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Abstract. This paper investigates a reaction-advection-diffusion system that
describes the evolution of population distributions of two competing species

in an enclosed bounded habitat. Here the competition relationships are as-

sumed to be of the Beddington–DeAngelis type. In particular, we consider a
situation where first species disperses by a combination of random walk and di-

rected movement along with the population distribution of the second species

which disperse randomly within the habitat. We obtain a set of results re-
garding the qualitative properties of this advective competition system. First

of all, we show that this system is globally well-posed and its solutions are
classical and uniformly bounded in time. Then we study its steady states in

a one-dimensional interval by examining the combined effects of diffusion and

advection on the existence and stability of nonconstant positive steady states
of the strongly coupled elliptic system. Our stability result of these nontrivial

steady states provides a selection mechanism for stable wavemodes of the time-
dependent system. Moreover, in the limit of diffusion rates, the steady states of
this fully elliptic system can be approximated by nonconstant positive solutions

of a shadow system that admits boundary spikes and layers. Furthermore, for

the fully elliptic system, we construct solutions with a single boundary spike or
an inverted boundary spike, i.e., the first species concentrates on a boundary

point while the second species dominates the remaining habitat. These spa-
tial structures model the spatial segregation phenomenon through interspecific
competitions. Finally, we perform some numerical simulations to illustrate and

support our theoretical findings.
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1. Introduction. In this paper, we consider the following reaction-advection-
diffusion system

ut = ∇ · (D1∇u+ χuφ(v)∇v) + f(u, v), x ∈ Ω, t > 0,
vt = D2∆v + g(u, v), x ∈ Ω, t > 0,
∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,
u(x, 0), v(x, 0) ≥, 6≡ 0, x ∈ Ω,

(1.1)

where

f(u, v) =
(
−α1+

β1

a1 + b1u+ c1v

)
u and g(u, v) =

(
−α2+

β2

a2 + b2u+ c2v

)
v. (1.2)

Here Ω is a bounded domain in RN , N ≥ 1 and ∂Ω is its piecewise boundary, with n
denoting the unit outer normal on ∂Ω. Di, αi, βi, ai, bi and ci, i = 1, 2, are positive
constants. χ is a constant and φ is a smooth function such that φ(v) > 0 for all
v > 0. The initial conditions u0(x) and v0(x) are non-negative smooth functions
which are assumed to be not identically zero.

System (1.1) describes the evolution of population densities of two mutually
interfering species over a bounded habitat Ω. u(x, t) and v(x, t) are population
densities of the competing species at space-time location (x, t) ∈ Ω × R+, and
diffusion rates D1 and D2 measure intensity of unbiased dispersal of the species. It is
assumed that species u sense the population pressure from v and directs its dispersal
accordingly. In particular, u moves up or down along the population gradient of
interspecies v and χ is a constant that measures the intensity of such directed
movement. One can choose χ < 0 if u invades the dwelling habitat of v and χ > 0
if u escapes the habitat of v. Therefore u takes active dispersal strategy to cope
with population pressure from v, either to seek or avoid interspecific competition.
φ reflects the variation of the directed movement strength to the population density
of v.

For almost all mechanistic models that describe population dynamics, functional
responses play key roles in the spatial-temporal and qualitative properties of the
population distributions. One important feature of these competition dynamics is
to take into account the environment’s maximal load or carrying capacity. Among
the most common types are Lotka–Volterra [45, 7], Hollings [26, 55], and Leslie–
Gower [4], etc. To investigate mutual interference among intraspecies, Beddington
[5] and DeAngelis et al. [14] introduced the following functional response of focal
species u preying natural resources

f0(R, u) =
1

1 + ahR+ bu
,

where R is the resource density, a is the attacking rate and h is the handling time,
while b measures the interference rate. To account for both intra– and interspecific
competition, de Villemereuil and Lopez-Sepulcre [46] generalized the B-D response
into

f0(R, u, v) =
1

1 + ahR+ bu+ cv
,

where b and c represent the intra– and interspecific competition rates, respectively.
Moreover, they performed field experiments on the guppy-killifish system and col-
lected data that fit the responses above in the absence and presence of interspecies.
Functional response f0(R, u, v) models a competition relationship between u and v
based on the idea that an increase in the population density of each species should
suppress the growth rate of both individuals since they consume the same resources.
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In this paper, we assume that species u and v interact with the Beddington–
DeAngelis functional responses as in (1.2), where ecologically α1 and α2 represent
intrinsic death rates of species u and v and β1 and β2 interpret their growth rates;
a1 and a2 represent the compound effects of resource handling time and attack rate,
while b1 and c2 account for intra-specific competition and b2 and c1 are the coeffi-
cients of interspecific competition. We are motivated to investigate the dynamics of
population distributions to (1.1) and its stationary system due to the effect of the
biased movement of species u. To manifest this effect, we assume that the resources
are spatially homogeneous hence all the parameters are set to be positive constants.

To model the coexistence and segregation phenomenon through interspecific com-
petition, various reaction-diffusion systems with advection or cross–diffusion have
been proposed and studied. For example, [48, 50, 51] studied the global existence
of (1.1) with Lotka–Volterra kinetics f(u, v) =

(
a1 − b1u − c1v

)
u and g(u, v) =(

a2 − b2u − c2v
)
v. Existence and stability of nonconstant positive steady states

have also been established through rigorous bifurcation analysis; moreover, they
obtained transition layer steady states to the system. Another example of this type
is the SKT model proposed by Shigesada, Kawasaki and Teramoto [41] in 1979 that
studied the directed dispersals due to mutual interactions. See [30, 31, 36, 38, 41]
etc. for works and recent developments on the SKT model. It is also worthwhile
to mention that predator–prey models with Beddington–DeAngelis type functional
response have been theoretically studied in [8, 15, 20] etc. and there are also several
works on the prey-taxis models [22, 47, 49], and we refer the reader to [11] and the
survey paper [10] for detailed discussions on reaction-advection-diffusion systems of
population dynamics.

From the viewpoint of mathematical modeling, it is interesting and important to
investigate the spatially inhomogeneous distribution of population densities such as
the coexistence and segregation of mutually interfering species, in particular, due
to the dispersal and species competition. Time–dependent solutions can be used
to model the segregation phenomenon through the blow–up solutions in a finite
or infinite time. That being said, a species population density converges to a δ–
function or a linear combination of δ–functions. This approach has been taken
for Keller–Segel chemotaxis system that models the directed cellular movements
along the concentration gradient of stimulating chemicals in their environment [18,
17, 37]. An alternative approach is to show that the solutions exist globally and
converge to bounded steady states. Then positive steady states with concentrating
or aggregating structures such as boundary spikes, transition layers, etc. can be
used to model the segregation phenomenon. This approach has been adopted by
[31, 38, 52] etc. The blow–up solution or a δ–function is evidently connected to
the species segregation phenomenon. However, it is not an optimal choice from
the viewpoint of mathematical modeling since it challenges the rationality that
population density can not be infinity. On the other hand, it brings challenges to
numerical simulations and makes it impossible to analyze the solutions and models
after the blow–up. Therefore, we are motivated to study the global well-posedness
and stationary solutions of (1.1)–(1.2) in this paper.

The rest of this paper is organized as follows. In Section 2, we obtain the exis-
tence and uniform boundedness of positive classical solutions to (1.1) over multi–
dimensional bounded domains–See Theorem 2.1. In Section 3, we study the exis-
tence and stability of nonconstant positive steady states of (1.1) over Ω = (0, L).
Our method is based on the local theory of Crandall and Rabinowitz [12] and its
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new version recently developed by Shi and Wang in [40]. Our stability results give
a selection mechanism for stable wavemodes of system (1.1)–See Proposition 2 and
Theorem 3.2. Section 4 is devoted to the existence and asymptotic behaviors of
nonconstant steady states with large amplitude. It is shown that (1.1)–(1.2) admits
boundary spike and boundary layer solution if D1, χ are comparably large and D2

is small–see Theorem 4.1. In Section 5, we present some numerical studies of the
model and briefly discuss our results and their applications. Some interesting prob-
lems are also proposed for future studies. In the sequel, C and Ci denote positive
constants that may vary from line to line.

2. Global existence and boundedness. In this section, we investigate the global
existence of positive classical solutions to system (1.1)–(1.2). We will show that the
L∞-norms of u and v are both uniformly bounded in time. The first set of our main
results states as follows.

Theorem 2.1. Let Ω ⊂ RN , N ≥ 1, be a bounded domain with a piecewise smooth
boundary ∂Ω. Assume that the function φ is smooth and positive for all v ≥ 0.
Then for each pair (u0, v0) ∈ C(Ω̄)×W 1,p, p > N , the IBVP (1.1)–(1.2) admits a
unique and global solution (u(x, t), v(x, t)) for all t > 0; moreover, the solution is
classical and uniformly bounded in time, and both u and v are positive on Ω̄ for all
t ∈ (0,∞).

Many reaction-diffusion systems of population dynamics have maximum prin-
ciples, which can be used to prove the global existence and boundedness of their
classical solutions. However, the presence of advection term makes system (1.1)
non–monotone and it inhibits the application of the comparison principle, at least
in proving the boundedness of u. A review of the literature suggests that there are
two well–established methods to prove the global existence for reaction-advection-
diffusion systems. One method is to derive the L∞ through the Lp-iterations of
some compounded functions of the population densities; another method is to ap-
ply standard theory on semigroups generated by {e−∆t}t≥0 and Lp–Lq estimates
on the abstract form of the system. We refer the reader to [16] for classical results
and [19, 53] for recent developments. Our proof of global existence of (1.1)–(1.2)
involves both techniques.

2.1. Preliminary results and Local existence. First of all, we collect the local
existence of classical solutions to (1.1)–(1.2) and their extension criterion based on
Amann’s theory in the following theorem.

Theorem 2.2. Let Ω be a bounded domain in RN , N ≥ 1 with smooth boundary
∂Ω and assume that φ is a continuous function. Then for any initial data (u0, v0) ∈
C(Ω̄)×W 1,p(Ω), p > N , satisfying u0, v0 ≥, 6≡ 0 on Ω̄, there exists a constant Tmax ∈
(0,∞] and a unique solution (u(x, t), v(x, t)) to (1.1)–(1.2) defined on Ω̄× [0, Tmax)
such that (u(·, t), v(·, t)) ∈ C0(Ω̄, [0, Tmax)), u, v ∈ C2,1(Ω̄, [0, Tmax)), and u(x, t),
v(x, t) > 0 on Ω̄ for all t ∈ (0, Tmax). Moreover, if sups∈(0,t) ‖(u, v)(·, s)‖L∞ is

bounded for t ∈ (0, Tmax), then Tmax =∞, i.e., (u, v) is global in time.

