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Abstract The action of a noncompact semisimple Lie group G on a finite dimensional
real vector space V is said to bestable if there exists a nonempty Zariski open subset O of V
such that the orbit G(v) is closed in V for all v∈ O. We study a Hilbert-Mumford numerical
function M : V → R defined by A. Marian that extends the corresponding functionin the
complex setting defined by D. Mumford and studied further by G. Kempf and L. Ness. The
G-action may be stable on V if M≥ 0 on V, as in the adjoint action of G on its Lie algebra
G. However, we show that the G-action on V is always stable if M(v) < 0 for some v∈ V.
We show that M(v)< 0 ⇔ the orbit G(v) is closed in V and the stability subgroup Gv is
compact. The subset of V where M is negative is open in the vector space topology of V
but not necessarily open in the Zariski topology of V. We givecriteria for M to be negative
on a nonempty Zariski open subset of V, and we consider several examples.
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INTRODUCTION

Let G be a semisimple algebraic group in GL(V), where V is a finite dimensional real
vector space. We study the closed orbits of G in V, primarily through a function M : V
→ R introduced by Mumford for complex varieties and extended tothe real setting by A.
Marian [Ma]. The function M is semicontinous, invariant under G and takes on finitely
many values. The points v where M(v) is negative are particularly interesting, and these
points v occur precisely when G(v) is closed in V and the stability group Gv is compact.
The set of vectors v where M(v) is negative is open in the vector space topology but not
necessarily Zariski open as we show for the adjoint representation of a noncompact
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semisimple Lie group. In this case, M is negative somewhere on the Lie algebraG ⇔ some
maximal compact subgroup of G contains a maximal abelian subgroup of G. Equivalently,
for an element X ofG, M(X) is negative⇔ the stability groupGX is compact. In particular
ad X :G → G has purely imaginary eigenvalues, so M can never be negativeon a nonempty
Zariski open subset ofG. Moreover, the stability groupsGX have positive dimension for
all X ∈ G. By contrast, in the complex setting M(v) is negative⇔ G(v) is closed and Gv
is discrete, and these two conditions hold on a nonempty Zariski open subset .

We say that v∈ V is a stable point of the G action if M(v)< 0. In addition to implying
that G(v) is closed the condition M(v)< 0 also implies that H(v) is closed for any closed
subgroup H of G. This property does not hold in general if G(v)is closed and M(v)= 0 as
we show by example at the end of section 3.

We say that G actsstably on V if there is a nonempty Zariski open subset O of V such
that the orbit G(v) is closed in V for all v∈ O. It is well known that G acts stably on its Lie
algebraG in the adjoint representation. If M is negative somewhere onV, then G acts stably
on V, and there is a nonempty subset O of V, open in the vector space topology, such that
M(v) < 0 and the stability group Gv is compact for all v∈ O. Conversely, if one stability
groupGv is compact, then M is negative somewhere on V. If one stability groupGv is
discrete, then G acts stably on V, and M is negative on a nonempty Zariski open subset of
V.

Remark The problem of stability for reductive subgroups has also been considered in
Theorem 4 of [Vin]. There it is shown that if a G-action is stable for a reductive group G,
then the H-action of any reductive subgroup H is also stable.

There are other distinctions between the complex and real settings for linear actions that
are captured by the function M : V→ R. In the complex setting the stability groups for
linear actions are conjugate on a nonempty Zariski open set.In the real case the stabil-
ity groups may be quite different topologically although their Lie algebras have the same
complexification on a nonempty Zariski open set. This is illustrated by the adjoint repre-
sentation. If O is the nonempty Zariski open subset ofG consisting of those vectors X such
thatGXhas minimum dimension, then G(X) is closed for all X∈ O. Moreover, for X∈ O
either M(X) = 0 andGX is noncompact or M(X)< 0 andGX is compact. The first case
always occurs, but the second case occurs only under the conditions discussed above. In
the simplest case, where G= SL(2,R), we have the following possibilities for X∈ O : a)
det X> 0, M(X) < 0 and the stability groupGX is a circle or b) det X< 0, M(X) = 0 and
the stability groupGX is a homeomorphic to a line.

For the adjoint representation there is a further stratification of the vectors X in O for
which M(X) = 0. LetG = K⊕P denote the Cartan decomposition ofG into the+1 and−1
eigenspaces of a Cartan involutionθ of G. Let rankP denote the dimension of a maximal
abelian subspace ofP, and let rankG denote the dimension of a Cartan subalgebra ofG

(i.e. a maximal abelian subalgebra whose elements are ad semisimple). For every integer r
with 1 ≤ r ≤ rank P, there exists a subset Or of O such that Or is open in the vector space
topology ofG and for every X∈ Or it follows that M(X)= 0 and(GX)0 is homeomorphic
to Rr x T (rank G−r). HereT p denotes the p-torus for any positive integer p.

In studying the closed orbits of G acting on V we make use of thenotion ofminimal vector

for the G-action, which is discussed by Ness in the complex setting in [KN] and [Nes] and
is extended to the real setting by Richardson and Slodowy in [RS]. An orbit G(v) is closed
in V ⇔ G(v) intersects the setM of minimal vectors, and in this case G(v)∩ M is a single
K orbit, where K is a maximal compact subgroup of G.

In the course of this article we develop sufficient conditions for M to be negative on V,
including negative on a nonempty Zariski open subset of V. Westudy the M function for
several examples in addition to the adjoint representation.
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1. THE MOMENT MAP AND MINIMAL VECTORS

1.1. Definitions and basic properties. In this article we consider the closed orbits of a
semisimple group G acting on a finite dimensional real vectorspace V. More precisely let
GC denote a semisimple algebraic subgroup of GL(n,C) defined overR, and letGC(R)0

denote the identity component in the classical topology of the real Lie groupGC(R) =
GC ∩ GL(n,R). In the sequel G will denote a closed subgroup ofGC(R) that contains
GC(R)0 and is Zariski dense inGC. These are the hypotheses of Richardson-Slodowy
[RS]. This article is an outgrowth of [RS] and [Ma], and thesetwo works are extensions to
the real case of the work of G. Kempf and L. Ness ([KN],[Nes]) and D.Mumford ([Mu]).

Remark If G is a semisimple subgroup of GL(n,R) with finitely many connected com-
ponents, then G satisfies the conditions stated above.

We show this first in the case that G is connected. SinceG is semisimple it is algebraic
in the sense of Chevalley ; that is, there exists a real algebraic group H⊂ GL(n,R) whose
Lie algebra isG. ( See pp. 171-185 of [C] or pp. 105-110 of [Bor] for further details.)
If H0 andH0 denote respectively the Hausdorff and Zariski components of H that contain
the identity, thenG = H0 ⊂ H0 since G is connected in both the Hausdorff and Zariski
topologies. LetGC denote the Zariski closure of H0 in GL(n,C), and letGC denote the
complexification ofG. ThenGC is defined overR, andL(GC) = GC by Proposition 2 of
[C, Chapter II, section 8]. IfG denotes the Zariski closure of G in GL(n,C), thenG ⊂ GC,
andG is a connected algebraic group defined overR (cf. [Bor, Chapter I, section 2.1]).
Moreover,L(G) = GC sinceGC ⊂ L(G) ⊂ L(H0) = GC. HenceG = GC since both
groups are Zariski connected, defined overR and have Lie algebraGC (cf. [Bor, Chapter
II, section 7.1]). Finally, ifGC(R) denotesGC ∩ GL(n,R), thenL(GC(R)) = L(GC) ∩
L(GL(n,R)) = G by [Bor, Chapter II, section 7.1]. We conclude thatG = GC(R)0 since
both groups are Hausdorff connected with Lie algebraG.

Next, suppose thatG =
⋃

α∈A gαG
0, where A is a finite set, and letGC = G =

⋃

α∈A gαH , whereH = G0 ⊂ GL(n,C). HenceH = GC
0 since H is Zariski con-

nected, andL(GC) = L(H) = GC by the discussion above. ClearlyG0 ⊂ GC(R)0

and equality holds since both connected Lie groups have the same Lie algebraG. Hence
GC(R)0 = G0 ⊂ G ⊂ GC. This completes the remark.

Now, letGC(R) ⊂ GL(n,R) satisfy the basic conditions stated above. By a result from
section 7 of [Mo2] there exists an inner product〈, 〉0 onRn such thatGC(R) is self adjoint,
that is, invariant under the involutionθ0 : GL(n,R) → GL(n,R) given by θ0(g) =
(gt)−1, wheregt denotes the metric transpose of g. IfG denotes the Lie algebra ofGC(R),
which is also the Lie algebra of G, thenθ0 defines a Lie algebra automorphism ofG, also
denoted byθ0, which is called aCartan involution of G. Let K0,P0 denote respectively
the+1 and−1 eigenspaces ofθ0 : G → G. It is easy to see that the elements ofK0 andP0

are skew symmetric and symmetric elements respectively of End(Rn). It follows thatK0 is
the Lie algebra of the maximal compact subgroupK = Fix(θ0) = GC(R) ∩ O(n,R),
andK0 ⊆ K ∩ G. See (2.2) of [RS]. Let〈, 〉G be any Ad K invariant inner product onG;
for example, let〈X,Y 〉G = −B(θ0(X), Y ), where B is the Killing form ofG.

If G ⊂ GL(n,R) is a real algebraic group, then a representationρ : G → GL(V ) is
said to berational if f ◦ ρ is a polynomial function with real coefficients on GL(n,R)
wheneverf is a polymonial function with real coefficients on GL(V). LetV be a finite
dimensional real vector space, and letρ : GC(R) → GL(V ) be a rational representation.
Thenρ(GC(R)) is an algebraic group in GL(V) andρ(G) satisfies the hypotheses above.
The remarks of the previous paragraph now extend toρ(G) equipped with an inner product
〈, 〉 and corresponding involutionθ : GL(V ) → GL(V ) such thatρ(GC(R)) is θ-stable
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andθ ◦ ρ = ρ ◦ θ0 : GC(R) → GL(V ). The existence of〈, 〉 andθ follows from section
7 of [Mo2] and (2.3) of [RS]. If we letθ, ρ andθ0 also denote the differentials of these
homomorphisms, thenθ ◦ ρ = ρ ◦ θ0 : G → End(V ), whereG is the Lie algebra of G
andGC(R). If K andP denote the +1 and−1 eigenspaces ofθ on ρ(G), thenρ(K0) = K

andρ(P0) = P. As above, the elements ofK andP act on V by skew symmetric and
symmetric linear maps respectively.

In the sequel, by abuse of notation, we shall assume the framework above and we shall
identify G andGC(R) with their imagesρ(G) andρ(GC(R)) in GL(V).

The moment map

If X ∈ K and v∈ V, then〈X(v), v〉 = 0 by the skew symmetry of X. If v∈ V is fixed,
then for X∈ P the mapX → 〈X(v), v〉 is an element ofP∗, which may be identified with
P by means of the inner product〈, 〉. We obtain a mapm : V → P defined by the condition
〈m(v), X〉G = 〈X(v), v〉 for v ∈ V andX ∈ P. The map m is called themoment map.
See [Ma] for a justification of this terminology. It follows from the definitions that m is a
homogeneous polynomial function of degree two such that m(kv) = Ad(k)(m(v)) for all v
∈ V and all k∈ K.

Remark

Let G be a self adjoint subgroup of GL(V) that is a direct product G1 x G2 of self adjoint
subgroups. IfP1,P2 andP are the−1 eigenspaces ofθ in G1,G2 andG = G1 ⊕ G2

respectively, thenP = P1 ⊕ P2. Moreover, it follows from the definitions thatm(v) =
m1(v) +m2(v) for v ∈ V, wherem : V → P,m1 : V → P1 andm2 : V → P2 are the
moment maps for G, G1 and G2 respectively.

Examples of moment maps

Example 1. Let G = SL(q,R) and V = so(q,R)p := so(q,R) ⊕ ... ⊕ so(q,R)
(p times). Let G act diagonally on V byg(C1, ... , Cp) = (gC1gt, ... gCpgt). The Lie
algebraG acts on V byX(C1, ... Cp) = (XC1 + C1Xt, ... , XCp + CpXt). On V we
define the inner product〈(C1 ... Cp), (D1 ... Dp)〉 = −∑ p

i=1trace C
iDi. It is easy to

check that G is self adjoint with respect to this inner product on V. Moreover,K = so(q,R)
andP = {X ∈ G : X = Xt}.

Assertion If C = (C1 ... Cp) ∈ V , then m(C)= −2
∑ p

i=1(C
i)2 − λ(C) Id,where

λ(C) = 2 |C|2

q .
Let X ∈ P and C∈ V be given. Extend the inner product〈, 〉 on so(q,R) to G by

〈ζ, η〉 = trace(ζηt) for all ζ, η ∈ G. Then〈m(C), X〉 = 〈X(C), C〉 = −∑ p
r=1trace (XCr + CrX)(Cr) =

−2
∑ p

r=1trace X(Cr)2 = 〈X,−2
∑ p

r=1(C
r)2〉 = 〈X,−2

∑ p
r=1(C

r)2 − λ(C) Id〉.
This proves the assertion since−2

∑ p
i=1(C

i)2−λ(C) Id is symmetric with trace zero and
hence belongs toP.

