Elliptic Curves: Problem Set 3 (due Fri Apr 7)

Notation: k denotes a perfect field.

Topics: Elliptic curves over \mathbb{C} , group cohomology

- 1. Exercise III.3.24.
- 2. Let $E: y^2 = x^3 + ax + b$ be an elliptic curve with $a, b \in \mathbb{Q}$, and $n \ge 1$. Let K be the minimal field of definition for (x, y-coordinates of) all points in $E(\mathbb{C})[n]$. Show K/\mathbb{Q} is a finite Galois extension.
- 3. Let $E = \mathbb{C}/\Lambda$ be an elliptic curve. Suppose that there exists $\alpha \in \mathbb{C} \mathbb{Z}$ such that $\alpha \Lambda \subset \Lambda$. Show that α is a root of $x^2 + cx + d$ for some $c, d \in \mathbb{Z}$ such that $c^2 < 4d$. Conclude that $\mathbb{Q}(\alpha)$ is an imaginary quadratic extension. In this case we say E has complex multiplication (CM).
- 4. Complete the proof of Prop IV.1.5.
- 5. Prove Lemma IV.2.2.