Proof. Let w = (u, v). (1.1) can be rewritten as{
wt = ∇ · (A(w)∇w) + F (w), x ∈ Ω, t > 0,
w(x, 0) = (u0, v0), x ∈ Ω; ∂w∂n = 0, x ∈ ∂Ω, t > 0,

(2.1)
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where

A(w) =

(
D1 χuφ(v)
0 D2

)
, F (w) =

(
f(u, v)
g(u, v)

)
.

(2.1) is a triangular normally parabolic system since the eigenvalues of A are positive,
then the existence part follows from Theorem 7.3 and Theorem 9.3 of [2] and the
extension criterion follows from Theorem 5.2 of [3]. Moreover, one can apply the
standard parabolic boundary Lp estimates and Schauder estimates to see that ut,
vt and all the spatial partial derivatives of u and v are bounded in Ω̄× (0,∞) up to
the second order, hence (u, v) has the regularities as stated in the Theorem. Finally,
one can use parabolic strong maximum principle and Hopf’s boundary point lemma
to show that u > 0 and v > 0 on Ω̄×(0, Tmax). This completes the proof of Theorem
2.2.

2.2. A priori estimates. We collect some basic properties and a priori estimates
of the local classical solutions obtained in Theorem 2.2.

Lemma 2.3. Under the same conditions as in Theorem 2.2, there exists a positive
constant C1 dependent on a1, b1, α1, β1, |Ω| and ‖u0‖L1 such that

‖u(·, t)‖L1(Ω) ≤ C1,∀t ∈ (0, Tmax); (2.2)

moreover, for any p ∈ (1,∞), there exists a positive constant C(p) dependent on
a2, b2, α2, β2, |Ω| and ‖v0‖Lp such that

‖v(·, t)‖Lp(Ω) ≤ C(p),∀t ∈ (0, Tmax). (2.3)

Proof. To show (2.2), it is sufficient to show that
∫

Ω
u(x, t)dx is uniformly bounded

for t ∈ (0,∞) since u(x, t) > 0 according to Theorem 2.2. Integrating the first
equation in (1.1) over Ω yields

d

dt

∫
Ω

u(x, t)dx =

∫
Ω

(
− α1 +

β1

a1 + b1u+ c1v

)
udx

= −α1

∫
Ω

udx+

∫
Ω

β1u

a1 + b1u+ c1v
dx

≤ −α1

∫
Ω

udx+
β1|Ω|
b1

, (2.4)

then (2.2) follows from (2.4) thanks to Gronwall’s lemma.
To prove (2.3), we first see that ‖v‖L1(Ω) is bounded for t ∈ (0, Tmax) by the same

arguments as above. Using the v-equation in (1.1), we have from the integration by
parts that

1

p

d

dt

∫
Ω

vp(x, t)dx =

∫
Ω

vp−1vtdx =

∫
Ω

vp−1
(
D2∆v + (−α2 +

β2

a2 + b2u+ c2v
)v
)
dx

= −4D2(p− 1)

p2

∫
Ω

|∇v
p
2 |2dx+

∫
Ω

(−α2 +
β2

a2 + b2u+ c2v
)vpdx

≤ −4D2(p− 1)

p2

∫
Ω

|∇v
p
2 |2dx− α2

∫
Ω

vpdx+
β2

c2

∫
Ω

vp−1dx

≤ −4D2(p− 1)

p2

∫
Ω

|∇v
p
2 |2dx− α2

2

∫
Ω

vpdx+ C3(p),

therefore, ‖v(·, t)‖Lp(Ω) is bounded over (0, Tmax) for any p ∈ (1,∞).
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Lemma 2.3 provides the L∞–bound of v and L1–bound of u. To establish the
L∞–bound on u, we need to estimate ‖∇v‖Lp for p large. For this purpose, we
convert the v-equation in (1.1) into the following abstract form

v(·, t) = e−D2Atv0 +

∫ t

0

e−D2A(t−s)(D2v(·, s) + g(u(·, s), v(·, s))
)
ds, (2.5)

where g(u, v) is given in (1.2). After applying the Lp-estimates in Newmann semi-
groups (e.g., [16, 19, 53]) on (2.5), we have the following result.

Lemma 2.4. Let (u, v) be a classical solution of (1.1)–(1.2) over Ω × (0, Tmax).
For any 1 ≤ p ≤ q ≤ ∞, there exists a positive constant C dependent on ‖v0‖Lq(Ω)

and Ω such that

‖v(·, t)‖W 1,q(Ω) ≤ C
(

1 +

∫ t

0

e−ν(t−s)(t− s)−
1
2−

N
2 ( 1

p−
1
q )‖v(·, s) + 1‖Lpds

)
, (2.6)

for any t ∈ (0, Tmax) provided that q ∈ [1, Np
N−p ) if p ∈ [1, N), q ∈ [1,∞) if p = N

and q =∞ if p > N , where ν is principal Laplacian Neumann eigenvalue in Ω.

By taking p > N in (2.6), we readily have the following result.

Lemma 2.5. Assume the same conditions as in Lemma 2.3. Then there exists a
positive constant C

‖v(·, t)‖W 1,∞(Ω) ≤ C, ∀t ∈ (0, Tmax). (2.7)

2.3. Global existence of bounded classical solutions.

Proof of Theorem 2.1. Thanks to (2.7) in Lemma 2.5, we only need to show that
supt∈(0,Tmax) ‖u(·, t)‖L∞ < ∞, whereas Tmax = ∞ readily follows; moreover, the

regularities of (u, v) follow from Theorem 2.1.
Without loss of generality, we assume that ‖φ(v(·, t))∇v(·, t)‖L∞(Ω) ≤ 1 for all

t ∈ (0, Tmax) in light of Lemma 2.5. Then for any p > 1 we test the first equation
of (1.1) by pup−1 and integrate it over Ω by parts to have

1

p

d

dt

∫
Ω

updx =

∫
Ω

up−1utdx

=

∫
Ω

up−1
(
∇ · (D1∇u+ χuφ(v)∇v) + (−α1 +

β1

a1 + b1u+ c1v

)
u
)

≤− 4D1(p− 1)

p2

∫
Ω

|∇u
p
2 |2dx+

2(p− 1)χ

p

∫
Ω

u
p
2 |∇u

p
2 |dx− α1

∫
Ω

updx

+
β1

b1

∫
Ω

up−1dx

≤− 2D1(p− 1)

p2

∫
Ω

|∇u
p
2 |2dx+

(p− 1)χ2

2D1

∫
Ω

updx+ C1(p), (2.8)

where C1(p) = 1
q

(
β1

α1b1p

) q
p |Ω| with q = p

p−1 and we have applied the Young’s

inequality ab ≤ εap + bq

q(pε)
q
p
,∀a, b, ε > 0. We recall Corollary 1 in [9] due to the

Gagliardo–Nirenberg inequality: for any ε > 0, there exists a positive constant C0

dependent on N and Ω such that

‖u
p
2 ‖2L2(Ω) ≤ ε‖∇u

p
2 ‖2L2(Ω) + C0(1 + ε−

N
2 )‖u

p
2 ‖2L1(Ω). (2.9)
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Choosing ε =
(√

2D1

pχ

)2
in (2.9), we see that (2.8) becomes

d

dt

∫
Ω

updx

≤ −p(p− 1)χ2

D1

∫
Ω

updx+
C0p

2χ2

2D2
1

(
1 +

( pχ√
D1

)N)(∫
Ω

u
p
2 dx

)2

dx+ C1(p)p.

(2.10)

Finally, by applying the standard Moser–Alikakos iteration [1] to (2.10), we can
show that ‖u(·, t)‖L∞(Ω) is uniformly bounded for t ∈ (0,∞). This completes the
proof of Theorem 2.1.

3. Small–amplitude steady states and their stabilities. In this section, we
investigate nonconstant positive steady states of (1.1)–(1.2) over one-dimensional
finite domain in the following form

(D1u
′ + χuφ(v)v′)′ +

(
− 1 + 1

a1+b1u+c1v

)
u = 0, x ∈ (0, L),

D2v
′′ +

(
− 1 + 1

a2+b2u+c2v

)
v = 0, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L,

(3.1)

where ′ denotes the derivative taken with respect to x. We have assumed in (3.1)
that αi = βi = 1, i = 1, 2 without loss of generality. Indeed, through the rescaling

t̃ = α1t, x̃ =
√
α1x, c̃1 =

α2c1
β1

, c̃2 =
α2

2c2
α1β2

, χ̃ =
χ

α1
, D̃i =

D1

αi
, ãi =

aiαi
βi

, i = 1, 2,

and ṽ = α1

α2
v, after dropping the tildes (1.1)–(1.2) become

ut = ∇ · (D1∇u+ χuφ(v)∇v) +
(
− 1 + 1

a1+b1u+c1v

)
u, x ∈ Ω, t > 0,

vt = D2∆v +
(
− 1 + 1

a2+b2u+c2v

)
v, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(3.2)

the one-dimensional steady state of which recovers (3.1).
We will see that large advection rate χ drives the emergence of nonconstant

positive solutions to (3.1). There are four constant solutions to system (3.1): (0, 0),
(0, 1−a2

c2
), ( 1−a1

b1
, 0) and (ū, v̄), where

ū =
(1− a2)c1 − (1− a1)c2

b2c1 − b1c2
, v̄ =

(1− a1)b2 − (1− a2)b1
b2c1 − b1c2

, (3.3)

is the unique positive solution provided that

c1
c2
<

1− a1

1− a2
<
b1
b2

or
b1
b2
<

1− a1

1− a2
<
c1
c2
. (3.4)

We assume this condition throughout the rest of our paper. The first inequality in
(3.4) implies that b2c1 < b1c2, therefore the interspecific competition is weak com-
pared to the intraspecific competition. We call this condition the weak competition
case. Similarly, we call the latter condition in (3.4) the strong competition case.
The same weak and strong competition cases are proposed in the studies of SKT
competition models in [41].
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3.1. Global attractor in the purely diffusive system. We shall show that the
emergence of nonconstant positive solutions to (3.1) is driven by large advection
rate χ. To see this, we study the existence of nonconstant positive solutions to
(3.2) with χ = 0, i.e., the following diffusive system

ut = D1u
′′ +

(
− 1 + 1

a1+b1u+c1v

)
u, x ∈ (0, L), t > 0,

vt = D2v
′′ +

(
− 1 + 1

a2+b2u+c2v

)
v, x ∈ (0, L), t > 0,

u′(x) = v′(x) = 0, x = 0, L, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, L).

(3.5)

Our main result states as follows.

