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Abstract

In this work the variance of the error of analyzed wind fields obtained
from an ensemble Kalman filter is used as a criterion with which to op-
timize radar network scanning strategies. The measurement equation in
the Kalman filter approach is obtained from variational wind retrieval
and, thus, is a function of the retrieval scanning parameters. It is shown
that the mapping from radar parameters to the variance of the error is
differentiable. The ensemble transform is introduced to facilitate the com-
putational effort. The approach presented in principle may be used to
optimize the scanning strategy in a network with any number of radars.
Numerical examples are presented with networks consisting of two, four
and nine radars using a quasi monte carlo optimization scheme. Error
estimates for the approximation of the optimal strategies are discussed.

1. Introduction.

The objective of this work is to determine criteria by which cooperative mea-
surements may be made from a radar network that in some way maximizes
information. The approach is to use Kalman-based filtering procedures that
produce not only estimated wind fields but also estimates of the variance of
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the error of the estimated wind fields. Mathematically, we use the fact that
wind retrieval procedures depend on the measurement parameters. The mea-
surement parameters are radar scanning parameters. We consider the radar
locations to be fixed and known as well as the scanning angles. Radar scan-
ning is time dependent. Temporal errors in traditional multiple-Doppler wind
analysis arise when data gathered by scanning Doppler radars over an observa-
tional time window are treated as valid at a common analysis time. Such errors
become significant when horizontal propagation or intrinsic evolution patterns
become important [2, 6, 3]. One way these errors can be minimized is to adopt
a rapid-scan strategy in which the scan time (time for the beam to re-visit loca-
tions) is less than the time scale for the evolution or propagation of the observed
features. However, hardware limitations impose upper bounds on the angular
velocity of scanning radars. Thus, in order for volumetric data of features of
meteorological interest to be gathered sufficiently rapidly, it may be desirable to
restrict the scans to only partial azimuthal sectors, that is azimuthal sectors of
generally less than than 360 degrees. In the following, will consider scan strate-
gies in which azimuthal sectors are of fixed azimuthal extent ( less than 360
degrees), and seek to determine their optimal orientation (central beam angle
or direction).

Key to our approach is that the rotational period (time for a full 360 de-
gree scanning rotation) is partitioned into time intervals equal length Ns. This
determines a fixed scanning angle of 360/Ns degrees. Actually, to fix ideas in
numerical computations, we assume scanning angles of 90 degrees. It is the di-
rections of the scans that are to be chosen in order to observe phenomena most
efficiently. Alternatively, in a ”sit and spin” mode, radar viewing strategies are
fixed with a full 360 degree scan and have no capability to adapt. With the
partitioned case, one is led to the issue of how to choose a scanning direction
when it is desired to obtain the most information. Thus, the focus here is to
determine the direction each radar in the network should be pointed in order to
maximize the information on wind fields. The result coordinates the network
radar directions to reduce the variance of Kalman estimate errors.

There are two components in the filtering procedure. The first is a state
model describing the evolution of system states as a function of time. The state
consists of a time-dependent vector field defined over the domain of interest,
and thus, may satisfy various assumed models depending on the accuracy of the
desired the modelled physics. We assume a simple model advancement in terms
of an estimate of the time rate of change of a given test wind velocity vector
field. The second part of the filter describes the measurement information. This
amounts to the output of a retrieval procedure yielding an estimate of the vector
wind field from radial data.

The wind field retrieval problem seeks to estimate three dimensional vector
wind within a three dimensional domain Ω from radar data consisting of mea-
surements of radial velocities from N radar sites. Admissible wind fields are
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often constrained by physical laws and regularization. The retrieval problem
may be formulated as a minimization problem on a Hilbert space of admissible
vector fields by weakly constraining the physical laws and regularization. The
existence of a unique solution to this problem is then a consequence of classical
Hilbert space theory. Typically, the retrieval problem depends on parameters
describing the radar measurement model that must be specified in its formu-
lation. Consequently, the solution of the retrieval problem depends on these
parameters, and they may be considered as controls around which optimization
problems may be designed. In this study, the location of the radars is considered
fixed as well as the sweep angles. The sweep angle is the scanning sector angle,
of the radar measurement. The parameters of interest are given it terms of
an n − tuple associated with the actual scanning directions of the radars. The
problem is to determine directions minimizing the variance of the estimated
error.

The synthesis of three-dimensional vector wind wind fields from Doppler
radar data is an important part of mesoscale research and operational meteo-
rology, with particularly vital applications in hazard warning and nowcasting
(e.g., tornado detection and prediction), and in numerical weather prediction.
Techniques of single-Doppler velocity retrieval vary in complexity from the sim-
ple Velocity Azimuth Display (VAD), in which the imposed model is a wind
field that varies linearly with the spatial coordinates, to the full model adjoint
techniques in which the radial wind obtained from time integration of the com-
plete dynamical equation set of a numerical weather prediction model is fit to
radial wind observations over a window of time. Dual-Doppler wind retrieval
techniques may also be couched in an adjoint or other variational framework.
Key developments in the history of single- and multiple-Doppler wind retrievals,
and some of the remaining problems are summarized in Shapiro et al [13]. The
application here is motivated by the design and operation of radar networks
composed of multiple radars with relatively short range, in this case 30 km.
The issue of coordinating the direction at which the radar are making measure-
ments is a central concern in the collection of data.

