Modify ShapeFactory2.cpp so that it uses an Abstract Factory to create
different sets of shapes (for example, one particular type of factory object
creates “thick shapes,” another creates “thin shapes,” but each factory object
can create all the shapes: circles, squares, triangles etc.).

Create a business-modeling environment with three types of I nhabitant:
Dwarf (for engineers), EIf (for marketers) and Troll (for managers). Now
create aclass called Project that creates the different inhabitants and causes
them to interact() with each other using multiple dispatching.

Modify the above example to make the interactions more detailed. Each
Inhabitant can randomly produce a Weapon using getWeapon(): a
Dwarf uses Jargon or Play, an EIf uses InventFeature or

Chapter 16: Design Patterns 507

SelllmaginaryProduct, and a Troll uses Edict and Schedule. Y ou must
decide which weapons “win” and “lose” in each interaction (asin

Paper Scissor sRock.cpp). Add a battle() member function to Project that
takes two | nhabitants and matches them against each other. Now create a
meeting() member function for Project that creates groups of Dwarf, EIf
and M anager and battles the groups against each other until only members
of one group are left standing. These are the “winners.”

10. Implement Chain of Responsibility to create an “expert system” that solves
problems by successively trying one solution after another until one
matches. Y ou should be able to dynamically add solutions to the expert
system. The test for solution should just be a string match, but when a
solution fits, the expert system should return the appropriate type of
problemSolver object. What other pattern/patterns show up here?

Chapter 16: Design Patterns 508

11: Tools & topics

Tools created & used during the development of this book
and various other handy things

The code extractor

The code for this book is automatically extracted directly from the ASCI| text version of this
book. The book is normally maintained in aword processor capable of producing camera-
ready copy, automatically creating the table of contents and index, etc. To generate the code
files, the book is saved into a plain ASCI| text file, and the program in this section
automatically extracts all the code files, places them in appropriate subdirectories, and
generates al the makefiles. The entire contents of the book can then be built, for each
compiler, by invoking a single make command. This way, the code listings in the book can be
regularly tested and verified, and in addition various compilers can be tested for some degree
of compliance with Standard C++ (the degree to which all the examplesin the book can
exercise aparticular compiler, which is not too bad).

The codein this book is designed to be as generic as possible, but it is only tested under two
operating systems: 32-bit Windows and Linux (using the Gnu C++ compiler g++, which
means it should compile under other versions of Unix without too much trouble). Y ou can
easily get the latest sources for the book onto your machine by going to the web site
www.BruceEckel.com and downloading the zipped archive containing all the code files and
makefiles. If you unzip this you'll have the book’ s directory tree available. However, it may
not be configured for your particular compiler or operating system. In this case, you can
generate your own using the ASCI| text file for the book (available at www.BruceEckel.com)
and the ExtractCode.cpp program in this section. Using a text editor, you find the
CompileDB.txt fileinside the ASCI|I text file for the book, edit it (leaving it the book’ s text
file) to adapt it to your compiler and operating system, and then hand it to the ExtractCode
program to generate your own source tree and makefiles.

Y ou’ ve seen that each file to be extracted contains a starting marker (which includes the file
name and path) and an ending marker. Files can be of any type, and if the colon after the
comment is directly followed by a‘!" then the starting and ending marker lines are not
reproduced in the generated file. In addition, you' ve seen the other markers{QO}, {L}, and {T}
that have been placed inside comments; these are used to generate the makefile for each
subdirectory.

509

If there’s amistake in the input file, then the program must report the error, which isthe
error () function at the beginning of the program. In addition, directory manipulation is not
supported by the standard libraries, so thisis hidden away in the class OSDir Contral. If you
discover that this class will not compile on your system, you must replace the non-portable
function callsin OSDir Control with equivalent calls from your library.

Although this program is very useful for distributing the code in the book, you'll seethat it's
also a useful examplein its own right, since it partitions everything into sensible objects and
also makes heavy use of the STL and the standard string class. Y ou may note that one or two
pieces of code might be duplicated from other parts of the book, and you might observe that
some of the tools created within the program might have been broken out into their own
reusable header files and cpp files. However, for easy unpacking of the book’s source code it
made more sense to keep everything lumped together in asinglefile.

/1: C10: Extract Code. cpp

/1 Automatically extracts code files from
/1 ASClIl text of this book
#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <string>

#i ncl ude <vector>

#i ncl ude <map>

#i ncl ude <set>

#i ncl ude <al gorithne

usi ng namespace std;

string copyright =
“/1 From Thinking in C++, 2nd Edition\n"
"/1 Available at http://ww. BruceEckel.com n"
"/l (c) Bruce Eckel 1999\ n"
"/] Copyright notice in Copyright.txt\n";

string usage =
Usage: Ext ract Code source\n"
"where source is the ASCII file containing \n"
"t he enmbedded tagged sourcefiles. The ASCIl \n"
"file must also contain an enbedded conpiler\n"
"configuration file called ConpileDB.txt \n"
"See Thinking in C++, 2nd ed. for details\n";

/1 Tool to renobve the white space from both ends:
string trimconst string& s) {
if(s.length() == 0)
return s;

Appendix B: Programming Guidelines
510

int b s.find first_not_of (" \t");

int e s.find_|ast_not_of (" \t");
if(b ==-1) // No non-spaces
return "";

return string(s, b, e - b + 1);

}

/1 Manage all the error nessaging:
void error(string problem string nessage) {
static const string border(
B e \n");
class ErrReport {
int count;
string fnane;
public:
of streamerrs;
ErrReport(char* fn = "Extract CodeErrors.txt")
count (0), fnane(fn),errs(fnane.c_str()) {}
voi d operator++(int) { count++; }
~ErrReport () {
errs.close();
/1 Dunp error nmessages to console
ifstreamin(fnane.c_str());
cerr << in.rdbuf() << endl
cerr << count << " Errors found" << endl
cerr << "Messages in " << fpnanme << endl
}
b
/1 Created on first call to this function
/1 Destructor reports total errors:
static ErrReport report;
report ++;
report.errs << border << nessage << end
<< "Problem spot: " << problem << endl
}

/111l OS-specific code, hidden inside a class:
#ifdef _ GNUC__ // For gcc under Linux/ Unix
#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>

#i ncl ude <stdlib. h>

class OSDirControl {

public:

Appendix B: Programming Guidelines
511

static string getCurrentDir() {
char pat h[PATH_MAX] ;
get cwd(pat h, PATH_MAX);
return string(path);
}
static void makeDir(string dir) {
nkdir(dir.c_str(), 0777);
}
static void changeDir(string dir) {
chdir(dir.c_str());
}
b
#el se // For Dos/ W ndows:
#i ncl ude <direct. h>
class OSDirControl {
public:
static string getCurrentDir() {
char pat h[_MAX PATH] ;
get cwd(path, _MAX PATH);
return string(path);
}
static void makeDir(string dir) {
nkdir(dir.c_str());
}
static void changeDir(string dir) {
chdir(dir.c_str());
}
b
#endif ///// End of OS-specific code

class PushDirectory {
string ol dpath;
public:
PushDi rectory(string path);
~PushDirectory() {
QSDir Control : : changeDi r (ol dpat h);
}
voi d pushOneDir(string dir) {
GsSDirControl :: makeDir(dir);
GSDirControl :: changeDir(dir);
}
b

Appendix B: Programming Guidelines
512

PushDi rectory:: PushDirectory(string path) {
ol dpath = OSDirControl::getCurrentDir();
whil e(path.length() '= 0) {

int colon = path.find(':");

if(colon !'= string::npos) {
pushOneDi r (pat h. substr (0, colon));
path = path. substr(colon + 1);

} else {
pushOneDi r (pat h) ;
return;
}
}
}
I L Manage code files -------------

/1 A CodeFil e object knows everything about a
/1 particular code file, including contents,
/1 information, how to conpile, link, and test

enum TType {header, object, executable, none};

cl ass CodeFile {

TType _target Type;

string _rawName, // Oiginal nanme from i nput
_path, // \Were the source file lives
_file, // Nanme of the source file
_base, // Nanme without extension
_tnanme, // Target nane
_testArgs; // Command-line argunents

vect or<string>
lines, // Contains the file
_conpile, /I Conpile dependencies
_link; // Howto link the executable

set<string>

/1 Initial nmakefile processing for the file:
void target(const string& s);
/1 For quoted #include headers:
voi d headerLi ne(const string& s);
/1l For special dependency tag marks:
voi d dependLi ne(const string& s);
public:

/1 it, and which conpilers it won't conpile with.

_noBuild; // Conpilers it won't conpile with
bool writeTags; // Wether to wite the nmarkers

Appendix B: Programming Guidelines
513

CodeFil e(istrean& in, string& s);
const string& rawName() { return _rawNane; }
const string& path() { return _path; }
const string& file() { return file; }
const string& base() { return _base; }
const string& targetNane() { return _tnane; }
TType target Type() { return _targetType; }
const vector<string>& conpile() {

return _conpile;

}

const vector<string>& link() {
return _link;

}

const set<string>& noBuil d() {
return _noBuil d;
}
const string& testArgs() { return _testArgs; }
/1 Add a conpiler it won't conpile wth:
voi d addFai l ure(const string& failure) {
_noBuild.insert(failure);

}

bool conpilesOK(string conpiler) {
return _noBuil d.count(conpiler) == 0;

}

friend ostreamk
oper at or<<(ostream& os, const CodeFile& cf) {
copy(cf.lines.begin(), cf.lines.end(),
ostream.iterator<string>(os, ""));
return os;

void wite() {
PushDi rectory pd(_path);
of streamlisting(_file.c_str());
listing << *this; [// Wite the file
}
voi d dunpl nfo(ostream& 0s);

};

voi d CodeFile::target(const string& s) {
/1 Find the base name of the file (w thout
/1l the extension):
int lastDot = file.find last _of('.");
i f(lastDot == string::npos) {

Appendix B: Programming Guidelines
514

error(s, "Mssing extension");
exit(1);
}
_base = file.substr(0, |astDot);
/1 Determne the type of file and target:
if(s.find(".h") !'= string::npos ||
s.find(".H') !'= string::npos) {
_target Type = header;

_tname = file;
return;
}
if(s.find(".txt") != string::npos
|| s.find(".TXT") !'= string::npos
|| s.find(".dat") != string::npos

|| s.find(".DAT") !'= string::npos) {
/1 Text file, not involved in make
_target Type = none;
_tname = file;
return;

}

/1 C++ objs/exes depend on their own source:
_conpi l e. push_back(_file);
if(s.find("{OQ") !'= string::npos) {
/1 Don't build an executable fromthis file
_target Type = object;

_tname = _base;

} else {
_target Type = execut abl e;
_tname = _base;

/1 The exe depends on its own object file:
_link. push_back(_base);

}
}

voi d CodeFil e:: headerLi ne(const string& s) {
int start = s.find('\"");
int end = s.find('\"", start + 1);
int len = end - start - 1;
_conpi l e. push_back(s. substr(start + 1, len));

}

voi d CodeFil e:: dependLi ne(const string& s) {
const string linktag("//{L} ");

Appendix B: Programming Guidelines
515

string deps = trin(s.substr(linktag.length()));
while(true) {
int end = deps.find(' ');
string dep = deps.substr(0, end);
_link. push_back(dep);
if(end == string::npos) // Last one
br eak;
el se
deps = trim(deps. substr(end));
}
}

CodeFi |l e:: CodeFil e(istrean& in, string& s) {
/1 1f false, don't wite begin & end tags:
witeTags = (s[3] !="1");

/1 Assume a space after the starting tag:
_file = s.substr(s.find('" ") + 1);
/1 There will always be at |east one col on:
int lastColon = file.find last _of (':");
i f(lastColon == string::npos) {

error(s, "Mssing path");

| astColon = 0; // Recover fromerror

}
_rawNane = trim _file);

_path = file.substr(0, |astColon);
_file = file.substr(lastColon + 1);
_file =file.substr(0, file.find last _of (' '));

cout << "path = [" << _path << "]
<< "file = [" << file << "]" << endl
target(s); // Determ ne target type
if(witeTags)({
l'i nes. push_back(s + '"\n");
I i nes. push_back(copyright);
}
string s2;
whil e(getline(in, s2)) {
/1 Look for specified |Iink dependencies:
if(s2.find("//{L}") ==0) // 0: Start of line
dependLi ne(s2);
/1 Look for command-line argunents for test:
if(s2.find("//{T}") ==0) // 0: Start of line
_testArgs = s2.substr(strlen("//{T}") + 1);
/1 Look for quoted includes:

Appendix B: Programming Guidelines
516

if(s2.find("#include \"") 1= string::npos)
header Li ne(s2); // Grab makefile info
}
/1 Look for end nmarker:
if(s2.find("//" "/:~") 1= string::npos) {
if(witeTags)
I i nes. push_back(s2 + '\n");
return; // Found the end
}
/1 Make sure you don't see another start:
if(s2.find("//" ":") != string::npos
[| s2.find("/*" ":") != string::npos) {

previous file concluded");
return;
}
/1 Wite ordinary line:
I i nes. push_back(s2 + '\n");

voi d CodeFil e:: dunpl nfo(ostream& os) {

0S << path << ':' << file << endl

0S << "target: " << _tnanme << endl

0s << "conpile: " << endl

for(int i =0; i < _conpile.size(); i+4)
0s << '"\t' << _conpile[i] << endl

0s << "link: " << endl

for(int i =0; i < _link.size(); i++)
0s << '"\t' << link[i] << endl

if(_noBuild.size() '=0) {
0S << "WHn't build with: " << endl
copy(_noBui |l d. begin(), _noBuild.end(),

ostream.iterator<string>(os, "\n"));

cl ass ConpilerData {
/1 1nformation about each conpiler:
vector<string> rules; // Makefile rules
set<string> fails; // Non-conpiling files
string objExtension; // File nane extensions

error(s, "Error: new file started before"

[]--eeeaem Manage conpiler information -------

{

Appendix B: Programming Guidelines
517

string exeExtension;
/1 For OS-specific activities:
bool _dos, _unix;
/1 Store the information for all the conpilers:
static map<string, Compil erData> conpilerlnfo;
static set<string> _conpilerNanes;
public:
ConpilerData() : _dos(false), _unix(false) {}
/1 Read database of various conpiler's
/1 information and failure listings for
/1 conpiling the book files:
static void readDB(istream& in);
/1 For enunerating all the conpiler nanes:
static set<string>& conpil erNames() {
return _conpil er Nanes;
}

/1 Tell this CodeFile which conpilers

/1 don't work with it:

static void addFail ures(CodeFil e& cf);

/1 Produce the proper object file nane

/1l extension for this conpiler:

static string obj(string conpiler);

/1 Produce the proper executable file nane

/1l extension for this conpiler:

static string exe(string conpiler);

/1 For inserting a particular conpiler's

/1 rules into a nmakefile:

static void

writeRul es(string conpiler, ostream& os);

/1 Change forward sl ashes to backward

/1 slashes if necessary:

static string

adj ustPath(string conpiler, string path);

/1 So you can ask if it's a Unix conpiler:

static bool isUnix(string conpiler) {
return conpilerlinfo[conpiler]. unix;

}

/1 So you can ask if it's a dos conpiler:

static bool isDos(string conpiler) {
return conpil erlnfo[conpiler]. _dos;

}

/1 Display information (for debugging):
static void dunp(ostream& os = cout);

Appendix B: Programming Guidelines
518

}s

/] Static initialization:
map<st ri ng, Conpi | er Dat a>
Conpi | er Dat a: : compi | er | nf o;
set <string> ConpilerData::_compil er Nanes;

voi d Conpil erDat a: : readDB(i stream& i n) {
string conpiler; // Nane of current conpiler
string s;
whil e(getline(in, s)) {
if(s.find("#//" "/:~") == 0)
return; // Found end tag
s =trims);
if(s.length() == 0) continue; // Blank |ine
if(s[0] =="#") continue; // Comrent
if(s[O0] =="'{") { // Different compiler
conpiler = s.substr(0, s.find('}"'));
conpiler = trimconpiler.substr(1));
if(conpiler.length() !'= 0)
_conpi |l erNanes. i nsert (conpiler);
continue; // Changed conpil er nane
}
if(s[0] =="(") { /] Object file extension
string obj = s.substr(1);
obj = trinm(obj.substr(0, obj.find(')")));
conpi l erl nfo[conpil er]. obj Ext ensi on =o0bj ;
conti nue;
}
if(s[0] =="'[") { // Executable extension
string exe = s.substr(1);
exe = trin(exe.substr(0, exe.find(']"')));
conpi l erl nfo[conpi |l er]. exeExt ensi on =exe;
conti nue;
}
if(s[0] =="'&) { // Special directive
if(s.find("dos") != string::npos)
conpil erInfo[conpiler]. _dos = true;
el se if(s.find("unix") !'= string::npos)
conpil erInfo[conpiler]. _unix = true;
el se
error (" Conpiler Information Database",
"unknown special directive: " + s);

Appendix B: Programming Guidelines
519

conti nue;

}
if(s[0] =="@) { // Makefile rule
string rule(s.substr(1)); // Renmbve the @
if(rule[0] ==" ") // Space neans tab
rule = "\t' + trimrule);
conpil erinfo[conpiler].rules
. push_back(rul e);
conti nue;
}

// Oherwise, it's a failure line:
conpilerinfo[conpiler].fails.insert(s);
}
error("ConpileDB.txt","M ssing end tag");