Theorem 3.1. Suppose that (3.4) holds. Then (ū, v̄) in (3.3) is asymptotically
stable with respect to (3.5)

‖u(·, t− ū)‖L∞ + ‖v(·, t)− v̄‖L∞ ≤ Ce−δt

and it is the only positive steady state of (3.5) provided with either (i). b1
b2
> c1

c2
or

(ii). b1
b2
≤ c1

c2
and max{D1, D2} is large.

Proof. Denote

f0(u, v) = −1 +
1

a1 + b1u+ c1v
, g0(u, v) = −1 +

1

a2 + b2u+ c2v
,

and we rewrite (3.5) as
ut = D1u

′′ + f0(u, v)u, x ∈ (0, L), t > 0
vt = D2v

′′ + g0(u, v)v, x ∈ (0, L), t > 0
u′(x) = v′(x) = 0, x = 0, L, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, L).

Then the matrix

M =
(∂(f0, g0)

∂(u, v)

)∣∣∣
(ū,v̄)

=

(
∂f0
∂u

∂f0
∂v

∂g0
∂u

∂g0
∂v

) ∣∣∣
(ū,v̄)

=

(
−b1 −c1
−b2 −c2

)
,

has determinant |M| = (b1c2 − b2c1). According to Theorem 3.1 of [30], (ū, v̄) is
the only steady state of (3.5) if either (i) or (ii) holds.

On the other hand, it follows from straightforward calculations that the linearized
stability matrix corresponding to system (3.5) at (ū, v̄) is(

−D1

(
kπ
L

)2 − b1ū −c1ū
−b2v̄ −D2

(
kπ
L

)2 − c2v̄
)
,

which has two negative eigenvalues if either (i) or (ii) occurs, then by the same
analysis in Theorem 2.5 in [32] or [42], one can show that system (3.5) generates
a strongly monotone semi–flow on C([0, L],R2) with respect to {(u, v) ∈ C([0, L],
R2)|u > 0, v > 0}, hence (ū, v̄) is globally asymptotically stable. This completes
the proof of Theorem 3.1.

Our results indicate that the global dynamics of the diffusion system (3.5) is
dominated by the ODEs in the weak competition case and also in the strong case
if one of the diffusion rates is large. However, if both D1 and D2 are small, (ū, v̄)
is unstable in the strong competition case. We surmise that positive solutions with
nontrivial patterns may arise when the system parameters and the domain geometry
are properly balanced. Nonconstant positive solutions with spikes are investigated
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for the diffusion system (3.1) with Lotka–Volterra dynamics by various authors. See
[23, 33, 34, 35].

3.2. Advection–driven instability. Theorem 3.1 states that diffusion itself does
not change the dynamics of the spatially homogeneous solution and no Turing’s
instability occurs for the diffusive system (3.5) in most cases. We proceed to in-
vestigate the effect of advection rate χ on the emergence of nonconstant positive
solutions to (3.1). We shall show that this equilibrium loses its stability as the
advection rate χ crosses a threshold value. To this end, we first study the linearized
stability of the equilibrium (ū, v̄). Let (u, v) = (ū, v̄) + (U, V ), where U and V are
small perturbations from (ū, v̄), then Ut ≈ D1U

′′
+ χūφ(v̄)V

′′ − b1ūU − c1ūV, x ∈ (0, L), t > 0,

Vt ≈ D2V
′′ − b2v̄U − c2v̄V, x ∈ (0, L), t > 0,

U ′(x) = V ′(x) = 0, x = 0, L, t > 0.

We have the following result on the linearized instability of (ū, v̄) to (3.1).

Proposition 1. The constant solution (ū, v̄) of (3.1) is unstable if

χ > χ0 = min
k∈N+

(
D1(kπL )2 + b1ū

)(
D2(kπL )2 + c2v̄

)
− b2c1ūv̄

b2(kπL )2φ(v̄)ūv̄
. (3.6)

Proof. According to the standard linearized stability analysis, the stability of (ū, v̄)
is determined by the eigenvalues of the following matrix

Hk =

(
−D1(kπL )2 − b1ū −χūφ(v̄)(kπL )2 − c1ū

−b2v̄ −D2(kπL )2 − c2v̄

)
, k ∈ N+. (3.7)

In particular, (ū, v̄) is unstable if Hk has an eigenvalue with positive real part for
some k ∈ N+. It is easy to see that the characteristic polynomial of (3.7) takes the
form

pk(λ) = λ2 + Tkλ+Dk,

where

Tk = (D1 +D2)(
kπ

L
)2 + b1ū+ c2v̄ > 0,

and

Dk =
(
D1(

kπ

L
)2 + b1ū

)(
D2(

kπ

L
)2 + c2v̄

)
−
(
χūφ(v̄)(

kπ

L
)2 + c1ū

)
b2v̄.

pk(λ) has a positive root if and only if pk(0) = Dk < 0, then (3.6) follows from
simple calculations and the proof completes.

We have from Proposition 1 that (ū, v̄) loses its stability when χ surpasses χ0.
In the weak competition case b1

b2
> 1−a1

1−a2 > c1
c2

, we see that χ0 is always positive,

hence (ū, v̄) remains locally stable for χ being small. In the strong competition case
b1
b2
< 1−a1

1−a2 <
c1
c2

, χ0 < 0 if both D1 and D2 are sufficiently small. This corresponds

to the fact that (ū, v̄) is unstable for χ = 0 in (3.1) in this case. By the same
stability analysis above, we can show that the appearance of advection does not
change the stability of the rest equilibrium points. It is also worthwhile to point
out that Proposition 1 carries over to higher dimensions with (kπL )2 replaced by the
k–eigenvalue of Neumann Laplacian.
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3.3. Steady state bifurcation. To establish the existence of nonconstant positive
solutions to (3.1), we first use the bifurcation theory of Crandall–Rabinowitz [12]
by taking χ as the bifurcation parameter. To this end, we rewrite (3.1) into the
following abstract form

F(u, v, χ) = 0, (u, v, χ) ∈ X × X × R,
where

F(u, v, χ) =

 (D1u
′ + χuφ(v)v′)′ + (−1 + 1

a1+b1u+c1v
)u

D2v
′′

+ (−1 + 1
a2+b2u+c2v

)v

 ,

and X = {H2(0, L)|u′(0) = u′(L) = 0}. We collect some facts about F . First of
all, F(ū, v̄, χ) = 0 for any χ ∈ R and F : X × R × R → Y × Y is analytic for
Y = L2(0, L). For any fixed (u0, v0) ∈ X × X , the Fréchet derivative of F is

D(u,v)F(u0, v0, χ)(u, v)

=

 D1u
′′

+ χ
(
(φ(v0)u+ u0φ

′
(v0)v)v

′

0 + u0φ(v0)v′
)′

+R

D2v
′′ − b2v0

(a2+b2u0+c2v0)2u+
(
− 1 + a2+b2u0

(a2+b2u0+c2v0)2

)
v

 ,
(3.8)

where R =
(
− 1 + a1+c1v0

(a1+b1u0+c1v0)2

)
u − c1u0

(a1+b1u0+c1v0)2 v. By the same arguments

that lead to (iv) of Lemma 5.1 in [9] or Lemma 2.3 of [52], one can show that
D(u,v)F(u0, v0, χ) is Fredholm with zero index.

For bifurcation to occur at (ū, v̄, χ), we need the implicit function theorem to fail
on F at this point thus require the condition N

(
D(u,v)F(ū, v̄, χ)

)
6= 0. Let (u, v)

be a nontrivial solution in this null space, then it satisfies the following system D1u
′′

+ χūφ(v̄)v
′′ − b1ūu− c1ūv = 0, x ∈ (0, L),

D2v
′′ − b2v̄u− c2v̄v = 0, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L.
(3.9)

Expanding u and v into the following series

u(x) =

∞∑
k=0

tk cos
kπx

L
, v(x) =

∞∑
k=0

sk cos
kπx

L
,

and substituting them into (3.9) yields−D1(kπL )2 − b1ū −χūφ(v̄)(kπL )2 − c1ū

−b2v̄ −D2(kπL )2 − c2v̄

tk
sk

=

0

0

 . (3.10)

k = 0 is ruled out in (3.9) thanks to (3.4). For k ∈ N+, (3.10) has nonzero solutions
if and only if its coefficient matrix is singular, which implies that local bifurcation
can occur only at

χ = χk =

(
D1(kπL )2 + b1ū

)(
D2(kπL )2 + c2v̄

)
− b2c1ūv̄

b2(kπL )2φ(v̄)ūv̄
, k ∈ N+. (3.11)

Moreover, the null space is one-dimensional and is spanned by

N
(
D(u,v)F(ū, v̄, χk)

)
= span{(ūk, v̄k)},

where

(ūk, v̄k) = (Qk, 1) cos
kπx

L
,Qk = −

D2

(
kπ
L

)2
+ c2v̄

b2v̄
. (3.12)
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Having the candidates for bifurcation values χk, we now show that local bifurcation
does occur at (ū, v̄, χk) in the following theorem, which establishes nonconstant
positive solutions to (3.1).

Proposition 2. Suppose that φ ∈ C2(R,R) and φ(v) > 0 for all v > 0. Assume
that (3.4) holds, and for any two integers k 6= j ∈ N+,

(b1c2 − b2c1)ūv̄ 6= k2j2D1D2(
π

L
)4, k 6= j, (3.13)

where (ū, v̄) is the positive equilibrium of (3.1) given in (3.3). Then for each
k ∈ N+, there exists δ > 0 small such that (3.1) admits nonconstant solutions(
uk(s, x), vk(s, x), χk(s)

)
∈ X ×X ×R+ with

(
uk(0, x), vk(0, x), χk(0)

)
= (ū, v̄, χk).

The solutions are continuous functions of s in the topology of X ×X ×R and have
the following expansions for |s| being small,

(uk(s, x), vk(s, x)) = (ū, v̄) + s(Qk, 1) cos
kπx

L
+ o(s),

and
(
uk(s, x), vk(s, x)

)
− (ū, v̄)− s(Qk, 1) cos kπxL ∈ Z where

Z =
{

(u, v) ∈ X × X
∣∣ ∫ L

0

uūk + vv̄kdx = 0
}
, (3.14)

with (ūk, v̄k) and Qk defined in (3.12); moreover, all nontrivial solutions of (3.1)
around (ū, v̄, χk) must stay on the curve Γk(s) =

{(
uk(s, x), vk(s, x), χk(s)

)
, s ∈

(−δ, δ)
}

.