Our efforts provide a general framework for coordinating a radar network in
the following general steps.

1. Input an estimated wind field.

2. Generate an ensemble of perturbed wind fields about the estimated wind
field.

3. Advance the model for each perturbed wind field to obtain an ensemble
of predicted fields.

4. Generate an admissible scanning parameter q ∈ Qad.
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5. Evaluate criterion J(q)

6. Select the scanning parameter qo minimizing J(q)

7. Using the ”optimal” qo to set radar parameters, make measurements to
obtain a retrieved wind field estimate.

8. Return to 1. and repeat the procedure.

Generation of the ensemble, fitting the retrieval procedure and underlying model
into the Kalman filter approach, definition and analysis of the criterion, and the
choice and implications of the optimization sampling are addressed in subse-
quent sections of this work. The scheme is given more precisely in the discussion
of the numerical examples.

In Section 2 we describe the classical Kalman filter and introduce certain of
its generalizations. Of interest is dependence of Kalman filters on parameters in
measurements models and generally how the Kalman filter may be used to de-
termine optimal scanning parameters. Roughly speaking, scanning parameters
are determined so as to minimize the analyzed error variance that would result
from using those parameters. The advantage is that this scheme may be car-
ried out without actually making measurements. It is based on minimizing the
variance of the error that is the result of the measurement process and the state
evolution model. The Kalman filter itself is not practical for applications since
error variances are not well-known and must be estimated in practice. Hence,
the ensemble Kalman filter [5] is introduced in which forecast covariances are
calculated from an ensemble of forecasts given the current state of knowledge
and the state evolution model. Continuity and differentiability properties of the
approximated error variance based on the ensemble formulation facilitate the
treatment of optimization problems. However, because of the dimensionality
problems that arise in the application of these methods, the ensemble Kalman
filter is not computationally practical and the ensemble transform Kalman fil-
ter [1] is introduced. This approach uses a lower dimensional ensemble space
to calculate inverses more efficiently. Although we focus on the Kalman filter
applied to wind retrieval based on radar data, our development may be easily
carried over to other data assimilation applications.

In Section 3 the basic general Hilbert space formulation that was originally
presented in [14] is given in sufficient detail for the applications here. The re-
trieved wind velocity is obtained as the solution of an elliptic variational bound-
ary value problem depending on scanning direction parameters. Properties of
the retrieved velocity as a function of the scanning parameters are examined,
and it is shown that the retrieved wind field is differentiable with respect to the
scanning directions.

In Section 4 the scanning optimization procedure is formulated by special-
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izing the treatment in Section 2 to the application in Section 3. As an event of
interest evolves in time, a scanning strategy is developed by minimizing the error
variance generated through the application of the Kalman filter. The scanning
parameter optimizing relative error over the generated ensemble is then used to
collect data to be implemented in the next step to obtain a new estimate of the
wind field. Results of a numerical study are discussed for examples with net-
works containing two, four, and nine radars tracking wind fields associated with
a prototypical meteorological flow field in which a vortex traverses an observa-
tional domain. The set of admissible scanning parameters consists of directions
for each radar. Optimization is carried out on a subcollection of N-tuples of
admissible scanning directions that are obtained through the generation of an
equi-distributed set of directions. Differentiability properties are useful in pro-
viding an estimate of the optimizers over the subset of directions.

2. Kalman filtering procedures and dependence
on measurement parameters.

In this section we summarize filtering procedures whose observational equations
depend on a parameter. The objective is to use the variance of the estimation
error as a criterion with which to select parameters. It is assumed that there is
a prediction model or state equation expressing a column n-vector xk+1 as the
state at the k+1 st time step in terms of the state at the kth time step. For
ease a linear form

(2.1) xk+1 = Fk+1xk + µk

is assumed where Fk+1 is an n × n matrix of real numbers. The subscript k
indicates a time stepping index for k = 0, 1, 2, ... The µk models errors in the
state equation. An observational equation is given by

(2.2) yk = Hk xk + νk.

where yk denotes an m-vector of observations at the time step index k. The
m×n matrix Hk is a function of a measurement parameter designated by q that
is eventually to be chosen in some optimal way from an admissible subset Qad of
a Hilbert space Q. We write Hk(q) to emphasize dependence on the parameter
q. To discuss the mapping q 7→ H(q) where H(q) is an n×n real valued matrix,
we introduce the Hilbert space H(n) of real valued n × m matrices with the
norm

