Elliptic Curves: Problem Set 1 (due Fri Feb 17)

Topics: Planar curves, Bezout, the group law

1. (Projective equivalence of conics)
(a) Write a homogenous equation for the projectivization of the affine parabola $Y=$ X^{2}. This gives a conic C in \mathbb{P}^{2}. Find another embedding of \mathbb{A}^{2} in \mathbb{P}^{2} so that C restricts to a hyperbola on that copy of \mathbb{A}^{2}.
(b) Find a conic C in \mathbb{P}^{2} and two embeddings of \mathbb{A}^{2} in \mathbb{P}^{2} such that C restricts to a hyperbola on one copy of \mathbb{A}^{2} and an ellipse on another copy of \mathbb{P}^{2}.
2. Fix $d \in \mathbb{N}$. Consider the curve C in \mathbb{P}^{2} given in affine coordinates by $y^{2}=x^{d}$.
(a) Determine all points at infinity on C.
(b) Determine all singular points on C, together with their multiplicities.
3. Prove Bezout's theorem in the special case that one curve is a line.
4. Use Bezout's theorem to reprove the simple fact that if $f(x) \in \mathbb{R}[x]$ is a real cubic polynomial which has 2 real roots, then it has 3 real roots.
5. True or false: if C / k is a nonsingular geometrically irreducible projective curve in \mathbb{P}^{2}, then one may choose coordinates (i.e., an embedding of \mathbb{A}^{2}) so that all rational points $C(k)$ lie in the affine plane \mathbb{A}^{2}.
6. Let k be a field of characteristic 0 , and let C / k be a geometrically irreducible curve in \mathbb{A}^{2} of degree d. Give an upper bound for the number of singular points on C.
7. Let C / k be a nonsingular cubic curve in \mathbb{P}^{2}. Suppose $C(k)$ is infinite and. Prove that the binary operation $(P, Q) \rightarrow P Q$ on $C(k)$ does not define a group structure.
8. Exercise 3.3 from Milne.
9. Let C / k be a nonsingular projective cubic curve with points $O, O^{\prime} \in C(k)$. Let E (resp. E^{\prime}) be the group on $C(k)$ with identity O (resp. O^{\prime}). Write a formula for the addition law in E^{\prime} in terms of the addition law in E. (Hint: Think about the proof using Riemann-Roch.)