}

voi d Comnpi | er Dat a: : addFai | ures(CodeFi | e& cf) {
set<string> :iterator it =
_conpi | er Nanes. begi n();
while(it '= compilerNanes.end()) {
if(conpilerlinfo[*it]
.fails.count(cf.rawNane()) != 0)
cf.addFai lure(*it);
it++;
}
}

string Conpil erData::obj(string conpiler) {
i f(conpilerlnfo.count(conmpiler) !'=0) {
string ext(
conpi l erl nfo[conpil er]. obj Ext ensi on);
if(ext.length() !'= 0)
ext ="'." +ext; // Use'." if it exists
return ext;
} else
return "No such conpiler infornmation”;
}

string Conpil erData::exe(string conpiler) {
i f(conpilerlnfo.count(conmpiler) !'=0) {
string ext(
conpi l erl nfo[conpil er]. exeExt ension);
if(ext.length() !'= 0)

Appendix B: Programming Guidelines
520

ext ="'." +ext; // Use'." if it exists
return ext;
} else
return "No such conpiler infornmation”;
}

voi d ConpilerData::witeRul es(

string conpiler, ostream& os) {

i f(_conpilerNanes. count(conpiler) == 0) {
0S << "No info on this conpiler" << endl
return;

}

vector<string>& r =
conpil erl nfo[conpiler].rules;

copy(r.begin(), r.end(),
ostream.iterator<string>(os, "\n"));

}

string Conpil erDat a: : adj ust Pat h(
string conpiler, string path) {
/1 Use STL replace() algorithm
i f(conpilerlnfo[conpiler]. _dos)
repl ace(pat h. begin(), path.end(), '/', "\\");
return path;

}

voi d Compi |l er Dat a: : dunp(ostream& os) {
ostream.iterator<string> out(os, "\n");
*out ++ = "Conpil er Names:";
copy(_conpi | er Nanes. begi n(),
_conpi |l erNanes. end(), out);
map<string, ConpilerData>::iterator conmplt;
for(conplt = conpilerlnfo.begin();
conplt !'= conpilerlnfo.end(); conmplt++) {

LLEE S S I I I I I I I I I I I I b I I I I I I I I I I ".
0S << \n";

0S << "Conpiler: [" << (*complt).first <<

"1" << endl;

Conpi l erData& cd = (*conplt).second;

0S << "obj Extension: " << cd. obj Ext ensi on
<< "\ nexeExtension: " << cd.exeExtension
<< endl;

*out++ = "Rules:";

copy(cd. rul es. begin(), cd.rules.end(), out);

Appendix B: Programming Guidelines
521

cout << "WHn't conpile with: " << endl
copy(cd.fails.begin(), cd.fails.end(), out);

}
}

I Manage nakefile creation ----------
/1l Create the makefile for this directory, based
/1 on each of the CodeFile entries:
cl ass Makefile {
vect or <CodeFi | e> codeFi | es;
/1 Al the different paths
/1 (for creating the Master makefile):
static set<string> paths;
voi d
creat eMakefile(string conpiler, string path);
public:
vakefile() {}
voi d addEntry(CodeFil e& cf) {
paths.insert(cf.path()); // Record all paths
/1 Tell it what conpilers don't work with it:
Conpi | er Dat a: : addFai | ures(cf);
codeFi | es. push_back(cf);
}
/1 Wite the nakefile for each conpiler:
void witeMakefiles(string path);
/] Create the master nakefile:
static void witeMaster(string flag = "");

}s

/] Static initialization:
set<string> Makefile:: paths;

void Makefile::witeMakefiles(string path) {

if(trimpath).length() == 0)

return; // No nmakefiles in root directory
PushDi rectory pd(path);
set<string>& conpilers =

Conpi | er Dat a: : conpi | er Nanmes() ;
set<string> :iterator it = conpilers.begin();
while(it !'= conpilers.end())

creat eMakefile(*it++, path);

Appendix B: Programming Guidelines
522

voi d Makefile::createMakefil e(
string conpiler, string path) {
string // File nane extensions:
exe(Compi | er Dat a: : exe(conpiler)),
obj (Compi | er Dat a: : obj (conpi l er));
string filename(conpiler + ".makefile");
of stream makefile(filename.c_str());
makefile <<
"# From Thinking in C++, 2nd Edition\n"
"# At http://ww. BruceEckel .com n"
(c) Bruce Eckel 1999\ n"
Copyright notice in Copyright.txt\n"
Automati cal | y-generated MAKEFI LE \n"
"# For exanmples in directory "+ path + "\n"
"# using the " + conpiler + " conpiler\n"
Note: does not nake files that will \n"
not conpile with this conpiler\n"
I nvoke with: make -f
+ conpiler + ".nakefile\n"

<< endl;
Conpi l erData: :witeRul es(compiler, makefile);
vector<string> makeAl |, nakeTest,

makeBugs, nakeDeps, |inkCnd;
/1 Wite the "all" dependenci es:
makeAl | . push_back("all: ");
nmakeTest . push_back("test: all ");

makeBugs. push_back("bugs: ");
string |line;

vect or<CodeFile>::iterator it;
for(it = codeFil es. begin();

it = codeFiles.end(); it++) {
CodeFil e& cf = *it;
if(cf.targetType() == executable) {
line = "\\\n\t"+cf.targetNane()+ exe + ' ';

i f(cf.conpilesOK(conpiler) == false) {
makeBugs. push_back(
Conpi | er Dat a: : adj ust Pat h(
conpiler,line));
} else {
makeAl | . push_back(
Conpi | er Dat a: : adj ust Pat h(
conpiler,line));
line = "\\\n\t" + cf.targetNane() + exe +

Appendix B: Programming Guidelines
523

+ cf.testArgs() + "' ';
makeTest . push_back(
Conpi | er Dat a: : adj ust Pat h(
conpiler,line));
}
/1 Create the |ink conmand:
int linkdeps = cf.link().size();
string linklist;
for(int i = 0; i < |linkdeps; i++)
[inklist +=
cf.link().operator[](i) + obj + " ";
line = cf.target Nane() + exe + ": "
+ linklist + "\n\t$(CPP) $(OFLAG "
+ cf.target Nane() + exe
+ ' " + linklist + "\n\n";
I i nkCnd. push_back(
Conpi | er Dat a: : adj ust Pat h(conpi l er,line));
}
/1 Create dependencies
if(cf.target Type() == executable
|| cf.target Type() == object) {
int conpil edeps = cf.conpile().size();
string objlist(cf.base() + obj + ": ");
for(int i = 0; i < conpiledeps; i++)
objlist +=
cf.compile().operator[](i) + " ";
makeDeps. push_back(
Conpi | er Dat a: : adj ust Pat h(
conpiler, objlist) +"\n");
}
}

ostream.iterator<string> nkos(nakefile, "");
*nkos++ = "\n";

/1 The "all" target:

copy(nekeAl | . begin(), makeAll.end(), nkos);

*nmkos++ = "\n\n";

/1 Renove continuation marks from nakeTest:
vector<string>: :iterator si = nmmkeTest. begin();
int bsl;

for(; si != nakeTest.end(); si++)

|
if((bsl= (*si).find("\\\n")) !'= string::npos)
(*si).erase(bsl, strlen("\\"));
/1 Now print the "test" target:

Appendix B: Programming Guidelines
524

copy(makeTest . begi n(), nakeTest.end(), nkos);
*nmkos++ = "\n\n";
/1 The "bugs" target:
copy(makeBugs. begi n(), nakeBugs.end(), nkos);
i f (makeBugs. size() == 1)
*nmkos++ = "\n\t @cho No conpiler bugs in "
"this directory!";
*nmkos++ = "\n\n";
/1 Link commands:
copy(!linkCnd. begin(), |inkCnrd. end(), nkos);
*nkos++ = "\ n";
/| Denendenci es:
copy(makeDeps. begi n(), nakeDeps.end(), nkos);

*nkos++ = "\n";
}
void Makefile::witeMaster(string flag) {
string filename = "nakefil e";
if(flag.length() !'= 0)
filenane +='.' + flag;

of stream makefile(filename.c_str());
makefile << "# Master makefile for "
"Thinking in C++, 2nd Ed. by Bruce Eckel\n"
"# at http://ww. BruceEckel .com n"
"# Conpiles all the code in the book\n"
"# Copyright notice in Copyright.txt\n\n"
"hel p: \n"
"\t @cho To conpile all prograns from\n"
"\t @cho Thinking in C++, 2nd Ed., type\n"
"\t @cho one of the foll owi ng commands, \ n"
"\t @cho according to your comnpiler:\n";
set<string>& n = Conpil erData::conpil er Names();
set<string> :iterator nit;
for(nit = n.begin(); nit !'= n.end(); nit++)
makefile <<
string("\t @cho make " + *nit + "\n");
makefile << endl
/1 Make for each conpiler:
for(nit = n.begin(); nit !'=n.end(); nit++) {
makefile << *nit << ":\n";
for(set<string>: :iterator it = paths.begin();
it != paths.end(); it++) {
/1 1gnore the root directory:

Appendix B: Programming Guidelines
525

if((*it).length() == 0) continue;
makefile << "\tcd " << *it;
/!l Different commands for unix vs. dos:
i f(ConpilerData::isUnix(*nit))

makefile << "; ";
el se

makefile << "\ n\t";
makefile << "nmake -f " << *nit

<< ".nakefile";
if(flag.length() '= 0) {

makefile << ' ';

if(flag == "bugs")

makefile << "-i ";
makefil e << flag;

makefile << "\ n";
i f(ConpilerData::isUnix(*nit) == fal se)
makefile << "\tcd ..\n";
}
makefil e << endl
}
}

int main(int argc, char* argv[]) {
if(argc < 2) {
error("Command |ine error", usage);

exit(1);
}
/1 For devel opment & testing, |eave off notice:
if(argc == 3)
if(string(argv[2]) == "-nocopyright")
copyright = "";

/1 Open the input file to read the conpiler

/1 information database:

ifstreamin(argv[1]);

if(lin) {
error(string("can't open ") + argv[1], usage);
exit(1);

} .

string s;

whil e(getline(in, s)) {
/1 Break up the strings to prevent a natch when
/1 this code is seen by this program

Appendix B: Programming Guidelines
526

if(s.find("#:" " :ConpileDB.txt")
= string::npos) {
/1 Parse the conpiler information database:
Conpi | er Dat a: : readDB(i n);
break; // Qut of while |oop
}
}
if(in.eof())
error("ConpileDB. txt", "Can't find data");
in. seekg(0, ios::beg); // Back to beginning
map<string, Mkefile> makeFil es;
whil e(getline(in, s)) {
/1 Look for tag at begi nning of I|ine:

if(s.find("//" ":") ==
[| s.find("/*" ":") ==
[| s.find("#" ":") == 0) {
CodeFile cf(in, s);
cf.wite(); // Tell it to wite itself
makeFi | es[cf.path()].addEntry(cf);
}

}

/1 Wite all the nmakefiles, telling each
/1 the path where it bel ongs:
map<string, Makefile>::iterator nfi;
for(nfi = makeFil es. begin();
nfi |= makeFiles.end(): nfi++)
(*nfi).second. witeMakefiles((*nfi).first);
/] Create the master nakefile:
Makefile::witeMster();
/1 Wite the nakefile that tries the bug files:
Makefile::witeMster("bugs");
Y I~

Thefirst tool you seeistrim(), which was lifted from the strings chapter earlier in the book.
It removes the whitespace from both ends of a string object. Thisis followed by the usage
string which is printed whenever something goes wrong with the program.

Theerror () function is global because it uses atrick with static members of functions.
error() isdesigned so that if it is never called, no error reporting occurs, but if it is called one
or more times then an error file is created and the total number of errorsis reported at the end
of the program execution. Thisis accomplished by creating a nested class Err Report and
making a static Err Report object inside error (). That way, an ErrReport object isonly
created thefirst timeerror () iscalled, soif error () is never caled no error reporting will
occur. ErrReport creates an ofstream to write the errorsto, and the Err Report destructor

Appendix B: Programming Guidelines
527

closes the of stream, then re-opensit and dumpsit to cerr. Thisway, if the error report istoo
long and scrolls off the screen, you can use an editor to look at it. The count of the number of
errorsisheld in ErrReport, and thisis also reported upon program termination.

The job of a PushDirectory object isto capture the current directory, then created and move
down each directory in the path (the path can be arbitrarily long). Each subdirectory in the
file's path description is separated by a*:’ and the mkdir () and chdir () (or the equivalent on
your system) are used to move into only one directory at atime, so the actual character that’s
used to separate directory pathsis safely ignored. The destructor returns the path to the one
that was captured before all the creating and moving took place.

Unfortunately, there are no functions in Standard C or Standard C++ to control directory
creation and movement, so thisis captured in the class OSDir Control. After reading the
design patterns chapter, your first impulse might be to use the full “Bridge” pattern. However,
there’ s alot more going on here. Bridge generally works with things that are already classes,
and here we are actually creating the class to encapsulating operating system directory
control. In addition, this requires #ifdefs and #includes for each different operating system
and compiler. However, the basic ideais that of a Bridge, since the rest of the code
(PushDirectory is actually the only thing that uses this, and thus it acts as the Bridge
abstraction) treats an OsDir Control object as a standard interface.

All the information about a particular source code file is encapsulated in a CodeFile object.
Thisincludes the type of target the file should produce, variations on the name of thefile
including the name of the target file it's supposed to produce. The entire contents of the fileis
contained in the vector <string> lines. In addition, the file's dependencies (the files which, if
they change, should cause a recompilation of the current file) and the files on the linker
command line are also vector <string> objects. The CodeFile object keeps all the compilersit
won't work with in_noBuild, which isaset<string> because it's easier to look up an

element in aset. The writeT ags flag indicates whether the beginning and ending markers
from the book listing should actually be output to the generated file.

The three private helper functionstarget(), header Line() and dependLine() are used by the
CodeFile constructor whileit is parsing the input stream. In fact, the CodeFile constructor
does much of the work and most of the rest of the member functions simply return val ues that
are stored in the CodeFile object. Exceptions to this are addFailure() which stores a
compiler that won’'t work, and compilesOK () which, when given a compiler tells whether
this file will compile successfully with that compiler. The ostream operator << uses the STL
copy() agorithm and write() uses oper ator << to write thefile into a particular directory and
file name.

Looking at the implementation, you' |l see that the helper functionstar get(), headerLine()
and dependLing() arejust using string functions in order to search and manipulate the lines.
The constructor is what initiates everything. Theideaisthat the main program opensthe file
and reads it until it sees the starting marker for a code file. At that point it makes a CodeFile
object and hands the constructor the istream (so the constructor can read the rest of the code
file) and the first line that was already read, since it contains valuable information. This first
lineis dissected for the file name information and the target type. The beginning of thefileis

Appendix B: Programming Guidelines
528

written (source and copyright information is added) and the rest of the fileis read, until the
ending tag. The top few lines may contain information about link dependencies and command
line arguments, or they may be files that are #included using quotes rather than angle
brackets. Quotes indicate they are from local directories and should be added to the makefile
dependency.

You'll notice that a number of the markers stringsin this program are broken up into two
adjacent character strings, relying on the preprocessor to concatenate those strings. Thisisto
prevent them from causing the ExtractCode program from accidentally mistaking the strings
embedded in the program with the end marker, when ExtractCode is extracting it's own
source code.

The goal of CompilerData isto capture and make available all the information about
particular compiler idiosyncrasies. At first glance, the Compiler Data class appearsto be a
container of static member functions, alibrary of functions wrapped in a class. Actually, the
class contains two static data members; the smpler one is aset<string> that holds all the
compiler names, but compilerInfo isamap that maps string objects (the compiler name) to
Compiler Data objects. Each individual Compiler Data object in compilerInfo contains a
vector<string> whichisthe “rules’ that are placed in the makefile (these rules are different
for different compilers) and a set<string> which indicates the files that won’'t compile with
this particular compiler. Also, each compiler creates different extensions for object files and
executable files, and these are also stored. There are two flags which indicate if thisisa“dos’
or “Unix” style environment (this causes differencesin path information and command styles
for the resulting makefiles).

The member function readDB() is responsible for taking an istream and parsing it into a
series of Compiler Data objects which are stored in compiler Info. By choosing arelatively
simple format (which you can seein Appendix D) the parsing of this configuration fileis
fairly simple: the first character on aline determines what information the line contains; a‘#
signisacomment, a‘{" indicates that the next compiler configuration is beginning and thisis
the new compiler name, a“(* is used to establish the object file extension name, a‘&’
indicates the “dos’ or “Unix” directive, and ‘@' is a makefile rule which is placed verbatim at
the beginning of the makefile. If thereis no special character at the beginning of the line, the
it must be afile that failsto compile.

The addFailures() member function takesit’s CodeFile argument (by reference, so it can
modify the outside object) and checks each compiler to seeiif it works with that particular
code file; if not, it adds that compiler to the CodeFile object’sfailurelist.

Both obj () and exe() return the appropriate file extension for a particular compiler. Note that
some situations don’t expect extensions, and so the ‘.’ is added only if there is an extension.

When the makefile is being created, one of the first thingsto do is add the various make rules,
such asthe prefixes and target rules (see Appendix D for examples). Thisis accomplished
with writeRules(). Note the use of the STL copy() agorithm.

Although dos compilers have no trouble with forward slashes as part of the paths of #include
files, most dos make programs expect backslashes as part of paths in dependency lists. To

Appendix B: Programming Guidelines
529

adjust for this, the adjustPath() function checks to seeif thisis a dos compiler, and if so it
uses the STL replace() algorithm, treating the path string object as a container, to replace
forward-slash characters with backward slashes.