‖H‖H(n) = [trace(HT H)]1/2

see [7]. Hence, the mapping q 7→ H(q) is a function from Q into H(n). The
column m-vector νk is a random vector describing the errors in the measurement
model. It is assumed that measurement error and state error are independent.
The n× n and m×m matrices

(2.3) Qk = cov(µk, µk)
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(2.4) Rk = cov(νk, νk)

describe the covariances of the state and the observational error. For the Kalman
filter [10] the matrices Fk and Hk(q) are given. The covariance

Qk and Rk

are known symmetric positive definite matrices. In computing the error for the
k+1 st step, the covariance of the error at the k th step is assumed known by
the n× n matrix

Pk|k.

A predicted or forecast covariance is then calculated by the expression

(2.5) Pk+1|k = Fk+1Pk|kFT
k+1 + Qk+1.

The superscript T denotes vector or matrix transposition. Defining the Kalman
gain matrix at the k + 1 st step by

(2.6) Kk+1(q) = Pk+1|kHk+1(q)[Rk+1 + Hk+1(q)Pk+1|kHk+1(q)T ]−1

the updated covariance is expressed by the formula

(2.7) Pk+1|k+1(q) = Pk+1|k − Pk+1|kHk+1(q)TKk+1Hk+1(q)Pk+1|k.

The forecast error variance at the k+1 st time step associated with the parameter
q is expressed as

(2.8) J(q) = trace[Pk+1|k+1(q)]

The objective is to determine a parameter qo from within a prescribed set of
admissible parameters Q that minimizes J(q). This is formulated in terms of a
minimization problem given formally by

(2.9) Find qo ∈ Qad such that J(qo) = inf{J(q) : q ∈ Q}

Consider the filter at the k + 1 st step. To simplify notation and following [5], we
write R = Rk+1, H(q) = Hk+1(q), the forecast covariance Pa = Pk+1|k+1,
the updated covariance Pf = Pk+1|k, and the gain matrix K(q) = Kk+1(q)
so that equations (2.6)-(2.8) become

(2.6)(i) K(q) = PfH(q)T [R + H(q)PfH(q)T ])−1

(2.7)(i) Pa(q) = Pf − K(q)H(q)Pf .

(2.8)(i) J(q) = trace[Pa(q)]
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Remark 2.1. Interest in this work centers around the functional dependence
q 7→ H(q). To treat this we assume that q ∈ Qad ⊂ Q where Q is a Banach
space. The matrices H(q) we view as belonging to the Hilber space of n × n
matrices of real numbers denoted by H with norm ‖H‖ = [trace(HT H)]1/2,
[7].

The following is a consequence of equations (2.6)(i)-(2.8)(i).

Theorem 2.2 If q 7→ H(q) is differentiable, then the mapping q 7→ Pa(q) is
differentiable.

Corollary 2.3 If q 7→ H(q) is differentiable, then the mapping q 7→ J(q) is
differentiable as well.

Proof. Let ei be the column unit vector defined by

(ei)j = 1 if i = j and 0 otherwise.

Observe that

(2.10) J(q) =
n∑

i=1

eT
i Pa(q)ei

and differentiability follows.

In the ensemble Kalman filter method[5], the prediction model covariance is
calculated directly from an ensemble of model predictions from equation (2.1).
Thus, assume that xk is given as the (estimated) state tk. From this estimate,
an ensemble of K states is generated for the time tk+1 by

(2.11) xi
k+1 = Fk+1xk + µi

k.

where we denote the members generated in the ensemble of n− vectors by

x1
k+1, x2

k+1, ... , xK
k+1.

The n− vector of means is denoted by xk+1. The forecast covariance is approx-
imated from the ensemble of states.

(2.12) P̃f =
1

K − 1

K∑

i=1

{xi
k+1 − xk+1} {xi

k+1 − xk+1}T .

It is convenient to define the matrix

(2.13) X =
1√

K − 1
[x1

k+1 − xk+1 x2
k+1 − xk+1 ... xK

k+1 − xk+1]

At the k+1 st step P̃f is the ensemble approximation of the forecast error
covariance. The approximation of the updated covariance at the k+1 st step is
expressed by equation (2.7).
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The focus of the ensemble Kalman filter is to approximate P̃f and thereby
the gain

(2.6)(ii) K̃(q) = P̃fH(q)T [H(q)P̃fH(q)T + R]−1

as well as the updated covariance approximation and functional

(2.7)(ii) P̃a(q) = P̃f − K̃(q)H(q)P̃f .

(2.8)(ii) J̃(q) = trace[P̃a(q)]

to generate an approximation to the analyzed error covariance P̃a.