Proof. Thanks to the arguments above, our results follow from Theorem 1.7 of
Crandall and Rabinowitz [12] once we prove the following transversality condition

d

dχ

(
D(u,v)F(ū, v̄, χ)

)
(ūk, v̄k)|χ=χk /∈ R(D(u,v)F(ū, v̄, χk)), (3.15)

where (ūk, v̄k) is given in (3.12) and R(·) denotes the range of the operator. We ar-
gue by contradiction and assume that (3.15) fails. Therefore there exists a nontrivial
pair (u, v) to the following problemD1u

′′
+ χkūφ(v̄)v

′′ − b1ūu− c1ūv = −(kπL )2ūφ(v̄) cos kπxL , x ∈ (0, L),
D2v

′′ − b2v̄u− c2v̄v = 0, x ∈ (0, L),
u′(x) = v′(x) = 0, x = 0, L.

(3.16)

Testing the first two equations in (3.16) by cos kπxL over (0, L) yields−D1(kπL )2 − b1ū −χkūφ(v̄)(kπL )2 − c1ū

−b2v̄ −D2(kπL )2 − c2v̄

∫ L0 u cos kπxL dx∫ L
0
v cos kπxL dx

=

− (kπ)2ūφ(v̄)
2L

0

 .

(3.17)
The coefficient matrix is singular due to (3.11), then we reach a contradiction in
(3.17) and this proves (3.15). On the other hand, we need condition (3.13) such that
χk 6= χj for all integers k 6= j, which is also required for the application of the local
theory in [12] for single eigenvalue. The proof of Proposition 2 is completed.
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3.4. Stability analysis of the nonconstant steady states. We proceed to
study stability of the nontrivial bifurcating solutions (uk(s, x), vk(s, x), χk(s)) ob-
tained in Proposition 2. Here the stability or instability means that of the non-
constant solution viewed as an equilibrium of the time-dependent system of (3.1).
F is C4-smooth in s if φ is C4, therefore, according to Theorem 1.18 in [12],
(uk(s, x), vk(s, x), χk(s)) is C3-smooth and we have the following expansions uk(s, x) = ū+ sQk cos kπxL + s2ψ1(x) + s3ψ2(x) + o(s3),

vk(s, x) = v̄ + s cos kπxL + s2ϕ1(x) + s3ϕ2(x) + o(s3),
χk(s) = χk + sK1 + s2K2 + o(s2),

(3.18)

where (ψi, ϕi) ∈ Z as defined in (3.14) and Ki is a constant for i = 1, 2.
Note that Taylor’s expansion gives

φ
(
vk(s, x)

)
= φ(v̄)+sφ

′
(v̄) cos

kπx

L
+s2

(
φ
′
(v̄)ϕ1+

1

2
φ
′′
(v̄) cos2 kπx

L

)
+o(s3), (3.19)

where the o(s3)-terms in (3.18) and (3.19) are taken in H2-topology. Now, We are
able to evaluate K2 in terms of system parameters and the rest calculations are
straightforward and tedious, hence skipped here. The next result indicates that
stability of the solution in (3.18) is determined by the sign of K2.

Theorem 3.2. Assume that all the conditions in Proposition 2 hold. Suppose
that χk0 = mink∈N+ χk of (3.8). Then for all positive integers k 6= k0 and small
δ > 0, (uk(s, x), vk(s, x)) is unstable for s ∈ (−δ, δ); moreover, (uk0(s, x), vk0(s, x))
is stable for s ∈ (−δ, δ) if K2 > 0 and it is unstable for s ∈ (−δ, δ) if K2 < 0.

In Table 1, we list the wavemode numbers k0 and the corresponding minimum
bifurcation values for different interval lengths. Figure 1 gives numerical simulations
on the evolutions of stable patterns over different intervals. In Figure 3, we plot
the spatial–temporal solutions to illustrate the formation of a single boundary spike
to u and a boundary layer to v. The boundary spike and layer here correspond to
those obtained in Theorem 3.1.

Domain size L 3 5 7 9 11
k0 1 2 2 3 3
χk 9.9418 10.392 9.9120 9.9418 9.9647

Domain size L 13 15 17 19 21
k0 4 5 5 6 6
χk 9.8872 9.9418 9.8937 9.8956 9.9120

Table 1. Stable wavemode number k0 and the corresponding bifurcation value χk0
for different interval length. The system parameters are D1 = 1, D2 = 0.1, a1 =
a2 = 0.5, b1 = 2, b2 = 1 and c1 = 0.5, c2 = 1. According to Proposition 2, the stable

wavemode is cos
k0πx
L . Therefore, stable and nontrivial patterns must develop in

the form of cos
k0πx
L if χ is chosen to be slightly larger than χk0 . We can also see

that larger domains support higher wave modes. Figure 1 is given to illustrate the
wavemode selection mechanism.

Remark 1. Theorem 3.2 provides a rigourous selection mechanism for stable non-
constant positive solutions to system (3.1). If (uk(s, x), vk(s, x)) is stable, then k
must be the integer that minimizes the bifurcation value χk over N+, that being
said, if a bifurcation branch is stable, then it must be the left-most branch.



BEDDINGTON–DEANGELIS COMPETITION SYSTEM 2117

Figure 1. The sensitivity function φ(v) ≡ 1 is selected. Stable wave mode in the

form of cos
k0πx
L , where k0 is given in Table 1. χ is chosen to be slightly larger

than χ0 and the rest system parameters are chosen to be the same as in Table 1.
Initial data are small perturbations of (ū, v̄).

For each k ∈ N+, we linearize (3.1) around (uk(s, x), vk(s, x), χk(s)) and obtain
the following eigenvalue problem

D(u,v)F(uk(s, x), vk(s, x), χk(s))(u, v) = λ(s)(u, v), (u, v) ∈ X × X . (3.20)

Then solution (uk(s, x), vk(s, x), χk(s)) will be asymptotically stable if and only if
the real part of any eigenvalue λ(s) to (3.20) is negative for s ∈ (−δ, δ).

Sending s to 0, we know that λ = λ(0) = 0 is a simple eigenvalue of D(u,v)F(ū, v̄,
χk)(u, v) = λ(u, v) or equivalently, the following eigenvalue problem D1u

′′ + χkūφ(v̄)v′′ − b1ūu− c1ūv = λu, x ∈ (0, L),
D2v

′′ − b2v̄u− c2v̄v = λv, x ∈ (0, L),
u′(x) = v′(x) = 0, x = 0, L;

(3.21)

moreover, it has a one-dimensional eigen-space N
(
D(u,v)F(ū, v̄, χk)

)
= {(Qk, 1)

cos kπxL } and one can also prove that (Qk, 1) cos kπxL 6∈ R
(
D(u,v)F(ū, v̄, χk)

)
follow-

ing the same analysis that leads to (3.15).
Multiplying (3.21) by cos kπxL and integrating it over (0, L) by parts give rise to(

−D1

(
kπ
L

)2−b1ū− λ −χk
(
kπ
L

)2
ūφ(v̄)−c1ū

−b2v̄ −D2

(
kπ
L

)2−c2v̄ − λ
)(∫ L

0
u cos kπxL dx∫ L

0
v cos kπxL dx

)
=

(
0
0

)
,

where the eigenvalue λ satisfies

p̄k(λ) = λ2 + T̄kλ+ D̄k = 0,

with

T̄k =
(
D1 +D2

)(kπ
L

)2

+ b1ū+ c2v̄ > 0,

and

D̄k =
(
D1

(kπ
L

)2
+ b1ū

)(
D2

(kπ
L

)2
+ c2v̄

)
−
(
χkūφ(v̄)

(kπ
L

)2
+ c1ū

)
b2v̄.
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If χk 6= χk0 = mink∈N+ χk, then D̄k < 0 thanks to (3.11) hence p̄k(λ) always has a
positive root λ(0) for all k 6= k0. From the standard eigenvalue perturbation theory
in [24], (3.20) always has a positive root λ(s) for small s if k 6= k0. This finishes the
proof of the instability part.

To study the stability of (uk0(s, x), vk0(s, x), χk0(s)), we first note that p̄k0(λ) or
(3.21) with k = k0 has two eigenvalues, one being negative and the other being zero.
Hence we need to investigate the asymptotic behavior of the zero eigenvalue for s ≈
0. According to Corollary 1.13 in [13], there exists an interval I with χk0 ∈ I and C1-
smooth functions (χ, s) : I×(−δ, δ)→ (µ(χ), λ(s)) such that (µ(χk0), λ(0)) = (0, 0);
moreover, λ(s) is the only eigenvalue in any fixed neighbourhood of the origin in the
complex plane and µ(χ) is the only eigenvalue of the following eigenvalue problem
around χk0

D(u,v)F(ū, v̄, χ)(u, v) = µ(u, v), (u, v) ∈ X × X , (3.22)

or equivalently D1u
′′ + χūφ(v̄)v′′ − b1ūu− c1ūv = µu, x ∈ (0, L),

D2v
′′ − b2v̄u− c2v̄v = µv, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L;
(3.23)

furthermore, the eigenfunction of (3.22) can be represented by
(
u(χ, x), v(χ, x)

)
,

which depends on χ smoothly and is uniquely determined by
(
u(χk0 , x), v(χk0 , x)

)
=(

Qk0 cos k0πxL , cos k0πxL
)

and
(
u(χ, x), v(χ, x)

)
−
(
Qk0 cos k0πxL , cos k0πxL

)
∈ Z, with

Qk0 and Z being given by (3.12) and (3.14) respectively.
Differentiating (3.23) with respect to χ and then taking χ = χk0 , we have thatD1u̇

′′−ūφ(v̄)
(

cos k0πxL
)′′

+ χk0 ūφ(v̄)v̇′′−b1ūu̇−c1ūv̇ = µ̇(χk0)Qk0 cos k0πxL ,

D2v̇
′′− b2v̄u̇− c2v̄v̇ = µ̇(χk0) cos k0πxL ,

u̇′(x) = v̇′(x) = 0, x = 0, L,
(3.24)

where ˙ in (3.24) denotes the derivative taken with respect to χ and evaluated at

χ = χk0 , i.e., u̇ = ∂u(χ,x)
∂χ

∣∣
χ=χk0

, v̇ = ∂v(χ,x)
∂χ

∣∣
χ=χk0

.

Testing (3.24) by cos kπxL over (0, L) yields(
−D1

(
kπ
L

)2−b1ū −χk0
(
kπ
L

)2
ūφ(v̄)−c1ū

−b2v̄ −D2

(
kπ
L

)2−c2v̄
)∫ L0 u̇ cos k0πxL dx∫ L

0
v̇ cos k0πxL dx



=


(
µ̇(χk0)Qk0−ūφ(v̄)

(
k0π
L

)2)L
2

µ̇(χk0)L2

 .

The coefficient matrix is singular thanks to (3.11), then we must have that
D1(

k0π
L )2+b1ū

b2v̄
=

µ̇(χk0 )Qk0−ūφ(v̄)(
k0π
L )2

µ̇(χk0 ) which, in light of (3.12), implies that

µ̇(χk0) = −
b2ūφ(v̄)v̄

(
k0π
L

)2
(D1 +D2)

(
k0π
L

)2
+ b1ū+ c2v̄

< 0.