The last class, M akefile, is used to create all the makefiles, including the master makefile that
moves into each subdirectory and calls the other makefiles. Each M akefile contains a group
of CodeFile objects, stored in avector. You call addEntry() to put anew CodeFile into the
M akefile; this also adds the failure list to the CodeFile. In addition, thereis a static
set<string> which contains all the different paths where all the different makefiles will be
written; thisis used to build the master makefile so it can call all the makefilesin all the
subdirectories. The addEntry() function also updates this set of paths.

To write the makefile for a particular path (once the entire book file has been read), you call
writeM akefiles() and hand it the path you want it to write the makefile for. This function
simply iterates through all the compilersin compilersand calls createM akefile() for each
one, passing it the compiler name and the path. The latter function is where the real work gets
done. First the file name extensions are captured into local string objects, then the file name
is created from the name of the compiler with “.makefile” concatenated (you can use afile
with a name other than “makefile” by using the make -f flag). After writing the header
comments and the rules for that particular compiler/operating-system combination
(remember, these rules come from the compiler configuration file), avector<string> is
created to hold all the different regions of the makefile: the master target list makeAll, the
testing commands makeT est, the dependencies makeDeps, and the commands for linking
into executables linkCmd. The reason it’s necessary to have lists for these four regionsis that
each CodeFile object causes entries into each region, so the regions are built as the list of
CodeFilesistraversed, and then finally each region is written in its proper order. Thisisthe
function which decides whether afile is going to be included, and aso calls adjustPath() to
conditionally change forward slashes to backward slashes.

To write the master makefilein writeM aster (), theinitial comments are written. The default
target iscalled “help,” and it is used if you simply type make. This provides very simple help
to thefirst time user, including the options for make that this makefile supports (that is, all the
different compilers the makefileis set up for). Then it creates the list of commands for each
compiler, which basically consists of: descending into a subdirectory, call make (recursively)
on the appropriate makefile in that subdirectory, and then rising back up to the book’s root
subdirectory. Makefilesin Unix and dos work very differently from each other in this
situation: in Unix, you cd to the directory, followed by a semicolon and then the command
you want to execute — returning to the root directory happens automatically. Whilein dos, you
must cd both down and then back up again, all on separate lines. So the writeM aster ()
function must interrogate to see if a compiler is running under Unix and write different
commands accordingly.

Because of the work done in designing the classes (and this was an iterative process; it didn’t
just pop out thisway), main() is quite straightforward to read. After opening the input file,
the getline() function is used to read each input line until the line containing CompileDB.txt
is found; this indicates the beginning of the compiler database listing. Once that has been

Appendix B: Programming Guidelines
530

parsed, seekg() is used to move the file pointer back to the beginning so al the code files can
be extracted.

Each lineisread and if one of the start markersisfound in the line, a CodeFile object is
created using that line (which has essential information) and the input stream. The constructor
returns when it finishes reading itsfile, and at that point you can turn around and call write()
for the code file, and it is automatically written to the correct spot (an earlier version of this
program collected all the CodeFile objects first and put them in a container, then wrote one
directory at atime, but the approach shown above has code that’ s easier to understand and the
performance impact is not really significant for atool like this.

For makefile management, a map<string, M akefile> is created, where the string is the path
where the makefile exists. The nice thing about this approach is that the M akefile objects will
be automatically created whenever you access a new path, as you can see in the line

| makeFi | es[cf.path()].addEntry(cf);
then to write all the makefiles you simply iterate through the makeFiles map.

Debugging

This section contains some tips and techniques which may help during debugging.

assert()

The Standard C library assert() macro is brief, to the point and portable. In addition, when
you're finished debugging you can remove al the code by defining NDEBUG, either on the
command-line or in code.

Also, assert() can be used while roughing out the code. Later, the callsto assert() that are
actualy providing information to the end user can be replaced with more civilized messages.

Trace macros

Sometimes it’s very helpful to print the code of each statement before it is executed, either to
cout or to atracefile. Here's a preprocessor macro to accomplish this:

| #defi ne TRACE(ARG) cout << #ARG << endl; ARG

Now you can go through and surround the statements you trace with this macro. Of course, it
can introduce problems. For example, if you take the statement:

for(int i =0; i < 100; i++)
cout << i << endl;

And put both linesinside TRACE(') macros, you get this:

Appendix B: Programming Guidelines
531

TRACE(for(int i = 0; i < 100; i++))
TRACE(cout << i << endl;)

Which expandsto this:
cout << "for(int i =0; i < 100; i++)" << endl;
for(int i =0; i < 100; i++)

cout << "cout << i << endl ;"'
cout << i << endl;

<< endl ;

Which isn't what you want. Thus, this technique must be used carefully.
A variation on the TRACE() macro isthis:
#define D(a) cout << #a "=[" << a << "]" << nl;

If there’ s an expression you want to display, you simply put it inside acall to D(') and the
expression will be printed, followed by its value (assuming there's an overloaded operator <<
for the result type). For example, you can say D(a + b). Thus you can use it anytime you want
to test an intermediate value to make sure things are OK.

Of course, the above two macros are actually just the two most fundamental things you do
with a debugger: trace through the code execution and print values. A good debugger is an
excellent productivity tool, but sometimes debuggers are not available, or it’'s not convenient
to use them. The above techniques always work, regardless of the situation.

Tracefile

This code alows you to easily create atrace file and send all the output that would normally
go to cout into thefile. All you have to do is#define TRACEON and include the header file
(of course, it'sfairly easy just to write the two key lines right into your file):

/1: Cl10: Trace. h

/1l Creating a trace file
#i f ndef TRACE H

#defi ne TRACE H

#i ncl ude <fstreanp

#i f def TRACEON

of stream TRACEFI LE__ (" TRACE. QUT") ;
#defi ne cout TRACEFILE

#endi f

#endif // TRACE.H///:~

Here'sasimple test of the abovefile:
| //: C10:Tracetst.cpp

Appendix B: Programming Guidelines
532

/1l Test of trace.h
#include "../require. h"
#i ncl ude <i ostreane

#i ncl ude <fstreanp
usi ng namespace std;

#def i ne TRACEON
#i ncl ude "Trace. h"

int main() {
ifstreamf("Tracetst.cpp");
assure(f, "Tracetst.cpp");
cout << f.rdbuf();

Y I~

This also uses the assur g() function defined earlier in the book.

Abstract base class for debugging

In the Smalltalk tradition, you can create your own object-based hierarchy, and install pure
virtual functionsto perform debugging. Then everyone on the team must inherit from this
class and redefine the debugging functions. All objects in the system will then have
debugging functions available.

Tracking new/delete & malloc/free

Common problems with memory allocation include calling delete for things you have
malloced, calling free for things you allocated with new, forgetting to rel ease objects from
the free store, and releasing them more than once. This section provides a system to help you
track these kinds of problems down.

To use the memory checking system, you simply link the obj filein and al the callsto
malloc(), realloc(), calloc(), free(), new and delete are intercepted. However, if you also
include the following file (which is optional), al the callsto new will store information about
the file and line where they were called. Thisis accomplished with a use of the placement
syntax for operator new (this trick was suggested by Reg Charney of the C++ Standards
Committee). The placement syntax is intended for situations where you need to place objects
at a specific point in memory. However, it allows you to create an oper ator new with any
number of arguments. Thisis used to advantage here to store theresultsof the FILE__ and
__LINE__ macroswhenever new is called:

//: C10: MenmCheck. h

/1 Menory testing system

/1 This file is only included if you want to
/1 use the special placenent syntax to find

Appendix B: Programming Guidelines
533

/1 out the line nunber where "new' was call ed.
#i f ndef MEMCHECK H

#def i ne MEMCHECK H

#i nclude <cstdlib> // size_t

/1 Use placenent syntax to pass extra argunents.
/1 From an idea by Reg Charney:
voi d* operator new
std::size t sz, char* file, int line);
#define new nem{ FILE , _LINE)

#endif // MEMCHECK H ///:~

In the following file containing the function definitions, you will note that everything is done

with standard 10 rather than iostreams. This is because, for example, the cout constructor
allocates memory. Standard 1O ensures against cyclical conditions that can lock up the
system.

[1: Cl10: MentCheck. cpp {O

/1 Menory allocation tester

#i ncl ude <cstdlib>

#i ncl ude <cstring>

#i ncl ude <cstdi o>

usi ng nanmespace std;

/1 MenCheck.h must not be included here

/1 Qutput file object using cstdio
/1 (cout constructor calls malloc())
class CFile {
FI LE* f;
publi c:
OFile(char* nane) : f(fopen(nane, "w')) {}
~OFile() { fclose(f); }
operator FILE*() { return f; }
i
extern OFile nmentrace;
/1 Comrent out the following to send all the
/1 information to the trace file:
#define nentrace stdout

const unsigned | ong _pool sz = 50000L
static unsigned char _nenory_pool [_pool _sz];
static unsigned char* _pool _ptr = _nenory_pool

Appendix B: Programming Guidelines
534

voi d* getnen(size t sz) {

i f(_menory_pool + pool sz - _pool _ptr < sz) {

fprintf(stderr,
"Qut of nmenory. Use bigger nmodel\n");

exit(1);

}

void* p = _pool _ptr;

_pool _ptr += sz;

return p;

}

/1 Holds informati on about allocated pointers:
cl ass MenBag {

public:
enumtype { Malloc, New };
private:
char* typestr(type t) {
switch(t) {

case Malloc: return "mall oc"
case New. return "new'
default: return "?unknown?";

}
}
struct M {
void* np; [// Menory pointer
type t; /1 Allocation type
char* file; // File name where allocated
int line; // Line nunber where allocated
Mvoi d* v, type tt, char* f, int |)
mp(v), t(tt), file(f), line(l) {}
PV

int sz, next;
static const int increment = 50
public:
MenBag() : v(0), sz(0), next(0) {}
voi d* add(void* p, type tt = Mlloc,
char* s = "library", int | =0) {
i f(next >= sz) {
Sz += increment;
/1 This nenmory is never freed, so it
/1 doesn't "get involved" in the test:
const int mensize = sz * sizeof (M;
/1 Equival ent of realloc, no registration

Appendix B: Programming Guidelines
535

voi d* p = getnem(nensi ze);
if(v) nmenmove(p, v, nmensize);
v = (M)p;
nmenset (&v[next], O,

i ncrenent * sizeof(M);

v[next++] = Mp, tt, s, |);
return p;
}
/1 Print information about allocation:
void allocation(int i) {
fprintf(nmentrace, "pointer %"
' allocated with %",
v[i].np, typestr(v[i].t));
if(v[i].t == New)
fprintf(menrace, " at %: %",
v[i].file, v[i].line);
fprintf(mentrace, "\n");

}
void validate(void* p, type T = Malloc) {
for(int i = 0; i < next; i++)
if(vlfi].m == p) {
if(v[i].t '=T) {

al l ocation(i);
fprintf(mentrace,
"\t was released as if it were "
"allocated with % \n", typestr(T));
}
v[i].nmp = 0; [// Erase it
return;
}
fprintf(mentrace,
"pointer not in nmenory list: %\n", p);

}
~MenBag() {
for(int i = 0; i < next; i++)
if(v[i].np '= 0) {
fprintf(mentrace,
"pointer not released: ");
al l ocation(i);
}
}

Appendix B: Programming Guidelines
536

extern MenBag MEMBAG ;

voi d* mall oc(size t sz) {

voi d* p = getnen(sz);

return MEMBAG. . add(p, MenBag:: Malloc);
}

voi d* call oc(size_t numelens, size t elemsz) {
void* p = getnem(numelens * elemsz);
nmenset (p, 0, numelens * elemsz);
return MEMBAG . add(p, MenBag:: Malloc);

}

voi d* realloc(void* block, size t sz) {
voi d* p = getnen(sz);
i f(block) nemove(p, block, sz);
return MEMBAG . add(p, MenBag:: Malloc);
}

void free(void* v) {
MEMBAG . val i date(v, MenBag:: Ml l oc);
}

voi d* operator new(size t sz) {

voi d* p = getnen(sz);

return MEMBAG. . add(p, MenBag:: New);
}

voi d*
operator new(size_ t sz, char* file, int line) {
voi d* p = getnen(sz);
return MEMBAG . add(p, MenBag::New, file, line);
}

voi d operator delete(void* v) {
MEMBAG . val i date(v, MenmBag:: New);
}

MenmBag MEMBAG ;

/!l Placed here so the constructor is called
/1 AFTER that of MEMBAG :

#i fdef mentrace

#undef mentrace

Appendix B: Programming Guidelines
537

#endi f

OFile mentrace("nmentrace. out");

/1 Causes 1 "pointer not in menory list" nmessage
11~

OFileisasimple wrapper around a FIL E*; the constructor opens the file and the destructor
closesit. The operator FILE* () allowsyou to simply use the OFile object anyplace you
would ordinarily usea FILE* (in the fprintf() statementsin this example). The #define that
follows simply sends everything to standard output, but if you need to put it in atrace file you
simply comment out that line.

Memory is alocated from an array called _memory_pool. The _pool_ptr is moved forward
every time storage is allocated. For simplicity, the storage is never reclaimed, and realloc()
doesn’t try to resize the storage in the same place.

All the storage allocation functions call getmem() which ensures there is enough space | eft
and movesthe _pool_ptr to alocate your storage. Then they store the pointer in a specia
container of class M emBag called MEMBAG_, along with pertinent information (notice the
two versions of operator new; one which just stores the pointer and the other which stores
the file and line number). The M emBag classis the heart of the system.

Y ou will see many similaritiesto xbag in MemBag. A distinct differenceisrealloc() is
replaced by acall to getmem() and memmove(), so that storage allocated for the M emBag
is not registered. In addition, the type enum allows you to store the way the memory was
allocated; the typestr () function takes a type and produces a string for use with printing.

The nested struct M holds the pointer, the type, a pointer to the file name (which is assumed
to be statically allocated) and the line where the allocation occurred. v is apointer to an array
of M objects—thisisthe array which is dynamically sized.

The allocation() function prints out a different message depending on whether the storage
was allocated with new (where it has line and file information) or malloc() (whereit
doesn’'t). Thisfunction is used inside validate(), which is called by free() and delete() to
ensure everything is OK, and in the destructor, to ensure the pointer was cleaned up (note that
invalidate() the pointer value v[i].mp is set to zero, to indicate it has been cleaned up).

The following is a simple test using the memcheck facility. The M emCheck.obj file must be
linked in for it to work:

[/: Cl0: MenTest. cpp

/1{L} MemCheck

/1 Test of MenCheck system
#i ncl ude " MentCheck. h"

int main() {
void* v = std::malloc(100);
del ete v;
int* x = newint;

Appendix B: Programming Guidelines
538

std::free(x);
new doubl e;
Y I~

The trace file created in M emCheck.cpp causes the generation of one "pointer not in memory
list" message, apparently from the creation of the file pointer on the heap. [[This may not still
be true—test it]]

CGlI programming in C++

The World-Wide Web has become the common tongue of connectivity on planet earth. It
began as simply away to publish primitively-formatted documents in away that everyone
could read them regardless of the machine they were using. The documents are created in
hypertext markup language (HTML) and placed on a central server machine where they are
handed to anyone who asks. The documents are requested and read using a web browser that
has been written or ported to each particular platform.

Very quickly, just reading a document was not enough and people wanted to be able to collect
information from the clients, for example to take orders or alow database lookups from the
server. Many different approaches to client-side programming have been tried such as Java
applets, JavaScript, and other scripting or programming languages. Unfortunately, whenever
you publish something on the Internet you face the problem of awhole history of browsers,
some of which may support the particular flavor of your client-side programming tool, and
some which won't. The only reliable and well-established solution?” to this problem is to use
straight HTML (which has a very limited way to collect and submit information from the
client) and common gateway interface (CGI) programs that are run on the server. The Web
server takes an encoded request submitted viaan HTML page and responds by invoking a
CGl program and handing it the encoded data from the request. This request is classified as
either a“GET” or a“POST” (the meaning of which will be explained later) and if you look at
the URL window in your Web browser when you push a“submit” button on a page you'll
often be able to see the encoded request and information.

CGI can seem abit intimidating at first, but it turns out that it's just messy, and not all that
difficult to write. (An innocent statement that’ s true of many things — after you understand
them.) A CGI program is quite straightforward since it takes its input from environment
variables and standard input, and sends its output to standard output. However, there is some
decoding that must be done in order to extract the data that’ s been sent to you from the
client’sweb page. In this section you'll get a crash coursein CGI programming, and we'll
develop tools that will perform the decoding for the two different types of CGI submissions

27 Actually, Java Servlets |ook like amuch better solution than CGI, but —at least at this
writing — Servlets are still an up-and-coming solution and you' re unlikely to find them
provided by your typical I1SP.

Appendix B: Programming Guidelines
539

(GET and POST). These tools will alow you to easily write a CGl program to solve any
problem. Since C++ exists on virtually al machines that have Web servers (and you can get
GNU C++ freefor virtually any platform), the solution presented here is quite portable.