Because the dimension n can be very large, calculation of the gain ma-
trix K̃(q) is currently computationally not practical. The ensemble transform
method [1] seeks to remedy this difficulty by inverting operators in an ensemble
space of lower dimension determined by the number of elements in the ensemble.
Given the forecast covariance is

(2.13) P̃f = X XT ,

the ensemble transform seeks an easily computable matrix T such that

(2.14) P̃a = X T T T XT .

The ensemble transform Kalman filter is introduced and developed in [1]. An
orthonormal matrix C and a diagonal matrix Γ both of which depend on the
parameter q are constructed such that

(2.15) [XT H(q)T R−1H(q)X]C(q) = C(q)Γ(q).

The matrix T depends on q and is given by

(2.16) T = T (q) = C(q)[Γ(q) + IK×K ]−
1
2 .

Since Γ(q) is diagonal, the inversion and square root are easily calculated. The
ensemble transform, thus, provides a more efficient method to calculate the
analysis covariance P̃a(q).

Remark 2.5. The ensemble transform Kalman filter is introduced to facilitate
the computation of the ensemble approximation updated covariance P̃ (q). Dif-
ferentiability properties depend only on P̃ (q) and not on the ensemble transform
expressions.
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3. Retrieval of Wind Fields from Radar Data.

In this section we describe the observational model corresponding to equation
(2.2) for our application. The retrieval of wind velocities from radar data forms
the underlying equations for the observational model. The retrieval of wind
fields from radar data is posed as a minimization problem seeking wind fields
matching data under various physical and regularizing constraints [12, 13, 14].
The problem of estimating wind field information from radar data requires the
specification of a retrieval functional that includes terms involving the data
model (radar measurement model), the physics-based model, and the regular-
ization for well-posedness. The model describing the relation between observed
radar data and the vector-valued function constituting the actual wind field de-
fines a mapping whose output is the radar data resulting from that wind field.
This mapping depends on the specifics of the measurement process and is the
point at which radar scanning parameters become involved in the problem for-
mulation. The physics-based model is used to constrain the wind field. It aids
in the interpolation between radar sites in a physically reasonable way. Finally,
a regularization term is included in the retrieval functional to assure that the
associated minimization problem has a unique solution.

To obtain the analogue of equation (2.2), we assume data is obtained from
the application of the radar measurement operator on a given wind field x 7→
w(x) defined on a set Ω. The observational equation is then the retrieval equa-
tion mapping w to the retrieved wind velocity estimate. This equation defines a
retrieval operator that depends on the retrieval scheme and the measurement op-
erator. The retrieval operator depends on the measurement parameter through
its dependence on the measurement model. Hence, with different measurement
models, one obtains different retrieval operators. The common feature is the
dependence on the measurement model parameters.

The formulation of the retrieval problem is given in [12, 14]. We give enough
detail here for the completeness of our discussion. Let Ω denote an observational
volume that, for ease, is a rectangular volume of points x = (x, y, z)T in <3 such
that

Ω = {x : 0 < x < Lx, 0 < y < Ly, 0 < z < Lz}
and with its base denoted by

Ω0 = {(x, y, 0)T : 0 < x < Lx, 0 < y < Ly}.

Assume there are N radar site locations x1, ...,xN in Ω0. In general vectors are
understood to be column vectors.

Define the following vector-valued functions from Ω into <3 that are used to
describe the wind field within the set Ω :

vs(x) = velocity of scattering particles in the sample volume Ω
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v(x) = air velocity : v(x) = v1(x)i + v2(x)j + v3(x)k.

Let
vt(x) = terminal velocity of the scatterers

where vt is defined to be positive. In practice, vt can be parameterized in terms
of the radar reflectivity field [4]. The vectors v, vt, and vs are related by

(3.1) vs(x) = v(x)− vt(x).

We also use u and w to indicate wind fields. Usually, w is an input wind field
in the retrieval scheme. Define the vector-valued function pointing from the ith
radar location xi toward the point x ∈ Ω

(3.2) ri(x) = r(x,xi) =
x− xi

|x− xi| for x 6= xi and 0 for x = xi.

The radial velocity observed at the ith radar within the coverage set is then
expressed in terms of the product

(3.3) vr(x,xi) = ri(x)T vs(x).

To model the coverage of the ith radar, we specify a real-valued function

φi(x)

taking the value one over the coverage set of fixed angular extent β (less than
2π) of the ith radar and zero elsewhere. The coverage set is determined over a
sector whose vertex is located at xi and is centered on a direction indicated by
the unit vector

(3.4) µ(α) = [cos(α) sin(α) 0]T

where α ∈ [−π, π). For the purposes of this work, a coverage function is defined
for each radar location xi for i = 1, ..., N in terms of a characteristic function
defined over a conical sector C with vertex at xi, centered on the vector û(αi),
with aperture angle β and with radius R. Thus, for each i = 1, ..., N

(3.5) ΞCi(x) = 1 if x ∈ Ci and = 0 otherwise.

