
Lecture A: Inverting Matrices Linear Algebra — Spring 2020

Note: There are a few lectures that won’t align nicely with sections in the text, and so I’m
labelling them with letters so as not to be confused with section numbers. These are some
notes meant to supplement some of these video lectures. They contain some details not in
the videos (especially review material/references to previous material), and conversely the
videos may contain some details (primarily illustrations and examples) that are not in these
notes.

Let A be an n⇥ n matrix.
Let T : Rn ! R

n be the “standard” associated linear transformation, i.e., A = [T ], the
matrix for T with respect to the standard bases.

Recall/observe:

• We say A is invertible (or nonsingular) if there exists an n⇥n matrix B such that
AB = BA = I (the identity matrix), in which case B is called the inverse of A and
is written as B = A�1. (Section 10.4)

• If A has an inverse, it is unique. (Proof: Suppose B, C are inverses of A. Then
B = B(AC) = (BA)C = C, i.e., B and C must be the same.)

• To check if B is the inverse of A, it su�ces to check that AB = I or that BA = I.
(Corollary 11.2.5)

• A is invertible if and only if T is invertible, i.e., if and only if T an isomorphism.
(Corollary 11.2.4)

• If T is invertible with inverse S, then A�1 = [S], the standard matrix of S. (This
follows from Proposition 11.2.3, i.e., the fact that matrix multiplication corresponds
to composition of linear transformations. See also the proof of Corollary 11.2.4.)
Geometrically, this means that the inverse matrix of A represents undoing the trans-
formation T (e.g., if A corresponds to rotation counterclockwise by 90 degrees in the
plane, then A�1 corresponds to rotation clockwise by 90 degrees in the plane.)

• A is invertible () rank(T ) = n (i.e., Im(T ) = R
n) () kerT = {0} (i.e., the

nullity of T is 0). (Use previous bullet point + Exercise 17 in Chapter 8)

• Define the column rank to be the dimension of the column space (the span of the
columns; see Section 13.1) of A. Then A is invertible () the column rank of A is
n. (Use previous bullet point + fact that column rank of A is the rank of T .)

Let us now think about what we know for small n.

Example 1. (n = 1) It is clear that the 1 ⇥ 1 matrix A = (a) is invertible if and only if
a 6= 0. In this case A�1 = (a�1).

Example 2. (n = 2) The 2 ⇥ 2 matrix A =

✓
a b
c d

◆
is invertible if and only if the

determinant detA := ad� bc is nonzero, in which case A�1 = 1
detA

✓
d �b
�c a

◆
. (This was

Proposition 10.4.1)



Lecture A: Inverting Matrices Linear Algebra — Spring 2020

Now we want to explain in the general case how to (i) determine a matrix is invertible,
and (ii) compute its inverse in case it is. We will apply the methods of Chapter 13 on
solving linear systems.

Lemma 1. Let A be a reduced echelon form of A. Then A and A have the same column

rank.

Proof. Consider the homogeneous linear system AX = 0, where X is a column vector of
length n, and 0 is the all zero column vector of length n. Then process of row reduction
from Section 13.2 transforms the augmented matrix [A|0] to [A|0], where A is a reduced
echelon form of A. (Note that none of the operations in the row reduction process will
modify the augmented column of zeros.)

Consequently, the set of solutions to AX = 0 is the same as the set of solutions to
AX = 0. However, the set of homogenous solutions X to AX = 0 is precisely the kernel
of T (Theorem 13.1.3), thus the column rank of A is n � m, where m = dimkerT is
the dimension of the (vector space) of homogenous solutions. By the same reasoning, the
column rank of A is also n�m.

Proposition 1. A is invertible if and only if its reduced echelon form A is the identity

matrix.

We remark that the proof implies that, for invertible A, there is only one reduced echelon
form of A.

Proof. Suppose A is some reduced echelon form of A. By the lemma, we know that A is
invertible () the column rank of A is n.

For any matrix in reduced echelon form, each row is either a row of all zeroes or has a
leading 1. Thus A has column rank n if and only if it has n leading 1’s. (More generally,
the column rank of a matrix in reduced echelon form is the number of leading 1’s.) From
the definition of reduced echelon form, this happens if and only if A is the identity matrix.
(Think it out.)

