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Preface

These are notes for MATH 4313, Introduction to Number Theory, at the University of
Oklahoma in Fall 2017. The current version of these notes should (at least for the near
future) be found at the course page:

http://www.math.ou.edu/~kmartin/intro-nt/

Officially the prerequisites for the course are our Discrete Mathematics course (which is
essentially an intro to proofs course) and our Linear Algebra course. We will not require
the use of linear algebra in any serious way here (there will be a small amount of solving
linear equations), but the ways of thinking about mathematics abstractly and axiomatically
learned there will certainly be helpful, and I will make several references to things learned
in Linear Algebra for the sake of comparison. We will assume the student is comfortable
with reading and writing proofs, as well as the modern abstract approach to mathematics
(definitions, theorems, proofs, sets, functions, equivalence relations, ...).

I also taught a version of this course in Fall 2009, aimed at both undergraduate and
graduate students (with a sequel in Spring 2010 aimed just at graduate students), and
wrote up notes for that course [Mara], which are available at:

http://www.math.ou.edu/~kmartin/nti/

That course (the first semester) was based on the beautiful book Elements of Number
Theory, by John Stillwell [Sti03]. This time, I have decided to take a somewhat different
approach to this course, though there will be a considerable amount of overlap of material.
Often this material will be presented in a different way, but some parts of these notes will
be adapted from those notes, which in turn followed Stillwell’s treatment closely. (E.g., my
introduction is largely verbatim from the previous course, though the introduction did not
follow Stillwell’s. Also note that those notes were meant to accompany Stillwell, rather than
be a complete stand-alone introduction, whereas these notes are meant to stand alone.)

Number theory is a vast subject, and this course will aim to hit some of the most impor-
tant topics in elementary number theory (modular arithmetic, sums of squares, quadratic
reciprocity, Pell’s equation, ...), but with a bent towards algebraic number theory (we’ll use
terminology from abstract algebra like rings and fields to talk about various examples like
the Gaussian integers, though we’ll avoid building up the general theory of rings and fields
properly like one would in an abstract algebra course). Part of the reason for this algebraic
bent is that many questions one can answer with purely “elementary” techniques are better
understood from a more abstract, algebraic perspective. Time permitting, we’ll also take
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detours into fun topics like Fibonacci numbers and continued fractions, and discuss the Rie-
mann zeta function and distribution of prime numbers at the end of the course.1 We’ll say
some more about some of these topics in the introduction.

Some pedagogical remarks: Often course in number theory will start with easier material
and build up to harder (or at least more abstract) material. This will not be our approach.
We’ll interleave elementary and abstract aspects, by taking a gentle “abstract first” ap-
proach. There are a several reasons for this: (1) this is an upper-level undergraduate course,
so we should attempt a somewhat serious treatment of number theory (it should not be too
elementary); (2) given the prerequisites for this course, and the population (mostly math
majors), we expect the students to be able to digest abstract mathematics from the be-
ginning; (3) standard treatments of elementary number theory make it hard to appreciate
the import of basic results such as the existence and uniqueness of prime factorization of
natural numbers—this is why we introduce more general number systems first so one can
see how these familiar properties can fail elsewhere; (4) while I generally prefer introducing
elementary situations before more abstract ones, the presentation is made more efficient
by taking an “abstract first” approach; (5) by spreading out the abstract ideas throughout
the course, rather than building them all up quickly at the end, I hope they will be easier
to absorb; (6) (abstract) algebra is one of three main pillars of modern pure mathematics
(the others being analysis and geometry/topology), and thus should be a part of any math
major’s training. For this approach to work, it is crucial that the students are sufficiently
mathematically mature, and that the presentation is sufficiently down to earth (which is to
say, the instructor and the students have to meet in the middle at some common starting
ground). I hope that my expectations for students in the course is close enough to the reality
that this presentation works well.

Beginning students may question the need for the abstraction—specifically algebra—
that we introduce to consider what seem to be quite elementary questions about arithmetic.
But we are not pursuing abstraction for abstraction’s sake. The point of learning this
algebra is that it will provide a lens through which we may better perceive the structure
of arithmetic. Number theory is especially famous for having lots of elementary-to-state
problems which are incredibly difficult to solve (and many remain still unsolved, as we will
see in the introduction). The structure of arithmetic (e.g., prime numbers) turns out to
be quite subtle, and tools from algebra (which in fact largely originated from studies into
number theory) provide the best ways we have found to understand many things about
numbers.