Of particular interest are sets

(3.6) Ci(α) = {x : |x− xi| ≤ R, r(x,xi)T µ(α) ≥ γ = cos(β)}

so that

(3.7) φi(x) = φi(x, αi) = ΞCi(αi)(x)
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The set Ci(α) is the scanning set for the radar located at the point xi in the
direction of û(α). The locations xi, i = 1, ..., N are fixed and the admissible set
are the coverage functions determined by the direction unit vectors µ(αi) for
αi ∈ [−π, π) and the fixed aperture angle β. The observation from the ith radar
of the wind velocity vs at the point x may be expressed as

vr(x,xi) = φi(x, αi)ri(x)vs(x).

Remaining terms in the model include the divergence free condition embod-
ied in the continuity equation and a regularization term included so that the
problem is well-posed. Discussion of these terms is given in [8, 12, 14] For the
present application the important feature is that the functional to minimized is
quadratic and is associated with an inner product over a suitable Hilbert space.

To give a Hilbert space formulation see [14], introduce the Hilbert spaces

(3.8) H = L2(Ω,<3)

with the inner product

(3.9) (u,v) =
∫

Ω

uT vdx

and

(3.10) V = H1(Ω,<3)

with bilinear form

((u,v)) =
∫

Ω

{∇u1 · ∇v1 +∇u2 · ∇v2 +∇u3 · ∇v3}dx

and inner product

(3.11) (u,v)V = ((u,v)) + (u,v).

and norm

(3.12) ‖v‖V = (v,v)
1
2
V .

Conservation of mass is enforced as a weak constraint. Hence, the bilinear
form on V is defined by

(3.13) (u,v)1 =
∫

Ω

[∇ · u][∇ · v]dx.

The weak formulation of the retrieval problem is posed as a minimization prob-
lem using the space V as defined by (3.10) with (3.11) cf. [12]. The objective
functional is given as

11



V(v) =
ε

2
((v,v)) +

K

2
(v,v)1 +

(3.14) +
K1

2

∫

Ω

{
N∑

i=1

φ2
i (x, αi)[rT

i [(v(x)− vt)− (w(x)− vt)]2}dx

over the space of functions V where ε,K, and K1 are positive constants. Note
that a function w is specified in the functional instead of the observed data and
represents the ”true” wind field. The retrieval problem is thus

(3.15) Find u ∈ V such that V(u) = infimum {V(v) : v ∈ V}
Time is not explicitly included. In this formulation the retrieval problem is
solved over a sequence of times. It is assumed that the radial velocity is known
at each point x within a given radar’s scanning set at each time.

Our interest here will focus on the dependence of solutions of the retrieval
problem on the collection of radar scanning directions. Hence, we view the
vector

q = [α1 α2 . . . αN ]

as a parameter to be determined. The vector q determines N unit vectors given
by û(αi) for i = 1, ..., N from (3.4). Define the functions

(3.16) Φ(q)(x) =
N∑

i=1

φi(x, αi)ri(x)rT
i (x),

It is also convenient to define the bilinear forms on H

(3.17) (u,v)Φ(q) =
∫

Ω

u(x)T Φ(q)(x)v(x)dx.

With the above definitions, we may write the criterion V as

V(q)(v) =
ε

2
((v,v)) +

K

2
(v,v)1 +

K1

2
[(v,v)Φ(q) −

(3.18) −2(w,v)Φ(q) + (w,w)Φ(q)].

Existence of a unique solution to the minimization problem follows from the
discussions in [14] and the Hilbert space formulation given therein.

The solution of the minimization problem (3.15) and (3.18) is characterized
by the optimality conditions. The solution u = u(q) of the minimization
problem satisfies the equation

(3.19) ε((u,v)) + K(u,v)1 + K1(u,v)Φ(q) = K1(w,v)Φ(q)
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for all v ∈ V.

For the application to the Kalman filter described in Section 2, we approx-
imate (3.19) by finite elements. The approximation of the retrieval problem
numerically follows the classical finite element arguments [11]. Approximations
may be based on finite elements obtained as tensor products of piecewise linear
splines defined on partitions of the intervals (0, Lx), (0, Ly), and (0, Lz) into
nx, ny, and nz subintervals, respectively. Hence, the number of elements in the
x, y, and z directions are m̂x = nx + 1, m̂y = ny + 1, m̂z = nz + 1, respectively.
The number of basis elements for the 3 spatial dimensional problem is given by
m̂ = m̂x × m̂y × m̂z. We denote the basis elements as

b1(x), . . . , b
m̂

(x)

spanning a subspace, Vm̂, of the space V and define the column m̂ vector-valued
function on Ω by

x 7→ b(x) = [b1(x), ..., b
m̂

(x)]T

and with n = 3m̂ the 3× n matrix-valued function on Ω by

x 7→ B(x) =




b(x)T 0 0
0 b(x)T 0
0 0 b(x)T




where 0 represents an m̂-row vector of zeros. We also define the column m̂-
vectors c1, c2, and c3 as well as the n-column vector c̃ = [cT

1 , cT
2 , cT

3 ]T .