Encoding datafor CGlI

To submit datato a CGI program, the HTML “form” tag is used. The following very simple
HTML page contains a form that has one user-input field along with a“submit” button:

//:1 Cl10: Si npl eForm htm

<HTML><HEAD>

<TI TLE>A sinpl e HTM. for nx/ Tl TLE></ HEAD>

Test, uses standard htm GET

<Form et hod="CGET" ACTI ON="/cgi - bi n/ Cd _CET. exe" >
<P>Fi el d1: <INPUT TYPE = "text" NAME = "Fiel dl1"
VALUE = "This is a test" size = "40"></p>
<p><input type = "submit" nane = "submt" > </p>
</ For np</ HTM_>

11~

Everything between the <Form and the </Form> is part of thisform (Y ou can have multiple
forms on asingle page, but each oneis controlled by its own method and submit button). The
“method” can be either “get” or “post,” and the “action” is what the server does when it
receives the form data: it calls a program. Each form has a method, an action, and a submit
button, and the rest of the form consists of input fields. The most commonly-used input field
is shown here: atext field. However, you can also have things like check boxes, drop-down
selection lists and radio buttons.

CGIl_GET .exeisthe name of the executable program that residesin the directory that's
typically called “cgi-bin” on your Web server.28 (If the named program is not in the cgi-bin
directory, you won't see any results.) Many Web servers are Unix machines (mine runs
Linux) that don't traditionally use the .exe extension for their executable programs, but you
can call the program anything you want under Unix. By using the .exe extension the program
can be tested without change under most operating systems.

If you fill out thisform and press the “submit” button, in the URL address window of your
browser you will see something like:

htt p: // www. pooh. coni cgi - bi n/ CA _CGET. exe?Fi el d1=
Thi s+i s+a+t est &ubm t =Submi t +Query

28 Free Web servers arerel atively common and can be found by browsing the Internet;
Apache, for example, isthe most popular Web server on the Internet.

Appendix B: Programming Guidelines
540

(Without the line break, of course.) Here you see alittle bit of the way that datais encoded to
send to CGlI. For one thing, spaces are not allowed (since spaces typically separate command-
line arguments). Spaces are replaced by ‘+' signs. In addition, each field contains the field
name (which is determined by the form on the HTML page) followed by an ‘=" and the field
data, and terminated by a‘& .

At this point, you might wonder about the‘+', ‘=" and ‘& . What if those are used in the
field, asin “John & Marsha Smith”? This is encoded to:

| John+%26+Mar sha+Sni t h

That is, the special character isturned into a‘ %’ followed by its ASCII valuein hex.
Fortunately, the web browser automatically performs all encoding for you.

The CGI parser

There are many examples of CGI programs written using Standard C. One argument for doing
thisisthat Standard C can be found virtually everywhere. However, C++ has become quite
ubiquitous, especially in the form of the GNU C++ Compiler9 (g++) that can be downloaded
free from the Internet for virtually any platform (and often comes pre-installed with operating
systems such as Linux). Asyou will see, this means that you can get the benefit of object-
oriented programming in a CGI program.

Since what we' re concerned with when parsing the CGI information is the field name-value
pairs, one class (CGl pair) will be used to represent a single name-value pair and a second
class (CGImap) will use CGl pair to parse each name-value pair that is submitted from the
HTML forminto keys and values that it will hold in amap of strings so you can easily fetch
the value for each field at your leisure.

One of the reasons for using C++ here is the convenience of the STL, in particular the map
class. Since map hasthe operator|[], you have a nice syntax for extracting the data for each
field. The map template will be used in the creation of CGlmap, which you'll seeisafairly
short definition considering how powerful it is.

The project will start with areusable portion, which consists of CGlpair and CGImap ina
header file. Normally you should avoid cramming this much code into a header file, but for
these examplesit’s convenient and it doesn’t hurt anything:

//: Cl10: CA map. h
/1 Tools for extracting and decodi ng data from
/1 from CE GCETs and POSTs.

29 GNU stands for “Gnu’s Not Unix.” The project, created by the Free Software Foundation,
was originally intended to replace the Unix operating system with afree version of that OS.
Linux appears to have replaced thisinitiative, but the GNU tools have played an integral part
in the development of Linux, which comes packaged with many GNU components.

Appendix B: Programming Guidelines
541

#i ncl ude <string>
#i ncl ude <vector>
#i ncl ude <i ostreanp
usi ng namespace std;

class C@pair : public pair<string, string> {
public:
CApair() {}
Cd pair(string nane, string value) {
first = decodeURLStri ng(nane);
second = decodeURLString(val ue);
}
/1 Automatic type conversion for bool ean test:
operator bool () const {
return (first.length() !'= 0);
}
private:
static string decodeURLString(string URLstr) {
const int len = URLstr.length();
string result;

for(int i =0; i <len; i++) {
if(URLstr[i] == "+")
result +="' ";
else if(URLstr[i] =="%) {
result +=

transl ateHex(URLstr[i + 1]) * 16 +
transl ateHex(URLstr[i + 2]);
i += 2; // Move past hex code
} else // An ordinary character
result += URLstr[i];
}

return result;
}
/1 Translate a single hex character; used by
/1 decodeURLString():
static char transl ateHex(char hex) {
if(hex >= "A")
return (hex & Oxdf) - "A" + 10;
el se
return hex - '0';

Appendix B: Programming Guidelines
542

/1 Parses any CA query and turns it into an
/1 STL vector of Cd pair which has an associative
/1 | ookup operator[] like a map. A vector is used
/1 instead of a nap because it keeps the origina
/1 ordering of the fields in the Wb page form
class CA@map : public vector<Cd pair> {
string gq;
int index;
/1 Prevent assignnment and copy-construction
voi d operator=(C4A nap&) ;
CA map(CA nmap&) ;
public:
Cd map(string query): index(0), gq(query){
Cdpair p;
while((p = nextPair()) !'=0)
push_back(p);
}

/1 Look something up, as if it were a nmap
string operator[](const string& key) {
iterator i = begin();
while(i !'=end()) {
if((*i).first == key)
return (*i).second;

i ++;
}
return string(); // Enpty string == not found
voi d dunmp(ostrean& o, string nl = "
") {
for(iterator i = begin(); i !=end(); i++) {

0 << (*i).first << " ="
<< (*i).second << nl;
}
}

private:
/1 Produces nanme-value pairs fromthe query
/1 string. Returns an enpty Pair when there's
/1 no nore query string left:
Cdpair nextPair() {
if(gqg.length() == 0)
return CApair(); // Error, return enpty
if(gg.find('=") == -1)
return CApair(); // Error, return enpty
string nane = gq.substr(0, gq.find('="));

Appendix B: Programming Guidelines
543

gq = gq.substr(gg.find('=") + 1);
string value = gq.substr(0, gq.find('&));
gq = gq.substr(gg.find('&) + 1);
return Cd pair(name, value);
}
b

/1 Hel per class for getting POST data:
class Post : public string {
public:
Post () {
/1 For a Cd "POST," the server puts the
/1 length of the content string in the
/1 environment variabl e CONTENT LENGTH:
char* clen = getenv("CONTENT_LENGTH");
if(clen == 0) {
cout << "Zero CONTENT LENGTH, Make sure "
"this is a POST and not a GET" << endl;
return;
}
int len = atoi(clen);
char* s = new char[len];
cin.read(s, len); // Get the data
append(s, len); // Add it to this string
delete []s;

}
Y, M1~

The CGl pair class starts out quite simply: it inherits from the standard library pair template
to create apair of strings, one for the name and one for the value. The second constructor
calls the member function decodeURL String() which produces a string after stripping away
all the extra characters added by the browser asit submitted the CGI request. Thereis no need
to provide functions to select each individual element — because pair is inherited publicly,
you can just select the first and second elements of the CGl pair.

The operator bool provides automatic type conversion to bool. If you have a CGl pair object
called p and you use it in an expression where a Boolean result is expected, such as

if(p) { //...
then the compiler will recognize that it has a CGl pair and it needs a Boolean, so it will
automeatically call operator bool to perform the necessary conversion.

Because the string obj ects take care of themselves, you don’t need to explicitly define the
copy-constructor, operator = or destructor — the default versions synthesized by the compiler
do the right thing.

Appendix B: Programming Guidelines
544

The remainder of the CGl pair class consists of the two methods decodeURL String() and a
hel per member function translateHex() which is used by decodeURL String(). (Note that
transateHex() does not guard against bad input such as“%1H."”) decodeURL String()
moves through and replaces each ‘' +' with a space, and each hex code (beginning witha‘%")
with the appropriate character. It’' s worth noting here and in CGImap the power of the string
class—you can index into a string object using oper ator|], and you can use methods like
find()) and substring().

CGlImap parses and holds all the name-value pairs submitted from the form as part of a CGlI
request. Y ou might think that anything that has the word “map” in it’s name should be
inherited from the STL map, but map hasit’s own way of ordering the elements it stores
whereas here it's useful to keep the elementsin the order that they appear on the Web page.
So CGlmap isinherited from vector<CGlpair>, and operator|] is overloaded so you get
the associative-array lookup of a map.

Y ou can a'so see that CGImap has a copy-constructor and an oper ator =, but they’ re both
declared as private. Thisisto prevent the compiler from synthesizing the two functions
(which it will do if you don’t declare them yourself), but it also prevents the client
programmer from passing a CGlmap by value or from using assignment.

CGImap’sjob isto take the input data and parse it into name-value pairs, which it will do
with the aid of CGl pair (effectively, CGlpair isonly ahelper class, but it also seemsto
make it easier to understand the code). After copying the query string (you'll see where the
query string comes from later) into alocal string object gq, the nextPair () member function
is used to parse the string into raw name-value pairs, delimited by ‘=* and ‘&’ signs. Each
resulting CGl pair object is added to the vector using the standard vector ::push_back().
When nextPair (') runs out of input from the query string, it returns zero.

The CGImap::operator[] takes the brute-force approach of alinear search through the
elements. Since the CGImap isintentionally not sorted and they tend to be small, thisis not
too terrible. The dump(') function is used for testing, typically by sending information to the
resulting Web page, as you might guess from the default value of nl, whichisan HTML
“break line” token.

Using GET can be fine for many applications. However, GET passes its data to the CGI
program through an environment variable (called QUERY _STRING), and operating systems
typically run out of environment space with long GET strings (you should start worrying at
about 200 characters). CGI provides a solution for this; POST. With POST, the datais
encoded and concatenated the same way as with GET, but POST uses standard input to pass
the encoded query string to the CGI program and has no length limitation on the input. All
you haveto do in your CGI program is determine the length of the query string. Thislength is
stored in the environment variable CONTENT _LENGTH. Once you know the length, you
can allocate storage and read the precise number of bytes from standard input. Because POST
is the less-fragile solution, you should probably prefer it over GET, unless you know for sure
that your input will be short. In fact, one might surmise that the only reason for GET isthat it
isdlightly easier to code a CGI program in C using GET. However, the last classin

Appendix B: Programming Guidelines
545

CGImap.h isatool that makes handling a POST just as easy as handling a GET, which
means you can always use POST.

The class Post inherits from a string and only has a constructor. The job of the constructor is
to get the query data from the POST into itself (astring). It does this by reading the
CONTENT_LENGTH environment variable using the Standard C library function getenv().
This comes back as a pointer to a C character string. If this pointer is zero, the
CONTENT_LENGTH environment variable has not been set, so something iswrong.
Otherwise, the character string must be converted to an integer using the Standard C library
function atoi(). The resulting length is used with new to allocate enough storage to hold the
query string (plusits null terminator), and then read() is called for cin. Theread() function
takes a pointer to the destination buffer and the number of bytes to read. The resulting buffer
isinserted into the current string using string::append(). At this point, the POST dataisjust
astring object and can be easily used without further concern about where it came from.

Testing the CGI parser

Now that the basic tools are defined, they can easily be used in a CGI program like the
following which simply dumps the name-value pairsthat are parsed from a GET query.
Remember that an iterator for a CGlmap returns a CGl pair object when it is dereferenced,
so you must select the first and second parts of that CGl pair:

//1: Cl0:CA _CET.cpp

/1 Tests CAmap by extracting the informtion
/1 froma CE@ GET submtted by an HTM. Wb page.
#i ncl ude "Cd nmap. h"

int main() {

/1 You MJST print this out, otherw se the
/1 server will not send the response:
cout << "Content-type: text/plain\n" << endl;
/1 For a Cd "GET," the server puts the data
/1 in the environnment variable QUERY_STRI NG
Cd map query(getenv("QUERY_STRING'));
/1 Test: dunp all names and val ues
for(CAldmap::iterator it = query.begin();

it = query.end(); it++) {

cout << (*it).first << " ="

<< (*it).second << endl;

}
Y 11~

When you use the GET approach (which is controlled by the HTML page with the METHOD
tag of the FORM directive), the Web server grabs everything after the‘? and putsininto the
operating-system environment variable QUERY _STRING. So to read that information all
you haveto dois get the QUERY _STRING. Y ou do this with the standard C library function

Appendix B: Programming Guidelines
546

getenv(), passing it the identifier of the environment variable you wish to fetch. Inmain(),
notice how simple the act of parsing the QUERY _STRING is: you just hand it to the
constructor for the CGlmap object called query and all the work is done for you. Although
an iterator is used here, you can also pull out the names and values from query using
CGlmap::operator|].

Now it's important to understand something about CGI. A CGI program is handed itsinput in
one of two ways: through QUERY _STRING during a GET (asin the above case) or through
standard input during a POST. But a CGI program only returns its results through standard
output, via cout. Where does this output go? Back to the Web server, which decides what to
do with it. The server makes this decision based on the content-type header, which means
that if the content-type header isn't thefirst thing it sees, it won’t know what to do with the
data. Thusit’'s essential that you start the output of all CGI programs with the content-type
header.

In this case, we want the server to feed all the information directly back to the client program.
The information should be unchanged, so the content-typeistext/plain. Once the server sees
this, it will echo all strings right back to the client as a simple text Web page.

To test this program, you must compile it in the cgi-bin directory of your host Web server.
Then you can perform asimple test by writing an HTML page like this:

[/:! Cl0: GETtest. htm

<HTM_><HEAD>

<TI TLE>A test of standard HTM. GET</ Tl TLE>

</ HEAD> Test, uses standard htm CET

<Form met hod="GET" ACTI ON="/ cgi - bi n/ CA _CET. exe" >
<P>Fi el d1: <INPUT TYPE = "text" NAME = "Fiel dl1"
VALUE = "This is a test" size = "40"></p>

<P>Fi el d2: <INPUT TYPE = "text" NAME = "Fiel d2"
VALUE = "of the energency" size = "40"></p>

<P>Fi el d3: <INPUT TYPE = "text" NAME = "Fiel d3"
VALUE = "broadcast system' size = "40"></p>

<P>Fi el d4: <INPUT TYPE = "text" NAME = "Fiel d4"
VALUE = "this is only a test" size = "40"></p>
<P>Fi el d5: <INPUT TYPE = "text" NAME = "Fiel d5"
VALUE = "In a real emergency" size = "40"></p>
<P>Fi el d6: <INPUT TYPE = "text" NAME = "Fiel d6"
VALUE = "you will be instructed" size = "40"></p>
<p><input type = "subnmit" name = "subnmit" > </p>
</ For np</ HTM_>

[~

Of course, the CGI_GET .exe program must be compiled on some kind of Web server and
placed in the correct subdirectory (typically called “cgi-bin” in order for this web page to
work. The dominant Web server isthe freely-available Apache (see http://www.Apache.org),

Appendix B: Programming Guidelines
547

which runs on virtually all platforms. Some word-processing/spreadsheet packages even come
with Web servers. It's also quite cheap and easy to get an old PC and install Linux along with
an inexpensive network card. Linux automatically sets up the Apache server for you, and you
can test everything on your local network asif it were live on the Internet. One way or another
it'spossibleto install aWeb server for local tests, so you don't need to have a remote Web
server and permission to install CGI programs on that server.

One of the advantages of this design isthat, now that CGl pair and CGImap are defined,
most of the work is done for you so you can easily create your own CGI program simply by
modifying main().

Using POST
The CGl pair and CGImap from CGlmap.h can be used asisfor a CGI program that
handles POSTs. The only thing you need to do is get the data from a Post object instead of

from the QUERY _STRING environment variable. The following listing shows how simple it
isto write such a CGI program:

/1: Cl10: Cd _POST. cpp

/1 CAmap works as easily with POST as it
/] does with GET.

#i ncl ude " Cd nmap. h"

#i ncl ude <i ostreanp

usi ng nanmespace std;

int main() {

cout << "Content-type: text/plain\n" << endl;
Post p; // Get the query string
CA map query(p);
/1 Test: dunp all names and val ues
for(Cldmap::iterator it = query. begin();

it !'= query.end(); it++) {

cout << (*it).first << " ="

<< (*it).second << endl;

}
Y 110~

After creating a Post object, the query string is no different from a GET query string, soitis
handed to the constructor for CGlmap. The different fieldsin the vector are then available
just asin the previous example. If you wanted to get even more terse, you could even define
the Post as atemporary directly inside the constructor for the CGImap object:

Cd map query(Post());
To test this program, you can use the following Web page:

Appendix B: Programming Guidelines
548

[/]:! Cl0: POSTtest. htm

<HTML><HEAD>

<TI TLE>A test of standard HTML POST</TI TLE>

</ HEAD>Test, uses standard htm POST

<For m et hod="POST" ACTI ON="/cgi - bi n/ CA@ _PCST. exe" >
<P>Fi el d1: <INPUT TYPE = "text" NAME = "Fiel dl1"
VALUE = "This is a test" size = "40"></p>
<P>Fi el d2: <INPUT TYPE = "text" NAME = "Fiel d2"
VALUE = "of the energency" size = "40"></p>
<P>Fi el d3: <INPUT TYPE = "text" NAME = "Fiel d3"
VALUE = "broadcast systeni size = "40"></p>
<P>Fi el d4: <INPUT TYPE = "text" NAME = "Fi el d4"
VALUE = "this is only a test" size = "40"></p>
<P>Fi el d5: <INPUT TYPE = "text" NAME = "Fi el d5"
VALUE = "In a real emergency" size = "40"></p>
<P>Fi el d6: <INPUT TYPE = "text" NAME = "Fi el d6"
VALUE = "you will be instructed" size = "40"></p>
<p><input type = "submt" nane = "submt" > </p>
</ For np</ HTM_>

11~

When you press the “submit” button, you'll get back a simple text page containing the parsed
results, so you can see that the CGI program works correctly. The server turns around and
feeds the query string to the CGI program via standard inpuit.

