
WHAT’S MY RESEARCH ABOUT?
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1. History

1.1. One area of my research is support varieties. Although they were only defined 30
years ago, philosophically the study of support varieties began with René Descartes and his
publication of La Géométrie in 1637.

Figure 1: Descartes

Descartes’s revolutionary observation was that if one has an alge-
braic equation, then one can look at the graph of the equation, which
is a geometric object. Conversely, if one has a geometric object (e.g. a
circle), then one can look at the algebraic equation which has that geo-
metric object as its graph. In this way one can translate algebra into
geometry and vice versa. Of course the hope is that after translation
a problem becomes easier! I am mainly interested in turning algebra
problems into geometry and using geometry to solve them1.

How does this work? For example, imagine we have a polynomial
f(x):

f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0.

Here n is some postive integer and an, an−1, . . . , a1, a0 are real numbers. Such polynomials
are one of the main topics of algebra. Say we don’t know f(x) but somehow we know what
its graph looks like (see Figure 2).

Research of the author is partially supported by the National Science Foundation grant DMS-0734226.
1Descarte was mainly interested in solving geometry problems by translating them into algebra. But

Descarte knew it’s a two way street and wouldn’t be surprised to see it used in the reverse direction.
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Figure 2: What is the polynomial f(x)?

Thus we have an algebra problem (find the polynomial f(x)) and have turned to the
corresponding geometric object (the graph of f(x)) to look for answers. What can we
discover about f(x) from its graph?

• Since the two ends look like ↓ · · · ↑, we know the degree n of the polynomial is odd.
• Since the two ends look like ↓ · · · ↑ and not ↑ · · · ↓, we know the leading coefficent

an must be greater than zero.
• Counting the number of times the graph touches the x-axis, we know the degree of

the polynomial is 5 or more2.
• We can also read off information about local maximums and minums, inflection

points, etc., etc.

Incidently, we also discovered a major theme in this approach of turning algebra problems
into geometry: when you look at the geometry it becomes very easy to learn qualitative
information about your original problem. In this example, we still can’t identify f(x) but
we’ve learned valuable, albeit incomplete, information about f(x). For example, we still
don’t know the degree of f(x) but we have narrowed it down to an odd number at least as
big as five. That’s good progress!

1.2. Let’s jump forward a few hundred years. Say that G is a group3 and k is a field4. A
module for G is a finite dimensional k-vector space M such that G acts on M by invertible

2Since the graph touches the x-axis 4 times, we know the degree must be greater than or equal to 4. But
we also know the degree is odd so it can’t be 4. So it must be 5 or more.

3That is, a set with a multiplication operation which satisfies certain rules.
4A set with a multiplication and addition which satisfies certain rules. The real numbers and the complex

numbers are examples of fields.
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linear transformations5. For over 100 years people have intensively studied modules of finite
groups starting with Frobenius in 1887. Representation theory is the study of the modules
of some algebraic object like the group G.

Figure 3: Schur

If k is the complex numbers, C, then the representation theory of
finite groups is relatively well developed. For example, starting with
the work of Frobenius and his Ph.D. student Isaai Schur6 the modules
for the Symmetric Group over the complex numbers are quite well
understood. All modules are easily constructed from simple modules
(ie. modules which have no smaller modules inside them), and pretty
much anything you want to known about the simple modules of the
symmetric group is known (e.g. their dimensions as vector spaces).

On the other hand one can ask about what happens if k is a field of
positive characteristic7, say p. This was introduced by Schur’s Ph.D.
student Brauer in 1935. However, despite 70 years of diligent work,
the representation theory of finite groups over a field of positive char-

acteristic remains a great mystery. For example, for the symmetric group we still don’t
even have a guess at the dimensions of the simple modules.

1.3. In an attempt to understand the representation theory of a finite group in characteristic
p, one is led to study the cohomology ring of G: H•(G, k). It would lead us too far astray
to define what this is, so let it suffice to say that by starting with the group G and the
field k one can construct the ring8 H•(G, k) in a natural way. The fundamental result that
gets everything going is the following theorem proved independentally by Golod, Evens,
and Venkov around 1960.

Theorem 1. Let G be a finite group and k a field of positive characteristic, then the ring
H•(G, k) is a finitely generated commutative ring. That is, it is isomorphic to a polynomial
ring modulo some ideal.

Furthermore, if M is a module for G, then H•(G, M ⊗M∗) is a finitely generated module
for the ring H•(G, k). Here M ⊗M∗ is the G-module obtained from M by tensoring M with
its dual M∗.

It should be mentioned that there are still many open questions about the ring H•(G, k).
For example, it can be explicitly described for only the most elementary groups. However,
the above result does let us define the support variety of a G-module M . Let IM be the
ideal defined by

IM = {r ∈ H•(G, k) | rx = 0 for all x ∈ H•(G, M ⊗M∗)} .