The components of the wind velocity are represented as

v
1m̂

(x) = b(x)T c1

v
2m̂

(x) = b(x)T c2

v
3m̂

(x) = b(x)T c3.

The approximating wind velocity vector is expressed as

vn(x) = [v
1m̂

(x) v
2m̂

(x) v
3m̂

(x)]T = B(x)c̃.

In a similar way we approximate the input wind field by

(3.20) w
m̂

(x) = B(x)ω̃.

To approximate the objective functional, define the n× n matrices

G0 =
∫

Ω

B(x)T B(x)dx

G1 =
∫

Ω

[∇T B(x)]T [∇T B(x)]dx.
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Define the m̂× m̂ matrix [g2] by setting entries

[g2]ij =
∫

Ω

∇bi(x) · ∇bj(x)dx

for i, j = 1, ..., m̂. Let the n× n matrices be given by

G2 =




g2 0 0
0 g2 0
0 0 g2


 .

G(q) =
∫

Ω

B(x)T Φ(q)B(x)dx.

With the above definitions the objective functional evaluated at the finite
element approximations of the wind velocity is given by

(3.21) V(q)(c̃) = V(q)(vn) =

=
1
2
c̃T [εG2 + KG1 + K1G(q)]c̃ − K1ω̃

T G(q)c̃ + K1ω̃
T G(q)ω̃.

The equation

(3.22) [εG2 + KG1 + K1G(q)]c̃(q) = K1G(q)ω̃

is obtained as the optimality condition and

(3.23) c̃(q) = K1[εG2 + KG1 + K1G(q)]−1G(q)ω̃

Define the matrices

(3.24) H0(q) = K1[εG2 + KG1 + K1G(q)]−1

and

(3.25) H(q) = H0(q)G(q)

The matrix H(q) is the retrieval operator for our application corresponding that
the measurement operator discussed in Section 2.

We now consider the differentiability with respect to the direction angle
parameter α. Towards this end, let the function where x 7→ g(x) be a continuous
real-valued function defined on Ω. Define the real-valued function F : < 7→ < in
terms of the integral given by

F(α) =
∫

Ω

Ξ(α)(x)g(x)dx

14



where Ξ(α) is the indicator function of the set

C(α) = {x : x2
1 + x2

2 ≤ R2,
x
|x| · u(α) ≥ cos(β)}.

It follows that
F(α) =

∫

C(α)

g(x)dx

Introducing polar coordinates, we see that

F(α) =
∫ α+β

α−β

∫ Lz

0

∫ R

0

ĝ(r, θ, z)rdrdzdθ

where ĝ(r, θ, z) = g(rcos(θ), rsin(θ), z). It follows that

d

dα
F(α) =

∫ Lz

0

∫ R

0

[ĝ(r, α + β, z)− ĝ(r, α− β, z)]rdrdz.

For the case of N radar sites, we write

F(u,v)(q) = F(u,v)(α1, ..., αN ) = (u,v)Φ(q)

=
∫

Ω

[
N∑

i=1

φi(x, αi)u(x)T ri(x)rT
i (x)v(x)dx

Set
gl(x) = φl(x, αl)u(x)T [rl(x)rT

l (x)]v(x)

and in terms of polar coordinates set

gl(x) = ĝl(r, θ, z)

and state the following.

Proposition 3.1. For each u and v ∈ V the function q = (α1, ..., αN ) 7→
F(u,v)(α1, ..., αN ) is differentiable and the partial derivatives of F(u,v) with
respect to αl is given by

∂

∂αl
F(u,v)(q) =

∂

∂αl
F(α1, ..., αn) =

∫ Rz

0

∫ R

0

[ĝl(r, αl+β, z)−ĝl(r, αl−β, z)]rdrdz

Hence, the derivative of F is expressed as

DF(u,v)(q)q′ =
N∑

l=1

∂

∂αl
F(u,v)(q)α′l

The differentiability of u(q) follows.
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Theorem 3.2. The solution u(q) of (3.19) is Frechét differentiable with respect
to q and the Frechét differential of u(q) with increment q′ satisfies the variational
equation

ε((Du(q)q′,v)) + K(Du(q)q′,v)1 + K1(Du(q)q′,v)Φ(q) =

= K1(DF(w,v)(q)q′ − (DF(u(q),v)(q)q′

The finite dimensional version (3.22) satisfies

Corollary 3.3. The solution c̃(q)satisfying the equation

[εG2 + KG1 + K1G(q)]Dc̃(q)q′ = K1[DG(q)q′][ω̃ − c̃(q)]

The derivative of the matrix G(q) is obtained as follows. Define the matrix
value function

Gl(x) = B(x)T rl(x)rT
l (x)B(x)

so that

G(q) =
∫

Ω

N∑

k=1

φk(x, αk)Gk(x)dx.