Handling mailing lists
Managing an email list isthe kind of problem many people need to solve for their Web site.
Asitisturning out to be the case for everything on the Internet, the simplest approach is
alwaysthe best. | learned this the hard way, first trying a variety of Java applets (which some
firewalls do not allow) and even JavaScript (which isn’t supported uniformly on all browsers).
The result of each experiment was a steady stream of email from the folks who couldn’t get it
to work. When you set up a Web site, your goal should be to never get email from anyone
complaining that it doesn’t work, and the best way to produce thisresult isto use plain HTML
(which, with alittle work, can be made to look quite decent).

The second problem was on the server side. Ideally, you'd like all your email addressesto be
added and removed from a single master file, but this presents a problem. Most operating
systems allow more than one program to open afile. When a client makes a CGI request, the
Web server starts up a new invocation of the CGI program, and since a Web server can handle
many requests at atime, this means that you can have many instances of your CGI program
running at once. If the CGI program opens a specific file, then you can have many programs
running at once that open that file. Thisis aproblem if they are each reading and writing to
that file.

Appendix B: Programming Guidelines
549

There may be a function for your operating system that “locks’ afile, so that other
invocations of your program do not access the file at the same time. However, | took a
different approach, which was to make a unique file for each client. Making a file unique was
quite easy, since the email name itself is a unique character string. The filename for each
request is then just the email name, followed by the string “.add” or “.remove”. The contents
of thefileis also the email address of the client. Then, to produce alist of all the namesto
add, you simply say something like (in Unix):

| cat *.add > addli st
(or the equivalent for your system). For removals, you say:
| cat *.renove > renpvelist
Once the names have been combined into alist you can archive or remove the files.

The HTML code to place on your Web page becomes fairly straightforward. This particular
example takes an email address to be added or removed from my C++ mailing list:

<hl align="center">
The C++ Mailing List</hl>
<di v align="center"><center>

<tabl e border="1" cel | paddi ng="4"
cel | spaci ng="1" w dt h="550" bgcol or =" #FFFFFF" >

<tr>
<td wi dt h="30" bgcol or ="#FF0000" > </ t d>
<td align="center" wi dth="422" bgcol or="#0">
<form acti on="/cgi-bin/mM mexe" method="CET">
<i nput type="hi dden" name="subject-field"
val ue="cpl uspl us-email -list">
<i nput type="hidden" name="comand-field"
val ue="add" ><p>
<i nput type="text" size="40"
name="enui | - addr ess" >
<i nput type="submit" nane="submt"
val ue="Add Address to C++ Mailing List">
</ p></fornme</td>
<td wi dt h="30" bgcol or ="#FF0000" > </t d>

</tr>

<tr>
<td wi dt h="30" bgcol or ="#000000" > </t d>
<td align="center" wi dth="422"
bgcol or =" #FF0000" >
<form acti on="/cgi-bin/m m exe" method="CET">
<i nput type="hi dden" name="subject-field"

Appendix B: Programming Guidelines
550

val ue="cpl usplus-email -list">
<i nput type="hi dden" name="comand-field"
val ue="renove" ><p>
<i nput type="text" size="40"
name="enmi | - addr ess" >
<i nput type="subnmit" nane="submt"
val ue="Renpove Address From C++ Mailing List">
</ p></forne</td>
<td wi dt h="30" bgcol or ="#000000" > </t d>
</tr>
</tabl e>
</ cent er ></ di v>

Each form contains one data-entry field called email-addr ess, as well as a couple of hidden
fields which don’t provide for user input but carry information back to the server nonetheless.
The subject-field tells the CGI program the subdirectory where the resulting file should be
placed. The command-field tells the CGI program whether the user is requesting that they be
added or removed from the list. From the action, you can see that a GET is used with a

program called mim.exe (for “mailing list manager”). Here it is:

/1: CLO: M mcpp

/1 A Gd programto maintain a mailing |ist

#i ncl ude "Cd nmap. h"

#i ncl ude <fstreanp

usi ng namespace std;

const string contact ("Bruce@ckel Objects.coni);
/1 Paths in this programare for Linux/Unix. You
/1 nust use backsl ashes (two for each single

/1 slash) on Wn32 servers:

const string rootpath("/home/eckel/");

int main() {
cout << "Content-type: text/htm\n"<< endl;
Cd map query(getenv("QUERY_STRING'));
if(query["test-field"] == "on") {
cout << "map size: " << query.size() << "
";
query. dunp(cout, "
");

i f(query["subject-field"].size() == 0) {
cout << "<h2>Incorrect form Contact " <<
contact << endl;
return O;

}

string email = query["enmil-address"];

Appendix B: Programming Guidelines

551

if(email.size() == 0) {
cout << "<h2>Pl ease enter your emrmil address"”

<< endl;
return O;
}
if(email.find first_of (" \t") !'= string::npos){
cout << "<h2>You cannot use white space "
"in your email address" << endl
return O;
}

if(email.find(' @) == string::npos) {
cout << "<h2>You nust use a proper emmil"
address including an '@ sign" << endl
return O;

if(email.find('.") == string::npos) {
cout << "<h2>You nust use a proper emmil"
address including a '.'" << endl
return O;
}
string fnane = emil
i f(query["comuand-field'] == "add")
fname += ".add";
el se if(query["command-field'] == "renove")
fname += ".renove";
el se {
cout << "error: comuand-field not found. Contact
<< contact << endl
return O;
}
string path(rootpath + query["subject-field"]
+ "/" + fname);
of stream out (path.c_str());
if(lout) {
cout << "cannot open " << path << "; Contact"
<< contact << endl
return O;
}
out << email << endl
cout << "
<H2>" << emmnil << " has been ";
i f(query["comuand-field"'] == "add")
cout << "added";
el se if(query["command-field"] == "renove")

Appendix B: Programming Guidelines
552

cout << "renoved";
cout << "
Thank you</H2>" << endl;
Y I~

Again, all the CGI work is done by the CGImap. From then on it's a matter of pulling the
fields out and looking at them, then deciding what to do about it, which is easy because of the
way you can index into amap and also because of the tools available for standard strings.
Here, most of the programming has to do with checking for avalid email address. Then afile
name is created with the email address as the name and “.add” or “.remove” asthe extension,
and the email addressis placed in thefile.

Maintaining your list

Once you have alist of names to add, you can just paste them to end of your list. However,
you might get some duplicates so you need a program to remove those. Because your names
may differ only by upper and lowercase, it’s useful to create atool that will read alist of
names from afile and place them into a container of strings, forcing all the namesto
lowercase asit does:

[1: C10:readLower.h

/! Read a file into a container of string,
/1 forcing each line to | ower case.
#i f ndef READLOVWER H

#defi ne READLOVNER H

#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <string>

#i ncl ude <al gorithne

#i ncl ude <cctype>

i nline char downcase(char c) {
usi ng nanespace std; // Conpiler bug
return tol ower(c);

}

std::string | case(std::string s) {
std::transform(s. begin(), s.end(),
s. begin(), downcase);
return s;

}

t enpl at e<cl ass SCont ai ner >
voi d readLower (char* fil ename, SContainer& c) {
std::ifstreamin(fil ename);

Appendix B: Programming Guidelines
553

assure(in, filenane);
const int sz = 1024;
char buf[sz];
whi I e(in.getline(buf, sz))
/1 Force to | owercase
c. push_back(string(lcase(buf)));

}
#endi f // READLOVER H ///: ~

Sinceit'satemplate, it will work with any container of string that supports push_back().
Again, you may want to change the above to the form readIn(in, s) instead of using a fixed-
sized buffer, which is more fragile.

Once the names are read into the list and forced to lowercase, removing duplicatesis trivial:

//: Cl10: RemmoveDupl i cates. cpp

/1 Renmove duplicate names froma mailing list
#i ncl ude "readLower. h"

#include "../require. h"

#i ncl ude <vector>

#i ncl ude <al gorithne

usi ng nanmespace std;

int main(int argc, char* argv[]) {

requi reArgs(argc, 2);

vect or<string> nanes;

readLower (argv[1], names);

| ong before = names. size();

/1 You must sort first for unique() to work:

sort (names. begin(), nanes.end());

/! Renove adjacent duplicates:

uni que(names. begi n(), names.end());

| ong renmoved = before - nanes. size();

of stream out (argv[2]);

assure(out, argv[2]);

copy(nanes. begi n(), nanes.end(),

ostream.iterator<string>(out,"\n"));

cout << renpved << " nanes rempved" << endl

Y I~

A vector isused hereinstead of alist because sorting requires random-access which is much
faster in avector. (A list hasabuilt-in sort() so that it doesn’'t suffer from the performance
that would result from applying the normal sort() agorithm shown above).

Appendix B: Programming Guidelines
554

The sort must be performed so that all duplicates are adjacent to each other. Then unique()
can remove al the adjacent duplicates. The program also keeps track of how many duplicate
names were removed.

When you have afile of namesto remove from your list, readL ower () comesin handy
again:

/1: Cl10: RemmoveG oup. cpp

/1 Renpve a group of names froma |ist

#i ncl ude "readLower. h"

#include "../require. h"

#i nclude <list>

usi ng nanmespace std;

typedef list<string> Container;

int main(int argc, char* argv[]) {
requi reArgs(argc, 3);
Cont ai ner names, renovals;
readLower (argv[1], names);
readLower (argv[2], renovals);

| ong original = nanes.size();
Container::iterator rmt = renoval s. begin();
while(rmt !'= renoval s.end())

nanes. renove(*rmt++); // Renoves all matches
of stream out (argv[3]);
assure(out, argv[3]);
copy(nanes. begi n(), nanes.end(),
ostream.iterator<string>(out,"\n"));

| ong renoved = original - nanes.size();
cout << "On renoval list: " << renovals. size()
<< "\n Renoved: " << renpved << endl;
Y I~

Here, alist isused instead of avector (sincereadlL ower () isatemplate, it adapts). Although
thereisaremove() agorithm that can be applied to containers, the built-in list::remove()
seems to work better. The second command-line argument is the file containing the list of
names to be removed. An iterator is used to step through that list, and the list::remove()
function removes every instance of each name from the master list. Here, the list doesn’t need
to be sorted first.

Unfortunately, that’s not all thereisto it. The messiest part about maintaining amailing list is
the bounced messages. Presumably, you'll just want to remove the addresses that produce
bounces. If you can combine all the bounced messages into a single file, the following
program has a pretty good chance of extracting the email addresses; then you can use
RemoveGroup to delete them from your list.

Appendix B: Programming Guidelines
555

/1: Cl10: Extract Undel i verabl e. cpp

/1 Find undeliverable nanes to renove from
/1 mailing list fromwithin a mail file

/1 containing many nessages

#include "../require. h"

#i ncl ude <cstdi o>

#i ncl ude <string>

#i ncl ude <set>

usi ng namespace std;

char* start_str[] = {
"fol |l owi ng address",
"foll owi ng recipient",
"foll owi ng destination",
"undel i verable to the foll ow ng",
"followi ng invalid",

}s

char* continue_str[] = {
"Message- 1 D',
"Pl ease reply to",

}s

/1 The in() function allows you to check whet her
/1l a string in this set is part of your argument.
class StringSet {
char** ss;
int sz;
public:
StringSet(char** sa, int sza):ss(sa),sz(sza) {}
bool in(char* s) {
for(int i =0; i < sz; i++4)
if (strstr(s, ss[i]) !'=0)
return true
return false;
}
b

/1 Calculate array | ength:
#defi ne ALEN(A) ((sizeof A)/(sizeof *A))

StringSet
starts(start_str, ALEN(start_str)),

Appendix B: Programming Guidelines
556

continues(continue_str, ALEN(continue_str));

int main(int argc, char* argv[]) {
requireArgs(argc, 2,
"Usage: ExtractUndeliverable infile outfile");
FILE* infile = fopen(argv[1l], "rb");
FILE* outfile = fopen(argv[2], "wW');
require(infile '=0); require(outfile !'= 0);
set <stri ng> nanes;
const int sz = 1024,
char buf[sz];
whil e(fgets(buf, sz, infile) 1= 0) {
if(starts.in(buf)) {
put s(buf);
whil e(fgets(buf, sz, infile) 1= 0) {
i f(continues.in(buf)) continue;
if(strstr(buf, "---") 1= 0) break;
const char* delimters= " \t<>():;,\n\"";
char* nanme = strtok(buf, delimters);
whil e(nane !'= 0) {
if(strstr(name, "@) !'= 0)
nanes. i nsert(string(nane));
nane = strtok(0, delimters);

}
}
}
}
set<string>: :iterator i = names.begin();
whil e(i != nanes.end())
fprintf(outfile, "%\n", (*i++).c_str());
Y I~

Thefirst thing you'll notice about this program is that contains some C functions, including C
I/O. Thisis not because of any particular design insight. It just seemed to work when | used
the C elements, and it started behaving strangely with C++ 1/O. So the C isjust because it
works, and you may be able to rewrite the program in more “pure C++” using your C++
compiler and produce correct results.

A lot of what this program does is read lines looking for string matches. To make this
convenient, | created a StringSet class with amember function in() that tells you whether
any of the stringsin the set are in the argument. The StringSet is initialized with a constant
two-dimensional of strings and the size of that array. Although the StringSet makes the code
easier to read, it's also easy to add new strings to the arrays.

Appendix B: Programming Guidelines
557

Both the input file and the output file in main() are manipulated with standard /O, sinceit’s
not agood ideato mix I/O typesin a program. Each line isread using fgets(), and if one of
them matches with the starts StringSet, then what follows will contain email addresses, until
you see some dashes (I figured this out empirically, by hunting through afile full of bounced
email). The continues StringSet contains strings whose lines should be ignored. For each of
the lines that potentially contains an addresses, each address is extracted using the Standard C
Library function strtok() and then it is added to the set<string> called names. Using a set
eliminates duplicates (you may have duplicates based on case, but those are dealt with by
RemoveGroup.cpp. Theresulting set of names is then printed to the output file.

Mailing to your list

There are anumber of ways to connect to your system’s mailer, but the following program
just takes the simple approach of calling an external command (“fastmail,” which is part of
Unix) using the Standard C library function system(). The program spends all its time
building the external command.

When people don’t want to be on alist anymore they will often ignore instructions and just
reply to the message. This can be a problem if the email address they’re replying with is
different than the one that’s on your list (sometimes it has been routed to a new or aliased
address). To solve the problem, this program prepends the text file with a message that
informs them that they can remove themselves from the list by visiting a URL. Since many
email programswill present aURL in aform that allows you to just click on it, this can
produce avery simple removal process. If you look at the URL, you can seeit'sacall to the
mlm.exe CGI program, including removal information that incorporates the same email
address the message was sent to. That way, even if the user just replies to the message, all you
have to do is click on the URL that comes back with their reply (assuming the messageis
automatically copied back to you).

[/: Cl10: Batchmail . cpp

/1 Sends mail to a list using Unix fastmail
#include "../require. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanr

#i ncl ude <string>

#i ncl ude <strstreanr

#i nclude <cstdlib> // system() function
usi ng nanmespace std;

string subject("New I ntensive Wrkshops");
string from("Bruce@ckel Objects.com');
string replyto("Bruce@ckel Objects.com');
of stream | ogfil e("BatchMail .l og");

int main(int argc, char* argv[]) {

Appendix B: Programming Guidelines
558

requi reArgs(argc, 2,
"Usage: Batchmail nanelist mailfile");
i fstream names(argv[1]);
assure(nanes, argv[1]);
string nane;
whi | e(getline(nanes, nane)) {
of stream nsg("mtxt");
assure(nsg, "mtxt");
nsg << "To be renmpoved fromthis |ist,
"DO NOT REPLY TO THI S MESSAGE. | nstead,
"click on the following URL, or visit
"using your Web browser. This \n"

"renmoved. Here's the URL:\n"
<< "http://ww. m ndvi ew. net/cgi-bin/"

"&onmmand- fi el d=r enbve&emai | - addr ess="
<< nanme << "&subni t=subm t\n\n"

ifstreamtext(argv[2]);
assure(text, argv[1]);
neg << text.rdbuf() << endl
nsg. cl ose();
string conmand("fastmail -F " + from+
" -r " +replyto +" -s \"" + subject +
"\'" mtxt " + name);
system(conmand. c_str());
logfile << conmand << endl
static int mailcounter = O;
const int bsz = 25;
char buf[bsz];
/1 Convert nmilcounter to a char string:
ostrstream ncount er (buf, bsz);
ncounter << nmail counter++ << ends;
i f((++mailcounter %500) == 0) {
string conmand2("fastmail -F " + from+
" -r " +replyto +" -s \"Sent " +
string(buf) +
" messages \" mtxt eckel @ol.conm');
system(conmand2.c_str());
}
}
Y I~

"way, the proper email address will be "

"m m exe?subj ect-fi el d=wor kshop-enail-list"

Appendix B: Programming Guidelines
559

The first command-line argument isthe list of email addresses, one per line. The names are
read one at atime into the string called name using getline(). Then atemporary file called
m.txt is created to build the customized message for that individual; the customization is the
note about how to remove themselves, along with the URL. Then the message body, whichis
in the file specified by the second command-line argument, is appended to m.txt. Finaly, the
command isbuilt inside astring: the “-F’ argument to fastmail iswho it's from, the “-r”
argument iswho to reply to. The “-s” is the subject line, the next argument is the file
containing the mail and the last argument is the email address to send it to.