If you find errors in these notes, or have other comments/suggestions to improve them,
please email me.

NOTE: Due to overlollygagging, we didn’t get to the material planned for the last two
chapters (Fermat’s last theorem and the Riemann zeta function). Upon teaching this course
again, I may try to write up those chapters and cover at least some of them in the course.

1Footnote from the future: we had a bit of time to get into continued fractions, and there’s a brief section
at the end of Chapter 5 involving Fibonacci numbers, but we didn’t cover the Riemann zeta function.
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Introduction

Basic Terminology:
The natural numbers are 1, 2, 3, . . ..
The integers are . . . ,�3,�2,�1, 0, 1, 2, 3, . . ..
Primes are natural numbers which have precisely 2 factors: 1 and itself; i.e., 2, 3, 5, 7, 11, 13, . . ..

(Note for technical reasons 1 is typically excluded.)

0.1 The dictionary answer

What is number theory?
It is usually defined as the study of the integer solutions to polynomial equations with

integer coefficients (called Diophantine equations). Some examples are x
2 + y

2 = z
2,

3x � 5y = 7, y2 = x
3 + 12x + 5 and x

2 + y
2 + z

2 + w
2 = 10. You may recognize the first

equation as the Pythagorean theorem (variables suitably interpreted). In other words, the
question “what are the integer solutions to x

2 + y
2 = z

2” is equivalent to asking what are
all the integral Pythagorean triples, i.e., what are the possibilities for right-angled triangles
with integral length sides. It is easy to find some—you probably remember from high school
that x = 3, y = 4, z = 5 or x = 5, y = 12, z = 13 work—but how to determine all (integral)
solutions is a more advanced problem.

An elegant way to solve this problem is through the use of complex numbers. In par-
ticular, define the Gaussian integers to be the set of numbers of the form a+ bi where a

and b are integers and i =
p
�1. Thinking in terms of Gaussian integers we can factor the

left hand side of the equation x
2 + y

2 = z
2 to get

↵� = (x+ iy)(x� iy) = z
2
.

Here ↵ = x + iy and � = x � iy are by definition Gaussian integers. Just like integers can
be factored into primes, the Gaussian integer z

2 (which is also an integer) can be factored
into what are called Gaussian primes, and this can be used to determine the possibilities
for ↵ = x+ iy and � = x� iy, and hence the possibilites for x and y.

It may be helpful to illustrate the idea of using prime factorization in a simpler context.
Suppose you want to find the solutions mn = 30 (m, n integers). The prime factorization
of 30 is 30 = 2 · 3 · 5, so we can list all possible solutions as

30 = 1 · 30 = 30 · 1 = 2 · 15 = 15 · 2 = 6 · 5 = 5 · 6 = 10 · 3 = 3 · 10.

The idea is that we can solve the equation ↵� = z
2 in Gaussian integers in a similar way,

which leads to the complete solution (in integers) of our original equation x
2+y

2 = z
2. This
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is considered an algebraic approach. There are also so-called elementary approaches to
this problem, as were discovered by the ancient Greeks.

Another way to define

Above, I said that number theory is usually defined as the study of the integer solutions
of these equations. However, it is also much more this. In fact the above Pythagorean triple
example illustrates several important features pervasive through number theory:

• Number theory is arguably the oldest branch of mathematics, beginning with count-
ing. For a long time, mathematics was essentially just number theory and geometry.

• As questions about integer solutions can be boiled down to problems about prime
numbers, perhaps the most central topic in number theory is the study of primes
(both the familiar and more generalized notions such as Gaussian primes).

• Many questions in number theory have geometric interpretations, just as the
Pythagorean triple question is a question about right-angled triangles.

