Elliptic Curves: Problem Set 2 (due Fri Mar 10)

Notation: k denotes a perfect field.
Topics: Basics of elliptic curves (Sections 1-5 in Chapter II of Milne)

1. Let C_{n} be the curve over k in \mathbb{P}^{2} defined by $X^{3}+Y^{3}=n Z^{3}$.
(a) When does C_{n} define an elliptic curve?
(b) When it does, give a Weierstrass equation for C_{n}.
2. Let $c \in \mathbb{F}_{p}^{\times}$, and C / \mathbb{F}_{p} be the curve in \mathbb{P}^{2} defined by $Y^{2} Z=X^{3}+c X^{2} Z$. Show the number of nonsingular points in $C\left(\mathbb{F}_{p}\right)$ is $p-1$ or $p+1$, according to whether c is a square in \mathbb{F}_{p}^{\times}or not.
(Note that this proves the stated criteria for split/nonsplit multiplicative reduction given the classification of smooth affine curves with a group structure.)
3. Exercise II.3.2 from Milne
4. Exercise II.3.3 from Milne
5. Exercise II.5.12 from Milne, and check your answers in Sage