According to Theorem 1.16 in [13], the functions λ(s) and −sχ′k0(s)µ̇(χk0) have the
same zeros and signs near s = 0, and

lim
s→0

−sχ′k0(s)µ̇(χk0)

λ(s)
= 1, forλ(s) 6= 0,
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then we conclude that sgn(λ(0)) = sgn(K2) in light of K1 = 0. Following the
standard perturbation theory, one can show that sgn(λ(s)) = sgn(K2) for s ∈
(−δ, δ), δ being small. This finishes the proof of Theorem 3.2.

According to Theorem 3.2, if k0 is the positive integer that minimizes χk over N+,
the bifurcation branch Γk0(s) around (ū, v̄, χk0) is stable if it turns to the left and it
is unstable if it turns to the right. However, for all k 6= k0, Γk(s) is always unstable
for s being small. It is unknown about the global behavior of the continuum of
Γk(s). We discuss this in details in Section 5.

Proposition 1 indicates that (ū, v̄) loses its stability as χ surpasses χk0 . Theorem
3.2 shows that the stability is lost to the nonconstant steady state (uk0(s, x), vk0
(s, x)) in the form (Qk0 , 1) cos k0πxL and we call this the stable wavemode of (1.1).
If the initial value (u0, v0) are small perturbations from (ū, v̄), then spatially inho-
mogeneous patterns can emerge through this mode, at least when χ is around χk0 ,
therefore stable patterns with interesting structures, such as interior spikes, tran-
sition layers, etc. can develop as time evolves. Rigorous analysis of the boundary
spike solutions will be analyzed in the coming section.

If the interval length L is small, we see that

χk =

(
D1(kπL )2 + b1ū

)(
D2(kπL )2 + c2v̄

)
− b2c1ūv̄

b2(kπL )2ūφ(v̄)v̄
≈
D1D2(kπL )2

b2φ(v̄)ūv̄
,

therefore χ1 = χk0 = mink∈N+ χk and Theorem 3.2 shows that the only stable
pattern is (u1(s, x), v1(s, x)) which is spatially monotone. It is easy to see that
k0 increases if L increases. This indicates that small domains only support mono-
tone stable solutions, while large domains support non-monotone stable solutions.
Indeed, one can construct non-monotone solutions to (3.1) by reflecting and peri-
odically extending the monotone ones at the boundary points 0,±L,±2L, ...

4. Boundary spikes of the 1D systems. This section is devoted to positive
solutions of (3.1) with large amplitude compared to the small amplitude bifurcating
solutions. In particular, we study the boundary spike solution as D1 and χ approach
infinity with χ/D1 ∈ (0,∞) being fixed. Since the smallness of D2 gives rise to
boundary spikes for system (3.1) and our approach works for a wide class of the

sensitivity functions, we put ε =
√
D2 and choose φ(v) ≡ 1 in (3.1) without loss of

generality. Therefore, it is the goal of this section to investigate positive solutions
with large amplitude of the following system

(D1u
′ + χuv′)′ +

(
− 1 + 1

a1+b1u+c1v

)
u = 0, x ∈ (0, L),

ε2v′′ +
(
− 1 + 1

a2+b2u+c2v

)
v = 0, x ∈ (0, L),

u′(x) = v′(x) = 0, x = 0, L.

(4.1)

Our main results are the followings.

Theorem 4.1. Let r = χ
D1
∈ (0,∞) and a2 ∈ (0, 1) be fixed. For any ε > 0

being small, we can find D̄ > 0 large such that if D1 > D̄, there always exists a
nonconstant positive solution (u, v) to (4.1). Moreover, as D1 → ∞, (u(x), v(x))
converges to (λεe

−rvε(x), vε(x)) uniformly in [0, L], where λε is a positive constant
and λε → 0 as ε → 0; vε(x) is a positive function of x and vε(x) → 1−a2

c2
compact

uniformly on (0, L] and vε(0)→ 1−a2
2c2

.

Theorem 4.1 states that if D1 and χ are sufficiently large and D2 is sufficiently
small, u has a boundary spike and v has a boundary layer at x = 0 . The elliptic
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spiky solutions can be used to model segregation phenomenon through interspecific
competitions. Figure 2 illustrates the formation of such spatial pattern.

Figure 2. Formation of stable single boundary spike of u and boundary layer of v.
Diffusion and advection rates are chosen to be D1 = 5, χ = 30, D2 = 5 × 10−3.
The rest system parameters are a1 = 0.2, b1 = 0.8, c1 = 0.1 and a2 = 0.6, b2 = 0.2,
c2 = 0.4. Initial data are u0 = ū + 0.5 cos 2πx

5 and v0 = v̄ + 0.5 cos 2πx
5 , where

(ū, v̄) = (0.933..., 0.533...).

4.1. Convergence to a shadow system. Theorem 4.1 is an immediate conse-
quence of several results and we first study (4.1) in the large limit of D1. To this
end, we need the following a priori estimates.

Lemma 4.2. Let (u, v) be any positive solution to (4.1). Then there exists a positive
constant C0 independent of D1 and χ such that

0 < max
x∈[0,L]

v(x), ‖v(x)‖C2([0,L]) ≤ C0;

moreover, if χ
D1

is bounded, there exists C1 > 0 such that

‖u′(x)‖L2(0,L) ≤ C1.

Proof. We have from the maximum principles that

max
x∈[0,L]

v(x) ≤ 1− a2

c2
;

therefore v is bounded in C2([0, L]) thanks to the standard elliptic Schauder esti-
mates.

On the other hand, we integrate the u-equation over (0, L) to see that∫ L

0

u(x)dx =

∫ L

0

u(x)

a1 + b1u(x) + c1v(x)
dx ≤ L

b1
.

Testing the u-equation by u and integrating it over (0, L) give rise to

D1

∫ L

0

(u′)2dx = −χ
∫ L

0

uu′v′dx+

∫ L

0

f(u, v)udx

≤ D1

2

∫ L

0

(u′)2dx+
(χ2‖v′‖L∞

2D1
+

1

a1
− 1
)∫ L

0

u2dx,
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therefore ‖u′(x)‖L2 is bounded for finite χ
D1

thanks to the Gagliardo-Nirenberg

inequality: ‖u‖2L2(0,L) ≤ δ‖u′‖2L2(0,L) + C(δ)‖u‖2L1(0,L), where δ > 0 is an arbitrary

constant and C(δ) > 0 only depends on δ and L.

We now study the asymptotic behaviors of positive solutions (u, v) of (4.1) by
passing the advection rate D1 and advection rate χ to infinity. We assume that χ

D1

remains bounded in this process, hence both u and v are bounded as in Lemma 4.2.

Proposition 3. Let (ui, vi) be positive solutions of (4.1) with (D1,i, εi, χi) = (D1,
ε, χ). Denote χi

D1,i
= ri. Assume that χi →∞, εi → ε ∈ (0,∞) and ri → r ∈ (0,∞)

as i → ∞, then there exists a nonnegative constant λε such that uie
rivi → λε

uniformly on [0, L] as i → ∞; moreover, (ui, vi) → (λεe
−rvε , vε) in C1([0, L]) ×

C1([0, L]) after passing to a subsequence if necessary, where vε = vε(x) satisfies the
following shadow system

ε2v′′ε + (−1 + 1
a2+b2λεe−rvε+c2vε

)vε = 0, x ∈ (0, L),∫ L
0

(−1 + 1
a1+b1λεe−rvε+c1vε

)λεe
−rvεdx = 0,

v′ε(0) = v′ε(L) = 0.

(4.2)

Proof. Since vi is bounded in C2([0, L]) uniformly for all χi and D1,i > 0, by the
compact embedding one finds that, vi converges to some v∞ in C1([0, L]) as i→∞,
after passing to a subsequence if necessary. On the other hand, we integrate the
u-equation in (4.1) over (0, x) to have

u′i + riuiv
′
i =

1

D1,i

∫ x

0

(1− 1

a1 + b1ui + c1vi
)uidx.

Denoting wi = uie
rivi , we have that∣∣∣e−riviw′i∣∣∣ ≤ 1 + 1

a1

D1,i

∫ x

0

uidx. (4.3)

Sending i to ∞ in (4.3), we conclude that w′i → 0 uniformly on [0, L], therefore
wi = uie

rvi converges to a nonnegative constant λε. Moreover we can use standard
elliptic regularity theory to show that vε is C∞-smooth and it satisfies the shadow
system (4.2).

Proposition 3 implies that when both D1 and χ are sufficiently large, the steady
state (u(x), v(x)) can be approximated by the structures of the shadow system (4.2).
We want to remark that the arguments in this Proposition carry over to the case
of higher-dimensional bounded domains. To find boundary spikes of (1.1)–(1.2), we
study the asymptotic behavior of the shadow system with small diffusion rate ε and
then investigate the original system with large diffusion and advection rates. This
approach originates from the idea in [25], applied by [43, 44] in reaction-diffusion
systems and developed by [30, 31] for reaction-diffusion system with cross–diffusions.

4.2. Boundary spike layers of the shadow system. We proceed to construct
boundary spikes of the shadow system (4.2). Our results state as follows.

Proposition 4. Assume that r ∈ (0,∞) and a2 ∈ (0, 1). Then there exists ε0 > 0
such that (4.2) has a nonconstant positive solution (λε, vε(λε, x)) for all ε ∈ (0, ε0);
moreover, λε → 0 as ε→ 0 and

vε(λε, x)→
{
v∗ = 1−a2

c2
, compact uniformly for x ∈ (0, L],

1−a2
2c2

, x = 0.
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For ε being sufficiently small, vε(λε;x) has a single inverted boundary spike at
x = 0, then one can construct solutions to (4.2) with multi- boundary and interior
spikes by periodically reflecting and extending vε(x) at x = ±L, ±2L,...

To prove Proposition 4, we first choose λ > 0 to be a predetermined fixed but
arbitrary constant and establish nonconstant positive solutions vε(λ;x) to the fol-
lowing problem{

ε2v′′ε + (−1 + 1
a2+b2λe−rvε+c2vε

)vε = 0, x ∈ (0, L),

vε(x) > 0, x ∈ (0, L); v′ε(0) = v′ε(L) = 0.
(4.4)

Then we find λ = λε > 0 such that (λε, vε(λε;x)) satisfies the integral constraint∫ L

0

(
− 1 +

1

a1 + b1λεe−rvε + c1vε

)
λεe
−rvεdx = 0. (4.5)

Denote

wε(x) := v∗ − vε(x) =
1− a2

c2
− vε(x),

then (4.4) becomes {
ε2w′′ε + f(λ;wε) = 0, x ∈ (0, L),
w′ε(0) = w′ε(L) = 0,

(4.6)

where

f(λ;wε) := −
(
− 1 +

1

1 + b2λe−r(v
∗−wε) − c2wε

)(
v∗ − wε

)
. (4.7)

It is equivalent to study the existence and asymptotic behaviors of (4.6) in order to
prove Proposition 4. We first collect some facts about f(λ; s) introduced in (4.7).
We denote

f(λ; s) =
g(λ; s)(v∗ − s)

1 + g(λ; s)
, s ∈ (0,∞),

where

g(λ; s) := b2λe
−r(v∗−s) − c2s.

