Elliptic Curves: Problem Set 1 (due Fri Feb 17)

Topics: Planar curves, Bezout, the group law

1. (Projective equivalence of conics)

(a) Write a homogenous equation for the projectivization of the affine parabola $Y = X^2$. This gives a conic C in \mathbb{P}^2 . Find another embedding of \mathbb{A}^2 in \mathbb{P}^2 so that C restricts to a hyperbola on that copy of \mathbb{A}^2 .

(b) Find a conic C in \mathbb{P}^2 and two embeddings of \mathbb{A}^2 in \mathbb{P}^2 such that C restricts to a hyperbola on one copy of \mathbb{A}^2 and an ellipse on another copy of \mathbb{P}^2 .

- 2. Fix $d \in \mathbb{N}$. Consider the curve C in \mathbb{P}^2 given in affine coordinates by $y^2 = x^d$.
 - (a) Determine all points at infinity on C.
 - (b) Determine all singular points on C, together with their multiplicities.
- 3. Prove Bezout's theorem in the special case that one curve is a line.
- 4. Use Bezout's theorem to reprove the simple fact that if $f(x) \in \mathbb{R}[x]$ is a real cubic polynomial which has 2 real roots, then it has 3 real roots.
- 5. True or false: if C/k is a nonsingular geometrically irreducible projective curve in \mathbb{P}^2 , then one may choose coordinates (i.e., an embedding of \mathbb{A}^2) so that all rational points C(k) lie in the affine plane \mathbb{A}^2 .
- 6. Let k be a field of characteristic 0, and let C/k be a geometrically irreducible curve in \mathbb{A}^2 of degree d. Give an upper bound for the number of singular points on C.
- 7. Let C/k be a nonsingular cubic curve in \mathbb{P}^2 . Suppose C(k) is infinite and. Prove that the binary operation $(P,Q) \to PQ$ on C(k) does not define a group structure.
- 8. Exercise 3.3 from Milne.
- 9. Let C/k be a nonsingular projective cubic curve with points $O, O' \in C(k)$. Let E (resp. E') be the group on C(k) with identity O (resp. O'). Write a formula for the addition law in E' in terms of the addition law in E. (*Hint:* Think about the proof using Riemann-Roch.)