• Many questions in number theory which are very simple to state are in fact very
challenging to solve. In fact, unlike a course in Calculus or Linear Algebra, where
most basic questions you can ask are fairly simple to solve and the subject (at its basic
levels) is thought of as a “closed book,” most basic questions you might think to ask
are still unsolved. This has to do with the mysterious nature of prime numbers, and
the richly hidden patterns in nature and numbers.
In many cases where a solution is found, the solution will require tools from seemingly
unrelated areas of mathematics. (Or rather it’s often the case is that by trying to
solve these problems, new areas of mathematics are discovered. It has been said that
the two driving forces within modern mathematics are Number Theory and Calculus.
For instance, most of Abstract Algebra (groups, rings, fields, etc) was developed out
of studying problems in Number Theory.) Moreover, the problem is often beautiful in
how simple the answer is but how the solution itself requires a new kind of cleverness
or way of thinking.

All of these things have made number theory the branch of mathematics that, more so
than any other, has fascinated amateurs and professionals throughout the ages.

0.2 Answered with questions

Another way to answer “what is number theory” is by giving you a sample of the kinds of
problems studied in number theory. I hope this will make apparent the “living” nature of
number theory (i.e., that people are still actively discovering new things about it), and in
particular the “easy to state, hard to solve” nature of the field mentioned above which draws
many mathematicians and non-mathematicians to it. Here I will describe several interesting
and well known classical problems below in the form of a quiz. Some of these have been
solved long ago, some not until recently and some are still unsolved. These are very roughly
ordered by flavor, and not by difficulty. For each of these, I would like you to guess which
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have been solved long ago, which were solved recently (say within your lifetime, or say since
about 1990) and which are still unsolved.

Bear in mind that all of these problems are well founded. In other words, while some
may seem random at first, they were well thought out in advance based largely on numerical
evidence.
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The quiz

All numbers are assumed to be integers in the problems below, unless stated otherwise.

(1) How many primes are there?

(2) Find a formula for the n-th prime number.

(3) Are there infinitely many primes of the form 4n+ 1?

(4) Are there infinitely many primes of the form n
2 + 1?

(5) Note that 3 and 5, as well as 5 and 7, 11 and 13, etc. are twin primes, i.e., they differ
by 2. Are there infinitely many twin primes?

(6) An arithmetic progression is a sequence of numbers such that the difference of
two successive terms is constant. For example, 3, 5, 7 (difference 2) and 11, 17, 23, 29
(difference 6) are arithmetic progressions of primes, of lengths 3 and 4 respectively.
Are there arbitrarily long arithmetic progressions of primes?

(7) Is every even integer greater than 2 is the sum of two primes?

(8) 8 = 23 and 9 = 32 are consecutive numbers which are both powers (squares, cubes,
fourth powers, etc.) of integers. Are there others?

(9) Start with any positive n. If it is even divide by two. If it is odd take 3n+ 1. Repeat
with the new number. If repeated sufficiently many times, does one eventually get
down to 1 for any initial number n?

(10) Find a simple characterization of all numbers which are sums of two squares (i.e., of
the form x

2 + y
2).

(11) Find a simple characterization of all numbers of the form x
2 + y

2 + 10z2.

(12) Find a simple characterization of all numbers which are sums of 4 squares (i.e., of the
form x

2 + y
2 + z

2 + w
2).

(13) Find a simple characterization of all natural numbers which are sums of 2 cubes of
rational numbers.

(14) Find a simple characterization of all natural numbers which are sums of 3 cubes of
rational numbers.

(15) Which numbers occur as areas of right triangles whose sides are all integer lengths?

(16) Are there solutions in the positive integers to x
n + y

n = z
n for n > 2?

(17) Given any x > 2, do most (� 50%) natural numbers less than x have an odd number
of prime factors?

(18) Given a Diophantine equation, devise an algorithm to determine whether it has integer
solutions or not in a finite number of steps.
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0.3 Solutions and non-solutions

(1) How many primes are there?
Status: Easy. Solved by Euclid (ca. 300 BC). There are infinitely many primes.
However, this seemingly basic question goes much deeper than this. A more refined
way of asking this is: for any x, how many primes are less than x? Conjectured in
1796 by Legendre, and proved independently exactly 100 years later by Hadamard and
de la Vallée Poussin, we in fact know the asymptotic distribution of prime numbers,

# {primes  x} ⇠
x

log x
.