Lemma 4.3. Let r ∈ (0,∞). Then for each λ ∈ (0, c2b2r e
rv∗− r

c2
−1), g(λ; s) has

two positive roots s1 < s2 and 1 + g(λ; s) has two positive roots s3 < s4 such that
s1 < s3 < s4 < s2; moreover as λ→ 0, (s1, s3)→ (0, 1

c2
) and s2, s4 →∞.

Proof. It is easy to see that the roots of g(s) or 1+g(s) must be positive if they exist;
moreover, if 1 + g(s) has positive roots, so does g(s). Hence we only need to show
that 1 + g(s) has positive roots and it is equivalent to show that its minimum over
R+ is negative. Let s∗ be the critical point of 1+g(s), we have from straightforward
calculations that 

g(0) = b2λe
−rv∗ > 0,

g′(s∗) = 0, s∗ = 1
r ln( c2e

rv∗

b2λr
) > 1

c2
+ 1

r ,

g
′′
(s) > 0, s ∈ (−∞,∞),

therefore 1 + g(s) is convex and its minimum value is 1 + g(s∗) = 1 + c2
r −

c2
r ln( c2e

rv∗

b2λr
) < 0 as desired. Since si is continuous in λ, putting λ = 0 in 1 + g(s)

gives s1 = 0 and s3 = 1
c2

. Moreover, s2 > s4 > s∗ →∞ as λ→ 0. This finishes the
proof.
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Lemma 4.4. Let r ∈ (0,∞). Then s1 < v∗ < s3 if

λ < min
{ c2
b2r

erv
∗− r

c2
−1,

1− a2

b2

}
. (4.8)

Proof. We only need to show that −1 = g(s3) < g(v∗) < g(s1) = 0 and g(s∗) < −1,
while we already know from above that g(v∗) = b2λ − c2v

∗; moreover, g(s∗) =
c2
r −

c2
r ln( c2e

rv∗

b2λr
) < −1.

We shall assume condition (4.8) from now on. Let us introduce the notations

w̃(x) = w(x)− s1

and

f̃(λ; s) = f(λ; s+ s1) = −
(
− 1 +

1

1 + b2λe−r(v
∗−s1−s) − c2(s+ s1)

)(
v∗ − s1 − s

)
,

(4.9)
then w̃ satisfies {

ε2w̃′′ + f̃(λ; w̃) = 0, x ∈ (0, L),
w̃′ε(0) = w̃′ε(L) = 0.

(4.10)

Moreover, if w̃ε(x) is a positive solution to (4.10), vε(x) := v∗−s1− w̃ε is a solution
to (4.4).

Lemma 4.5. For each λ satisfying (4.8), the following problem has a unique solu-
tion W0 = W0(λ; z)

W ′′0 + f̃(λ;W0) = 0, z ∈ R,
W0(λ; 0) = v∗−s1

2 > 0, z ∈ (0,∞);W ′0(λ; 0) = 0,
limz→±∞W0(λ; z) = 0,

(4.11)

such that W0 ∈ C2(R), W0(λ; z) > 0 in R and W ′0(λ; z)z < 0 for z ∈ R\{0};
moreover, W0(λ; z) is radially symmetric and W0, W ′0 and W ′′0 decay exponentially
at ∞ uniformly in λ, i.e., there exists constants C0 and η > 0 independent of λ
such that

0 ≤W0(λ; z), |W ′0(λ; z)|, |W ′′0 (λ; z)| ≤ C0e
−η|z|, z ∈ R.

Proof. We introduce the transformation

F̃ (λ; s) =

∫ s

0

f̃(λ; t)dt =

∫ s+s1

s1

f(λ; t)dt.

therefore F̃ (λ; s) < 0 for s ∈ (0, v∗ − s1); on the other hand, we can show that

lims→(s3−s1)− F̃ (λ; s) = +∞, therefore according to Intermediate value theorem,

there exists s0 ∈ (v∗ − s1, s3 − s1) such that F̃ (λ; s0) = 0; moreover, s0 = inf{s >
0 | F̃ (λ; s) = 0} and f̃(λ; s0) > 0. Therefore f̃ satisfies condition (6.2) in [6] and
Theorem 5 there implies the existence results. The exponential decay follows from
Remark 6.3 in [6], since f̃ ′(λ; 0) < 0 for all λ satisfying (4.8).

In light of the unique solution W0 to (4.11), we now construct a boundary spike
to (4.9) hence a boundary layer to (4.4). To this end, we choose a smooth cut–off
function ρ(x) such that ρ(x) ≡ 1 for |x| ≤ L

3 , ρ(x) ≡ 0 for |x| ≥ 2L
3 and ρ(x) ∈ [0, 1]

for x ∈ R. Denoting

Wε,λ(x) = ρ(x)W0(λ;x/ε),
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we want to show that (4.10) has a solution in the form w̃ε(λ, x) = Wε,λ(x)+εψ(λ, x).
Then ψ satisfies

Lεψ + Pε +Qε = 0, (4.12)

where

Lε = ε2
d2

dx2
+ f̃w(λ;Wε,λ(x)), (4.13)

Pε = ε−1
(
ε2
d2

dx2
Wε,λ + f̃(λ;Wε,λ)

)
, (4.14)

and

Qε = ε−1
(
f̃(λ;Wε,λ + εψ)− f̃(λ;Wε,λ)− εψf̃w(λ;Wε,λ)

)
. (4.15)

According to (4.12)–(4.15), Pε and Qε measure how Wε,λ(x) approximates solution
wε(λ, x). Our existence result is a consequence of several lemmas. Set

C2
n([0, L]) = {u ∈ C2([0, L]) : u′(0) = u′(L) = 0},

then we first present the following set of results.

Lemma 4.6. Suppose that a2 ∈ (0, 1) and λ satisfies (4.8). Then there exists a
small ε0 such that if ε ∈ (0, ε0), Lε in (4.13) with domain C2

n([0, L]) is invertible
and its inverse L−1

ε : C([0, L]) → C([0, L]) is uniformly bounded in ε, i.e., there
exists C0 independent of ε such that

sup
x∈[0,L]

|L−1
ε f | ≤ C0 sup

x∈[0,L]

|f |,∀f ∈ C([0, L]).

Lemma 4.7. Suppose that the conditions in Lemma 4.6 hold. Then there exist
C1 > 0 and small ε1 > 0 such that for all ε ∈ (0, ε1)

sup
x∈[0,L]

|Pε(x)| ≤ C1.

Lemma 4.8. Suppose that the conditions in Lemma 4.6 hold. For each R0 > 0,
denote B(R0) = {f | supx∈[0,L] |f | < R0}. Then there exist C2 = C2(R0) > 0 and

small ε2 = ε2(R0) > 0 such that for all ε ∈ (0, ε2),

sup
x∈[0,L]

|Qε[ψi]| ≤ C2ε sup
x∈[0,L]

|ψi|, ∀ψi ∈ B(R0),

sup
x∈[0,L]

|Qε[ψ1]−Qε[ψ2]| ≤ C2ε sup
x∈[0,L]

|ψ1 − ψ2|, ∀ψ1, ψ2 ∈ B(R0).

We want to point out that Lemma 4.6 generalizes Lemma 5.3 in [48] which holds
for Lp, p > 1. Assuming Lemmas 4.6–4.8, we prove the following results of positive
solutions to (4.10).

Proposition 5. Let r ∈ (0,∞) and a2 ∈ (0, 1). Suppose that (4.8) is satisfied.
There exists a small ε4 > 0 such that for all ε ∈ (0, ε4), (4.10) has a positive
solution w̃ε(λ;x) ∈ C([0, L]) such that

sup
x∈(0,L)

|w̃ε(λ;x)−Wε(λ;x)| ≤ C4ε,

where C4 is a positive constant independent of ε. In particular,

lim
ε→0+

w̃ε(λ;x) =

{
0, compact uniformly on (0, L],
v∗ − s1 = 1−a2

c2
− s1 > 0, x = 0,

(4.16)

where s1 is the positive root of g(λ; s) = 0 obtained in Lemma 4.3.
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Proof. We shall apply the fixed–point theorem on (4.12) to show that w̃ε ∈ C([0, L])
takes the form of w̃ε = Wε,λ + εψ for a smooth function ψ. We define

Sε[ψ] := −L−1
ε (Pε +Q[ψ]).

Then Sε : C([0, L])→ C([0, L]) is a bounded linear operator uniform in λ. Moreover,
choosing R0 ≥ 2C0C1, we have that supx∈(0,L) |L−1Pε| ≤ C0C1 thanks to Lemma
4.6 and 4.7. Therefore, it follows from Lemma 4.8 that if ε is small,

sup
x∈(0,L)

|Sε[ψ]| ≤ C0C1 + C0C2εR0 ≤ R0, ∀ψ ∈ B(R0).

and

sup
x∈(0,L)

|Sε[ψ1]− Sε[ψ2]| ≤ 1

2
sup

x∈(0,L)

|ψ1 − ψ2|, ∀ψ1, ψ2 ∈ B,

hence Sε is a contraction mapping on B(R0) for small positive ε. We conclude from
the Banach fixed-point theorem that Sε has a fixed point ψε in B, which is a smooth
solution of (4.10). It is easy to show that w̃ε satisfies (4.16) and this finishes the
proof of Proposition 5.

Thanks to (4.8)–(4.10), vε(x) = v∗−s1− w̃ε(x) is a smooth solution of (4.7). We
have the following result.

Corollary 1. Under the same conditions as in Proposition 5. There exists ε4 > 0
such that for all ε ∈ (0, ε4(δ)), (4.4) has a positive solution ṽε(λ;x) ∈ C([0, L])
satisfying

lim
ε→0+

ṽε(λ;x) =

{
v∗ − s1 = 1−a2

c2
− s1, compact uniformly on (0, L],

(v∗ − s1)/2, x = 0.

Now we prove Lemmas 4.6-4.8.