Y ou can start this program in the background and tell Unix not to stop the program when you
sign off of the server. However, it takes awhile to run for along list (thisisn’'t because of the
program itself, but the mailing process). | like to keep track of the progress of the program by
sending a status message to another email account, which is accomplished in the last few lines
of the program.

A general information-extraction
CGl program

One of the problems with CGI is that you must write and compile a new program every time
you want to add a new facility to your Web site. However, much of the time all that your CGlI
program does is capture information from the user and store it on the server. If you could use
hidden fields to specify what to do with the information, then it would be possible to write a
single CGI program that would extract the information from any CGI request. This
information could be stored in a uniform format, in a subdirectory specified by a hidden field
inthe HTML form, and in afile that included the user’s email address— of course, in the
general case the email address doesn’t guarantee uniqueness (the user may post more than one
submission) so the date and time of the submission can be mangled in with the file name to
make it unique. If you can do this, then you can create a new data-collection page just by
defining the HTML and creating a new subdirectory on your server. For example, every time |
come up with a new class or workshop, al | have to do is create the HTML form for signups —
no CGI programming is required.

The following HTML page shows the format for this scheme. Since a CGI POST is more
general and doesn’t have any limit on the amount of information it can send, it will always be
used instead of a GET for the ExtractInfo.cpp program that will implement this system.
Although this form is simple, yours can be as complicated as you need it.

[1:! ClO: I NFQtest. htm

<ht M ><head><titl e>

Extracting information froman HIM. POST</title>
</ head>

<body bgcol or =" #FFFFFF" |i nk="#0000FF"

vl i nk="#800080"> <hr >

<p>Extracting informati on froman HTM. POST</ p>

Appendix B: Programming Guidelines
560

<form acti on="/cgi - bi n/ Extract| nfo. exe"
met hod=" POST" >
<i nput type="hi dden" nanme="subject-field"
val ue="test-extract-info">
<i nput type="hi dden" name="rem nder"
val ue="Renenber your |unch!">
<i nput type="hi dden" name="test-field"
val ue="on">
<i nput type="hi dden" name="mail -copy"
val ue="Bruce@ckel Obj ects. com eckel @ol . coni >
<i nput type="hidden" nane="confirnmation"
val ue="confirmati onl">
<p>Enai | address (Required): <input
type="text" size="45" nane="enuil - address" >
</ p>Coment :

<t ext area name="Coment" rows="6" col s="55">
</ textarea>
<p><i nput type="submt" nanme="subnmt">
<i nput type="reset" nane="reset"</p>
</ f or mp<hr ></ body></ ht m >
[~

Right after the form’s action statement, you see
<i nput type="hi dden"

This means that particular field will not appear on the form that the user sees, but the
information will still be submitted as part of the data for the CGI program.

The value of thisfield named “ subject-field” is used by Extractlnfo.cpp to determine the
subdirectory in which to place the resulting file (in this case, the subdirectory will be “test-
extract-info”). Because of this technique and the generality of the program, the only thing
you'll usually need to do to start a new database of dataisto create the subdirectory on the
server and then create an HTML page like the one above. The ExtractInfo.cpp program will
do the rest for you by creating a unique file for each submission. Of course, you can aways
change the program if you want it to do something more unusual, but the system as shown
will work most of the time.

The contents of the “reminder” field will be displayed on the form that is sent back to the user
when their datais accepted. The “test-field” indicates whether to dump test information to the
resulting Web page. If “mail-copy” exists and contains anything other than “no” the value
string will be parsed for mailing addresses separated by ;" and each of these addresses will
get amail message with the datain it. The “email-address” field is required in each case and
the email address will be checked to ensure that it conforms to some basic standards.

The “confirmation” field causes a second program to be executed when the form is posted.
This program parses the information that was stored from the form into afile, turnsit into

Appendix B: Programming Guidelines
561

human-readable form and sends an email message back to the client to confirm that their
information was received (thisis useful because the user may not have entered their email
address correctly; if they don’t get a confirmation message they’ || know something iswrong).
The design of the “confirmation” field allows the person creating the HTML page to select
more than one type of confirmation. Y our first solution to this may be to simply call the
program directly rather than indirectly as was done here, but you don’t want to allow someone
else to choose — by modifying the web page that’s downloaded to them — what programs they
can run on your machine.

Here is the program that will extract the information from the CGI request:

/1: Cl10: Extractlnfo.cpp

/1 Extracts all the information froma Cd POST
/1 subm ssion, generates a file and stores the
/1 information on the server. By generating a
/1 unique file nane, there are no clashes |ike
/1 you get when storing to a single file.

#i ncl ude "Cd nmap. h"

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <cstdi o>

#i ncl ude <cti nme>

usi ng namespace std;

const string contact ("Bruce@ckel Objects.coni);
/1 Paths in this programare for Linux/Unix. You
/1l nust use backsl ashes (two for each single

/1 slash) on Wn32 servers:

const string rootpath("/home/eckel/");

void show(CA map& m ostream& o);

/1 The definition for the following is the only
/1 thing you nust change to custom ze the program
voi d

store(CE nap& m ostream& o, string nl = "\n");

int main() {

cout << "Content-type: text/htm\n"<< endl;

Post p; // Collect the POST data

CA map query(p);

/1 "test-field" set to "on" will dunp contents

if(query["test-field"] == "on") {
cout << "map size: " << query.size() << "
";
query. dunp(cout);

Appendix B: Programming Guidelines
562

}

i f(query["subject-field"].size() == 0) {
cout << "<h2>Incorrect form Contact " <<
contact << endl
return O;

}

string email = query["enmil-address"];

if(email.size() == 0) {
cout << "<h2>Pl ease enter your emrmil address"”

<< endl;
return O;

if(email.find first_of (" \t") !'= string::npos){

cout << "<h2>You cannot include white space "
"in your email address" << endl

return O;

}

if(email.find(' @) == string::npos) {
cout << "<h2>You nust include a proper email"

address including an '@ sign" << endl

return O;
}
if(email.find('.") == string::npos) {
cout << "<h2>You nust include a proper emil"
address including a '.'" << endl
return O;
}

/1l Create a unique file nane with the user's
/1 emnil address and the current time in hex
const int bsz = 1024;
char fnane[bsz];
time_t now,
time(&ow); // Encoded date & tine
sprintf(fnane, "%% txt", email.c_str(), now;
string path(rootpath + query["subject-field"] +
"I" + fnane)
of stream out (path.c_str());
if(lout) {
cout << "cannot open " << path << "; Contact"
<< contact << endl
return O;

}

/1l Store the file and path information:

Appendix B: Programming Guidelines
563

out << "///{" << path << endl
/1 Display optional rem nder
i f(query["rem nder"].size() != 0)
cout <<"<Hl>" << query["rem nder"] <<"</HL>";
show(query, cout); // For results page
store(query, out); // Stash data in file
cout << "
<H2>Your submi ssion has been "
"posted as
" << fnanme << end
<< "
Thank you</H2>" << endl
out. cl ose();
/1 Optionally send generated file as enmi
/1 to recipients specified in the field:
i f(query["mail-copy"].length() !'= 0 &&
query["mail-copy"] !'= "no") {
string to = query["mail-copy"];
/1 Parse out the recipient nanes, separated

/1l by ";', into a vector.
vector<string> recipients;
int ii =to.find(';");
while(ii !'= string::npos) {

reci pi ents. push_back(to.substr(0, ii));

to = to.substr(ii + 1);
ii = to.find(';");
}
reci pi ents. push_back(to); // Last one
/1 "fastmail" only avail able on Linux/Unix:
for(int i =0; i <recipients.size(); i++) {
string crd("fastmail -s"" \"" +
query["subject-field"] + "\" " +
path + " " + recipients[i]);
system(cnmd. c_str());
}

}

/1 Execute a confirmation programon the file.

/1 Typically, this is so you can enail a

/1 processed data file to the client along with

/1 a confirmation nessage:

if(query["confirmation"].length() !'= 0) {
string conftype = query["confirnmation"];

if(conftype == "confirmationl") {
string conmand("./ProcessApplication.exe "+
path + " &");

/1 The data file is the argunment, and the

Appendix B: Programming Guidelines
564

/1 anpersand runs it as a separate process:
system(conmand. c_str());
string |logfile("Extract.log");
of stream |l og(logfile.c_str());
}
}
}

/1 For displaying the information on the htn
/1 results page:
void show(CA map& m ostream& o) {
string nl ("
");
0 << "<h2>The data you entered was:"
<< "</ h2><pbr>"
<< "Fron{" << nm[{"enmil-address"] << ']' <<nl;
for(CAdmap::iterator it = mbegin();
it '=mend(); it++) {
string nane = (*it).first,
value = (*it).second;

if(nane !'= "emuil -address" &&
nane != "confirmation" &&
name != "submt" &&
nane != "mail - copy" &&
name != "test-field" &&
nane != "rem nder")
0 << "<h3>" << pane << ": </ h3>"

<< "<pre>" << value << "</pre>";

/1 Change this to custom ze the program
void store(CA map& m ostream& o, string nl) {
0 << "Fron{" << m"enuil-address"] << ']' <<nl;
for(CAdmap::iterator it = mbegin();
it '=mend(); it++) {
string nane = (*it).first,
value = (*it).second;

if(nane !'= "emuil -address" &&
nane != "confirmtion" &&
nane != "submt" &&
nane != "mail - copy" &&
nane != "test-field" &&
nane != "rem nder")

Appendix B: Programming Guidelines
565

0 << nl << "[{[" << nane << "]}]" << nl
<< "[([" << nl << value << nl << "])]"
<< nl;

/1 Delimters were added to aid parsing of
/1 the resulting text file.

}
Y 11~

The program is designed to be as generic as possible, but if you want to change something it
ismost likely the way that the datais stored in afile (for example, you may want to storeit in
a comma-separated ASCII format so that you can easily read it into a spreadsheet). Y ou can
make changes to the storage format by modifying store(), and to the way the datais
displayed by modifying show().

main() begins using the same three lines you'll start with for any POST program. The rest of
the program is similar to mim.cpp because it looks at the “test-field” and “ email-address”
(checking it for correctness). The file name combines the user’s email address and the current
date and time in hex — notice that sprintf() is used because it has a convenient way to convert
avalue to a hex representation. The entire file and path information is stored in the file, along
with all the data from the form, which istagged asit is stored so that it’s easy to parse (you'll
see aprogram to parse the files a bit later). All the information is also sent back to the user as
asimply-formatted HTML page, along with the reminder, if there is one. If “mail-copy” exists
and is not “no,” then the names in the “mail-copy” value are parsed and an emalil is sent to
each one containing the tagged data. Finally, if thereisa*confirmation” field, the value
selects the type of confirmation (there's only one type implemented here, but you can easily
add others) and the command is built that passes the generated datafile to the program (called
ProcessApplication.exe). That program will be created in the next section.

Parsing the data files

Y ou now have alot of data files accumulating on your Web site, as people sign up for
whatever you're offering. Here's what one of them might look like:

//:! CO7: Test Dat a. t xt

/11 {!homel/ eckel / super - cpl uspl us-wor kshop-
regi stration/Bruce@ckel Obj ects. conB5B589A0. t xt
Fron Bruce@ckel Obj ects. coni

[{[subject-field]}]
[([

super - cpl uspl us-wor kshop-regi stration

DI

[{[Dat e- of -event]}]
[(I

Appendix B: Programming Guidelines
566

Sept 2-4
1]

[{[name]}]
[(I

Bruce Eckel

D1

[{[street]}]
[([
20 Sunnysi de Ave, Suite Al29

D1

[{[country]}]

[(I
USA

DI

[{[zip]}]

[(I
94941

DI

busphone] }]

[{I
[(I
415- 555- 1212
1]
111~

Thisisabrief example, but there are as many fields as you have on your HTML form. Now,
if your event is compelling you'll have awhole lot of these files and what you'd liketo do is
automatically extract the information from them and put that data in any format you'd like.
For example, the ProcessApplication.exe program mentioned above will use the datain an
email confirmation message. You'll also probably want to put the datain aform that can be

Appendix B: Programming Guidelines
567

easily brought into a spreadsheet. So it makes sense to start by creating a general-purpose tool
that will automatically parse any file that is created by ExtractInfo.cpp:

//: Cl10: FornData. h
#i ncl ude <string>
#i ncl ude <i ostreane
#i ncl ude <fstreanp
#i ncl ude <vector>
usi ng namespace std;

class DataPair : public pair<string, string> {
public:

DataPair () {}

DataPair(istrean& in) { get(in); }

Dat aPair& get (i stream& in);

operator bool () {

return first.length() !'= 0;
}

}s

class FornData : public vector<DataPair> {
public:

string filePath, emil;

/1 Parse the data froma file:

FornDat a(char* fil eNane);

voi d dunmp(ostrean& os = cout);

string operator[](const string& key);
Y, M1~

The DataPair class looks a bit like the CGl pair class, but it's simpler. When you create a
DataPair, the constructor calls get() to extract the next pair from the input stream. The
operator bool indicates an empty DataPair, which usually signals the end of an input stream.

FormData contains the path where the original file was placed (this path information is
stored within the file), the email address of the user, and a vector <DataPair > to hold the
information. The operator[] alows you to perform a map-like lookup, just asin CGlmap.

Here are the definitions:

/1: Cl10: FornData.cpp {O
#i ncl ude " FornDat a. h"
#include "../require. h"

Dat aPair& DataPair::get(istream& in) {
first.erase(); second.erase();
string In;

Appendix B: Programming Guidelines
568

getline(in,In);
while(In. find("[{[") == string::npos)
if(!getline(in, In)) return *this; // End
first = In.substr(3, In.find("]1}]") - 3);
getline(in, In); // Throw away [([
whil e(getline(in, In))
if(In.find("])]") == string::npos)
second += In + string(" ");
el se
return *this;

}

For nDat a: : FornDat a(char* fil eNane) {
ifstreamin(fil eNane);
assure(in, fileNane);
require(getline(in, filePath) !'= 0);
/1 Should be start of first line:
require(filePath.find("///{") == 0);
filePath = filePath.substr(strlien("///{"));
require(getline(in, email) !'= 0);

/1 Should be start of 2nd |ine:
require(email.find("Fron{") == 0);
int begin = strlen("Fron{");
int end = email.find("]");
int length = end - begin;
emai | = email.substr(begin, [ength);
/1 Get the rest of the data:

Dat aPair dp(in);

whi | e(dp) {
push_back(dp);
dp. get(in);
}
}
string FornData::operator[](const string& key) {
iterator i = begin();
while(i !'=end()) {

if((*i).first == key)
return (*i).second;
i ++;
}
return string(); // Enpty string == not found
}

Appendix B: Programming Guidelines
569

voi d FornDat a: : dunp(ostream& os) {

0s << "filePath = " << filePath << endl
0s << "emmil =" << email << endl:
for(iterator i = begin(); i !'=end(); i++)

0s << (*i).first << " ="
<< (*i).second << endl;
YL~

The DataPair ::get() function assumes you are using the same DataPair over and over
(which isthe case, in FormData::FormData()) so it first callserase() for itsfirst and
second strings. Then it begins parsing the lines for the key (whichison asinglelineandis
denoted by the “[{[” and “]}]") and the value (which may be on multiple lines and is denoted
by a begin-marker of “[([” and an end-marker of “])]”) which it placesin the first and second
members, respectively.

The FormData constructor is given afile name to open and read. The For mData object
always expects there to be afile path and an email address, so it reads those itself before
getting the rest of the data as DataPairs.

With these tools in hand, extracting the data becomes quite easy:

[1: C10: For nDunp. cpp
/1{L} FornData

#i ncl ude " FornDat a. h"
#include "../require. h"

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
FornData fd(argv[1]);

fd. dump();
Y I~

The only reason that ProcessApplication.cpp is busier isthat it is building the email reply.
Other than that, it just relies on FormData:

/1: C10: ProcessApplication.cpp
/1{L} FornData

#i ncl ude " FornDat a. h"

#include "../require. h"

usi ng namespace std;

const string fronm("Bruce@ckel Objects. con');
const string replyto("Bruce@ckel Objects.coni);
const string basepath("/hone/ eckel");

Appendix B: Programming Guidelines
570

int main(int argc, char* argv[]) {
requi reArgs(argc, 1);
FornData fd(argv[1]);
char tfnane[L_tnpnanm;
tnpnam(tfnane); // Create a tenporary file nane
string tenpfil e(basepath + tfnane + fd.email)
of streamreply(tenpfile.c_str());
assure(reply, tempfile.c_str());
reply << "This nessage is to verify that you "
"have been added to the list for the "
<< fd["subject-field"] << ". Your signup "
"formincluded the follow ng data; please "
"ensure it is correct. You will receive "
"further updates via email. Thanks for your
"interest in the class!" << endl
FornmData::iterator i;
for(i = fd.begin(); i !=fd.end(); i++)
reply << (*i).first << " ="
<< (*i).second << endl
reply.close();

/1 "fastmail" only avail able on Linux/Unix:
string conmand("fastmail -F " + from+
" -r " +replyto + " -s \"" +
fd["subject-field'] + "\" " +
tempfile + " " + fd.email);

system(conmand. c_str()); // Wait to finish
renove(tenmpfile.c_str()); // Erase the file
Y I~

This program first creates atemporary file to build the email message in. Although it usesthe
Standard C library function tmpnam() to create atemporary file name, this program takes
the paranoid step of assuming that, since there can be many instances of this program running
at once, it's possible that atemporary name in one instance of the program could collide with
the temporary name in another instance. So to be extra careful, the email address is appended
onto the end of the temporary file name.