This result is known as the Prime Number Theorem and was proved using complex
analysis and so-called the Riemann zeta function. Since many proofs (all quite dif-
ficult, but some not requiring complex analysis) have been found, until a relatively
simple proof was found in 1980 by Newman (using complex analysis). The Prime
Number Theorem is only a first-order asymptotic, and the “best possible” bound on
the error term (

p
x log(x)/(8⇡)) is equivalent to the famous (still conjectural) Rie-

mann hypothesis. All of this is a central topic in analytic number theory. We
hope to touch on this at the end of the course.

(2) Find a formula for the n-th prime number.
Status: There is no known formula (in a sense of easily computable) to generate the
prime numbers, nor is it believed that there is one (at least in a simple sense). Note
that such a formula would be equivalent to an exact formula for ⇡(x), which is quite
complicated as indicated above.

(3) Are there infinitely many primes of the form 4n+ 1?
Status: Yes. In fact if p(n) = an + b where a and b have no common factors, then
p(n) is prime infinitely often. This is known as Dirichlet’s theorem on arithmetic
progressions and was proved in 1837 by Dirichlet. (The case of In the course of
proving this Dirichlet developed much basic groundwork used in both algebraic and
analytic number theory. Time permitting, we will treat the special case of 4n+1,
which is much easier than the general form of Dirichlet’s theorem.

(4) Are there infinitely many primes of the form n
2 + 1?

Status: Unsolved. It is easy to see that no (non-constant) polynomial can be prime
for all n. However it is not known if there exists any quadratic (or cubic, quartic, etc.)
polynomial which gives prime values infinitely often, but it is conjectured this should
be true. Aside: in 1772, Euler observed that the polynomial p(n) = n

2 + n+ 41 gives
prime numbers for all 0  n < 40, but not for n = 40. (Clearly p(41) is not prime.)

(5) Note that 3 and 5, as well as 5 and 7, 11 and 13, etc. are twin primes, i.e., they differ
by 2. Are there infinitely many twin primes?
Status: Still unsolved. Generally believed the answer is yes. In 1966, Chen used
analytic methods to show that there are infinitely many primes p such that p + 2 is
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either prime or a product of two primes. Since I first made this quiz in 2009, there
has been a quantum step forward—in 2013, Yitang Zhang (an essentially unknown
mathematician lecturing in New Hampshire)2 made a huge breakthrough showing that
there is some bound K such that infinitely many pairs of primes differ by at most K.
We still don’t know the answer to twin primes, but Zhang’s work plus later refinements
say we can at least take K  246. (This would be the twin prime conjecture if we
knew we could take K = 2, but unfortunately the known proofs do not seem capable
of bringing K down to 2.)

(6) An arithmetic progression is a sequence of numbers such that the difference of
two successive terms is constant. For example, 3, 5, 7 (difference 2) and 11, 17, 23, 29
(difference 6) are arithmetic progressions of primes, of lengths 3 and 4 respectively.
Are there arbitrarily long arithmetic progressions of primes?
Status: Recently solved! Yes, and this was a big theorem proved by Green and Tao
in 2004 using combinatorial and analytic methods (56 pages).

(7) Is every even number greater than 2 is the sum of two primes?
Status: Unsolved, though much work has been done, and the answer is believed to be
yes. This was conjectured by Goldbach in a weaker form in 1742 and refined by Euler
to the present form, and now called the (strong) Goldbach conjecture). Much
progress has been made by analytic methods, specificially using sieve techniques.
In 1975, Montgomery and Vaughan showed that most even numbers are sums of two
primes. In 1995, Ramaré show that every even number is the sum of at most six
primes. Since I made this quiz in 2009, the weak Goldbach conjecture has been
solved (2013, Helfgott, building on works of others): this says that every odd number
greater than 5 is a sum of 3 primes, and is called the weak Goldbach conjecture because
it is implied by the strong Goldbach conjecture (the question above). So now we know
weak Golbach is true, but we still don’t know strong Goldbach.

(8) 8 = 23 and 9 = 32 are consecutive numbers which are both powers (squares, cubes,
fourth powers, etc.) of integers. Are there others?
Status: Recently solved! The answer is no. This was conjectured by Catalan in 1844
and proved by Mihailescu in 2002 using algebraic number theory techniques (28
pages).