Proposition 3.4. The partial derivative Dαl
G(q) is given by

Dαl
G(q) =

∫ Lz

0

∫ R

0

[Ĝ(r, αl + β, z)− Ĝ(r, αl − β, z)]rdrdz

where Ĝ(r, θ, z) denotes G(x) expressed in terms of polar coordinates.

4. Retrieval-based Ensemble Transform Kalman
Filter.

In this section the filter equations are summarized and the formulas expressing
derivatives are given. In the application to our problem we assume that the
state model is of the form from (3.23)-(3.25).

(4.1) ω̃k+1 = Fk+1ω̃k + µ̃k

where ω̃k is an n-vector, Fk+1 is an n× n matrix and µk is a random n-vector.
An ensemble of K solutions ω̃i

k+1 for i = 1, ...,K is generated. Denoting the
mean of the vectors by ω̃i

k+1 by ω̃, the forecast error covariance is given by

(4.2) P̃f =
1

K − 1

K∑

i=1

{ω̃i
k+1 − ω̃k+1} {ω̃i

k+1 − ω̃k+1}T

16



The observational equation is given by

(4.3) ck(q) = Hk(q)ω̃k + νk

where Hk(q) is given in

(3.24) H0(q) = K1[εG2 + KG1 + K1G(q)]−1

and

(3.25) H(q) = H0(q)G(q)

where the time stepping subscript k has been suppressed. The ensemble ap-
proximation of the Kalman gain is given by

(2.6)(ii) K(q) = P̃fH(q)T (R + H(q)P̃fH(q)T )−1

and the updated error covariance is

(2.7)(ii) P̃a(q) = P̃f − K(q)H(q)P̃f .

(2.8)(ii) J(q) = trace[P̃a(q)]

=
n∑

i=1

eT
i P̃a(q)ei

The derivatives of these operators are based on the discussion in the previous
section. Hence, the partial derivative with respect to the parameter ql of these
matrices are again matrices.

Proposition 4.1. The Kalman gain and covariance are differentiable func-
tions from <N into the Hilbert space of H(n) of n × n real-valued matrices,
and accordingly, the variance is a differentiable function from <N into <. The
derivatives are expressed as

DlH0(q) = −H0(q)2DlG(q)

The partial derivatives with respect to ql are given by

(4.4) DlH(q) = H0(q)[I − H0(q)]DlG(q)

(4.5) DlK(q) = −P̃f DlH(q)T [R + H(q)P̃fH(q)]−1

− P̃f H(q)T [R + H(q)P̃fH(q)]−2 [H(q)P̃fDlH(q)T + DlH(q)P̃fH(q)T ]

(4.6) DlPa(q) = −[DlK(q) H(q) + K(q) DlH(q)]Pf

(4.7) DlJ(q) = elDlPa(q)el

Remark 4.2. The differentiability is used in the next section with quasi-Monte
Carlo method to estimate minimality of the function with respect to the family
of test admissible parameters generated.
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5. The Model and Numerical Study.

For the purposes of constructing numerical tests with simulated observational
data, we consider the vector wind field defined on the domain

Ω = [0, 150]× [0, 150]× [0, 3]

with
Ω0 = [0, 150]× [0, 150]

containing a cylindrical vortex traversing diagonally across Ω0. Here all numbers
are in units of kilometers. It is assumed that the components of the background
wind field are zero. To this background is added the generated vortex that
evolves with time. To construct the example, the center of the est vortex is
given by

(5.1) x0(t) = [10t, x2(t) = 10t + 10, 0]T

The portion of the wind field at time t contributed by the vortex is obtained
from

(5.2) u(x, t) =
{

[− ∂ψ
∂x2

, ∂ψ
∂x1

, 0] when x < R

0 when x ≥ R

where

(5.3) ψ(x, t) = −exp[([
|x− x0(t)|

R
]2 − 1)−1]

For the purpose of the numerical experiment, however, we use the underlying
model

(5.4) u(x, t + dt) = u(x, t) + dt
∂u(x, t)

∂t

to advance the wind vector field. In fact, using the notation introduced pre-
viously, the model is given in terms of a column n-vector ω̃ arising from the
expression for the wind field given by (3.20). The components of of ω̃ are ob-
tained from value of u at nodal points arranged as the column n vector ω̃. The
model equations are given by

(5.5) ω̃k+1 = ω̃k + D̃k

where the vector D̃k expresses the product of the time step and the time deriva-
tive of ω̃ with error. In the application of the model equations ω̃k is taken to
be the best estimate of the wind field at time t = k. To generate an ensemble
of predicted wind fields

ω̃i
k+1 for i = 1, 2, ..., K,
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uniformly distributed random errors are added to ω̃k as well as D̃k to provide
uncertainty not only in the wind fields but in their changes with respect to
time as well. This ensemble is then use to construct the forecast covariance
for the k+1 step (P̃f )k+1 as well as the matrix T and the analyzed covariance
(P̃a)k+1 as outlined in equations (2.12)-(2.16). For the purposes of the numerical
experiment ensembles of size 50 are used.

