
Introduction to Differential Equations: Exam 3
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1. a. Show that the Laplace transform of the derivative of a function defined on
[0, +00) and that satisfies | f ( t ) \< M satisfies !(/') = sL(f) - /(O).

b. Solve the following initial value problem using the Laplace transform
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2. Find eigenvalues and eigenvectors for the matrix A -
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3.a. Show that the system#, = 4x^ - 2x2, x2 = x}+x2 has eigenvalues /I, = 2 and

10 =3 with eigenvectors wt = and u-, = , respectively.
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b. Find a general solution of the system.



c. Find the solution of the initial value problem with x^O) = 1 and x2(0) = 0.
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4. a. Show that the system x,' = x2, x2' = -4x, has an eigenvalue /I = 1 + 2/ with
1

eigenvector u =
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b. Find a general solution of the system
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' c. Find the solution of the initial value problem with Xj(0) = 1 and x2(0) = 0 .



5. a. Write the equation x" + 2x' + x = 0 as a system of first order equations.

b. Write the system x, = 2xl - x2, x2' = Xj + x2 as a linear second order equation

for x,.
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6. Sketch the phase portrait for the equation x' = F(x) = x(x - l)(jc + 2). Label the
equilibrium points (where F(x) = 0 ), indicate the flow directions, and which
equilibrium points are stable and unstable.
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