Proof of Lemma 4.6. We argue by contradiction. Choose a positive sequence {εi}∞i=1

with εi ↘ 0 as i → ∞. Suppose that there exist Ψi(x) ∈ C2([0, L]) and hi(x) ∈
C([0, L]) satisfying {

LεiΨi = hi, x ∈ (0, L),
Ψ′i(0) = Ψ′i(L) = 0,

such that supx∈[0,L] |Ψi(x)| = 1 and supx∈[0,L] |h(x)| → 0 as i→∞. Define

Ψ̃i(z) := Ψi(εx), h̃i(z) := hi(εix) and W̃εi,λ(z) := Wεi,λ(εix),

then

d2Ψ̃i

dz2
+ f̃w(λ; W̃εi,λ(z))Ψ̃i = h̃i, z ∈

(
0,
L

εi

)
.

Let R0(< L
εi

) be an arbitrarily chosen but fixed constant. Without loss of generality,

we assume sup[0,L] Ψi(x) = 1. Then we infer from the boundedness of {h̃i(z)}∞i=1 and

the elliptic Schauder estimate that {Ψ̃i(z)}∞i=1 is bounded in C2([0, R0]), therefore

there exists a subsequence as i → ∞ such that Ψ̃i(z) → Ψ̃0(z) in C1,θ([0, R0])
thanks to the compact embedding C2([0, R0]) ⊂ C1,θ([0, R0]), θ ∈ (0, 1). On the

other hand, since f̃w(λ; W̃εi,λ(z)) → f̃w(λ;W0(λ; z)) and h̃i(z) → 0 uniformly on

[0, R0], d2Ψ̃i
dz2 converges in C([0, R0]) hence Ψ̃i → Ψ̃0 in C2([0, R0]). After applying
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the standard diagonal argument and elliptic regularity theory, we can show that Ψ̃0

is in C∞(0,∞) and it satisfies{
d2Ψ̃0

dz2 + f̃w(λ;W0(λ; z))Ψ̃0 = 0, z ∈ (0,∞),

Ψ̃′0(0) = 0,
(4.17)

where W0 is the unique solution to (4.11).

Now we show that Ψ̃0(0) = 1. To this end, letQi ∈ [0, L] be such that Ψ̃i(Qi) = 1.
We claim that Qi ≤ C0ε for some bounded C0 > 0 independent of ε. In order to
prove this claim, we argue by contradiction and assume that Qi

ε → ∞ as i → ∞.
Define

Ψ̂i(z) := Ψi(εz +Qi) and ĥi(z) := hi(εiz +Qi)

for εiz +Qi ∈ [0, L] or z ∈ [−Qiεi ,
L−Qi
εi

], therefore
d2Ψ̂i
dz2 + f̃w(λ; Ŵεi,λ(z))Ψ̂i = ĥi, z ∈ [−Qiεi ,

L−Qi
εi

],

Ψ̂i(0) = sup
z∈[−Qiεi ,

L−Qi
εi

]
Ψ̂i(z) = 1, dΨ̂i(0)

dz = 0.

By the same arguments as above, we can show that Ψ̂i converges to some Ψ̂0 in
C2((−∞, 0]) and Ψ̂0 is in C∞((−∞, 0]); moreover, since Qi

εi
→∞, we have from the

exponential decaying property of W0 that Ŵεi,λ(z) = ρ(εiz+Qi)W0(λ; εiz+Qiε )→ 0
and

d2Ψ̂0

dz2
+ f̃w(λ; 0)Ψ̂0 = 0,

dΨ̂0(0)

dz
= 0, sup

z∈(−∞,0)

Ψ̂0(0) = 1,

then we have from Maximum Principle that Ψ̂′′0(0) = −f̃w(λ; 0)Ψ̂0(0) = −f̃w(λ; 0) ≤
0, however, this is a contradiction to the fact that f̃w(λ; 0) < 0. This proves our

claim and we must have that Ψ̃0(0) = supz∈[0,∞) Ψ̃0(z) = 1 in (4.17).

On the other hand, we differentiate (4.11) with respect to z and then find that{
d3W0

dz3 + f̃w(λ;W0)dW0

dz = 0, z ∈ (−∞,∞),
dW0(0)
dz = 0,W0(0) = supz∈(−∞,∞)W0(z) > 0.

(4.18)

Multiplying (4.17) by dW0

dz and integrating it over (0,∞) lead us to∫ ∞
0

(d2Ψ̃0

dz2

dW0

dz
+ f̃w(λ;W0)Ψ̃0

dW0

dz

)
dz = 0 (4.19)

and multiplying (4.18) by Ψ̃0 and integrating it over (0,∞) lead us to∫ ∞
0

(d3W0

dz3
Ψ̃0 + f̃w(λ;W0)

dW0

dz
Ψ̃0

)
dz = 0. (4.20)

We infer from (4.19) and (4.20) and the integrations by parts that

0 =

∫ ∞
0

Ψ̃′′0W
′
0 − Ψ̃0W

′′′
0

=

∫ ∞
0

(Ψ̃′0W
′
0)′ − Ψ̃′0W

′′
0 −

(
(Ψ̃0W

′′
0 )′ − Ψ̃′0W

′′
0

)
=

∫ ∞
0

(Ψ̃′0W
′
0)′ − (Ψ̃0W

′′
0 )′

= Ψ̃′0W
′
0

∣∣∣∞
0
− Ψ̃0W

′′
0

∣∣∣∞
0
,
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where ′ denotes the derivative against z. In light of the exponential decay of W ′0
and W ′′0 at infinity and the fact that W ′′0 (0) 6= 0, we have that Ψ̃0(0) = 0, and this
is a contradiction. The proof of this lemma is finished.

Proof of Lemma 4.7. Substituting Wε,λ(x) = ρ(x)W0(λ; xε ) into (4.14) gives rise to

Pε =ε−1
(
ε2ρ′′(x)W0(λ;x/ε) + 2ερ′(x)(W0)x(λ;x/ε)

+ ρ(x)(W0)xx(λ;x/ε) + f̃(λ; ρ(x)W0(λ;x/ε))
)

=ε−1
(
ε2ρ′′(x)W0(λ;x/ε) + 2ερ′(x)(W0)x(λ;x/ε)

− ρ(x)f̃(λ;W0(λ;x/ε)) + f̃(λ; ρ(x)W0(λ;x/ε))
)
.

For x ∈ [0, L3 ] ∪ [ 2L
3 , L], ρ(x) ≡ 1 hence Pε is bounded for all λ; for x ∈ (L3 ,

2L
3 ),

since W0 decays exponentially at ∞, we can also see that Pε is bounded. Therefore
supx∈[0,L] |Pε| is bounded.

Proof of Lemma 4.8. We have from the Intermediate Value Theorem that

sup
x∈[0,L]

|Qε[ψ](x)| = ε−1 sup
x∈[0,L]

[
f̃(λ,Wε,λ + εψ)− f̃(λ,Wε,λ)− εψf̃w(λ,Wε,λ)

]
= ε−1 sup

x∈[0,L]

∣∣∣ ∫ 1

0

[
f̃w(λ,Wε,λ + tεψ)− f̃w(λ,Wε,λ)

]
(ε|ψ|)dt

∣∣∣
= ε sup

x∈[0,L]

|ψ2|
∫ 1

0

∫ t

0

sup
x∈[0,L]

∣∣∣f̃ww(λ,Wε,λ + sεψ)
∣∣∣dsdt

≤ Cε sup
x∈[0,L]

|ψ|2,

and

sup
x∈[0,L]

|Qε[ψ1]−Qε[ψ2]|

=ε sup
x∈[0,L]

∣∣∣ ∫ 1

0

∫ t

0

f̃ww(λ,Wε,λ + sεψ1)ψ2
1 − f̃ww(λ,Wε,λ + sεψ2)ψ2

2dsdt
∣∣∣

=ε sup
x∈[0,L]

∣∣∣ ∫ 1

0

∫ t

0

f̃ww(λ,Wε,λ + sεψ1)ψ2
1 −

∫ 1

0

∫ t

0

f̃ww(λ,Wε,λ + sεψ2)ψ2
1

+

∫ 1

0

∫ t

0

f̃ww(λ,Wε,λ + sεψ2)ψ2
1 −

∫ 1

0

∫ t

0

f̃ww(λ,Wε,λ + sεψ2)ψ2
2dsdt

∣∣∣
=ε sup

x∈[0,L]

∣∣∣ ∫ 1

0

∫ t

0

f̃ww(λ,Wε,λ + sεψ1)− f̃ww(λ,Wε,λ + sεψ2)dsdt
∣∣∣|ψ1|2

+ ε sup
x∈[0,L]

∣∣∣ ∫ 1

0

∫ t

0

f̃ww(λ,Wε,λ + sεψ2)dsdt
∣∣∣∣∣ψ2

1 − ψ2
2

∣∣
≤εC0 sup

x∈[0,L]

|ψ1|2 sup
x∈[0,L]

|ψ1 − ψ2|+ εC1 sup
x∈[0,L]

|ψ1 + ψ2| sup
x∈[0,L]

|ψ1 − ψ2|

≤(C0R
2 + 2C1R)ε sup

x∈[0,L]

|ψ1 − ψ2|

≤C2ε sup
x∈[0,L]

|ψ1 − ψ2|,
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where we have used the fact that |f̃ww(Ψi)|, |f̃www(Ψi)| are bounded for Ψi ∈
B(R0).

We proceed to prove Proposition 4 by finding λ = λε that satisfies (4.5) and
(4.8). In particular, we shall show that λε → 0 as ε→ 0. Define

G(ε, λ) :=

∫ L

0

(
− 1 +

1

a1 + b1λe−rvε + c1vε

)
λe−rvεdx, (ε, λ) ∈ (−δ, δ)× (−δ, δ),

(4.21)
where δ > 0 is a small constant. We put vε(λ;x) ≡ v∗ = 1−a2

c2
if ε < 0 or λ < 0.

Proof of Proposition 4. It is easy to see that

G(0, 0) = lim
ε,λ→0

G(ε, λ) =

∫ L

0

(
− 1 +

1

a1 + b1λe−rvε + c1vε

)
λe−rvε = 0.