(9) Start with any positive n. If it is even divide by two. If it is odd take 3n+ 1. Repeat
with the new number. If repeated sufficiently many times, does one eventually get
down to 1 for any initial number n?
Status: Unsolved, though much work has been done. This is called the 3n+1 or the
Collatz problem, proposed by Collatz in 1937. The iterated nature of the problem
makes this a part of what might be called arithmetic dynamics, a crossroads of
dynamical systems and number theory.

2This is a quite remarkable story and is worth reading one of the several news/magazine articles about
this, e.g. https://www.quantamagazine.org/20150402-prime-proof-zhang-interview/
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(10) Find a simple characterization of all numbers which are sums of two squares (i.e., of
the form x

2 + y
2).

Status: Solved in 1640 by Fermat, one of the founding fathers of modern number
theory (who was in fact an amateur mathematician—his profession was a judge),
though not an easy problem. The solution comes by way of solving the simpler question
of which primes are sums of two squares. The answer is precisely 2 and the primes
of the form 4n + 1! This will be one of the main theorems we prove in this course.
This question, concerning squares as it does, can be interpreted geometrically, and is
a starting point for the very rich area of number theory known as quadratic forms
(meaning expressions such as x2+y

2, x2+y
2+10z2, etc., where all terms are quadratic).

(11) Find a simple characterization of all numbers of the form x
2 + y

2 + 10z2.
Status: Unsolved, but recent progress. This form is known as Ramanujan’s form.
Ramanujan was a famous Indian mathematician who had a mystical ability to find
arithmetic relations, and remarked on this form’s difficulties in 1916. In 1997, Ono
and Soundararajan showed that the (still conjectural) generalized Riemann hypothesis
implies the following answer: all even numbers not of the form 4k(16m + 6) and all
odd numbers except 3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391,
679, 2719. This is a famous problem in the theory of quadratic forms, and Ono and
Soundararajan show it is intimately related to analytic number theory as well as
algebraic number theory and geometry via elliptic curves.

(12) Find a simple characterization of all numbers which are sums of 4 squares (i.e., of the
form x

2 + y
2 + z

2 + w
2).

Status: Solved. Even though you might guess that it looks harder than Ramanujan’s
form because of the extra variable, it’s much easier, as is the answer: all integers � 0.
This was proved by Lagrange in 1770, and we will use some simple techniques from
algebraic number theory to prove this result later. (Note: this problem is also
easier than the case of 3 squares: x

2 + y
2 + z

2 which was dealt with by Legendre and
Gauss decades later, which I’ll discuss if there’s time.)

(13) Find a simple characterization of all natural numbers which are sums of 2 cubes of
rational numbers.
Status: Unsolved! In 1995 Villegas and Zagier showed that the theory of elliptic
curves and modular forms classifies, in a simple way, which primes are sums of 2
cubes, under the assumption of the Birch & Swinnerton-Dyer (BSD) conjecture,
the second most famous outstanding conjecture in number theory (the first being the
Riemann hypothesis, mentioned above). The result for primes could potentially lead
to the result for all natural numbers, as in the case of the sum of 2 squares, but even
this is not yet clear. (You might wonder about why I asked this question for rational
numbers rather than integers—this question for integers (at least for which primes are
represented) reduces to the question of what numbers are represented by the quadratic
polynomial 3x2 + 3x+ 1, which is unlikely to have a simpler description.)3

3See my notes on Sums of squares, sums of cubes, and modern number theory : http://www.math.ou.
edu/~kmartin/papers/quatcubforms.pdf for more about these problems.
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(14) Find a simple characterization of all natural numbers which are sums of 3 cubes of
rational numbers.
Status: Solved by Richmond in 1923. This question is not too hard (unlike the
previous), however this problem (and likely the previous) is much harder if we ask
which numbers are sums of 3 cubes of integers. The smallest unknown case is 33.
Computational work is ongoing. On the other hand, analytic methods have been
recently applied to show that most numbers are sums of 3 (integer) cubes without
giving any information which ones are. As both the status of this and the previous
problem indicate, while the theory of quadratic forms is very rich, the theory of cubic
forms (polynomial expressions where each term is of degree three) is as yet very
primitive, though there has been spectacular development within the past 50 years.