Example 2. Let V = so(q,R)p as in the first example, and observe that V is isomor-
phic toso(q,R) ⊗ R

p under the mapC = (C1, ... , Cp) →
∑ p

i=1C
i ⊗ ei ,where{ei} is

the standard basis ofRp. Let G = G1 x G2, where G1 = SL(q,R) and G2 = SL(p,R),
and let G act on V by(g1, g2)(

∑ p
i=1C

i ⊗ ei) =
∑ p

i=1(g1C
igt

1) ⊗ g2(ei). Here G2 acts
onRp in the standard fashion. The previously defined inner product 〈, 〉 on V = so(q,R)p

now becomes the unique inner product on V= so(q,R)⊗Rp such that〈C ⊗ v,D⊗w〉 =
〈C,D〉〈v, w〉 for C,D ∈ so(q,R) and v,w∈ Rp. Here〈C,D〉 = −trace(CD) and〈, 〉 is
the standard inner product onRp for which the standard basis{ei} is orthonormal.

Note thatP = P1⊕P2 and the moment map m :V → P becomes m(C)= (m1(C),m2(C)),
where mi → Pi is the moment map for Gi for i= 1, 2.
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Assertion For C = (C1 ... Cp) ∈ V , let λ(C) = 2 |C|2

q and letµ(C) = |C|2

p . Let

m∗
2(C) be the element ofP2 such that m∗2(C)ij = 〈Ci, Cj〉. Then m1(C)= −2

∑ p
i=1(C

i)2−
λ(C) Id, andm2(C) = m∗

2(C) − µ(C) Id.
The statement for m1(C) was proved above in the discussion of the first example. If

Y ∈ P2 andC =
∑ p

i=1C
i ⊗ ei ∈ V are given, then〈m2(C), Y 〉 = 〈Y (C), C〉 =

〈∑ p
i=1C

i ⊗ Y (ei),
∑ p

j=1C
j ⊗ ej〉 =

∑ p
i,j=1〈Ci, Cj〉〈Y (ei), ej〉 = trace m∗

2(C)Y = trace (m∗
2(C) −

µ(C) Id)Y = 〈(m∗
2(C) − µ(C) Id), Y 〉. The assertion for m2(C) follows sincem∗

2(C) −
µ(C) Id has trace zero and hence belongs toP2.

Example 3. Let V = M(n,R), the n x n matrices with real entries, and let G=
SL(n,R) act on V by conjugation.

Assertion For C∈ V, m(C) = CCt − CtC.
The action ofG on V is given by X(C)= XC − CX for X ∈ G and C∈ V. For

X ∈ P and C∈ V we compute〈m(C), X〉 = 〈X(C), C〉 = trace(XC − CX)Ct =
traceX(CCt − CtC) = 〈X,CCt − CtC〉. The assertion follows sinceCCt − CtC is
symmetric with trace zero and hence belongs toP.

Minimal vectors

A vector v of V is calledminimal if m(v) = 0. We denote the set of minimal vectors in
V by M. Note thatM is invariant under K by the Ad K equivariance of the moment map
m. We recall some results from [RS]. The next two results are restatements of Theorem 4.3
of [RS].

Proposition 1.1. The following conditions are equivalent for a vector v of V :
1) v is minimal
2) The identity1 ∈ G is a critical point of the functionFv : G → V given byFv(g) =

|g(v)|2 for all g ∈ G.
3) The identity1 ∈ G is a minimum point of the functionFv : G→ V .

If v ∈ V is minimal, then Gv is self adjoint. In particularGv = Pv ⊕ Kv, whereGv

denotes the Lie algebra of Gv, Kv = Gv ∩ K andPv = Gv ∩ P.

Proposition 1.2. For v∈ V the orbit G(v) is closed in V⇔ G(v) contains a minimal vector.
If w ∈ G(v) ∩ M for some v∈ V, thenG(v) ∩ M = K(w).

Remark It may be the case that{0} is the only minimal vector.

Corollary 1.3. There is a bijection between the closed orbits of G in V and thespace
M/K.

Proof. Given a closed orbit G(v) for some v in V we associate the point(G(v)∩ M)/K ∈
M/K. This map is a well defined bijection by the preceding result. �

Corollary 1.4. Let G(v) be closed for v∈ V, v 6= 0. Then Gv is completely reducible.

Proof. By (1.2) there exists g∈ G such that w = g(v) is minimal. By (1.1)Gw = g Gv g
−1

is self adjoint, hence reductive. It suffices to show thatGw is completely reducible since
Gv is conjugate to Gw. To show thatGw is completely reducible it suffices by Theorem
4 in section 6.5 of [Bou] to show that if X∈ Zw, the center ofGw, then X : V→ V is
semisimple. Note thatZw is θ-invariant sinceGw is θ-invariant. Let X∈ Zw be given, and
write X = K + P, whereK = (1/2)(X + θ(X)) ∈ K ∩ Zw andP = (1/2)(X − θ(X)) ∈
P ∩ Zw. The elements K and P are respectively skew symmetric and symmetric on V, and
as elements ofZw they commute. Hence X= K + P is semisimple on V. �
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The next result is stated in section (7.2) of [RS]

Corollary 1.5. If G(v) is not closed in V for some v∈ V, thenG(v) contains a unique
closed orbit of G.

The next result is Lemma 3.3 of [RS]

Proposition 1.6. Let v∈ V and assume that G(v) is not closed. Then there exists X∈ P

and v0 ∈ V such thatetX(v) → v0 as t→ ∞ and the orbit G(v0) is closed.

Rank of the moment map

For ξ, v ∈ V let ξv ∈ TvV denoteα′(0), whereα(t) = v + tξ. Similarly for X ∈ P we
defineXm(v) ∈ Tm(v)P.

Proposition 1.7. Let X∈ P be given. Then Xm(v) is orthogonal tom∗(TvV ) ⇔ X(v) =
0. In particular,

a) The rank of m at v= dimP − dim Pv.
b) The moment map m : V→ P fails to have maximal rank at a point v of V⇔ X(v) = 0

for some nonzero element X∈ P.

Proof. Fix v ∈ V. For ξ ∈ V and X∈ P we compute〈m∗(ξv), Xm(v)〉 = d
dt |t=0〈m(v +

tξ), X〉 = d
dt |t=0〈X(v + tξ), v + tξ〉 = 〈X(v), ξ〉 + 〈X(ξ), v〉 = 2〈X(v), ξ〉. The result

follows sinceξ ∈ V is arbitrary. �

Corollary 1.8. Suppose thatGv is a compact subgroup of G for some v∈ V. Then there
exists a nonempty Zariski open subset O of V such that m : V→ P has maximal rank at
every v∈ O.

Proof. If O = {x ∈ V : m has maximal rank at x}, then O is a Zariski open subset of V.
LetGv be compact for some nonzero v∈ V. We show that v∈ O by showing thatPv = {0}
and applying (1.7). Let X(v)= 0 for some X∈ P. The eigenvalues of elements ofGv have
modulus 1 sinceGv leaves invariant some inner product on V. However, X is symmetric on
V with real eigenvaluesλ, and the eigenvalues ofexp(tX) ⊂ Gv have the formetλ, which
have modulus 1 for all t only ifλ = 0. HencePv = 0. �

Proper maps

For a nonzero element v∈ V let fv : G → V be theC∞ map given byfv(g) = g(v)
for g∈ G and v∈ V.

Proposition 1.9. Let G be a closed subgroup of GL(V), and let v be a nonzero element of
V. Thenfv : G → V is a proper map⇔ G(v) is closed in V and the stability groupGv is
compact.

Remark See Proposition 3.9 and the remarks that follow for an extension of this result.

Proof. If fv : G → V is a proper map, then it is routine to prove that G(v) is closedand
Gv is compact. To prove the converse we make a preliminary observation.

Lemma Let v 6= 0 ∈ V be given. If the mapfv : G → V fails to be proper, then
there exists a nonzero element Y ofP and an elementv0 ∈ V such thatY (v0) = 0 and
exp(tY )(v) → v0 as t→ ∞. In particularGv0

is noncompact.
Proof of the lemma If fv is not proper, then there exists an unbounded sequence

{gn} ⊂ G such that{gn(v)} is a bounded sequence in V. By the selfadjointness of G
we may writegn = knexp(Xn), wherekn ∈ K,Xn ∈ P and |Xn| → ∞ as n→ ∞.
Since K is compact it follows thatexp(Xn)(v) → w ∈ V by passing to a subsequence if
necessary.

Let Yn = Xn/|Xn|, tn = |Xn| and letYn → Y ∈ P, where|Y | = 1, by passing to
a subsequence if necessary. Iffn(t) = |exp(tYn)(v)|2 andf(t) = |exp(tY )(v)|2, then
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fn(t) → f(t) for all t as n→ ∞. It is proved in Lemma 3.1 of [RS] that the functions
fn(t) andf(t) are convex; that is ,f ′′

n (t) ≥ 0 for all n and all t∈ R, andf ′′(t) ≥ 0 for all t
∈ R. By hypothesisfn(tn) → |w|2 as n→ ∞. By the convexity offn(t) we conclude that
fn(t) ≤ max{fn(0), fn(tn)} ≤ |v|2 + |w|2 + 1 if 0 ≤ t ≤ tn and n is sufficiently large.
Hence f(t)≤ |v|2 + |w|2 +1 for t ≥ 0, and it follows by convexity that f(t) is nonincreasing
onR.

Let Λ denote the set of nonzero eigenvalues of Y and letV = V0 ⊕ ∑

λ∈ΛVλ be the
direct sum decomposition of V into orthogonal eigenspaces of Y ∈ P, whereY ≡ 0 on
V0 andY ≡ λ Id on Vλ for all λ ∈ Λ. Write v = v0 +

∑

λ∈Λvλ, wherev0 ∈ V0 and
vλ ∈ Vλ for all λ ∈ Λ. Thenexp(tY )(v) = v0+

∑

λ∈Λ e
tλvλ and f(t)= |exp(tY )(v)|2 =

|v0|2+
∑

λ∈Λ e
2tλ|vλ|2. By the previous paragraphlimt→∞f(t) exists, and it follows that

λ ∈ Λ is negative ifvλ 6= 0. We conclude thatexp(tY )(v) → v0 ast → ∞. Moreover,
Y (v0) = 0 sincev0 ∈ V0. The eigenvalues ofetY ∈ Gv0

are unbounded in t since Y6= 0
and henceGv0

is noncompact. This completes the proof of the lemma.
We complete the proof of the proposition. Suppose that for some v∈ V the orbit G(v)

is closed in V andGv is a compact subgroup of G. Iffv : G → V is not a proper map,
then by the lemma above there exists an elementv0 ∈ G(v) = G(v) such thatGv0

is
noncompact. Choose g∈ G such thatg(v) = v0. ThenGv0

is compact sinceGv is
compact andgGvg

−1 = Gg(v) = Gv0
. This contradiction shows thatfv : G → V is a

proper map. �

Proposition 1.10. The map m : V→ P is a proper map⇔ M = {0}. Moreover, if
M = {0}, then for every nonzero v∈ V there exists a nonzero X∈ P such thatetX(v) → 0
as t→ +∞.

Proof. Let M = {0} and suppose that m : V→ P is not a proper map. Then there
exists an unbounded sequence{vn} in V such thatm(vn) → X for some X∈ P. Let
wn = vn/|vn| and let w∈ V be a unit vector that is an accumulation point of{wn}.
Since m : V→ P is a homogeneous polynomial function of degree two it follows that
m(w) = limn→∞m(wn) = limn→∞

1
|vn|2m(vn) = 0. This contradicts the hypothesis

thatM = {0}. Hence m : V→ P is proper.
Next suppose that m : V→ P is a proper map. If v is a nonzero element ofM,

thenm(tv) = t2m(v) = 0 for all t ∈ R, which contradicts the properness of m. Hence
M = {0} if m is proper.

The final assertion of the proposition follows immediately from (1.2) and (1.6). �

The deformation retraction

We recall some results of Neeman [Nee] and G.Schwarz [S]. Seealso [RS] for a brief
discussion.

Proposition 1.11. Assume thatM 6= {0}. Let h : V→ R be given by h(v)= |m(v)|2.
Then

1) (grad h)(v)= 4m(v)(v) (same vector components) and grad h is nonzero on V− M.
2) Let{ψt} denote the flow of− grad(h), and letρt = ψtan(tπ/2). Thenρt is defined

for 0 ≤ t ≤ 1. The mapρ : V x [0, 1] → M given byρ(v, t) = ρt(v) is a deformation
retraction of V ontoM = ρ1(V ) such thatρ(kv, t) = kρ(v, t) for all k ∈ K and all t ∈
[0,1]. In particular the mapπ : V → M given byπ(v) = ρ1(v) is a continuous retraction
of V ontoM such thatπ ◦ k = k ◦ π for all k ∈ K.