The message is built, the DataPair s are added to the end of the message, and once again the
Linux/Unix fastmail command is built to send the information. An interesting note: if, in
Linux/Unix, you add an ampersand (&) to the end of the command before giving it to
system(), then this command will be spawned as a background process and system() will
immediately return (the same effect can be achieved in Win32 with start). Here, no
ampersand is used, so system() does not return until the command is finished —which isa
good thing, since the next operation is to delete the temporary file which isused in the
command.

Appendix B: Programming Guidelines
571

Thefinal operation in this project isto extract the data into an easily-usable form. A
spreadsheet is a useful way to handle this kind of information, so this program will put the
datainto aform that's easily readable by a spreadsheet program:

[/: C10: Dat aToSpr eadsheet . cpp
/1{L} FornData

#i ncl ude " FornDat a. h"
#include "../require. h"

#i ncl ude <string>

usi ng nanmespace std;

string delimter("\t");

int main(int argc, char* argv[]) {
for(int i = 1; i < argc; i++) {
FornmData fd(argv[i]);
cout << fd.email << delimter;
FornData::iterator i;
for(i = fd.begin(); i !'=fd.end(); i++)
if((*i).first !'= "workshop-suggestions")
cout << (*i).second << deliniter;

cout << endl;

}
Y 110~

Common data interchange formats use various delimiters to separate fields of information.
Here, atab is used but you can easily change it to something else. Also note that | have
checked for the “workshop-suggestions’ field and specifically excluded that, because it tends
to be too long for the information | want in a spreadshest. Y ou can make another version of
this program that only extracts the “workshop-suggestions’ field.

This program assumes that all the file names are expanded on the command line. Using it
under Linux/Unix is easy since file-name global expansion (“globbing”) is handled for you.

S0 you say:
| Dat aToSpr eadsheet *.txt >> spread. out

In Win32 (at a DOS prompt) it’'s a bit more involved, since you must do the “globbing”
yourself:

| For % in (*.txt) do DataToSpreadsheet % >> spread. out
Thistechnique is generally useful for writing Win32/DOS command lines.

Appendix B: Programming Guidelines
572

Summary
Exercises

1
2.

In Extractlnfo.cpp, change store() so it stores the datain comma-
separated ASCII format

(This exercise may require alittle research and ingenuity, but you'll have a
good idea of how server-side programming works when you're done.) Gain
access to aWeb server somehow, even if you do so by installing aWeb
server that runs on your local machine (the Apache server isfreely available
from http://www.Apache.org and runs on most platforms). Install and test
Extractlnfo.cpp asa CGl program, using | NFOtest.html.

Create a program called ExtractSuggestions.cpp that is a modification of
DataT oSpreadsheet.cpp which will only extract the suggestions along
with the name and email address of the person that made them.

Appendix B: Programming Guidelines

573

A: Recommended
reading

C

Thinking in C: Foundationsfor Java & C++, by Chuck Allison (a MindView, Inc. Seminar
on CD ROM, 1999, available at http://www.MindView.net). A course including lectures and
dlidesin the foundations of the C Language to prepare you to learn Java or C++. Thisisnot an
exhaustive course in C; only the necessities for moving on to the other languages are

included. An extra section covering features for the C++ programmer is included.
Prerequisite: experience with a high-level programming language, such as Pascal, BASIC,
Fortran, or LISP.

Genera C++

The C++ Programming Language, 3" edition, by Bjarne Stroustrup (Addison-Wesley
1997). To some degree, the goal of the book that you're currently holding is to allow you to
use Bjarne’'s book as areference. Since his book contains the description of the language by
the author of that language, it’s typically the place where you' Il go to resolve any
uncertainties about what C++ is or isn't supposed to do. When you get the knack of the
language and are ready to get serious, you'll need it.

C++ Primer, 3" Edition, by Stanley Lippman and Josee L gjoie (Addison-Wesley 1998). Not
that much of a primer anymore; it’s evolved into a thick book filled with lots of detail, and the
onethat | reach for along with Stroustrup’s when trying to resolve an issue. Thinking in C++
should provide a basis for understanding the C++ Primer as well as Stroustrup’s book.

C & C++ Code Capsules, by Chuck Allison (Prentice-Hall, 1998). Assumes that you already
know C and C++, and covers some of the issues that you may be rusty on, or that you may not
have gotten right the first time. This book fillsin C gaps as well as C++ gaps.

The C++ ANSI/ISO Standard. Thisis not free, unfortunately (I certainly didn’t get paid for
my time and effort on the Standards Committee —in fact, it cost me alot of money). But at
least you can buy the electronic form in PDF for only $18 at http://www.cssinfo.com.

575

http://www.cssinfo.com/

Large Scale C++ (?) by John Lakos.
C++ Gems, Stan Lippman, editor. SIGS publications.
The Design & Evolution of C++, by Bjarne Stroustrup

My own list of books

Not all of these are currently available.

Computer Interfacing with Pascal & C (Self-published viathe Eisys imprint; only available
viathe Web site)

Using C++

C++ Inside & Out

Thinking in C++, 1% edition

Black Belt C++, the Master’s Collection (edited by Bruce Eckel) (out of print).
Thinking in Java, 2" edition

Depth & dark corners

Books that go more deeply into topics of the language, and help you avoid the typical pitfalls
inherent in developing C++ programs.

Effective C++ and More Effective C++, by Scott Meyers.

Ruminations on C++ by Koenig & Moo.

The STL
Design Patterns

576

3: EtC

This appendix contains files from Volume 1 that are
required to build the filesin Volume 2.

/1: :require.h

/1 Test for error conditions in prograns

/1 Local "using nanespace std" for old compilers
#i f ndef REQUI RE_H

#defi ne REQUI RE H

#i ncl ude <cstdi o>

#i ncl ude <cstdlib>

#i ncl ude <fstreanr

inline void require(bool requiremnent,
const char* nsg = "Requirenment failed") {
usi ng nanmespace std;
if ('requirement) {
fputs(nsg, stderr);
fputs("\n", stderr);
exit(1l);
}
}

inline void requireArgs(int argc, int args,
const char* nsg = "Miust use %l argunents") {
usi ng nanmespace std;
if (argc !'= args + 1) {
fprintf(stderr, msg, args);
fputs("\n", stderr);
exit(1l);
}
}

inline void requireM nArgs(int argc, int mnArgs,
const char* nsg =
"Must use at least % arguments") {

577

usi ng namespace std;

if(argc < mnArgs + 1) {
fprintf(stderr, nsg, mnArgs);
fputs("\n", stderr);

exit(1);
}
}
inline void assure(std::ifstrean& in,
const char* filename = "") {
usi ng namespace std;
if(lin) {

fprintf(stderr,
"Coul d not open file %\n", filenane);

exit(1);
}
}
inline void assure(std::ofstrean& in,
const char* filename = "") {
usi ng namespace std;
if(lin) {

fprintf(stderr,
"Coul d not open file %\n", filenane);
exit(1);
}

}
#endif // REQURE_H ///:~
rom Volume 1, Chapter 9:

/1: COA:Stack4.h

/1 Wth inlines

#i f ndef STACK4_H
#defi ne STACK4 H
#include "../require. h"

class Stack {
struct Link {
voi d* dat a;
Li nk* next;
Li nk(voi d* dat, Link* nxt):
dat a(dat), next(nxt) {}
}* head;

578

public:
Stack(){ head = 0; }
~Stack(){
require(head == 0, "Stack not enpty");
}
voi d push(voi d* dat) {
head = new Li nk(dat, head);
}
voi d* peek() { return head->data; }
voi d* pop(){
i f(head == 0) return O;
voi d* result = head->data
Li nk* ol dHead = head;
head = head- >next;
del et e ol dHead;
return result;
}
}s
#endif // STACK4A H///]:~

[1: COA: Dumy. cpp

/1 To give the makefile at |east one target
/1 for this directory

int min() {} ///:~

579

nadex

abort(), 394

Standard C library function, 380
abstraction

in program design, 432

adapting to usage in different countries,
Standard C++ locdization library, 25

ambiguity

in multiple inheritance, 347
ANSI/ISO C++ committee, 20
applicator, 100
applying a function to a container, 133
arguments

variable argument list, 67
assert(), 394
atof(), 82
atoi(), 82
automatic type conversion

and exception handling, 390
awk, 103
bad(), 73
bad_alloc, 24

Standard C++ library exception type, 393
bad_cast

and run-time type identification, 412

Standard C++ library exception type, 393
bad typeid

run-time type identification, 413

Standard C++ library exception type, 393
badbit, 73
before()

run-time type identification, 403
behavioral design patterns, 436
binary

printing, 101
bit_string

bit vector in the Standard C++ libraries, 25
bits

bit vector in the Standard C++ libraries, 25
bloat, preventing template bloat, 143
Booch, Grady, 473
book errors, reporting, 21
bubble sort, 143
buffering, iostream, 76
bytes, reading raw, 73
C

basic data types, 67

error handlingin C, 371

localtime(), Standard library, 115

580

rand(), Standard library, 115 char* iostreams, 69

Standard C library function abort(), 380 transforming strings to typed values, 82

Standard C library function strncpy(), 384 class

Standard C library function strtok(), 201
standard 1/O library, 89

class hierarchies and exception handling, 391

maintaining library source, 104

Standard library macro toupper(), 104 most-derived class, 350

C++ nested class, and run-time type identification, 407

ANSI/ISO C++ committee, 20 Standard C++ string, 69

CGI programming in C++, 543
GNU C++ Compiler, 543

virtual base classes, 348

wrapping, 63

sacred design goals of C++, 68 cleaning up the stack during exception

Standard C++, 20 handling, 382
Standard string class, 69 clear(), 74, 117

Standard Template Library (STL)., 543 command line
template, 496

caloc(), 128

interface, 72

committee, ANSI/ISO C++, 20
cast compiletime

casting away const and/or volatile, 423 arror checking, 67

dynamic_cast, 423 .
compiler error tests, 108
new cast syntax, 422

) o . complex number class, 25
run-time type identification, casting to

intermediate Ia/els, 408 Compog'tion
searching for, 423 and design patterns, 432
catch, 375 console /0, 72
catching any exception, 379 const
cal casting away const and/or volatile, 423
connecting Javato CGl, 541 congt cast 423
crash coursein CGI programming, 541
prog 9 constructor
GET, 541 . .
and exception handling, 383, 386, 397
POST, 541, 547

default constructor, 449
programming in C++, 543 . .
default constructor synthesized by the compiler,

chaining, in iostreams, 70 433
Change falllng, 398

vector of change, 432, 478 order of constructor and destructor calls, 410

581

private constructor, 433 sacred design goals of C++, 68

simulating virtual constructors, 445 design patterns, 431
virtual base classes with a default constructor, behavioral, 436
351

. . . creational, 436, 474
virtual functionsinside constructors, 446
factory method, 474
controlling
observer, 451

template instantiation, 144
prototype, 478, 488

conversion structural, 436

automatic type conversions and exception

handling, 390 vector of change, 432, 478

. visitor, 465
Coplien, James, 446
destructor
couplet, 505
and exception handling, 382, 398
creating

order of constructor and destructor calls, 410

manipulators, 100 .
diamond

creational design patterns, 436, 474 in multipleinheritance, 347

data
C data types, 67

dispatching

double dispatching, 461, 500
database

object-oriented database, 357

multiple dispatching, 461

domain_error
datal ogger, 111 Standard C++ library exception type, 393
decimal double dispatching, 461, 500

dec iniostreams, 70 downcast

dec manipulator in iostreams, 95 . .
type-safe downcast in run-time type

formatting, 89 identification, 403
default dynamic_cast

constructor, 449 and exceptions, run-time type identification, 412
default constructor difference between dynamic_cast and typeid(),

run-time type identification, 409
synthesized by the compiler, 433 . . N
run-time type identification, 403

delete, 85
effectors, 101
overloading array new and delete, 385 o
o) efficiency
deserialization, and persistence, 357)
design, 143

design run-time type identification, 415

abstraction in program design, 432
and efficiency, 143

dlipses, with exception handling, 379

582

endl, iostreams, 70, 96
ends, iostreams, 70, 83
enumeration, 107
eof(), 73

eofbit, 73

errno, 372

error
compile-time checking, 67
error handlingin C, 371
handling, iostream, 73
recovery, 371
reporting errors in book, 21
exception handling, 371
asynchronous events, 393
atomic allocations for safety, 388
automatic type conversions, 390

bad_alloc Standard C++ library exception type,
393

bad_cast Standard C++ library exception type,
393

bad_typeid, 413

bad_typeid Standard C++ library exception type,
393

catching any exception, 379

class hierarchies, 391

cleaning up the stack during a throw, 382
constructors, 383, 386

constructors, 397

destructors, 382, 398

domain_error Standard C++ library exception
type, 393

dynamic_cast, run-time type identification, 412
dlipses, 379

exception handler, 375

exception hierarchies, 396

exception matching, 390

exception Standard C++ library exception type,
392

invalid_argument Standard C++ library exception
type, 393

length_error Standard C++ library exception type,
393

logic_error Standard C++ library exception type,
392

multiple inheritance, 396

naked pointers, 386

object slicing and exception handling, 390, 392
operator new placement syntax, 385

out_of_range Standard C++ library exception
type, 393

overflow_error Standard C++ library exception
type, 393

overhead, 398
programming guidelines, 393

range_error Standard C++ library exception type,
393

references, 389, 396
re-throwing an exception, 380
run-time type identification, 402

runtime_error Standard C++ library exception
type, 392

set_terminate(), 381
set_unexpected(), 377

specification, 376

Standard C++ library exception type, 392
Standard C++ library exceptions, 392
standard exception classes, 24
termination vs. resumption, 376
throwing & catching pointers, 397
throwing an exception, 374

typeid(), 413

typical uses of exceptions, 394
uncaught exceptions, 380
unexpected(), 377

unexpected, filtering exceptions, 386

583

extensible, 505
extensible program, 67
extractor, 69
factory method, 474
fail(), 73
failbit, 73, 117
file

iostreams, 69, 72
FILE, stdio, 64
fill

width, precision, iostream, 91
filtering unexpected exceptions, 386
flags, iostreams format, 88
flush, iostreams, 70, 96
format flags, iostreams, 88

formatting
formatting manipulators, iostreams, 95
in-core, 81
iostream internal data, 88

output stream, 87

free(), 85
freeze(), 85

freezing a strstream, 85
fseek(), 78
FSTREAM.H, 74

function
applying afunction to a container, 133
function objects, 24
function templates, 126
member function template, 137
pointer to a function, 382

run-time type identification without virtual
functions, 402, 407

GET, 541
get pointer, 79, 84, 117
get(), 72, 75

overloaded versions, 73

with stresmbuf, 78
getling(), 72, 75, 84
GNU C++ Compiler, 543
good(), 73

goto

non-local goto, setjmp() and longjmp(), 372

graphical user interface (GUI), 72
Grey, Jan, 354
GUI
graphical user interface, 72
handler, exception, 375
hex, 95
hex (hexadecimal) in iostreams, 70
hex(), 90
hexadecimal, 89
hierarchy
object-based hierarchy, 344
1/10
C standard library, 89
console, 72
ifstream, 69, 74, 77
ignore(), 75
implementation
limits, 24
in-core formatting, 81
indexOf(), 485
inheritance

and design patterns, 432

584

multiple inheritance (MI), 344

multiple inheritance and run-time type
identification, 409, 413, 418

templates, 139
input
lineat atime, 72
inserter, 69
interface
command-line, 72
graphical user (GUI), 72

repairing an interface with multiple inheritance,
364

interpreter, printf(') run-time, 66
invalid_argument

Standard C++ library exception type, 393
IOSTREAM.H, 74

iostreams
and Standard C++ library string class, 24
applicator, 100
automatic, 90
bad(), 73
badbit, 73
binary printing, 101
buffering, 76
clear(), 117
dec, 95
dec (decimal), 70
effectors, 101
endl, 96
ends, 70
eof(), 73
eofhit, 73
error handling, 73
fail(), 73
failbit, 73, 117

files, 72

fill character, 113
fixed, 97

flush, 70, 96
format flags, 88
formatting manipulators, 95
fseek(), 78

get pointer, 117
get(), 75

getling(), 75
good(), 73

hex, 95

hex (hexadecimal), 70
ignore(), 75
internal, 97
internal formatting data, 88
ios::app, 83
ios:ate, 83
ios::basefield, 89
ios::beg, 79
ios::cur, 79
ios::dec, 90
ios::end, 79
ios:fill(), 91
ios::fixed, 90
ios::flags(), 88
ios::hex, 90
ios:internal, 91
ios::left, 90
ios:oct, 90
ios::out, 83
ios::precision(), 91
ios::right, 90
ios::scientific, 90

ios::showbase, 89

585

ios::showpoint, 89
ios::showpos, 89
ios::skipws, 88
ios::stdio, 89
ios::unitbuf, 89
ios::uppercase, 89
ios:width(), 91
left, 97

