Here are some comments about how to do these problems/where to find them in the book.

Questions:

- 1. Find and prove a formula for the alternating sum of the *n*-th row of Pascal's triangle. Explained in class
- 2. Find and prove a formula for the sum of the first n rows of Pascal's triangle. Explained in class
- 3. Prove $\sum_{k=1}^{n} k\binom{n}{k} = n2^{n-1}$ for $n \in \mathbb{N}$. Explained in class. See Ch 10, Ex 24
- 4. Prove F₁ + F₃ + F₅ + · · · + F_{2n-1} = F_{2n}, where F_n is the n-th Fibonacci number (initialized so F₁ = F₂ = 1).
 Use induction. See Ch 10, Ex 27
- 5. Prove that $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$. Use induction. See Ch 10, Ex 4
- Prove that gcd(n, n + 1) = 1 for all n ∈ N.
 Suggested method: contradiction. See Ch 7, Ex 33.
- 7. Prove the $6|(n^3 n)$ for any $n \in \mathbb{N}$.

Suggestion: factor $n^3 - n = n(n+1)(n-1)$. At least one of these factors is even and at least one is divisible by 3 (can prove formally by cases). Or use inductions. See Ch 10, Ex 13.

- Prove that for all n ∈ N, 4 ∤ (n² + 2).
 Can do by cases or contradiction. See Ch 6, Ex 17
- 9. Prove that $\{4k + 5 : k \in \mathbb{Z}\} = \{4k + 1 : k \in \mathbb{Z}\}.$ Suggested method: show A = B by showing $A \subseteq B$ and $B \subseteq A$. See Ch 8, Ex 26.
- 10. How many ways are there to order the letters ABCDE such that
 - (a) the two vowels are not adjacent? or
 - (b) all three consonants are not in a row?

(a) 72; (b) 84. My method: count the complement. Here's (a): There are 5! = 120 total arrangements of the letters. There are two ways vowels can be adjacent (AE or EA). For either of these ways, there are 4! = 24 such arrangements, i.e., the permutations of the 4 objects AE, B, C, and D. Hence we get $120 - 2 \cdot 24 = 72$. (b) is similar and you get $120 - 3! \cdot 3! = 120 - 36 = 84$.