For ε, λ > 0, we differentiate (4.21) to have

∂G(ε, λ)

∂λ
=

∫ L

0

(
r − (a1 + c1vε(λ;x))r + c1

(a1 + b1λe−rvε(λ;x) + c1vε(λ;x))2

)
λe−rvε(λ;x) ∂vε(λ;x)

∂λ
dx

+

∫ L

0

( a1 + c1vε(λ;x)

(a1 + b1λe−rvε(λ;x) + c1vε(λ;x))2
− 1
)
e−rvε(λ;x)dx,

(4.22)

where

∂vε(λ;x)

∂λ
= −∂w̃ε(λ;x)

∂λ
− ∂s1

∂λ
= −∂w̃ε(λ;x)

∂λ
− b2e

−r(v∗−s1)

c2
,

since vε = v∗ − w̃ − s1. We claim that supx∈[0,L] |
∂wε(λ;x)

∂λ | is uniformly bounded in

ε and λ. According to (4.10), we have

ε2
d2 ∂w̃ε

∂λ

dx2
+ f̃w(λ, w̃ε(λ;x))

∂w̃ε
∂λ

+ f̃λ(λ; w̃ε(λ;x)) = 0,

where

f̃λ = − b2e
r(w̃ε(λ;x)−v∗)(v∗ − w̃ε(λ;x))

(1 + b2λer(w̃ε(λ;x)−v∗) − c2w̃ε(λ;x))2
,

and it is uniformly bounded in ε and λ. Write L̃ε = ε2 d2

dx2 + f̃w(λ; w̃ε(λ;x)). By

the standard perturbation arguments, we can show that L̃ε has an inverse L̃−1
ε :

C([0, L])→ C([0, L]) which is uniformly bounded in ε. Therefore ∂w̃ε
∂λ is bounded in

C([0, L]). Now we conclude from the Lebesgue’s dominated convergence theorem

that ∂G(ε,λ)
∂λ is continuous around (ε, λ) = (0, 0); moreover, since v∗ = 1−a2

c2
6= 1−a1

c1
,

we conclude from (4.22)

∂G(0, 0)

∂λ
=

∫ L

0

( a1 + c1v
∗

(a1 + c1v∗)2
− 1
)
e−rv

∗
dx 6= 0,

then Proposition 5 follows from the implicit function theorem.
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4.3. Boundary spike and boundary layer to the full system. Now we prove
Theorem 4.1 by showing that the solutions to (4.1) perturb from its shadow system
(4.4) when D1 is sufficiently large. First of all, we let s = 1

D1
, ψ = v, φ = uerv − τ ,

and u = (φ + τ)e−rv, where τ is a constant. Since ∂(φ,ψ)
∂(u,v) =

(
erv ruerv

0 1

)
is

invertible, (4.1) is equivalent as F (s, φ, τ, ψ) = 0, where

F (s, φ, τ, ψ) =

φxx − rφxψx + sP{(−1 + 1
a1+b1(φ+τ)e−rψ+c1ψ

)(φ+ τ)}
ε2ψxx + (−1 + 1

a2+b2(φ+τ)e−rψ+c2ψ
)ψ∫ L

0
(−1 + 1

a1+b1(φ+τ)e−rψ+c1ψ
)(φ+ τ)e−rψdx

 . (4.23)

We decompose C([0, L]) into Y0 ⊕ Y1, where Y0 = {y ∈ C([0, L])|
∫ L

0
udx = 0}.

Define the projection operator P : C2([0, L])→ Y0 by

P (u) = u− 1

L

∫ L

0

u(x)dx.

Now we present the

Proof of Theorem 4.1. Let (λε, vε(λ;x)) be a solution of (4.4), then we see that
F (0, 0, λε, vε(x)) = 0; moreover, F (s, φ, τ, ψ) in (4.23) is analytic from R+ × C2

([0, L])×R×C2([0, L]) to Y0×C([0, L])×R and its Frechét derivative with respect
to (φ, τ, ψ) at (s, φ, τ, ψ) = (0, 0, λε, vε) is given by

D(φ,τ,ψ)F |(0,0,λε,vε) =

 d2

dx2 − rv
′

ε
d
dx 0 0

f̃λ(λε; w̃ε) f̃λ(λε; w̃ε) ε2 d2

dx2 + f̃w(λε; w̃ε)
E1 E1 E2

 , (4.24)

where

E1 :=

∫ L

0

( a1 + c1vε
(a1 + b1λεe−rvε + c1vε)2

− 1
)
e−rvε

and

E2 :=

∫ L

0

( b1rλεe
−rvε − c1

(a1 + b1λεe−rvε + c1vε)2
+ r
)
λεe
−rvε .

We claim that the operator d2

dx2 − rv′ε(λ;x) d
dx in (4.24) is an isomorphism from

C2([0, L])∩Y0 onto Y0. Indeed, choosing u in the kernel of this operator and writing
u =

∑∞
k=0 Sk cos kπxL , we have that −Sk kπL cos kπxL + rSkv

′
ε(λ;x) sin kπx

L = 0, which
is impossible unless Sk = 0. Therefore D(φ,τ,ψ)F |(0,0,λε,vε) is bounded and invertible
if and only if the following problem

ε2
d2ηε
dx2

+ f̃w(λε; w̃ε(λ, x))ηε + f̃λ(λε; w̃ε(λ, x))ξε = 0, x ∈ (0, L),

ξε

∫ L

0

( a1 + c1vε
(a1 + b1λεe−rvε + c1vε)2

− 1
)
e−rvεdx

+

∫ L

0

( b1rλεe
−rvε − c1

(a1 + b1λεe−rvε + c1vε)2
+ r
)
λεe
−rvεηεdx = 0

(4.25)

has only the trivial solution ξε = 0 and ηε(x) ≡ 0. We argue by contradiction and
without loss of generality, we assume that |ξε| + sup[0,L] |ηε(x)| = 1. Since λε → 0

as ε → 0, we infer from the second equation in (4.25) that ξε → 0 as ε → 0. On

the other hand, since f̃λ(λε; w̃ε(λ, x)) is bounded and L̃ε has a uniformly bounded
inverse, we conclude from the first equation that sup[0,L] |ηε| → 0 as ε→ 0. However,
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this contradicts our assumption. Therefore D(φ,τ,ψ)F |(0,0,λε,vε) is nonsingular at
(0, 0, λε, vε(λ;x)) and Theorem 4.1 follows from the implicit function theorem.

It is an interesting and also important mathematical question to study the stabil-
ity of the single boundary spike solutions to the shadow system and the full system.
To this end, one needs more detailed asymptotic expansions on the perturbed solu-
tions than what obtained here, however this has be to postponed to future studies.
We refer to [21, 29, 27, 28, 54] and the references therein for stability analysis of
spiky solutions of some closely related reaction-diffusion systems and/or the shadow
systems.

5. Conclusions and discussions. In this paper, we investigate the interspe-
cific competition through a reaction-advection-diffusion system with Beddington–
DeAngelis response functionals. Species segregation phenomenon is modeled by the
global existence of time-dependent solutions and the formation of stable boundary
spike/layers over one-dimensional intervals.

There are several findings in our theoretical results. First of all, we prove that
system (1.1)–(1.2) admits global–in–time classical positive solutions which are uni-
formly bounded globally for any space dimensions. For Ω = (0, L), we show that
large directed dispersal rate χ of the species destabilizes the homogeneous solution
(ū, v̄) and nonconstant positive steady states bifurcate from the homogeneous solu-
tion. Moreover, we study the linearized stability of the bifurcating solutions which
shows that the only stable bifurcating solutions must have a wavemode number k0,
which is a positive integer that minimizes bifurcating value χk in (3.11)–Proposition
2 and Theorem 3.2. That being said, the constant solution loses its stability to the
wavemode cos k0πxL over (0, L). Our result indicates that if the domain size L is suf-
ficiently small, then only the first wavemode cos πxL can be stable, which is spatially
monotone; moreover, large domain supports stable patterns with more aggregates
than small domains. We prove that the steady states of (1.1)–(1.2) over (0, L) ad-
mits boundary spike in u and boundary layer in v if D1 and χ are comparably large
and D2 is small. Therefore, we can construct multi-spike or multi-layer solutions
to the system by reflecting and periodically extending the single spike over ±L,
±2L,... See Figure 4. These nontrivial structures can be used to the segregation
phenomenon through interspecific competition. Compared to the transition layer
in [48], our results suggests the boundary spike solutions to (1.1) is due to the
Beddington–DeAngelis dynamics since a similar approach was adapted in [48].

We propose some problems for future studies. System (1.1) describes a situation
that u directs its disperse strategy over the habitat to deal with the population
pressures from v, which moves randomly over the domain. From the viewpoint of
mathematical modeling, it is interesting to study the situation when both species
takes active dispersals over the habitat. Then system (1.1) becomes a double–
advection system with nonlinear kinetics. Analysis of the new system becomes
much more complicated since no maximum principle is available for the second
equation. We also want to point out that it is also interesting to study the effect of
environment heterogeneity on the spatial–temporal behaviors of the solutions.

Our bifurcation analysis is carried out around bifurcation point (ū, v̄, χk). It is
interesting to investigate the global behavior of the continuum of Γk(s), denoted
by C. According to the global bifurcation theory in [39] and its developed version
in [40], there are the following alternatives for C: (i) it is either not compact in
X × X × R+, or it contains a point (ū, v̄, χj), j 6= k. Actually, by the standard
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Figure 3. Formation of stable single interior spike of u and boundary layer of v.
Diffusion and advection rates are chosen to be D1 = 5, χ = 30, D2 = 5 × 10−3.
The rest system parameters are a1 = 0.2, b1 = 0.8, c1 = 0.1 and a2 = 0.6, b2 = 0.2,
c2 = 0.4. Initial data are u0 = ū + 0.5 cos 2πx

5 and v0 = v̄ + 0.5 cos 2πx
5 , where

(ū, v̄) = (0.933..., 0.533...).

Figure 4. Formation of stable multiple interior spike of u and boundary layer of v.
Diffusion and advection rates are chosen to be D1 = 5, χ = 30, D2 = 5 × 10−3.
The rest system parameters are a1 = 0.2, b1 = 0.8, c1 = 0.1 and a2 = 0.6, b2 = 0.2,
c2 = 0.4. Initial data are u0 = ū + 0.5 cos 2πx

5 and v0 = v̄ + 0.5 cos 2πx
5 , where

(ū, v̄) = (0.933..., 0.533...).

elliptic embeddings, we can show that C is bounded in the axis of X × X if χ is
finite. Therefore, it either extends to infinity in the χ-axis or it stops at (ū, v̄, χj).
It is unclear to us which is the case for χk. Considering Keller–Segel chemotaxis
models over (0, L) without cellular growth, some topology arguments are applied in
[9, 52] etc. to show that all solutions on the first branch must be either monotone
increasing or deceasing. Therefore χ1 can not intersect at (ū, v̄, χj) for j 6= 1 since
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all the solutions around it must be non-monotone. This shows that Γ1 extends to
infinity in the χ direction. However, the appearance of complex structures of the
kinetics in our model inhabits this methodology.

Our numerical simulations suggest that these boundary spikes and layers are
globally stable for a wide range of system parameters. Rigorous stability analysis
of these spikes is needed to verify our theoretical results. It is also interesting to
investigate the large–time behavior of (1.1)–(1.2), which requires totally different
approaches from what we apply in our paper.
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