manipulators, creating, 100

newline, manipulator for, 100

noshowbase, 97
noshowpoint, 97
noshowpos, 97
noskipws, 97
nouppercase, 97
oct (octal), 70, 95
open modes, 76
precision(), 113
rdbuf(), 77
read(), 117
read() and write(), 359
resetiosflags, 98
right, 97
scientific, 97
seekg(), 79
seeking in, 78
seekp(), 79
setbase, 98

setf(), 88, 113
setfill, 98
setiosflags, 98
setprecision, 98
setw, 98

setw(), 113
showbase, 97

showpoint, 97
showpos, 97
skipws, 97
tellg(), 78
tellp(), 78
unit buffering, 89
uppercase, 97
width, fill and precision, 91
ws, 96
istream, 69
istringstreams, 69
istrstream, 69, 81
iterator, 432
keyword
catch, 375
Lajoie, Josée, 422
Lee, Meng, 151
length_error
Standard C++ library exception type, 393
library
C standard I/0, 89
maintaining class source, 104
standard template library (STL), 151
limits, implementation, 24
LIMITS.H, 103
lineinput, 72
localtime(), 115
logic_error
Standard C++ library exception type, 392
longjmp(), 372
maintaining class library source, 104
malloc(), 85, 128

manipulator, 70

586

creating, 100

iostreams formatting, 95
member

member function template, 137
memory

amemory allocation system, 128
MI

multiple inheritance, 344
modes, iostream open, 76
modulus operator, 115
monolithic, 344
multiple dispatching, 461
multiple inheritance, 344

ambiguity, 347

and exception handling, 396

and run-time type identification, 409, 413, 418

and upcasting, 354

avoiding, 364

diamonds, 347

duplicate subobjects, 346

most-derived class, 350

overhead, 353

pitfall, 360

repairing an interface, 364

upcasting, 347

virtual base classes, 348

virtual base classes with a default constructor,
351

naked pointers, and exception handling, 386
namespace, 103

network programming
CGl POST, 547
CGI programming in C++, 543
connecting Javato CGl, 541

crash course in CGI programming, 541
new, 85
overloading array new and delete, 385
placement syntax, 385
newline, 100
non-local goto
setjmp() and longjmp(), 372
notifyObservers(), 451, 454
null references, 412
numerical operations

efficiency using the Standard C++ Numerics
library, 25

object
object-based hierarchy, 344
object-oriented database, 357
object-oriented programming, 402
slicing, and exception handling, 390, 392
temporary, 103
Observable, 451
observer design pattern, 451
oct, 95
ofstream, 69, 74
open modes, iostreams, 76
operator
[], 389
<<, 69
>> 69
modulus, 115
operator overloading sneak preview, 68
order
of constructor and destructor calls, 410
ostream, 69, 75

ostringstreams, 69

587

ostrstream, 69, 81, 107
out_of_range
Standard C++ library exception type, 393
output
stream formatting, 87
strstreams, 83
overflow_error
Standard C++ library exception type, 393
overhead
exception handling, 398
multiple inheritance, 353
overloading
array new and delete, 385
overview, chapters, 17
pair template class, 24
Park, Nick, 135
patterns, design patterns, 431
perror(), 372
persistence, 360
persistent object, 357
pitfalls
in multiple inheritance, 360
pointer
finding exact type of a base pointer, 402
pointer to afunction, 382

to member, 134
polymorphism, 414, 493, 508
POST, 541

CaGl, 547
precision

width, fill, iostream, 91
precision(), 113

preprocessor

stringizing, 93
printf(), 66, 87
error code, 371
run-time interpreter, 66
private
constructor, 433
programming, object-oriented, 402
protected, 421
prototype, 478
design pattern, 488
put pointer, 78
raise(), 372
rand(), 115
RAND_MAX, 115
range_error
Standard C++ library exception type, 393
rapid development, 143
raw, reading bytes, 73
rdbuf(), 77
read(), 73, 117
iostream read() and write(), 359
reading raw bytes, 73
realloc(), 128
reference
and exception handling, 389, 396
and run-time type identification, 411
null references, 412

reinterpret_cast, 423
reporting errorsin book, 21
resumption, 379

termination vs. resumption, exception handling,
376

re-throwing an exception, 380

588

root, 396

RTTI
misuse of RTTI, 489, 505
run-time interpreter for printf(), 66
run-time type identification, 24, 360, 401
and efficiency, 415
and exception handling, 402
and multiple inheritance, 409, 413, 418
and nested classes, 407
and references, 411
and templates, 410
and upcasting, 402
and void pointers, 410
bad_cast, 412
bad_typeid, 413
before(), 403
building your own, 418
casting to intermediate levels, 408

difference between dynamic_cast and typeid(),
409

dynamic_cast, 403
mechanism & overhead, 418
misuse, 414

RTTI, abbreviation for, 402
shape example, 401

typeid(), 402

typeid() and built-in types, 406
typeinfo, 402, 418

type-safe downcast, 403
vendor-defined, 402
VTABLE, 418

when to useit, 414

without virtual functions, 402, 407
runtime_error

Standard C++ library exception type, 392

Schwarz, Jerry, 101
sed, 103
seekg(), 79

seeking in iostreams, 78
seekp(), 79

ser

set

idization, 115

and persistence, 357

STL set class example, 152

set_new_handler, 24

set_terminate(), 381

set_unexpected()

set
set

exception handling, 377
Changed(), 454
f(), iostreams, 88, 113

setjmp(), 372

setw(), 113

shape

example, and run-time type identification, 401

signal(), 372, 393

simulating virtual constructors, 445

singleton, 432

Siz

e
sizeof, 360

dlicing

object dlicing and exception handling, 390, 392

Smalltalk, 344

sort

bubble sort, 143

specification

exception, 376

standard

589

Standard C, 20 and get(), 78

Standard C++, 20 streampos, moving, 78
Standard C++ libraries string
agorithmslibrary, 25 Standard C++ library string class, 69
bit_string bit vector, 25 transforming character strings to typed values, 82
bits bit vector, 25 String
complex number class, 25 indexOf(), 485

containers library, 25 substring(), 485

diagnostics library, 24 N
ragnostics ibrary stringizing, preprocessor, 93

genera utilities library, 24
strnepy()

Standard C library function strncpy(), 384

iterators library, 25

language support, 24

localization library, 25 Stroustrup, Bjarne, 15

numerics library, 25 strstr(), 108
standard exception classes, 24 strstream, 81, 108
standard library exception types, 392 automatic storage allocation, 84
standard template library (STL), 151 ends, 83
string class, 69 freezing, 85
standard template library output, 83
operations on, with algorithms, 25 str(), 85
set class example, 152 user-allocated storage, 81
static cast, 423 zero terminator, 83
stdio, 63 sirtok()
STDIOH, 74 Standard C library function, 201

structural design patterns, 436
Stepanov, Alexander, 151

subobject

duplicate subobjects in multiple inheritance, 346

STL

C++ Standard Template Library, 543

standard template library, 151 substring(), 485

storsge tellg(), 78
storage allocation functions for the STL, 24 tellp(), 78

str(), strstream, 85 template

stream. 69 and inheritance, 139

and run-time type identification, 410
C++ Standard Template Library (STL), 543

output formatting, 87

streambuf, 77

590

controlling instantiation, 144 difference between dynamic_cast and typeid(),

. run-time type identification, 409
function templates, 126

) run-time type identification, 402
in C++, 496

member function template, 137 typeinfo

preventing template bloat, 143 run-time type identification, 402
structure, 418

TYPEINFO.H, 411
ULONG_MAX, 103

requirements of template classes, 141
standard template library (STL), 151

temporary
object, 103 uncaught exceptions, 380
terminate(), 24 unexpected(), 24
uncaught exceptions, 380 exception handling, 377
termination unit buffering, iostream, 89
vs. resumption, exception handling, 376 Unix, 103
terminator upcasting
zero for strstream, 83 and multiple inheritance, 347, 354
throwing an exception, 374 and run-time type identification, 402
toupper(), 104 Urlocker, Zack, 369
transforming character strings to typed values, value
82 transforming character strings to typed values, 82
try block, 375 variable
tuple-making template function, 24 variable argument list, 67
type vector of change, 432, 478, 508
automatic type conversions and exception vendor-defined run-time type identification,
handling, 390 402

built-in types and typeid(), run-time type .
identification, 406 virtual

finding exact type of a base pointer, 402 run-time type identification without virtual
functions, 402, 407

new cast syntax, 422 . . .
simulating virtual constructors, 445

run-time type identification (RTTI), 401 .
virtual base classes, 348

type-safe downcast in run-time type

identification. 403 virtual base classes with a default constructor,
’ 351
typeid() virtual functions inside constructors, 446

and built-in t run-time type identification, ..
406 ypes P visitor pattern, 465

and exceptions, 413 void

501

void pointers and run-time type identification,
410

volatile

casting away const and/or volatile, 423
VPTR, 360, 446
VTABLE, 446

and run-time type identification, 418
wrapping, class, 63
write(), 73

iostream read() and write(), 359
ws, 96

zero terminator, strstream, 83

502

	Thinking in C++ 2nd edition�Volume 2: Standard Libraries & Advanced Topics
	Preface
	What’s new in the second edition
	What’s in Volume 2 of this book
	How to get Volume 2

	Prerequisites
	Learning C++
	Goals
	Chapters
	Exercises
	Exercise solutions

	Source code
	Language standards
	Language support

	The book’s CD ROM
	Seminars, CD Roms & consulting
	Errors
	Acknowledgements

	Part 1: The Standard C++ Library
	Library overview

	1: Strings
	What’s in a string
	Creating and initializing C++ strings
	Initialization limitations

	Operating on strings
	Appending, inserting and concatenating strings
	Replacing string characters
	Simple character replacement using the STL replace(€) algorithm

	Concatenation using non-member overloaded operators

	Searching in strings
	Finding in reverse
	Finding first/last of a set
	Removing characters from strings
	Stripping HTML tags

	Comparing strings
	Indexing with [] vs. at(€)

	Using iterators
	Iterating in reverse

	Strings and character traits

	A string application
	Summary
	Exercises

	2: Iostreams
	Why iostreams?
	True wrapping

	Iostreams to the rescue
	Sneak preview of operator overloading
	Inserters and extractors
	Manipulators

	Common usage
	Line-oriented input
	Overloaded versions of get()
	Reading raw bytes
	Error handling

	File iostreams
	Open modes

	Iostream buffering
	Using get(€) with a streambuf

	Seeking in iostreams
	Creating read/write files

	stringstreams
	strstreams
	User-allocated storage
	Output strstreams

	Automatic storage allocation
	Proving movement
	A better way

	Output stream formatting
	Internal formatting data
	Format fields
	Width, fill and precision

	An exhaustive example

	Formatting manipulators
	Manipulators with arguments

	Creating manipulators
	Effectors

	Iostream examples
	Code generation
	Maintaining class library source
	Detecting compiler errors

	A simple datalogger
	Generating test data
	Verifying & viewing the data

	Counting editor
	Breaking up big files

	Summary
	Exercises

	3: Templates in depth
	Nontype template arguments
	Default template arguments
	The typename keyword
	Typedefing a typename
	Using typename instead of class

	Function templates
	A string conversion system
	A memory allocation system

	Type induction in function templates
	Taking the address of a generated function template
	Local classes in templates
	Applying a function to an STL sequence
	Template-templates
	Member function templates
	Why virtual member template functions are disallowed
	Nested template classes

	Template specializations
	Full specialization
	Partial Specialization
	A practical example
	Pointer specialization
	Partial ordering of function templates

	Design & efficiency
	Preventing template bloat

	Explicit instantiation
	Explicit specification of template functions

	Controlling template instantiation
	The inclusion vs. separation models
	The export keyword

	Template programming idioms
	The “curiously-recurring template”
	Traits

	Summary

	4: STL Containers & Iterators
	Containers and iterators
	STL reference documentation

	The Standard Template Library
	The basic concepts
	Containers of strings
	Inheriting from STL containers
	A plethora of iterators
	Iterators in reversible containers
	Iterator categories
	Input: read-only, one pass
	Output: write-only, one pass
	Forward: multiple read/write
	Bidirectional: operator--
	Random-access: like a pointer
	Is this really important?

	Predefined iterators
	IO stream iterators
	Manipulating raw storage

	Basic sequences: �vector, list & deque
	Basic sequence operations

	vector
	Cost of overflowing allocated storage
	Inserting and erasing elements

	deque
	Converting between sequences
	Cost of overflowing allocated storage
	Checked random-access

	list
	Special list operations
	list vs. set

	Swapping all basic sequences
	Robustness of lists

	Performance comparison
	set
	Eliminating strtok(€)
	StreamTokenizer: �a more flexible solution
	A completely reusable tokenizer

	stack
	queue
	Priority queues
	Holding bits
	bitset<n>
	vector<bool>

	Associative containers
	Generators and fillers �for associative containers
	The magic of maps
	A command-line argument tool

	Multimaps and duplicate keys
	Multisets

	Combining STL containers
	Cleaning up �containers of pointers
	Creating your own containers
	Freely-available �STL extensions
	Summary
	Exercises

	5: STL Algorithms
	Function objects
	Classification of function objects
	Automatic creation of function objects
	Binders
	Function pointer adapters

	SGI extensions

	A catalog of STL algorithms
	Support tools for example creation
	Filling & generating
	Example

	Counting
	Example

	Manipulating sequences
	Example

	Searching & replacing
	Example

	Comparing ranges
	Example

	Removing elements
	Example

	Sorting and operations on sorted ranges
	Sorting
	Example
	Locating elements in sorted ranges
	Example
	Merging sorted ranges
	Example
	Set operations on sorted ranges
	Example

	Heap operations
	Applying an operation to each element in a range
	Examples

	Numeric algorithms
	Example

	General utilities

	Creating your own STL-style algorithms
	Summary
	Exercises

	Part 2: Advanced Topics
	6: Multiple inheritance
	Perspective
	Duplicate subobjects
	Ambiguous upcasting
	virtual base classes
	The "most derived" class and virtual base initialization
	"Tying off" virtual bases with a default constructor

	Overhead
	Upcasting
	Persistence
	MI-based persistence
	Improved persistence

	Avoiding MI
	Mixin types
	Repairing an interface
	Summary
	Exercises

	7: Exception handling
	Error handling in C
	Throwing an exception
	Catching an exception
	The try block
	Exception handlers
	Termination vs. resumption

	The exception specification
	unexpected(€)
	set_unexpected(€)

	Better exception specifications?
	Catching any exception
	Rethrowing an exception
	Uncaught exceptions
	terminate(€)
	set_terminate(€)

	Function-level try blocks

	Cleaning up
	Constructors
	Making everything an object

	Exception matching
	Standard exceptions
	Programming with exceptions
	When to avoid exceptions
	Not for asynchronous events
	Not for ordinary error conditions
	Not for flow-of-control
	You’re not forced to use exceptions
	New exceptions, old code

	Typical uses of exceptions
	Always use exception specifications
	Start with standard exceptions
	Nest your own exceptions
	Use exception hierarchies
	Multiple inheritance
	Catch by reference, not by value
	Throw exceptions in constructors
	Don’t cause exceptions in destructors
	Avoid naked pointers

	Overhead
	Summary
	Exercises

	8: Run-time type identification
	The “Shape” example
	What is RTTI?
	Two syntaxes for RTTI

	Syntax specifics
	typeid(€) with built-in types
	Producing the proper type name
	Nonpolymorphic types
	Casting to intermediate levels
	void pointers
	Using RTTI with templates

	References
	Exceptions

	Multiple inheritance
	Sensible uses for RTTI
	Revisiting the trash recycler

	Mechanism & overhead of RTTI
	Creating your own RTTI
	Explicit cast syntax
	Summary
	Exercises

	9: Building stable systems
	Shared objects & reference counting
	Reference-counted class hierarchies

	Finding memory leaks
	The canonical object & singly-rooted hierarchies
	An extended canonical form

	Design by contract
	Integrated unit testing
	Dynamic aggregation
	Exercises

	10: Design patterns
	The pattern concept
	The singleton
	Variations on singleton

	Classifying patterns
	Features, idioms, patterns
	Basic complexity hiding

	Factories: encapsulating object creation
	Polymorphic factories
	Abstract factories
	Virtual constructors
	Destructor operation

	Callbacks
	Functor/Command
	Strategy
	Observer
	The “interface” idiom
	The “inner class” idiom
	The observer example

	Multiple dispatching
	Visitor, a type of multiple dispatching

	Efficiency
	Flyweight

	The composite
	Evolving a design: the trash recycler
	Improving the design
	“Make more objects”
	A pattern for prototyping creation
	Trash subclasses
	Parsing Trash from an external file
	Recycling with prototyping

	Abstracting usage
	Applying double dispatching
	Implementing the double dispatch

	Applying the visitor pattern
	
	More coupling?

	RTTI considered harmful?
	Summary
	Exercises

	11: Tools & topics
	The code extractor
	Debugging
	assert(€)
	Trace macros
	Trace file
	Abstract base class for debugging
	Tracking new/delete & malloc/free

	CGI programming in C++
	Encoding data for CGI
	The CGI parser
	Testing the CGI parser

	Using POST
	Handling mailing lists
	Maintaining your list
	Mailing to your list

	A general information-extraction �CGI program
	Parsing the data files

	Summary
	Exercises

	A: Recommended reading
	C
	General C++
	My own list of books

	Depth & dark corners
	The STL
	Design Patterns

	B: Etc
	Index