3) The mapρt : V/K → V/K given byρt(K(v)) = K(ρt(v)) is a well defined
deformation retraction of V/K ontoM/K = ρ1(V/K).
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Proof. The assertions in 2) are proved in [S] and [RS]. We note that the K-equivariance of
ρ follows from the fact that h◦ k = h for all k∈ K. In particular,k∗ grad h= grad h and k
permutes the integral curves of− grad h for all k∈ K.

The assertion in 3) follows from 2) and the K-equivariance ofthe retractionρ : V x [0, 1] →
M.

We prove 1). We recall from the proof of (1.7) that〈m∗(ξv), X〉 = 2〈X(v), ξ〉 for all
ξ ∈ V and allX ∈ P. Now 〈ξv, (grad h)(v)〉 = dh(ξv) = ξv(h) = (h ◦ α)′(0), where
α(t) = v + tξ. By definition(h ◦ α)(t) = 〈m(v + tξ),m(v + tξ)〉, and we conclude that
(h◦α)′(0) = 2〈m∗(ξv),m(v)〉 = 4〈m(v)(v), ξ〉. This proves the first assertion in 1) since
ξ ∈ V was arbitrary.

If v ∈ V − M, then〈grad h(v), v〉 = 4 〈m(v),m(v)〉 > 0, which completes the proof
of 1). �

Remark We recall the observation of [S] and [RS] that the deformation retractionρ :
V x [0, 1] → M of 2) above has the property thatρ(v, t) ∈ G(v) for all (v, t) ∈ V x [0, 1).
This is a consequence of the fact that the vector field− grad(h) is tangent to the immersed
submanifolds G(v) for all v∈ V.

2. THE SET OF VECTORS WITH CLOSEDG-ORBITS

Let G,V be as above. We note that if an orbit G(v) is closed in V for some vector v∈ V,
then G(v) is an imbedded submanifold of V. For a proof, see forexample Theorem 2.9.7 of
[Va].

Proposition 2.1. Let G,V be as above, and let V′ = {v ∈ V : G(v) is closed in V and
dim G(v) is maximal}. If V ′ is nonempty, then V′ is a G-invariant Zariski open subset
of V.

Proof. This result is already known in the complex setting; that is,for GC and VC. See for
example Proposition 3.8 of [New]. We indicate how to extend the result to the real setting.
We note that V′ is clearly G-invariant.

Let G and GC be as above. Then GC has a natural induced representation on the com-
plexification VC of V.

Lemma 2.2. Let v∈ V. Then the orbit G(v) is closed in V⇔ the orbit GC(v) is closed in
VC.

Proof. We suppose first that G(v) is closed in V. Then w = g(v) is minimal for some g
∈ G ⊂ GC by (1.2). By Lemma 8.1 of [RS] the vector w is minimal for the action of GC

on VC. Hence GC(w) = GC(v) is closed in VC. Conversely, suppose that GC(v) is closed
in VC. By Proposition 2.3 of [BH] the set GC(v) ∩ V is the union of finitely many orbits of
GC(R)0, and each of these orbits is closed. Since GC(R)0 has finite index in G it follows
that G(v) is closed in V. �

The next observation will be useful, but we omit the proof, which is routine.

Lemma 2.3. If O is a nonempty Zariski open subset of VC, then O∩ V is a nonempty
Zariski open subset of V.

We now complete the proof of the proposition. By definitionV ′ = {v ∈ V : G(v) is closed in V
and dim G(v) is maximal}, and similarly we define(V C)′ = {v ∈ V C : GC(v) is closed in VC

and dim GC(v) is maximal}. For v∈ V we note thatdimRGv = dimCG
C
v sinceGC

v =
(Gv)C. HencedimRG(v) = dimCG

C(v) since G(v) and GC(v) are diffeomorphic to the
coset spaces G / Gv and GC / GC

v respectively. By (2.2) it follows thatV ′ = V ∩ (V C)′.
Since(V C)′ is known to be Zariski open in VC it follows immediately from (2.3) that V′ is
Zariski open in V. �
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Stability of the G − action

Let G,V be as above. We say that the action of G on V isstable or G actsstably on V if
there exists a nonempty Zariski open subset O of V such that G(v) has maximal dimension
and is closed in V for all v∈ O. It follows from (2.1) that G acts stably on V if there is a
single nonzero vector v∈ V such that G(v) has maximal dimension and is closed in V. This
observation has simple but useful consequences.

Proposition 2.4. LetGi, Vi be as above for i= 1, 2. LetG = G1 xG2 and letV = V1⊕V2.
Then G acts stably on V⇔ Gi acts stably onVi for i = 1, 2.

Proof. Let v = (v1, v2) ∈ V1 ⊕ V2. ThenG(v) = (G1(v1), G2(v2)) has maximum
dimension and is closed in V⇔ Gi(vi) has maximal dimension and is closed inVi for
i = 1, 2. The assertion now follows immediately from (2.1). �

Remark Let G,V be as above, and let X be the union of all closed G-orbits in V. If G
does not act stably on V, then X has empty interior in the vector space topology of V.

If X contained a subset U of V that is open in the vector space topology of V, then the
stability groupGv would have minimal dimension for some v∈ U sinceGv has minimal
dimension for a nonempty Zariski open subset of V. It would follow that G(v) has maximal
dimension and is closed in V, which by (2.1) would imply that Gacts stably on V.

Example LetG1, V1 be arbitrary, as above. LetV2 = Rn and letG2 = SL(n,R) act
onV2 in the standard way. LetX1 be the union of all closedG1 orbits inV1. Since{0} is
the only closedG2 orbit in V2 it follows thatX = X1 x {0} ⊂ V1 x {0} is the union of all
closed G orbits in V.

The next result shows that G acts stably on V if a single stabilizer Gv is discrete for some
v ∈ V. This result is strengthened later in Corollary 3.12. We note that if Gv is discrete,
then Gv is finite.

Corollary 2.5. Suppose that Gv′ is discrete for some nonzero v′ in V. Then there exists a
nonzero G-invariant Zariski open subset O of V such that G(v)is closed and Gv is finite for
all v ∈ O.

Proof. We recall thatGC(R)0 ⊆ G ⊂ GC, whereGC is a semisimple algebraic group
defined overR. SinceGC

v = (Gv)C it follows thatGC
v is discrete. If U= {v ∈ V C :

GC
v is discrete}, then U is a nonemptyGC-invariant Zariski open subset ofV C. For v∈

U the stability groupGC
v is finite and hence reductive sinceGC is algebraic. Note that

the subgroupGv is also finite for v∈ U. It follows from a result of V. Popov [P] that
there exists aGC-invariant Zariski open subset U′ of V C such thatGC(v) is closed and
has maximal dimension dim G. An orbit G(v) has dimension dim G⇔ GC

v is discrete, and
henceU ′ ⊆ U . If O = U ′ ∩ V , then by (2.2) O is a G-invariant nonempty Zariski open
subset of V, and G(v) is closed withGv finite for all v ∈ O. �

Remark If Gv is discrete it is not necessarily true that G(v) is closed in V. For example,
let V be the 4-dimensional real vector space of homogeneous polynomials of degree 3 in
the variables x,y. Let G= SL(2,R) act on V by (gf)(x,y)= f((x,y)g). If f(x,y) = x2y,
then it is easy to compute thatGf = {Id}. On the other hand G(f) is not closed since if
g(t) = diag(e−t, et), theng(t)(f) = e−tf → 0 as t→ ∞.

We extend the previous result to show that G acts stably on V ifa single stabilizer Gv is
compact for some v∈ V. This result will also be strengthened later in (3.13).

Proposition 2.6. Suppose that Gv is compact for some nonzero v in V. Then



10 P. EBERLEIN AND M. JABLONSKI

1) There exists an open neighborhood U of v in V such that Gw is compact for all w∈
U.

2) G acts stably on V.

Proof. 1) Let d be a complete Riemannian metric on End(V), and let R> 0 be chosen
so that d(e,g)≤ R for all g ∈ Gv. We assert that for every R′ > R there exists an open
neighborhood U of v such that d(e,h)≤ R′ for all h ∈ (Gw)0 and all w∈ U. Suppose this
is false for some R′ > R, and let{vn} ⊂ V and{hn} ⊂ (Gvn

)0 be sequences such that
vn → v andd(e, hn) > R′ for all n. Since(Gvn

)0 is arc connected there exists a sequence
{gn} ⊂ (Gvn

)0 such thatd(e, gn) = R′ for all n. By the completeness of d there exists a
cluster point g of{gn}, and by continuity we see that g∈ Gv and d(e,g)= R′ > R. This
contradicts the choice of R.

The argument above and the completeness of d show that(Gw)0 is compact for all w in
some neighborhood U of v. It follows that Gw is compact for all w in U since(Gw)0 has
finite index in Gw.

2) It is known that there exists a nonempty Zariski open subset A of VC such that the
stabilizers{GC

v , v ∈ A} are conjugate inGC. See for example section 7 of [PV]. If U
is the open set discussed in 1), then Gv is compact for all v∈ U. It follows that Gv is
reductive and the center ofGv consists of semisimple automorphisms of V. The same is
true for(GC)v = (Gv)C for all v ∈ U, whereGC is the Lie algebra ofGC. Hence(GC)v

is completely reducible inV C for all v ∈ U by Theorem 4 in section 6.5 of [Bou]. Since
A ∩ V is Zariski open in V we see that A∩ V ∩ U is nonempty. In particular the generic
stabilizer(GC)w, w ∈ A, is completely reducible inV C. By Theorem 1 of [P] there exists
a nonempty Zariski open subset B ofV C such thatGC(v) has maximal dimension and is
closed inV C for all v ∈ B. If v ∈ O = B ∩ V , a nonempty Zariski open subset of V, then
G(v) has maximal dimension, and by (2.2) G(v) is closed in V. �

Connected components of the space of closed orbits

We consider the case that there exists a nonempty Zariski open subset O of V such that
G(v) is closed for all v∈ V. Since G has stabilizers of minimal dimension on a nonempty
Zariski open subset of V we shall also assume, without loss ofgenerality, that G has a
stabilizer of minimal dimension at every point v of O.

We consider the connected components of O. It is well known that a Zariski open set O
has only finitely many connected components. See for exampleTheorem 4 of [W].

Let M′ = M ∩ O. We first describe a decomposition of the setM′.
We recall from (1.11) that there is a continuous retractionπ : V → M such thatπ ◦ k =

k ◦ π all k ∈ K, andπ(v) ∈ G(v) by the remark following (1.11). Given v∈ O there exists
g ∈ G such thatπ(v) = g(v) since G(v) is closed in V. Henceπ(v) ∈ G(O) = O, and it
follows that the mapπ restricts to a continuous retractionπ : O → M ′.

Proposition 2.7. LetO1, ... Or denote the connected components of O. For1 ≤ α ≤ r let
Mα = Oα ∩ M. Then

1) The sets{Mα : 1 ≤ α ≤ r} are disjoint arc connected subsets ofM ′, andM ′ =
⋃r

α=1 Mα.
2)G0(Mα) = Oα for all α, whereG0 denotes the identity component of G.

Proof. 1) Note thatπ(Oα) ⊆ Mα ∩ Oα = Mα for all α sinceπ : V → M is defined
by a deformation retraction andOα is both open and closed in O. The set inclusion is an
equality sinceπ is the identity onM. The sets{Mα : 1 ≤ α ≤ r} are clearly disjoint since
they belong to the distinct components{Oα} of O, and each setMα is arc connected since
the open setOα is arc connected. Finally,M ′ = M ∩ O =

⋃r
α=1 M ∩ Oα =

⋃r
α=1 Mα.

2) We start with two preliminary results.
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Lemma 1 G0(M
′) = O.

Proof. SinceM ′ ⊂ O it follows thatG0(M
′) ⊂ G(O) ⊂ O. Conversely, let v∈

O. Thenπ(v) ∈ M ′ andπ(v) = g(v) for some g∈ G since G(v) is closed in V. By
(2.2) of [RS] we may writeg = k exp(X) for some k∈ K and some X∈ P. Then
w = k−1π(v) = exp(X)(v) ∈ M ′ sinceM ′ = M ∩ O is invariant under K. It follows
thatv = exp(−X)(w) ∈ G0(M

′), which proves thatO ⊂ G0(M
′). �

Lemma 2 G0(Mα) ⊆ π−1(Mα) = Oα.

Proof. We note that it follows immediately from the definitions ofOα andMα = π(Oα)
thatOα = π−1(Mα).