We note that T and thus (P̃a)k+1 depend on q through the observation
operator H(q). A search is conducted for qo from among an admissible set Qad

that minimizes the
trace[(P̃a(q))k+1]

with respect to the admissible set. As indicated then in the previous sections,
the observational equation is then applied to construct an estimate c̃(qo) using
data collected based on the scanning parameter qo. This vector is then used in
the model equation to to predict fields at the next time step. The algorithm is
then repeated.

The general algorithm for scanning optimization is summarized as follows.

1. Input estimated wind field.

2. Generate an ensemble of perturbed wind fields about the estimated.

3. Advance the model for each perturbed wind field to obtain an ensemble
of predicted fields.

4. Generate an admissible scan parameter q ∈ Qad.

5. Calculate the associated C(q) and Γ(q) matrices.

6. Calculate the associated T (q) matrix.

7. Calculate the analysis error covariance matrix Pk+1|k+1(q).

8. Compute the value of the functional J(q) = trace(Pk+1|k+1(q).

9. Select the scanning parameter qo minimizing J(q)

10. Using the ”optimal” qo to set radar parameters, make measurements to
obtain a retrieved wind field estimate.

11. Return to 1. and repeat the procedure.

For the purposes of the example we use a mesh with 10 subintervals of
length 15km in each of the x and y directions and 1km in the z direction.
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Using piecewise linear basis elements, it follows that the basis contains 242
basis functions and that n = 726. The radius of the test vortices is R = 15km
for Figures 1-12 and, for comparison R = 30km in Figures 13-18. In the case of
R = 15 the vortex radius equals the mesh dimension. Tests are conducted with
N = 2, 4, and 9 radars arranged as indicated in the figures by black stars. The
figures portray the position of the vortex and the shaded coverage of the radars
for the network for a scanning configuration that minimizes the variance with
respect to an admissible set of directions as has been described above. It should
be pointed out that the unshaded areas interior to the shaded regions are also
in the coverage areas. It is assumed that the range of each radar is 30km and
the scan width is 45 degrees. Each radar is pointed in the direction of a unit
vector

u(α) = [cos(α) sin(α) 0]T

generated for an angle α ∈ [0, 2π).

The collection of admissible vectors q = [α1, α2, ..., αN ] of directions are
generated as equidistributed sequences of vectors [9] as follows. For i = 1, ..., N
let components of a vector of length N be given by pi = (i2 + 1)1/2. The ith
component of the nth term in the sequence of vectors is generated by

(αi)n = 2(npi − [npi])π

where [·] denotes the greatest integer function. The vector

u((αi)n) = [cos((αi)n)sin((αi)n)0]T

is the nth direction vector for the ith radar in a sequence indexed by n. It can be
shown [9] that the sequence of vectors generated in this way fills the N-cube in
a regular way. The admissible set for the numerical study consists of L matrices
of directions generated in this manner QL

ad. For the purposes of the numerical
experiment we take L = 20.

Remark 5.1. The estimate

(5.6) |minJ(q)−minLJ(q)| = O(L−1/N (logL)1/N

follows from the differentiability of the criterion demonstrated in previous sec-
tions and the boundedness of the derivative [9].
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Figure 1: Two Radar Coverage at t=3, R=15
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Figure 2: Four Radar Coverage at t=3, R=15
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Figure 3: Nine Radar Coverage at t=3, R=15
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Figure 4: Two Radar Coverage at t=5, R=15
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Figure 5: Four Radar Coverage at t=5, R=15
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Figure 6: Nine Radar Coverage at t=5, R=15
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Figure 7: Two Radar Coverage at t=9, R=15
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Figure 8: Four Radar Coverage at t=9, R=15
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Figure 9: Nine Radar Coverage at t=9, R=15
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Figure 10: Two Radar Coverage at t=13, R=15
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Figure 11: Four Radar Coverage at t=13, R=15
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Figure 12: Nine Radar Coverage at t=13, R=15
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Figure 13: Two Radar Coverage at t=9, R=30
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Figure 14: Four Radar Coverage at t=9, R=30
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Figure 15: Nine Radar Coverage at t=9, R=30
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Figure 16: Two Radar Coverage at t=13, R=30

−20 0 20 40 60 80 100 120 140 160
−20

0

20

40

60

80

100

120

140

160

x in km

y 
in

 k
m

Figure 17: Four Radar Coverage at t=13, R=30
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Figure 18: Nine Radar Coverage at t=13, R=30
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