Let the support variety of M be the variety

VG(M) = {m ⊆ H•(G, k) | m is a maximal ideal of H•(G, k) and IM ⊆ m}.
5To say the same thing in a more precise fashion, M is a G-module if there is a group homomorphism

G→ GL(M).
6Schur’s Ph.D. thesis in 1901 introduced what is now known as Schur-Weyl duality. This continues to be

a significant part of representation theory – my first paper crucially depends on this 100 year old tool!
7For example k = Z/pZ, the integers modulo a prime number p, is such a field.
8A ring is a set with both a multiplication and an addition which satisfies certain properties. It is almost

but not quite a field. For example the integers are a ring but not a field.
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The definition looks (and is) technical. The point is that we started with an algebraic
problem (understand the G-module M) and turned it into a geometric object (the variety
VG(M)). As with Descartes, it turns out that we can discover lots of qualitative information
about M by studying the geometry of VG(M). One nice example of this is the following
result. Recall that p was the characteristic of our field k.

Theorem 2. Let d = codimVG(M) denote the codimension of VG(M). Then pd divides the
dimension of M.

That is, we might like to know the dimension of M as a vector space over k and the
geometric structure of VG(M) gives us the partial information that a certain power of
p divides the dimension. This is very similar to how the graph of f(x) told us partial
information about the degree of f(x)!

1.4. Support varieties for finite groups were first introduced by Jon Carlson in the late
1970s and continue to be a very active area of research. Theorem 2 is only one example
of the many, many nice results in this area. In fact, because of the great success support
varieties have had in studying modules of finite groups, people expanded the use of support
varieties to study modules of restricted Lie algebras, finite group schemes, quantum groups,
etc. There seems to be no end in sight to their usefulness in representation theory.

2. My Research

2.1. We now come to my research into support varieties for Lie superalgebras. This is
joint work with Brian Boe and Daniel Nakano. From now on we will assume k = C is the
complex numbers. A Lie superalgebra g is a complex vector space with a Z/2Z-grading,

g = g0̄ ⊕ g1̄,

and a non-associative multiplication called the bracket9. A module for g is a Z/2Z-graded
finite dimensional complex vector space M = M0̄ ⊕ M1 such that g acts on M by linear
transformations. Lie superalgebras and their modules have played an important role in both
mathematics and physics10 for over 30 years. Despite this they are not well understood.
One interesting phenomenon is that, even though the complex numbers have characteristic
zero, in many ways the representation theory of Lie superalgebras acts like it is over a field
of characteristic p = 2 (as we will soon see!).

2.2. Inspired by the success of support varieties in studying modules for finite groups, we
decided to try something similar for Lie superalgebras. The first step is to consider the
cohomology ring for g: H•(g, g0̄; C). We proved the following analogue of Theorem 1.

Theorem 3. Let g be a Lie superalgebra such that g0̄ is a reductive Lie algebra, then

H•(g, g0̄; C) ∼= S(g∗1̄)
g0̄ .

Furthermore, H•(g, g0̄; C) is a finitely generated commutative ring and if M is a g-module,
then H•(g, g0̄;M ⊗M∗) is a finitely generated H•(g, g0̄; C)-module.

9Which, of course, has to satisfy certain rules
10In fact, the adjective “super” comes from physics. Lie superalgebras encode both symmetry and anti-

symmetry. Taken together they are supersymmetries.
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Let me briefly explain that S(g∗
1̄
) denotes the ring of polynomials defined on the vector

space g1̄ and this is naturally a g0̄-module. Then

S(g∗1̄)
g0̄ =

{
f ∈ S(g∗1̄) | af = 0 for all a ∈ g0̄

}
is the ring of g0̄ invariant polynomials. The fact that this is a finitely generated commutative
ring uses invariant theory results which go back to Hilbert (see Figure 4) from around 1900.
I must admit I was pleased we had the chance to use such a famous result in mathematics!

Figure 4: Hilbert

We are already in better shape than in the finite group situation. As
I mentioned before, it is very, very hard to calculate the ring H•(G, k).
However, using the above theorem and 100+ years of hard work by
invariant theory researchers we can calculate the ring H•(g, g0̄; C) in
every example we’ve considered. In fact, using these calculations I can
state the following surprising theorem.

Theorem 4. If g is a simple Lie superalgebra with g0̄ a reductive Lie
algebra, then the ring H•(g, g0̄; C) is a polynomial ring.

2.3. Now that we have these theorems in hand we can define support
varieties just as for finite groups. Namely, let IM be the ideal defined
by

IM = {r ∈ H•(g, g0̄; C) | rx = 0 for all x ∈ H•(g, g0̄;M ⊗M∗)} .

Let the support variety of M be the variety

Vg(M) = {m ⊆ H•(g, g0̄; C) | m is a maximal ideal of H•(g, g0̄; C) and IM ⊆ m}.
Again the idea is to turn the algebra problem (understand the g-module M) into a geometric
problem (study the geometry of the variety Vg(M)).

Although the situation is definitely different than for finite groups, we still been able to
develop a very interesting theory. As one example, we have the following result.

Theorem 5. Let d = codimVg(M), the codimension of Vg(M). Then 2d̃ divides the dimen-
sion of M .

Here d̃ = bd/2c is the largest integer smaller than or equal to d/2.

Once again, studying the geometry yields interesting qualitative information about our
original algebraic problem. Also, compare this result to Theorem 2 (and imagine that
p = 2 in that theorem) and you see that superalgebras have the flavor of finite groups in
characteristic 2!
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