Let α and v∈ Mα be given. SinceMα ⊂ O and O is G - invariant it follows that
G0(v) ⊂ G(v) ⊂ O. SinceG0(v) is arc connected,Oα is a connected component of
O and v∈ Oα it follows thatG0(v) ⊂ Oα. The lemma is proved sincev ∈ Mα was
arbitrary. �

We complete the proof of 2) of the proposition. By Lemmas 1 and2 and 1) of the propo-
sition we haveO = G0(M

′) =
⋃r

α=1G0(Mα) ⊆ ⋃r
α=1Oα = O. HenceG0(Mα) = Oα

for all α by Lemma 2 since the sets{Oα} are disjoint. �

Proposition 2.8. For each1 ≤ α ≤ r there exist nonnegative integerskα, pα such that
a) dimKv = kα for all v ∈ Mα.
b) dimPv = pα for all v ∈ Mα.
c) dimMα = dim V − dimP + pα.

Proof. Assertions a) and b) are contained in the next result.
Lemma 1 For each1 ≤ α ≤ r there exist nonnegative integerskα, pα such that
a) dimKv = kα for all v ∈ Mα.
b) dimPv = pα for all v ∈ Mα.

Proof. Let v ∈ Mα ⊂ Oα ⊂ O be given. By continuity there exists an open set U ofMα

such that v∈ U anddimPw ≤ dimPv anddimKw ≤ dim Kv for all w∈ U. The stability
Lie algebras{Gw} are self adjoint by (1.1) and by hypothesis they have constant dimension
for all w ∈ O. Sincedim Gv = dim Kv + dimPv anddim Gw = dim Kw + dimPw

it follows thatdim Kv = dim Kw anddim Pv = dim Pw for all w ∈ U. The assertion of
Lemma 1 follows sinceMα is connected. �

We note that the elements of G permute the connected components{Oα} of O since O is
invariant under G. Similarly, the elements of K permute the connected components{Mα}
of M ′ sinceM ′ is invariant under K. For1 ≤ α ≤ r letGα = {g ∈ G : g(Oα) = Oα}
and letKα = {k ∈ K : k(Mα) = Mα}. Note thatG0 ⊆ Gα ⊂ G andK0 ⊆ Kα ⊂ K.
Moreover,Kα ⊂ Gα for all α sinceMα ⊂ k(Oα) ∩ Oα for all k ∈ Kα and allα.

To prove 2) we need some additional preliminary results.

Lemma 2 Let 1 ≤ α ≤ r and v∈ Oα be given. ThenGα(v) ∩ Mα = Kα(π(v)).

Proof. We show first that (*)π(v) ∈ Gα(v) ∩ Mα for all v ∈ Oα. Given v∈ Oα choose
g ∈ G such thatπ(v) = g(v). It follows thatπ(v) ∈ Oα ∩ g(Oα) sinceMα ⊂ Oα and it
follows that g∈ Oα. This proves (*).

SinceKα ⊂ Gα it follows from (*) thatKα(π(v)) ⊂ Gα(v) ∩ Mα. Now let w′ ∈
Gα(v) ∩ Mα be given, and let w= π(v) ∈ Gα(v) ∩ Mα. Thenw′ ∈ Gα(w) ∩ Mα,
and hencew′ = ϕ(w) for someϕ ∈ K by (1.2). It follows thatϕ ∈ Kα sincew′ ∈
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Mα ∩ ϕ(Mα). This proves thatGα(v) ∩ Mα ⊂ Kα(w) = Kα(π(v)) and completes the
proof of the lemma. �

Lemma 3 Let ρ : Oα / Gα → Mα / Kα be given byρ(Gα(v)) = Kα(π(v)) for all v
∈ Oα. Thenρ is a continuous bijection with respect to the quotient topologies.

Proof. If Gα(v) = Gα(w) for elements v,w ofOα, thenKα(π(v)) = Kα(π(w)) by
Lemma 2. Henceρ is well defined. Suppose thatρ(Gα(v)) = ρ(Gα(w)) for v,w ∈ Oα.
ThenKα(π(v)) = Kα(π(w)), which implies thatGα(v) ∩ Mα = Gα(w) ∩ Mα by
Lemma 2. HenceGα(v) = Gα(w), and we conclude thatρ is injective. Finally, if v∈ Mα,
thenπ(v) = v andρ(Gα(v)) = Kα(v). This shows thatρ is surjective. The continuity of
ρ follows routinely from the definitions ofρ and the quotient topologies. �

We now prove c) of the proposition by computing separately the dimensions ofOα / Gα

andMα / Kα and using Lemma 3.
For v∈ Mα the stabilizer(Gα)v has dimensionkα + pα by a) and b) of the proposition

sinceG0 ⊂ Gα ⊂ G andGv is self adjoint by (1.2). Hence for all v∈ Oα the dimension
of the stabilizer(Gα)v is kα + pα sinceGv has constant dimension for all v∈ Oα. We
conclude that the dimension of the orbitGα(v) is dim G−(kα + pα) for all v ∈ Oα. It
follows that the orbit spaceOα / Gα has dimension equal to dim V− dim G+ kα + pα.

The orbits ofKα in Mα all have dimension equal to dim K−kα by a) of the proposition
and the fact thatK0 ⊂ Kα ⊂ K. Hence the dimension of the orbit spaceMα / Kα equals
dim Mα− dim K + kα.

By Lemma 3 the dimensions ofOα / Gα andMα / Kα are equal. Recall thatdimP =
dim G − dim K = dim G − dim K. The assertion c) now follows from the formulas
above for the dimensions ofOα / Gα andMα / Kα. �

Example We use the adjoint representation to illustrate the resultsabove. We begin with
some terminology and basic facts.

Let G be a connected, noncompact, semisimple Lie group whoseLie algebraG has no
compact factors. LetV = G and let Ad : G→ GL(V) denote the adjoint representation.
For an element X ofG we note that the stabilizer Lie algebraGX equals the centralizer
Z(X).

Let G = K ⊕ P be a Cartan decomposition ofG determined by a Cartan involution
θ : G → G and its differential mapθ : G → G. If B1,B2 are two maximal abelian
subspaces ofP, thenB2 = Ad(ϕ)(B1) for some elementϕ of K = Fix(θ). Conversely, if
B is a maximal abelian subspace ofP, then Ad(ϕ)(B) is another for allϕ ∈ K since Ad K
leavesP invariant.

We letrank P denote the dimension of a maximal abelian subspace ofP. For a nonzero
element P∈ P we let EP denote the intersection of all maximal abelian subspaces ofP

that contain P.
A Cartan subalgebra of G is a maximal abelian subalgebraA of G such that ad Y :

G → G is semisimple for all Y∈ A.
Recall thatM denotes the set of minimal vectors inG for the action of G.

Proposition 2.9. Let G and V= G be as above. Then
1) M = {X ∈ G : GX = Z(X) is invariant under θ}.
2) Let O= {X ∈ G : GX = Z(X) hasminimal dimension andG(X) is closed inG}.

Then X∈ O ⇔ A = GX is a Cartan subalgebra ofG.
3) Let X∈ M ∩O and write X= K + P, whereK = (1/2)(X+θ(X)) ∈ KX = GX ∩ K

andP = (1/2)(X − θ(X)) ∈ PX = GX ∩ P. ThenPX = EP . Conversely, for every
nonzero P∈ P there exists K∈ K such that if X= K + P, then X∈ M ∩ O andPX = EP .
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4) Let r be any integer with1 ≤ r ≤ rank P. Then there exists X∈ M ∩ O such that
dimPX = r.

Proof. If X ∈ M, thenGX is θ-invariant by (1.2). Conversely, ifGX = Z(X) is θ-
invariant for X∈ O, then0 = [X, θ(X)] and it follows that X∈ M by Lemma 5.3.1 of
[RS]. This proves 1). We omit the proofs of 3) and 4) for reasons of space. We prove 2),
referring to results that will be proved in section 5. If X∈ O, then X is semisimple by (5.5)
andZ(X) = GX is a Cartan subalgebra by (5.3). Conversely, ifZ(X) = GX is a Cartan
subalgebra, then X∈ Z(X) is semisimple and X∈ O by (5.3) and (5.5). �

3. THE M-FUNCTION

The result (2.5) gives a useful criterion for the existence of a nonempty Zariski open
subset O such that G(v) is closed for all v in O. However, it gives no criterion for determin-
ing if the G orbit of a given vector v in V is closed in V. In this section we consider a G-
invariant function M : V→ R with finitely many values such that G(v) is closed if M(v) is
negative. This result is the real analogue of a result of Mumford. The function M in this
context has also been used by A. Marian [Ma].

The µ− function

Let 〈, 〉 be an inner product for which G is self adjoint in its action onV, and letG =
K ⊕ P be a Cartan decomposition compatible with〈, 〉. Let V ′,P′ denote the nonzero
vectors in V,P respectively.

For X ∈ P′ let ΛX be the set of eigenvalues of X, and forµ ∈ ΛX let Vµ,X denote the
eigenspace in V corresponding toµ. For v∈ V′ and X∈ P′ letµ(X, v) denote the smallest
eigenvalueµ such that v has a nonzero component in Vµ,X .

We collect some properties of the functionµ : P′ x V ′ → R.

Proposition 3.1. Let (Y,v)∈ P′ x V ′ be given.
1) µ(Y, v) = 0 ⇔ the following two conditions hold

a) The component v0 of v in Ker Y is nonzero
b) etY (v) → v0 as t→ −∞.

2) µ(Y, v) > 0 ⇔ etY (v) → 0 as t→ −∞.

Proof. We prove only 1) since the proof of 2) is just a slight modification of the proof of
1). For Y ∈ P′ let Λ

′

Y denote the set of nonzero eigenvalues of Y acting on V. Write
v = v0 +

∑

λ∈Λ
′

Y

vλ, wherev0 ∈ Ker Y andvλ ∈ Vλ. Then

(*) etY (v) = v0 +
∑

λ∈Λ
′

Y

etλvλ.

If µ(Y, v) = 0, thenv0 is nonzero andλ > 0 whenevervλ is nonzero. It follows from
(*) that etY (v) → v0 as t→ −∞. Hence conditions a) and b) of 1) hold. Conversely, if
these two conditions hold, then it is easy to see from (*) thatµ(Y, v) = 0. �

Next we prove a semicontinuity property ofµ : P′ x V ′ → R.

Proposition 3.2. Let Y,v be nonzero vectors inP,V respectively. Givenǫ > 0 there exist
neighborhoods U⊆ V of v and O⊆ P of Y such thatµ(Y ′, v′) < µ(Y, v) + ǫ for all
(Y ′, v′) ∈ O x U.

Proof. Suppose the assertion is false for some nonzero vectors v∈ V and Y ∈ P. Then
there existǫ > 0 and sequences{vn} ⊂ V and{Yn} ⊂ P such that(Yn, vn) → (Y, v) as n
→ ∞ andµ(Yn, vn) ≥ µ(Y, v)+ ǫ for all n. Using the fact thatYn → Y as n→ ∞ and by
passing to a subsequence we conclude that there exists an integer N> 0 with the following
properties :
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a) For every n, Yn has N distinct eigenvalues{λ(n)
1 , ... , λ

(n)
N } and there exist orthogonal

subspaces{V (n)
1 , ... , V

(n)
N } of V such thatV = V

(n)
1 ⊕ ... ⊕ V

(n)
N andYn = λ

(n)
i Id on

V
(n)
i for every n.

b) There exist subspacesV1, ... , VN of V and real numbersλ1, ... , λN such that for
1 ≤ i ≤ N we haveλ(n)

i → λi as n→ ∞ andV (n)
i → Vi (uniformly on compact subsets)

as n→ ∞.
c) V = V1 ⊕ ... ⊕ VN , orthogonal direct sum, andY = λi Id onVi for 1 ≤ i ≤ N .
By c) the eigenvalues of Y (possibly with repetition) are{λ1, ... , λN}. Choose k such

thatµ(Y, v) = λk. Then v has a nonzero component in Vk, and by b) we conclude that

there exists a positive integer N0 such that vn has a nonzero component inV (n)
k for all n

≥ N0. Hence for n≥ N0 we haveλ(n)
k ≥ µ(Yn, vn) ≥ µ(Y, v) + ǫ. Sinceλ(n)

k → λk as
n → ∞ by b) we conclude thatµ(Y, v) = λk ≥ µ(Y, v) + ǫ, which is impossible. This
completes the proof of the lemma. �

The M − function

We define M : V→ R by M(v) = max{µ(X, v) : X ∈ P, |X | = 1}.
This definition is closely modeled on the discussion of L. Ness in [Nes]. We recall some

results about the M function from [Ma].

Proposition 3.3. The function M : V→ R has the following properties.
1) M is constant on G-orbits
2) M has finitely many values
3) Let K be a maximal compact subgroup of G with Lie algebraK. LetA be a maximal

abelian subalgebra ofP, and define MA : V→ R by MA(v) = max{µ(X, v) : X ∈
A, |X | = 1}. Then M(v)= max{MA(kv) : k ∈ K}.

Proposition 3.4. Let T be an element of GL(V) that commutes with the elements ofG. Then
M(T(v))= M(v) for all nonzero elements v of V.