(15) Which numbers occur as areas of right triangles whose sides are all integer lengths?
Status: Unsolved! This is known as the congruent number problem, which seems
to go back to the ancient Greeks. Interestingly enough, in 1983 Tunnell gave an elegant
solution assuming the same conjecture Villegas and Zagier took for granted in their
work on the sum of 2 cubes, the BSD conjecture.

(16) Are there solutions in the positive integers to x
n + y

n = z
n for n > 2?

Status: Recently solved! You’ve probably heard of this. The answer’s no and it’s
called Fermat’s Last Theorem. Wiles, with help from Taylor, proved it in 1995
using some heavy-duty algebraic number theory techniques (129 pages). Until
then, this was the most famous unsolved problem in number theory. This proof also
involves a lot of geometry via what are called elliptic curves and their relation to
modular forms, which stand at a crossroads of algebraic and analytic number
theory. While it would take several years of serious study to understand the complete
proof, we will try to explain the case of n = 3 which is not too hard using some simple
algebraic number theory. (The cases n = 4, n = 5 and n = 7 are also relatively easy.)
In some sense, the difficulty in general is that more general number systems do not
have the nice unique factorization property that the natural numbers do.

(17) Given any x > 2, do most (� 50%) natural numbers less than x have an odd number
of prime factors?
Status: Solved! In 1919, Pólya conjectured the answer is yes. Indeed, if you check
this for many x, it seems to be true. However, in 1958, Haselgrove proved the answer
is no, without explicitly finding a counterexample, but estimating there is a counterex-
ample of about 362 digits. In 1980, Tanaka found that Pólya’s conjecture is true for
x  906, 150, 257 but not for x = 906, 150, 258. The point is that there are many
conjectures which have been observed numerically, but turn out to be false for really
large numbers. There are lots of coincidental phenomena which happen for relatively
small numbers that are not true in general, and this is sometimes known as the “law
of small numbers.” Consequently, even if you have an incredible amount of emperical
evidence for a phenomenon, you still can’t be sure it’s true without a proof.

(18) Given a Diophantine equation, devise an algorithm to determine whether it has integer
solutions or not in a finite number of steps.

12



Number Theory Introduction Kimball Martin

Status: Solved! Sort of. Fairly recently. In 1900, Hilbert presented a famous list of
23 problems, saying that once all of these are solved, we will know all that there is to
know about mathematics. (Some are more ambitious than others, and some are rather
vague: The 6th is axiomatize all of physics. The 8th was the aforementioned Riemann
hypothesis together with Goldbach’s conjecture. Of the 23, 6 are pure number theory,
and 2 of these 6 are resolved. In total, somewhere between 10 and 13 have been
resolved, depending on interpretation.) This problem was Hilbert’s 10th. It was
resolved in 1959 by Davis and Putnam, who showed that no such algorithm exists!

Let me remark the person(s) I attribute to solving the problem are mainly just for refer-
ence purposes. A good mathematical problem gets considered by many individuals (some-
times working together, which is much more common nowadays) and the solution evolves
through the effort of many people over decades or possibly centuries. In the community,
people who make important contributions are usually (often?) appropriately acknowledged,
but here I only mention the person(s) who completed the solution (who do of course typ-
ically deserve a lion’s share of the credit). Similarly, while I occasionally gave the number
of pages for the paper with the solution to give you an idea of how much it involves, bear
in mind that these paper build upon previous papers, so in some sense this is just how long
the “last step” of the solution is.

0.4 Main branches of number theory

Number theory can be divided into many different branches, typically delineated by the
kinds of problems studied as well as the techniques used. I think most mathematicians
would agree on the following as the 3 main categories of number theory,4 though the actual
lines between them are rather blurry. These categories are divided based on the types of
methods used, rather than the types of things they study.

• Elementary number theory. While all of the problems stated in the quiz were
stated in an “elementary” way—their statement requires no advanced mathematics—
very few of them can be tackled in an elementary way. One of the main ideas here
is to use the idea of divisibility and some cleverness to prove some results, which one
can do for things like the infinitude of primes (Euclid’s answer to #1 on the quiz),
the Pythagorean triple question) or which numbers are sums of squares (#10 on the
quiz). Many first courses in number theory focus on elementary number theory.