Proposition 2. Suppose A is invertible, and let I = In be the n⇥n identity matrix. Then

row reduction to reduced echelon form transforms the augmented matrix [A|I] into [I|A�1].

Proof. Let B be the inverse of A, and write B = [B1B2 . . . Bn] where Bi is the i-th column
of B. Let ei be the i-th standard basis vector, i.e., the i-th column of I. Then

AB = I

is equivalent to
AB1 = e1, AB2 = e2, . . . , ABn = en.

So to solve for B means simultaneously solving these n linear systems where here the Bi’s
are the unknown vectors.

Row reduction of each augmented matrix [A|ei] must give us [I|Bi] since the correspond-
ing systems have the same solutions. Instead of doing the row reduction n times, we can
simply consider the augmented matrix with n-augmented columns [A|I] = [A|e1e2 . . . en]
and row reduce once to then obtain [I|B1B2 . . . Bn] = [I|B] = [I|A�1].



Lecture A: Inverting Matrices Linear Algebra — Spring 2020

One can adapt the proof of Proposition 2 to give an alternate proof of Proposition 1.

Example 3. Determine if A =

0

@
1 0 1
0 1 �1
1 1 0

1

A is invertible, and if so find its inverse.

Solution. Using the first row as a pivot row, we zero out the first column to give

0

@
1 0 1
0 1 �1
0 1 �1

1

A.

Now using the second row as a pivot row, we zero out the second column to get the reduced

echelon form A =

0

@
1 0 1
0 1 �1
0 0 0

1

A. Since this is not the identity matrix, A is not invertible.

(It has column rank 2.)

Example 4. Determine if A =

0

@
1 0 1
0 1 �1
1 1 1

1

A is invertible, and if so find its inverse.

Solution. In this case A is invertible, and we will just do a single row reduction of the
augmented matrix [A|I] to see that both (i) A is invertible and (ii) find its inverse.

We begin with the augmented matrix

[A|I] =

0

@
1 0 1 | 1 0 0
0 1 �1 | 0 1 0
1 1 1 | 0 0 1

1

A .

Use the first row as a pivot row, and subtract the first row from the third row to get
0

@
1 0 1 | 1 0 0
0 1 �1 | 0 1 0
0 1 0 | �1 0 1

1

A .

We could use the second row as a pivot row now, but since the third row is already in the
form we want the second row to be in, I will just swap the 2nd and 3rd rows:

0

@
1 0 1 | 1 0 0
0 1 0 | �1 0 1
0 1 �1 | 0 1 0

1

A .

Now we use the second row as a pivot row, and subtract the second row from the first row:
0

@
1 0 1 | 1 0 0
0 1 0 | �1 0 1
0 0 �1 | 1 1 �1

1

A .

Scale the 3rd row by �1: 0

@
1 0 1 | 1 0 0
0 1 0 | �1 0 1
0 0 1 | �1 �1 1

1

A .
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Use the 3rd row as a pivot, and zero out the last column by subtracting the 3rd row from
the 1st row to get our reduced echelon form

[A|B] =

0

@
1 0 0 | 2 1 �1
0 1 0 | �1 0 1
0 0 1 | �1 �1 1

1

A .

Since we were able to reduce to the identity matrix on the left, this means that A is invertible
and the inverse is

B = A�1 =

0

@
2 1 �1
�1 0 1
�1 �1 1

1

A .

It’s always good to double check your answer, especially as it’s easy to make mistakes, so
we check that indeed

AB =

0

@
1 0 1
0 1 �1
1 1 1

1

A

0

@
2 1 �1
�1 0 1
�1 �1 1

1

A =

0

@
1 0 0
0 1 0
0 0 1

1

A .

Thus Propositions 1 and 2, together with the process of row reduction, give us elementary
procedures (algorithms) to determine if matrices are invertible and if so, what their inverse
is.

In Section 14.3 we will give an alternative approach to matrix inversion: A is invertible
if and only if the determinant of A is nonzero, and one can compute the inverse using
the cofactor matrix. However, the methods we presented in this section are in some sense
simpler, if a bit tedious.