Proof. It suffices to show thatµ(X, v) = µ(X,T (v)) for all nonzero v∈ V and all nonzero
X ∈ P. Given a nonzero X inP let Λ denote the eigenvalues of X, and forλ ∈ Λ let Vλ

denote theλ - eigenspace for X. Since T commutes with the elements of G it commutes
with the elements ofG, and in particular, T commutes with X. It follows that T leaves
invariant each eigenspace Vλ. If v ∈ V has a nonzero component vλ in Vλ, then T(v) also
has a nonzero component T(vλ) in Vλ since T is invertible. It follows immediately that
µ(X, v) = µ(X,T (v)). �

Corollary 3.5. Let V be a G-module and let p be an integer with2 ≤ p ≤ dim V. Let
G act diagonally on W= V x ... x V (p times). LetW0 = {v = (v1, ... vp) ∈ W :
{v1, ... , vp} is linearly independent
in V}. For v = (v1, ... vp) ∈ W0 let span(v)= span{v1, ... vp} ⊂ V . If v,w are elements
ofW0 with span(v)= span(w) then M(v)= M(w).

Proof. Fix the standard basis{e1, ... , ep} of Rp. Then W= V x ... x V (p times) is
isomorphic as a vector space to V⊗Rp under the map(v1, ... , vp) → ∑ p

i=1vi ⊗ ei. Let
G x GL(p,R) act on V⊗ R

p by (g, h)(v ⊗ ζ) = g(v) ⊗ h(ζ). Define an action of G x
GL(p,R) on W = V x ... x V (p times) by(g, h)(v1, ... , vp) = (w1, ... , wp), where
wj =

∑ p
i=1hjig(vi) andh(ei) =

∑ p
j=1hjiej . It is routine to check that the isomorphism

given above between W= V x ... x V (p times) and V⊗Rp preserves the actions of G x
GL(p,R). It is obvious that the actions of G and GL(p,R) commute on V⊗ Rp, and hence
they also commute on W= V x ... x V (p times).

Now suppose thatv = (v1, ... , vp) andw = (w1, ... , wp) are elements ofW0 such
that span(v)= span(w). Then there exists a unique element h= (hij) of GL(p,R) such that
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wj =
∑ p

i=1hjivi for 1 ≤ i ≤ p. Thenh(v) = w and it follows from the preceding result
that M(v)= M(w) since h∈ GL(W ) commutes with G. �

Proposition 3.6. For every nonzero element v∈ V there exists a neighborhood O of v in V
such that M(w)≤ M(v) for all w∈ O.

Proof. Suppose the statement of the proposition is false for some nonzero element v in
V. Then there exists a sequence{vn} ⊂ V such thatvn → v as n→ ∞ andM(vn) >
M(v) for all n. Since M has only finitely many values we may assume, by passing to a
subsequence, thatM(vn) = c > M(v) for some real number c and for all n. Choose
unit vectors{βn} ⊂ P such thatc = M(vn) = µ(βn, vn) for all n. Passing to a further
subsequence let{βn} converge to a unit vectorβ ∈ P. Chooseǫ > 0 such thatc > M(v)+
ǫ. By (3.2) above there exists a positive integer N0 such thatµ(βn, vn) < µ(β, v) + ǫ for
n ≥ N0. Hencec = M(vn) = µ(βn, vn) < µ(β, v) + ǫ ≤ M(v) + ǫ < c, which is
impossible. �

Proposition 3.7. Let V,W be G-modules, and let V⊕W be the induced G-module. Then
M(v,w)≤ min{M(v),M(w)} for all nonzero vectors v∈ V and w∈ W.

Proof. Let X be a unit vector inP and let v,w be nonzero vectors in V,W respectively.
By the definitions ofµ and M it follows thatµ(X, (v, w)) = min{µ(X, v), µ(X,w)} ≤
min{M(v),M(w)}. The result follows since X is an arbitrary unit vector inP. �

Null cone

We say that v∈ V lies in thenull cone if G(v) contains the zero vector. The next two
results are the real analogues of Theorem 3.2 of [Nes].

Proposition 3.8. For v∈ V the following conditions are equivalent :
1) v lies in the null cone
2) M(v)> 0.
3) There exists X∈ P such thatetX(v) → 0 as t→ + ∞.

Proof. We show that 1)⇒ 3). By (1.6) there exists X∈ P andv0 ∈ V such thatetX(v) →
v0 as t→ + ∞ and G(v0) is closed in V. By 1){0} and G(v0) are closed orbits inG(v),
and hence v0 = 0 by (1.5).

We show that 3)⇒ 2). If etX(v) → 0 as t→ + ∞ for some nonzero vector X∈ P,
thenµ(−X, v) > 0 by (3.1). Without loss of generality we may assume that X is a unit
vector, and hence M(v)≥ µ(−X, v) > 0.

We show that 2)⇒ 1). Choose a unit vector Y∈ P so that M(v)= µ(Y, v) > 0. Then
etY (v) → 0 as t→ −∞ by (3.1). �

Stable vectors

Following [Mu] and [Nes] we call a nonzero vector v∈ V stable if M(v) < 0. By
(3.6) the stable vectors form an open set in the Hausdorff topology of V. We shall see later
that the set of stable vectors is not always Zariski open in V.See Example 1 in section
5. In the complex setting for a linear action the stable vectors, where M is negative, are
those vectors where G(v) is closed and Gv is discrete, and here the stable vectors form a
nonempty Zariski open subset.

Proposition 3.9. The following conditions are equivalent for a nonzero vector v in V :
1) M(v)< 0; that is, v is stable.
2) The orbit G(v) is closed and the stability group Gv is compact.
3) The map Fv : G → [0,∞) is proper, whereFv(g) = |g(v)|2.
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Remarks

1) The inner product〈, 〉 on V relative to which G is self adjoint is not unique, and the
values of the M function depend on the choice of〈, 〉. However, equivalence 2) of the result
above shows that the stable vectors of V are independent of the choice of〈, 〉.

2) It is easy to see that the map Fv : G→ [0,∞) is proper⇔ the map fv : G→ V given
by fv(g) = g(v) is proper. Hence the result above extends (1.9).

Proof. We prove 1)⇒ 2). Since G is semisimple G is a closed subgroup of SL(V). (See the
main theorem in section 6 of [Mo1]). If G(v) is not closed, then the mapfv : G→ V given
by fv(g) = g(v) is not a proper map by (1.9). By (3.1) and the lemma in the proofof (1.9)
it follows thatµ(Y, v) = 0 for some nonzero element Y∈ P. Hence M(v)≥ µ(Y, v) = 0,
which contradicts 1). Hence G(v) is closed in V. If Gv were noncompact, then it would
follow immediately thatfv : G → V is not a proper map, which would lead to the same
contradiction as above. Hence 1)⇒ 2).

We prove 2)⇒ 3). If Fv : G → R is not proper, thenfv : G → V is also not proper,
which contradicts (1.9).

We prove 3)⇒ 1). Suppose that M(v)≥ 0 and choose a unit vector Y∈ P such that
µ(Y, v) = M(v) ≥ 0. By (3.1) there exist a nonzero vector Y∈ P and a vectorv0 ∈
V such thatetY (v) → v0 as t→ −∞. Hence Fv : G → [0,∞) is not proper since
Fv(e

tY ) → |v0|2 as t→ −∞. This contradiction to the hypothesis of 3) shows that 3)
⇒ 1). �

In the remainder of this section we derive some useful applications of the result above.

Corollary 3.10. Suppose M(v′) < 0 for some nonzero vector v′ of V. Then G acts stably on
V.

Proof. If U = {v ∈ V : M(v) < 0}, then U is open in the Hausdorff topology of V by
(3.6). If U ′ = {v ∈ V : G(v) has maximal dimension}, then U′ is a nonempty Zariski
open subset of V. Since U′ is dense in V relative to the Hausdorff topology it follows that
U ∩ U ′ is nonempty. Ifv ∈ U ∩ U ′, then G(v) is closed by (3.9) and G(v) has maximal
dimension since v∈ U ′. The assertion now follows from (2.1). �

Remark Let G act stably on V, and letO = {v ∈ V : G(v) is closed and dim G(v) is maximal}
If M(v ′) < 0 for some nonzero vector v′ of V, then by (3.6){v ∈ O : M(v) < 0} is a
nonempty open subset of O in the Hausdorff topology of V. However, this subset may not
be Zariski open ; in particular it may not be a dense subset of O. See Example 1 in section
5.

Corollary 3.11. Let v ∈ V be a nonzero minimal vector. The following conditions are
equivalent :

1) M(v)< 0
2) G(v) is closed and Gv is compact.
3) The moment map m : V→ P has maximal rank at v.
4) If X(v) = 0 for some X∈ P, then X= 0.

Proof. The conditions 3) and 4) are equivalent by (1.7). Conditions1) and 2) are equivalent
by the preceding result. Since v is minimal the Lie algebraGv of Gv is self adjoint by
(1.1),and henceGv = Kv ⊕ Pv. It follows thatGv is compact⇔ Pv = {0}. Hence 2)⇒
4). Since v is minimal G(v) is closed by (1.2) and hence 4)⇒ 2). �

Corollary 3.12. Suppose that Gv′ is discrete for some nonzero vector v′ ∈ V. Then there
exists a nonempty G - invariant Zariski open subset O of V suchthat G(v) is closed, Gv is
finite and M(v)< 0 for all v ∈ O.
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Proof. By (2.5) there exists a nonempty G - invariant Zariski open subset O of V such that
G(v) is closed and Gv is finite for all v∈ O. It now follows from (3.9) that M(v)< 0 for all
v ∈ O. �

Proposition 3.13. Suppose that Gv′ is compact for some nonzero vector v′ ∈ V. Then G
acts stably on V, and M(v)< 0 for some nonzero vector v∈ V.

Proof. G acts stably on V by 2) of (2.6). Let O be a nonempty Zariski open subset of
V such that G(v) has maximal dimension and is closed for all v∈ O. If U = {v ∈ V :
Gv is compact}, then U is nonempty and open in V by 1) of (2.6). If v∈ O ∩ U , then
M(v) < 0 by (3.9). �

Remarks

1) Examples 1 and 2 of section 5 illustrate the conditions of (3.13).
2) It is not necessarily true that ifGv is compact then M(v)< 0. The remark following

(2.5) gives an example whereGv = {Id} and M(v)> 0.
The next application of (3.9) shows that stability of a vector v is, in a certain sense,

inherited by closed subgroups H of G.

Corollary 3.14. Let H be a closed subgroup of G. If MG(v)< 0, then H(v) is closed and
Hv is compact.

Proof. Let w ∈ H(v), and let{hn} ⊂ H ⊂ G be a sequence such thathn(v) → w as n
→ ∞. Since MG(v)< 0 it follows from 3) of (3.9) that{hn} has a subsequence converging
to an element h of G, and h∈ H since H is closed in G. Hencew = h(v) ∈ H(v), which
proves that H(v) is closed in V. By 2) of (3.9) Gv is compact. Since H is closed in G, Gv is
compact andHv = H ∩Gv it follows thatHv is compact. �

Remark The corollary above is false if G(v) is closed butMG(v) = 0.
Example LetH = SL(2,R) act by conjugation onH = {A ∈ M(2,R) : trace A =

0.}. Let G= H x H act on V= H ⊕ H by (h1, h2)(X,Y ) = (h1Xh
−1
1 , h2Xh

−1
2 ). Define

elements v,w inH by v =

(

1 0
0 −1

)

andw =

(

1 −2
0 −1

)

. Note that hvh−1 = w if h

=

(

1 1
0 1

)

∈ H, and hence H(v)= H(w). The discussion later in Example 1 of section

5 shows that H(v)= H(w) is closed inH, and hence G((v,w))= (H(v),H(w)) is closed in
V = H ⊕ H. Note that the stability groupG(v,w) = Hv x Hw is noncompact sinceHv

consists of the diagonal matrices in H andHw = hHvh
−1. It follows thatMG(v) ≥ 0 by

(3.9), and we conclude thatMG(v) = 0 by (3.8) since G((v,w)) is closed.
Let ∆ = {(h, h) ∈ G : h ∈ H}. Clearly∆ is a closed subgroup of G, but we show that

the orbit∆((v,w)) is not closed in V. If h(t)= diag (e−t, et) and g(t)= (h(t), h(t)) ∈ ∆,
then g(t)((v,w))→ (v,v) as t→ +∞. Hence (v,v)∈ ∆((v, w)). However,∆(v,w) =

Hv ∩ Hw = ±{Id}, while∆(v,v) contains g(t) for all t. It follows that (v,v)∈ ∆((v, w))−
∆((v, w)) since∆(v,v) is not conjugate in∆ to∆(v,w). We conclude that the orbit∆((v, w))
is not closed in V.

4. THE INDEX METHOD

Let V be a nontrivial G-module. For a nonzero element X ofP let IG(X) denote the
largest dimension of a subspace W of V on which X is negative definite. Let IG(V ) =
min{IG(X) : 0 6= X ∈ P}. We callIG(V ) theindex of G acting on V. Note that trace X
= 0 for every X∈ P since G is semisimple, which implies that[G,G] = G. Hence every
nonzero element X ofP has a negative eigenvalue. This shows thatIG(V ) ≥ 1 since V is
a nontrivial G-module.
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The index of G apparently depends on the choice of a G-compatible inner product〈, 〉 on
V ; that is, an inner product〈, 〉 such that G is invariant under the involutionθ : g → (gt)−1.
However, this is not the case.