• Algebraic number theory. The basic idea of algebraic number theory is to use other
number systems to study the integers and primes, as in the example of introducing
the Gaussian integers for the Pythagorean triple question. (This problem, as well as
others, are included in both the elementary and algebraic categories because there are
different ways to solve it.) We could also consider problems #3, #8, and #10 – #16
in the realm of algebraic number theory.

4Many people will include another category: arithmetic (or Diophantine) geometry, where one uses
geometric methods to study arithmetic, but I think of arithmetic geometry as being partly number theory
and partly (algebraic) geometry. It is a beautiful subject, but not one we will cover in this class, though
many introductions to number theory do cover some very elementary arithmetic geometry.
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• Analytic number theory. It turns out that calculus and complex analysis are very
powerful tools which can be applied to number theory problems such as the Prime
Number Theorem (cf. #1, #2). This is rather striking as on the surface these subjects
seem very far removed from one another, but the basic idea is to consider appropriate
series for studying the problem at hand. One might say that the problems #3 – #7
are in the realm of analytic number theory, though it also plays a role in problems
such as #10 – #17.

As the methods from elementary number theory tend to be rather limited, most num-
ber theory research nowadays involves algebraic or analytic number theory (together with
elementary methods), if not both. For example, the theory of quadratic forms mentioned
above contains aspects of each of elementary, algebraic and analytic number theory.

Two of the most important tools in modern number theory, as seen in applications to to
#11, #13, #15 and #16 above, are:

• Modular (or automorphic) forms. These arise at a crossroads of algebraic and
analytic number theory, and are closely related to things like quadratic forms and
elliptic curves, as well as hyperbolic geometry. Here at OU, our number theory research
group specializes more on the algebraic side (involving groups and representations)
of things—in particular Ralf Schmidt, Ameya Pitale and I often work on the more
algebraic aspects of modular and automorphic forms (which in practice involves a lot
of series and integrals).

• Elliptic curves. These are related to modular forms, and lie at an intesection of
algebraic number theory and algebraic geometry (arithmetic geometry). Elliptic curves
are also an active area of research, with the BSD conjecture being one of the biggest
problems in the field. Elliptic curves have applications to cryptography (one member
of our CS department, Qi Cheng, works on them), and there’s a good chance you’ll
see them if you take our Applied Modern Algebra course (topics vary, but this course
is usually about cryptography). A couple people in the math department, like Ralf
Schmidt and I, do some work with elliptic curves, as they are closely related to modular
forms, but it is not one of our primary specialities.

However, we will not cover modular forms or elliptic curves at all in this course—which
deserve full year-long courses of their own (usually at the graduate level, though the more
elementary aspects can be taught to undergraduates—certainly elliptic curves are featured
in a few undergraduate texts on number theory). Instead, we will focus on more classical
aspects of number theory, as mentioned in the answers to the quiz above. I just wanted to
mention them to give you a bit more of an overview of number theory, and let you know a
bit about the research we do here at Oklahoma.

This course will be largely elementary number theory, with some very basic algebraic
number theory mixed in from the beginning, and a dash of analytic number theory at the
end (Chapter 7 on the Riemann zeta function).5

5Footnote from the future: Actually, make that without the analytic number theory.
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0.5 Postscript: an example of elementary and analytic tech-
niques

While I partially sketched an example of some simple algebraic number theory by introducing
the Gaussian integers into the Pythagorean triple question, I haven’t really given you any
examples of elementary or analytic number theory techniques. I will illustrate each by giving
two proofs of the infinitude of primes.

Theorem. There are infinitely many primes.

Elementary Number Theory Proof. (Euclid, ca. 300BC; also see Section 1.1 of text)
This is an example of a proof by contradiction, which you should be comfortable with.
Suppose on the contrary there are only finitely many primes. Label them p1, p2, . . . , pk. Let
n = p1p2 · · · pk + 1. Then n divided by pi has remainder 1 for any i = 1, 2 . . . k, i.e., none
of the pi’s are factors of n. This leaves two possibilities: either n itself is prime (if it has no
factors besides 1 and n), or it is not. If n is prime, we have our contradiction and are done.

If n is not prime, n = ab for some 1 < a, b < n. Since no pi is a factor of n, no pi is
a factor of a either. Now we repeat our argument for n with a: either a is prime, or not.
It a is prime, we are done. If not, we apply the argument again with a smaller factor of a.
Now this process must terminate in a finite number of steps (less than n), because we are
working with smaller and smaller integers between 1 and n. Thus we will eventually end
with a prime factor of n, contradicting the assumption that there were only finitely many
primes. (This process of going down from n to a and so on is called descent; cf. Section
1.2.)