Proposition 4.1. The index of G acting on V does not depend on the choice of G-compatible
inner product〈, 〉.
Proof. Let 〈, 〉1 and〈, 〉2 be two G-compatible inner products on V, and letG = K1 ⊕ P1

andG = K2 ⊕ P2 denote the corresponding Cartan decompositions. It is known that
there exists g∈ G such thatK2 = Ad(g)(K1) andP2 = Ad(g)(P1) ; see for example
Theorem 7.2 of Chapter III in [H]. Since X and Ad(g)(X) actingon V have the same
eigenvalues for all X∈ P1 if follows that I1

X(V ) = I2
Ad(g)(X)(V ). It follows immediately

thatI1
G(V ) = I2

G(V ). �

Proposition 4.2. Let K denote a maximal compact subgroup of G. IfIG(V ) > dim K,
then{v ∈ V : M(v) < 0} is an open subset of V with full measure in V.

Proof. We carry out the proof in several steps

(1) Weight space decomposition of V
Let 〈, 〉 be an inner product on V relative to which G is self adjoint. Let G = K ⊕ P be

the Cartan decomposition ofG defined by the Cartan involutionθ : g → (gt)−1 that leaves
GC(R) invariant. Fix a maximal abelian subspaceA of P. It is well known that every
maximal abelian subspace ofP has the form Ad(k)(A) for some k∈ K, and every element
of P lies in some maximal abelian subspace ofP. The elements ofP are symmetric with
respect to〈, 〉, and henceA is a commuting family of symmetric linear maps on V.

For λ ∈ A∗ let Vλ = {v ∈ V : X(v) = λ(X)v for all X ∈ A}. If Λ = {λ ∈ A∗ :
Vλ 6= 0}, thenΛ is a finite set, called theweights of the representation, and we obtain the
weight space decomposition

(*) V = V0 ⊕
∑

λ∈ΛVλ

whereV0 = {v ∈ V : X(v) = 0 for all X ∈ A}.

(2) The subspacesV +
X andV −

X

For a nonzero element X ofA we letΛ+
X = {λ ∈ Λ : λ(X) > 0} andΛ−

X = {λ ∈ Λ :

λ(X) < 0}. We defineV +
X = V0 ⊕ ∑

λ∈Λ+

X

Vλ andV −
X =

∑

λ∈Λ−

X

Vλ. The following
assertions follow routinely from the definitions :

a)µ(X, v) ≥ 0 for some nonzero X∈ A ⇔ v ∈ V +
X .

b) IG(X) = dim V −
X .

c) V = V +
X ⊕ V −

X .

(3) There exists a finite set of nonzero vectors{X1, ... , XN} ⊂ A such that for every
nonzero X∈ A there exists1 ≤ i ≤ N such thatV +

X = V +
Xi

.
SinceΛ is a finite set the number of distinct subsets{Λ+

X : 0 6= X ∈ A} is also finite.
Choose nonzero elements{X1, ... , XN} ⊂ A such that for every nonzero X∈ P there
exists1 ≤ i ≤ N such thatΛ+

X = Λ+
Xi

. This is the desired set.

(4) {v ∈ V : M(v) ≥ 0} =
⋃

N
i=1K(V +

Xi
), where{X1, ... , XN} are chosen as in (3).

By (2) it follows that M(v)≥ 0 for all v ∈ V +
Xi
, 1 ≤ i ≤ N . From the G-invariance of M

we conclude that M(v)≥ 0 for all v ∈
⋃

N
i=1K(V +

Xi
). Conversely, let v be a nonzero vector

in V such that M(v)≥ 0. Let X be a unit vector inP such thatµ(X, v) = M(v) ≥ 0.
Choose k∈ K such that Y = Ad(k)(X)∈ A. Thenµ(Y, k(v)) = µ(X, v) ≥ 0. By (2)
and (3) it follows that k(v)∈ V +

Y = V +
Xi

for some i,1 ≤ i ≤ N . Hence v∈ K(V +
Xi

) ⊂
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⋃

N
i=1K(V +

Xi
), which completes the proof of (4).

We now complete the proof of the proposition. By hypothesis and (2) we obtain dim K
< IG(V ) ≤ IG(X) = dim V −

X = dim V − dim V +
X for all nonzero elements X ofP.

For 1 ≤ i ≤ N we defineϕi : K x V +
Xi

→ V by ϕi(k, v) = k(v). Note that dim(K x
V +

Xi
) = dim K + dim V +

Xi
< dim V for every i, and henceK(V +

Xi
) = ϕi(K x V +

Xi
) has

measure zero in V. Hence{v ∈ V : M(v) ≥ 0} has measure zero in V by (4). �

Proposition 4.3. Let{V1, ... , VN} be nontrivial G-modules, and letV = V1 x ... xVN be
the corresponding G-module. ThenIG(V ) ≥ ∑

N
i=1IG(Vi).

Proof. Let X ∈ A be a nonzero element. Using the notation and discussion of (2) above
it is easy to see thatV −

X =
∑

N
i=1(Vi)

−
X andIV

G (X) =
∑

N
i=1I

Vi

G (X) ≥ ∑

N
i=1IG(Vi).

If X ∈ P is any nonzero element, thenY = Ad(k)(X) ∈ A for some k∈ K. It follows
that IV

G (X) = IV
G (Y ) since X and Y have the same eigenvalues on V. HenceIG(V ) =

min{IV
G (X) : 0 6= X ∈ P} = min{IV

G (X) : 0 6= X ∈ A} ≥ ∑

N
i=1IG(Vi). �

Corollary 4.4. Let V be a G-module that is the direct sum of p> dim K nontrivial
submodules. Then{v ∈ V : M(v) < 0} is an open subset of full measure in V.

Proof. For each of the submodules Vi the index of G is at least 1 by the discussion at the
beginning of this section. HenceIG(V ) ≥ p > dim K by (4.3), and the assertion now
follows from (4.2). �

We can strengthen the result above in the case that the G-submodules are all equivalent.

Proposition 4.5. Let V be a nontrivial G-module of dimension n, and let G act diagonally
onV p = V ⊕ ... ⊕ V (p times), where p is any positive integer. Then

1) If p > n, then there exists a nonempty Zariski open subset O of V such thatM(v) < 0
for all v∈ O.

2) If p = n, then there exists a negative real number c and a nonempty Zariski open
subset O ofV p such that M(v)= c for all v ∈ O.

3) If G = SL(V) and1 ≤ p ≤ n− 1, then there exists a positive real number c such that
M(v) = c for all nonzero v inV p.

Proof. 1) By (3.12) it suffices to prove thatGv = {0} for some nonzero v∈ V p. Since
p > n there existsv = (v1, ... , vp) ∈ V p such thatV = span{v1, ... , vp}. If X ∈ Gv,
then0 = X(v) = (X(v1), ... , X(vp)), which implies thatX(vi) = 0 for 1 ≤ i ≤ p.
HenceX = 0.

2) Sincep = n there exists a nonempty Zariski open subset O ofV p such that{v1, ... , vn}
is a basis of V for allv = (v1, ... , vn) ∈ O. By (3.5) it follows that there exists a real num-
ber c such that M(v)= c for all v ∈ O. To show that c is negative it suffices by (3.12) to
show thatGv = {0} for every v∈ O. This follows as in 1) above.

3) Let v = (v1, ... , vp) be a nonzero element ofV p, where1 ≤ p ≤ n − 1, and let X
∈ P be an element such thatX = −Id on span(v). ThenetX(v) → 0 as t→ ∞, and it
follows from (3.8) that M(v)> 0. Since G acts transitively onV p and M is G-invariant we
conclude that M is constant onV p − {0}. �

Remark If G = SL(V), then by the argument above a generic stabilizerGv is discrete
for G acting onV n, n = dim V. By (3.11) and the result above a generic orbit G(v) is
therefore a closed hypersurface inV n. It is not difficult to show thatv = (v1, ... vn) ∈ V n

is minimal for the G action⇔ there exists a positive constant c such that〈vi, vj〉 = c δij .
Note that GL(V) acts transitively onV n − {0}.

For the index of G on a tensor product we have the following
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Proposition 4.6. Let V,W be G-modules. ThenIG(V ⊗W ) ≥ IG(V ) · IGW .

Proof. If 0 6= X ∈ A, then X is negative definite onV −
X ⊗W−

X . HenceIV ⊗W
G (X) ≥

(dim V −
X ) · (dim W−

X ) = IV
G (X) · IW

G (X) ≥ IG(V ) · IG(W ). If 0 6= X ∈ P and
Y = Ad(k)(X) ∈ A for some k∈K, thenIV ⊗W

G (X) = IV ⊗W
G (Y ) ≥ IG(V )·IG(W ). �

We now apply the results above to the representations of G= SL(2,R).

Proposition 4.7. Let G= SL(2,R), and let V be a G-module with dim V≥ 4. If V has no
trivial G-submodules, then{v ∈ V : M(v) < 0} is a nonempty open subset of full measure
in V.

Proof. Let ρ : G → GL(V ) be a rational representation. Let〈, 〉0 be the standard inner
product onR2, and letθ0,K0,P0, 〈, 〉, θ,K andP be defined as in the beginning of section
(1.1). The elements ofK0 andP0 are skew symmetric and symmetric 2x2 matrices respec-
tively. Relative to〈, 〉 the elements ofK = ρ(K0) andP = ρ(P0) are symmetric and skew
symmetric linear transformations on V respectively. The maximal compact subgroupρ(K)
of ρ(G) is 1-dimensional, andP is 2-dimensional.

If V is not irreducible, then the result follows by (4.4). Suppose now that V is irreducible.
We need a preliminary result.

Lemma Let H0 be any nonzero element ofP0. Then there exist c> 0, and X,Y∈ G

such that if H′ = cH0, then [H′,X] =2X, [H′,Y] = − 2Y and [X,Y] = H′.

Proof. If H0 =

(

1 0
0 −1

)

, X =

(

0 1
0 0

)

andY =

(

0 0
1 0

)

, then{H0, X, Y }
satisfies the conditions of the Lemma with c= 1. Hence{Ad(ϕ)H0, Ad(ϕ)X,Ad(ϕ)Y }
also satisfies the conditions of the lemma for allϕ ∈ K. The group Ad K acts transitively
on the lines through the origin inP0 since dimP0 = 2. This completes the proof. �

We complete the proof of the proposition by showing thatIG(H) ≥ 2 for all nonzero H
∈ P = ρ(P0). By the lemma above, for any nonzero element H0 of P0 there exist c> 0
and elements X,Y ofG such that H′ = cH0, X and Y satisfy the conditions of the lemma. It
suffices to prove thatIG(ρ(H ′)) ≥ 2 sinceIG(H) = IG(cH) for all positive real numbers
c and all H∈ P. By the representation theory ofG = sl(2,R) it is well known that the
eigenvalues ofρ(H ′) decrease from dim V−1 to 1− dim V in jumps of two. Since dim V
≥ 4 it follows thatρ(H ′) has at least two distinct negative eigenvalues. HenceIG(H) =
IG(H ′) ≥ 2 for all nonzero H∈ P, and it follows thatIG(V ) ≥ 2 > 1 = dim ρ(K). The
result now follows from (4.2). �

Corollary 4.8. Let G= SL(2,R), and let V be a G-module with dim V≥ 3. If V has no
trivial G-submodules, then G acts stably on V.

Proof. If dim V ≥ 4, then the assertion follows from the previous result and (3.10). If dim
V = 3, then the G-module is equivalent to the adjoint representation of G onG = sl(2,R)
since V has no trivial G-submodules. In this case the assertion follows from Example 1 in
section 5. �

Remark The strict inequalityIG(V ) > dim K in the statement of (4.2) cannot be
relaxed to the weak inequalityIG(V ) ≥ dim K. If G = SL(2,R), V = G and G acts on
V by the adjoint representation,then the eigenvalues of a nonzero element X∈ P areλ, 0
and−λ for some positive numberλ. HenceIG(V ) = dim K = 1. However, M(v)≥ 0 for
all v in a nonempty subset of V that is Hausdorff open but not Zariski open. It is still true
that G(v) is closed for v in a nonempty Zariski open subset of V. See Example 1 in section
5.

If V = R
2 and G acts on V in the standard way, then G(v)= R

2 − {0} for all nonzero
v ∈ V, and hence M(v)> 0 for all nonzero v∈ R2 by (3.8).
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5. EXAMPLES

In this section we compute information about the M-functionin several cases, and we
give special attention to the case that M is negative somewhere on V.

Example 1(Adjoint representation of SL(2,R)) Let G = SL(2,R) and let V= G =
{A ∈ M(2,R) : traceA = 0}. We let G act on V by conjugation. Let〈, 〉 be the
inner product on V given by〈A,B〉 = trace ABt, where Bt denotes the standard transpose
operation in M(2,R). For g∈G let g∗ denote the metric transpose of g acting on V relative to
the inner product〈, 〉. A routine computation shows thatg∗ = gt, and we conclude that G is
self adjoint relative to〈, 〉. Moreover, the Cartan involution onG is the standard one, and the
corresponding Cartan decompositionG = K ⊕ P is given byK = {X ∈ G : Xt = −X}
andP = {X ∈ G : Xt = X}
Proposition 5.1. LetO1 = {A ∈ V : det A < 0}, O2 = {A ∈ V : det A > 0} and
Σ = {A ∈ V : det A = 0} = {A ∈ V : A2 = 0}. Then

a) The setsO1, O2 andΣ are G-invariant, and V is their disjoint union. The setsO1 and
O2 are nonempty open subsets of V in the standard topology of V.

b) If M denotes the minimal vectors for the action of G on V, thenM = K ∪ P.
c) G(A) is closed in V ifA ∈ O1 ∪ O2. The zero matrix lies in the closure of G(A) if

A∈ Σ.
d) M(A)= 0 for all A ∈ O1 ; M(A) = −

√
2/2 for all A ∈ O2 and M(A)=

√
2/2 for all

A∈ Σ.

Remark Assertion d) shows that{v ∈ V : M(v) < 0} is nonempty and open in the
Hausdorff topology of V but is not open in the Zariski topology of V. Assertion d) also
shows that{v ∈ V : M(v) = 0} has nonempty interior.

Proof. Assertion a) is clearly true. We prove b). By Example 3 of (1.1) we know that A
∈ M ⇔ AAt = AtA. Since A∈ M(2,R) it is easy to show that A∈ M ⇔ A = At or
A = −At, which proves b).

We prove c). Recall that G(A) is closed in V⇔ G(A) ∩ M is nonempty. Assertion c)
now follows immediately from b) and the next result.

Lemma 1) If A ∈ O1, then there exists g∈G such that g(A)= gAg−1 =

(

λ 0
0 −λ

)

∈

P, whereλ = |det A|1/2.

2) If A ∈ O2, then there exists g∈ G such that g(A)= gAg−1 =

(

0 −λ
λ 0

)

or
(

0 λ
−λ 0

)

∈ K, whereλ = (det A)1/2.

3) If A ∈ Σ, then there exists a sequence{gn} ⊂ G such thatgn(A) =

(

0 λn

0 0

)

,

whereλn → 0 as n→ ∞.

Proof. For A∈ V = G we recall that the characteristic polynomial of A acting in standard
fashion onR2 is given bycA(x) = x2 + detA.

1) If A ∈ O1, then A has eigenvaluesλ and−λ, whereλ = |det A|1/2. Let {v1, v2}
be a positively oriented basis ofR2 such thatA(v1) = λ v1 andA(v2) = −λ v2. Let g
∈ GL(2,R) be an element with det g> 0 such thatg(v1) = e1 andg(v2) = e2, where
{e1, e2} is the standard basis ofR2. Write g = ch, wherec > 0 and det h= 1. Then

h(A) = hAh−1 = gAg−1 =

(

λ 0
0 −λ

)

∈ P.

2) If A ∈ O2, then A has eigenvaluesλi and−λi, whereλ = (det A)1/2. Let v1, v2 be
vectors in V, not both zero, such thatA(v1 + iv2) = i λ(v1 + iv2). It is routine to check
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thatv1 andv2 are linearly independent,A(v1) = −λ v2 andA(v2) = λ v1. Hence A has

matrix

(

0 λ
−λ 0

)

relative to the basis{v1, v2} of R
2. If the basis{v1, v2} is positively

oriented, then choose g∈ GL(2,R) with detg > 0, g(v1) = e1 andg(v2) = e2. If the
basis{v1, v2} is negatively oriented, then choose g∈ GL(2,R) with detg > 0, g(v1) = e1
andg(v2) = −e2. In either case choose c> 0 and h in G such thatg = ch. It follows that

hAh−1 = gAg−1 =

(

0 λ
−λ 0

)

in the first case andhAh−1 = gAg−1 =

(

0 −λ
λ 0

)

in the second case.
3) If A ∈ Σ, thenA2 = 0. It suffices to consider the case that A is nonzero. Choose

a basisv1, v2 of R2 such thatA(v1) = 0 andA(v2) = v1. As in 2) we choose g∈
GL(2,R) with det g > 0 such thatg(v1) = e1 and g(v2) = e2 or g(v1) = e1 and
g(v2) = −e2, depending upon whether{v1, v2} is a positively oriented basis or not. If

we write g = ch, wherec > 0 and h∈ G, thenhAh−1 = gAg−1 =

(

0 1
0 0

)

or
(

0 −1
0 0

)

. If hn =

(

1/n 0
0 n

)

∈ G, then(hnh)A(hnh)
−1 =

(

0 n−2

0 0

)

→ 0

or (hnh)A(hnh)
−1 =

(

0 −n−2

0 0

)

→ 0 as n→ ∞. This completes the proof of the

lemma. �

We prove assertion d) of the proposition. LetH0 =

(

1 0
0 −1

)

,X =

(

0 1
0 0

)

and

Y =

(

0 0
1 0

)

. Then{H0, X, Y } is a basis ofG such that[H0, X ] = 2X, [H0, Y ] =

−2Y and [X,Y ] = H0. The spaceP is 2-dimensional and the 1-dimensional maximal
compact subgroup K≈ S1 acts transitively on the circle of vectors inP with a fixed length
c for every positive number c. If H∈ P, then H has eigenvaluesλ and−λ for some real
numberλ, and|H |2 = trace(H2) = 2λ2. It follows that H is a unit vector inP ⇔ H has
eigenvalues

√
2/2 and−

√
2/2. In particular, if H is any unit vector∈ P, then there exists

k ∈ K such thatkHk−1 = H0/2
√

2.
We show that M(A)=

√
2/2 if A ∈ Σ. The argument in the proof of 3) of the lemma

above shows that for any A∈ Σ there exist g∈ G andλ ∈ R such thatgAg−1 = λX .
HenceM(A) = M(λX) = M(X) by the G-invariance of M and by (3.4) sinceλ Id
commutes with G on V. It suffices to prove thatM(X) =

√
2/2.

Note thatµ(H0, X) = 2 since[H0, X ] = 2 X . Henceµ(H0/2
√

2, X) =
√

2/2. Now
let H be an arbitrary unit vector inP and let k∈ K be an element such thatkHk−1 =

H0/2
√

2. Choose a real numberθ such thatk =

(

cos θ −sin θ
sin θ cos θ

)

. ThenkXk−1 =

−sin θ cos θ H0+cos
2θ X−sin2θ Y . If a) sinθ 6= 0, thenµ(H,X) = µ(kHk−1, kXk−1) =

µ(H0/2
√

2, kXk−1) = −
√

2/2. If b) sin θ = 0, then k= Id or k = −Id, which
implies thatH0/2

√
2 = kHk−1 = H and X = kXk−1. In this caseµ(H,X) =

µ(H0/2
√

2, X) =
√

2/2. From a) and b) it follows that M(X)=
√

2/2.

We show that M(A)= −
√

2/2 for all A ∈ O2. For A∈ O2 we write A=

(

a b
c −a

)

=

aH0 + bX + cY for suitable real numbers a,b,c. By hypothesisa2 + bc = −det A < 0,
and hence b and c are always nonzero. It follows by inspectionthat µ(H0, A) = −2

and henceµ(H0/2
√

2, A) = −
√

2/2. If H is any unit vector inP, then choose k∈ K
such thatkHk−1 = H0/2

√
2. By the argument aboveµ(H,A) = µ(kHk−1, kAk−1) =

µ(H0/2
√

2, kAk−1) = −
√

2/2. This proves that M(A)= −
√

2/2.
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We prove that M(A)= 0 for all A ∈ O1. Since A has eigenvaluesλ and−λ there exists g
∈ G with gAg−1 = λH0 by 1) of the Lemma. HenceM(A) = M(gAg−1) = M(λH0) =
M(H0). It suffices to prove thatM(H0) = 0. Note thatH0 ∈ Ker H0 sinceH0(H0) =

[H0, H0] = 0, and hence0 = µ(H0, H0) = µ(H0/2
√

2, H0). If H is any unit vector

in P,then choosek =

(

cos θ −sin θ
sin θ cos θ

)

∈ K such thatkHk−1 = H0/2
√

2. Then

µ(H,H0) = µ(kHk−1, kH0k
−1) = µ(H0/2

√
2, cos(2θ)H0 + sin(2θ)X + sin(2θ) Y ).

If sin(2θ) 6= 0, thenµ(H,H0) = −
√

2/2. If sin(2θ) = 0, thenkH0k
−1 = ±H0, and

µ(H,H0) = ±µ(H0/2
√

2, H0) = 0. HenceM(H0) = max{µ(H,H0) : H ∈ P, |H | =
1} = 0. �

Example 2 The adjoint representation of G onG
We generalize the first example. Before stating the main result (Proposition 5.5) we

establish some terminology and recall some useful facts.
Let G be a connected, noncompact semisimple Lie group with Lie algebraG, and let G

act on V= G by the adjoint action. Let B :G x G → R denote the Killing form ofG.
By Proposition 7.4 of [H,p.184] there exists a decomposition G = K ⊕ P such that B is
positive definite onP and negative definite onK and the linear mapθ : G → G given by
θ(K + P ) = K − P is an automorphism ofG of order two withK andP as the+1 and
−1 eigenspaces. If〈, 〉 is the inner product onG given by〈X,Y 〉 = −B(θ(X), Y ), then
ad(K) and ad(P) consist of skew symmetric and symmetric linear maps ofG respectively.
In particular, Ad(G) is a self adjoint subgroup of GL(G). Fix G = K ⊕ P, θ and〈, 〉 as
above.

Semisimple elements, Cartan subalgebras , root space decomposition and rank

An element X ofG is said to besemisimple if the extension of ad X :G → G to GC is
diagonalizable. A subalgebraA of G is aCartan subalgebra of G if A is a maximal abelian
subalgebra ofG and every element ofA is semisimple. Equivalently, a subalgebraA is a
Cartan subalgebra ofG if its complexificationAC is a Cartan subalgebra ofGC. Every
semisimple element X ofG is contained in a Cartan subalgebra ofG (cf. Proposition 4.6,
page 420 of [H]).

For a Cartan subalgebraB of GC one has theroot space decomposition GC = B ⊕
∑

λ∈ΦGC

λ, where ad B= λ(B) Id on the 1-dimensional subspaceGC

λ for all λ ∈ Φ and
all B ∈ B. The finite setΦ ⊂ Hom(B,C) is the set ofroots determined byB.

Any two Cartan subalgebras ofG have the same dimension. Therank of a semisimple
Lie algebra, real or complex, is the dimension of a Cartan subalgebra.

There are only finitely many orbits of Ad(G) acting on the set of Cartan subalgebras of
G. For every Cartan subalgebraB of G there exists g∈ G such that Ad(g)(B) is a θ -
invariant Cartan subalgebra ofG (cf. Corollary 4.2, page 419 of [H]).

Regular elements

If X ∈ G, then letZ(X) = {Y ∈ G : [X,Y ] = 0} denote the centralizer of X
in G. Note thatZ(X) = GX since X = ad X on G by the definition of the adjoint
action. LetG(X, 0) = {Y ∈ G : (ad X)k(Y ) = 0 for some positive integer k} =
Ker{(ad X)dim G}. An element X ofG is regular if dim G(X, 0) ≤ dim G(Y, 0) for all Y
∈ G. LetR denote the set of regular elements ofG. In similar fashion we defineGC(X, 0)
for X ∈ GC and what it means for X to be regular inGC. We letRC denote the regular
elements ofGC. We note thatR andRC are nonempty Zariski open subsets ofG andGC

respectively.
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Proposition 5.2. R = RC ∩ G = {X ∈ G : dim G(X, 0) = rank G}. If X ∈ R, then
Z(X) = G(X, 0) is a Cartan subalgebra ofG.

Proof. If X ∈ RC ⊂ GC, then it is well known thatGC(X, 0) is a Cartan subalgebra ofGC;
see for example Theorem 3.1 of [H, p. 163]. In particulardimC GC(X, 0) = rankC GC.
By the definition of regularity inGC it follows thatdimC GC(X, 0) ≥ rankC GC for any
X ∈ GC with equality⇔ X ∈ RC. If X ∈ G, then it is easy to see thatG(X, 0)C =
GC(X, 0). SincerankR G = rankC GC it follows thatdimR G(X, 0) ≥ rankR G with
equality⇔ X ∈ RC ∩ G. This proves the first assertion of the proposition. To prove
the second assertion note thatZ(X) ⊂ G(X, 0) for all X ∈ G. If X ∈ R ⊂ RC, then
G(X, 0)C = GC(X, 0) is a Cartan subalgebra ofGC. HenceG(X, 0) is a Cartan subalgebra
of G. SinceG(X, 0) is abelian and X∈ G(X, 0) it follows thatG(X, 0) ⊂ Z(X). Hence
G(X, 0) = Z(X) = GX is a Cartan subalgebra ofG. This completes the proof of the
second assertion. �

Remark We include some further information about regular elementsof G, but we omit
the details of the proofs since this information is not needed for the article. Note that the
third assertion of the next statement together with the firstassertion of (5.5) below shows
that the set of regular elements inG is the set of elements inG whose orbits under Ad G
are closed and of maximal dimension.