Analytic Number Theory Proof. (Euler, ca. 1735) The key idea of Euler is to observe
that

✓
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(If you forgot this, multiply through by the denominator of the right hand side, and the left
hand side telescopes down to 1.) Hence we have
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since the left hand side is the harmonic series which diverges. Since each term in the product
over primes is a finite number, for this product to diverge, it must be infinite. I.e., there
must be infinitely many primes! In other words, the infinitude of primes is equivalent to the
divergence of the harmonic series!

While the analytic proof may seem unnecessarily complicated (in that it involves some
calculus—it is not actually longer), i) it is certainly beautiful, and ii) the basic ideas in
this proof can be pushed much much further to get strong results like the Prime Number
Theorem, which one can’t do with Euclid’s proof. We’ll discuss these ideas, without giving
many proofs, in Chapter 7.6

0.6 Notation

There is an index in the back which includes key definitions and notation defined in the text.
Here are some additional conventions about notation. (Some of these comments might not
make sense to you now.)

• for sets A,B, we use A ⇢ B to mean A is a subset of B (not necessarily a proper
subset)

• for sets A,B, we use A t B to mean disjoint union, i.e., it means A [ B and the
statement that A \B = ;

• for sets A,B we use A�B = {a 2 A : a 62 B} for the set difference (we do not require
B ⇢ A to write A�B)

• for us, the natural numbers N begin at 1, not 0

• for integer a, b, we use a|b to mean a divides b, i.e., b = ka for some integer k, and we
use a - b to mean a does not divide b

• ring means commutative ring unless stated otherwise

• p will typically denote a prime number (2, 3, 5, 7, 11, ...), or more generally a prime
element of a ring

0.7 References

If you’re looking for supplementary references, there are many, many introductions to num-
ber theory. However, most books I know of are either more elementary than this class or
more advanced (most books that do some algebraic number theory assume a course in ele-
mentary number theory first). Or they might cover a lot of the same material, but they also
cover a lot more, and with a rather different presentation.

But since some students have asked about other references, here is a short list of possi-
bilities. You can find many more by searching online or going to our library. Each reference

6Footnote from the future: As I said in previous future footnotes, we didn’t get this far in class, so I only
have a wish list written for Chapter 7.
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has it’s own approach with it’s own advantages and disadvantages, so if you want supple-
mentary presentation/material, browsing until you find something appealing is not a bad
way to go.

All of the following references are free online through our library.

• Elements of Number Theory, by John Stillwell [Sti03]. As mentioned in the preface,
I’ve used this before, and I think it’s a great little book. (You can also see my notes
from the previous course linked above.) Of the books I know, this is perhaps the closest
in content to the current course, but it’s not an exact match, and I’m presenting the
material in a rather different way this time. (Some students had difficulties with
certain aspects last time, so I decided to try a different approach this time—no doubt
this will cause other difficulties.)

• Elementary Number Theory, by GA Jones and MA Jones [JJ98]. I think this book is
a nice introduction, and I was seriously contemplating using this as our text. I believe
most of the main results we will prove are covered in here, though again our approach
and presentation will be different.

• Elementary Number Theory: Primes, Congruences and Secrets, by William Stein
[Ste09]. This is another book I briefly considered using for this course. It is more
cryptographically and computationally oriented than what I wanted to do with this
class, but probably overlaps with a little over one-half of the content of our course. If
you like the bits we do related to RSA and cryptography, try here for more.

• The Whole Truth About Whole Numbers, by Sylvia Forman and Agnes Rash [FR15].
Disclaimer: I have not looked at this book personally, I just found it when looking to
see what references we have electronic access to. It seems to be more elementary and
more cryptography-oriented than what we will do, and maybe overlaps with one-half
of the content of our course. Chapter 2 goes over proofs, so if you need to bone up on
your proof ability, maybe this will be a good reference.

Furthermore, if you do look at some of these or other references, I’d appreciate hearing
your thoughts. It will help me make recommendations/choose materials in the future.
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