Proposition 5.3. For a noncompact semisimple Lie algebraG the following assertions are
equivalent :

1) X is a regular element ofG.
2) X is semisimple and Z(X)= GX is a Cartan subalgebra ofG.
3) X is semisimple and dimGX ≤ dimGY for all Y∈ G.

Minimal elements in G By (5.3.1) of [RS] one knows that X∈ G is minimal for
the action of Ad G onG ⇔ 0 = [X, θ(X)]. By (2.9) M = {X ∈ G : GX =
Z(X) is invariant under θ}. We give a third description ofM.

Proposition 5.4. Let G be as above, and letM denote the set of minimal vectors for the
action of Ad G onG. ThenM is the union of allθ-invariant Cartan subalgebras ofG.

Proof. Let A be aθ-invariant Cartan subalgebra ofG. We show first thatA ⊂ M. Let X
be an element ofA and writeX = K + P , whereK = (1/2)(X + θ(X)) ∈ A ∩ K and
P = (1/2)(X − θ(X)) ∈ A ∩ P. Then0 = [K,P ] = (1/2)[θ(X), X ]. Hence X∈ M,
which proves thatA ⊂ M.

To complete the proof we first note that Ad K leaves invariantK andP, and it follows
immediately thatθ commutes with the elements of Ad K. In particular, ifA is aθ-invariant
Cartan subalgebra ofG, thenAd(ϕ)(A) is also aθ-invariant Cartan subalgebra ofG for all
ϕ ∈ K.

It remains only to prove that if X is an element ofM, then X lies in aθ-invariant Cartan
subalgebra ofG. Since X is minimal the orbit Ad G(X) is closed inG by (1.2), and it
follows from 1) of the next result that X is semisimple. By earlier remarks we may choose
a Cartan subalgebraA of G that contains X and an element g of G such thatB = Ad(g)(A)
is aθ-invariant Cartan subalgebra ofG. The element Y = Ad(g)(X) lies inB ⊂ M by the
first paragraph of the proof, and hence X∈ Ad G(Y ) ∩ M. By (1.2) it follows that
X = Ad(ϕ)(Y ) for someϕ ∈ K. HenceX ∈ Ad(ϕ)(B), which is aθ-invariant Cartan
subalgebra ofG by the discussion above. �

Proposition 5.5. Let G act on V= G by the adjoint action. Then
1) Let0 6= X ∈ G. Then the orbit Ad G(X) is closed inG ⇔ X is semisimple.
2) Let0 6= X ∈ G. ThenM(X) > 0 ⇔ ad X :G → G is nilpotent.
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3) Let0 6= X ∈ G. Then the following conditions are equivalent.
a)M(X) < 0.
b) The stability groupGX is compact.
c) GX = Z(X) ⊂ Ad(g)(K) for some g∈ G.

Remark Assertion 1) of the result above is due to Borel-Harish-Chandra with a different
proof. See Proposition 10.1 of [BH].

Proof. 1) Let θ : G → G be the Cartan involution corresponding to the Cartan decom-
positionG = K ⊕ P. LetX ∈ G be semisimple. By earlier discussion X∈ B, where
B is a Cartan subalgebra ofG. Choose g∈ G such thatA = Ad(g)(B) is aθ- invariant
Cartan subalgebra ofG. By the first paragraph of the proof of the previous result we see
thatY = Ad(g)(X) is a minimal element ofG, and hence Ad(G)(Y)= Ad(G)(X) is closed
in G by (1.2).

Conversely, suppose that Ad(G)(X) is closed inG. By (1.2) there exists an element g
∈ G such thatY = Ad(g)(X) is minimal. If we writeY = K + P , whereK ∈ K and
P ∈ P, then by Lemma 5.3.1 of [RS] we obtain0 = [θ(Y ), Y ] = 2[K,P ]. Hence ad K and
ad P commute. We observed earlier that ad K and adP are skew symmetric and symmetric
respectively relative to the canonical inner product〈, 〉 on G. Hence both ad K and adP
are semisimple onGC and since they commute they have a common basis of eigenvectors
in GC. HenceY = K + P is semisimple, and we conclude thatX = Ad(g−1)(Y ) is
semisimple since the set of semisimple elements ofG is invariant under all automorphisms
of G.

2) Suppose first that ad X :G → G is nilpotent for some element X ofG. Then
ad(ϕ(X)) = ϕ ◦ ad X ◦ ϕ−1 is nilpotent for allϕ ∈ Aut(G). In particular adY :G → G

is nilpotent for all Y∈ Ad G(X), the closure inG of the orbit Ad G(X). Note that Ad
G(X) is not closed inG by 1) ; ad X cannot be both semisimple and nilpotent unless ad
X = 0, which implies that X= 0 since the center of a semisimple Lie algebra is trivial.
By (1.6) there exists H∈ P and Y∈ Ad G(X) such that Ad G(Y) is closed inG and
Ad etH(X) = et adH(X) → Y as t→ ∞. Since Ad G(Y) is closed inG it follows
from 1) that ad Y is semisimple. Hence Y= 0 by the argument above since ad Y is also
nilpotent. It follows from (3.8) that M(X)> 0.

Conversely, suppose that M(X)> 0 and choose a unit vector H∈ P such thatµ(H,X) =
M(X) > 0. LetΛ denote the set of all eigenvalues of ad H, including zero, andletGλ ⊂ G

denote the corresponding eigenspace for ad H.

Lemma Let Y ∈ G be arbitrary. If ad X(Y)6= 0, thenµ(H, ad X(Y )) ≥ µ(H,X) +
µ(H,Y ).

Proof. Write X =
∑

λ∈ΛXλ andY =
∑

σ∈ΛYσ. Then ad X(Y)=
∑

λ,σ∈Λ[Xλ, Yσ].
Note that[Xλ, Yσ] ∈ Gλ+σ since ad H is a derivation ofG. If [Xλ, Yσ] 6= 0, thenXλ 6= 0,
which implies thatλ ≥ µ(H,X), andYσ 6= 0, which implies thatσ ≥ µ(H,Y ). Hence
λ+ σ ≥ µ(H,X) + µ(H,Y ) if [Xλ, Yσ] 6= 0. This proves the lemma. �

We now complete the proof of 2). Suppose that (ad X)N (Y) is nonzero for some
positive integer N and some element Y ofG. From the lemma above it follows that
µ(H, (ad X)N (Y ) ≥ Nµ(H,X) + µ(H,Y ). If c1 andc2 are the smallest and the largest
eigenvalues of ad H onG, thenc2 ≥ µ(H, (ad X)N (Y ) ≥ Nµ(H,X) + µ(H,Y ) ≥
Nµ(H,X) + c1. We conclude thatN ≤ (c2 − c1)/µ(H,X) = (c2 − c1)/M(X). It
follows that (ad X)N = 0 onG if N > (c2− c1)/M(X). Hence ad X :G → G is nilpotent
if M(X) > 0.



26 P. EBERLEIN AND M. JABLONSKI

We prove 3). The assertion a)⇒ b) follows immediately from (3.9). We show b)⇒
a). If GX is compact, then the elements of the Lie algebraGX are skew symmetric hence
semisimple relative to a GX - invariant inner product on V= G. In particular ad X :
G → G is semisimple, and by 1) it follows that Ad G(X) is closed inG. It follows that
M(X) < 0 by (3.9).

We show a)⇒ c). If M(X) < 0, thenGX is compact by (3.9). Let K* be a maximal
compact subgroup of G that containsGX , and let g∈ G be an element such thatgKg−1 =
K∗. ThenGX = Z(X) ⊂ K∗ = Ad(g)(K).

We show c)⇒ a). Choose g∈ G such that Z(X)⊂ Ad(g)(K) and let Y= Ad(g−1)(X).
ThenZ(Y ) ⊂ K and M(Y) = M(X). It suffices to prove that M(Y)< 0. SinceY ∈ K it
follows thatθ(Y ) = Y and hence Y is minimal by (5.3.1) of [RS] since[Y, θ(Y )] = 0.
SinceGY ∩ P = Z(Y ) ∩ P ⊂ K ∩ P = {0} it follows that M(Y)< 0 by (3.11). �

We now reach the main result of this example, which generalizes the first example where
G = SL(2,R).

Proposition 5.6. LetM− = {X ∈ G : M(X) < 0}. Then
1)M− is nonempty⇔ rank G = rank K, whereK is the +1 eigenspace of the Cartan

involutionθ : G → G.
2) Letrank G = rank K. Then
a)M− ⊂

⋃

g∈GAd(g)(K).
b) R ∩ ⋃

g∈GAd(g)(K) ⊂M−.

Remark It is not difficult to show that
⋃

g∈GAd(g)(K) = {X ∈ G : ad X is semisimple with
eigenvalues in iR}. We omit the details of the proof.

Proof. We prove 1). If M− is nonempty, then M(X)< 0 for some X∈ G. By 3) of (5.5)
there exists g∈ G such thatGX = Z(X) ⊂ Ad(g)(K). If Y = Ad(g−1)(X)), then Z(Y)
⊂ K. Since ad Y is skew symmetric onG with respect to the canonical inner product it
is semisimple onGC and there exists a Cartan subalgebraA of G with Y ∈ A. Hence Y
∈ A ⊂ Z(Y ) ⊂ K and it follows thatrank K = rank G.

Conversely, suppose thatrank K = rank G, and letA be a Cartan subalgebra ofG

with A ⊂ K. It suffices to show that there exists an element X ofA such thatZ(X) = A,
for thenX ∈ M− by 3) of the previous result. SinceAC is a Cartan subalgebra ofGC we
have the root space decompositionGC = AC ⊕ ∑

λ∈ΛGC

λ. If X is an element ofA, then
a routine argument shows thatZ(X)C = {Z ∈ GC : [X,Z] = 0} = AC ⊕ ∑

λ(X)=0 Gλ.
For every rootλ we know thatλ : AC → C is nonzero, and hence Kerλ ∩ A must be a
proper subspace ofA. Since there are only finitely many rootsλ we may choose a nonzero
X ∈ A such thatλ(X) 6= 0 for all rootsλ. It follows thatZ(X)C = AC, which implies that
Z(X) = A and completes the proof of 1).

Let rank K = rank G, and let X∈M−. By 3) of (5.5) X∈ Ad(g)(K) for some g∈ G,
which proves 2a). We prove 2b). Let X∈ R be an element such that Y= Ad(g)(X) ∈ K

for some element g∈ G. Note that M(Y)= M(X) by the G-invariance of M, and hence it
suffices to prove that M(Y)< 0. Let A be a maximal abelian subspace ofK that contains
Y. It is known that Ad K acts transitively on the maximal abelian subspaces ofK, and one
of these subspaces is a Cartan subalgebra ofG since rankK = rankG. Hence all maximal
abelian subspaces ofK, and in particularA, are Cartan subalgebras ofG. Moreover,A ⊆
Z(Y) and Z(Y) is a Cartan subalgebra ofG by (5.2) since X andY = Ad(g)X are regular.
It follows thatA = Z(Y ) ⊂ K. The element Y is minimal for the action of Ad G since
[Y, θ(Y )] = [Y, Y ] = 0, andGY ∩ P = Z(Y ) ∩ P = {0}. It follows from (3.11) that
M(Y) = M(X) < 0. This proves 2b), �
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Admissible semisimple Lie algebras We say that a noncompact semisimple Lie alge-
braG is admissible if rank G = rank K, whereK is a maximal compact subalgebra of
G. We wish to determine the admissible noncompact semisimpleLie algebras. IfG is
admissible andGc is compact and semisimple, thenG⊕Gc is admissible. Hence, without
loss of generality, we may assume thatG has no compact factors. Next we reduce to the
case thatG is simple and noncompact.

Lemma 5.7. Let G be a semisimple Lie algebra with no compact factors, and write G =
G1 ⊕ ... ⊕ GN , where{G1, ... ,GN} are simple noncompact Lie algebras. ThenG is
admissible⇔ Gk is admissible for1 ≤ k ≤ N .

Proof. If Ki is a maximal compact subalgebra ofGi for 1 ≤ i ≤ N , thenK = K1 ⊕ ... ⊕
KN is a maximal compact subalgebra ofG = G1 ⊕ ... ⊕ GN . Hencerank K =
∑

N
i=1rank Ki ≤ ∑

N
i=1rank Gi = rank G, with equality⇔ rank Ki = rank Gi

for 1 ≤ i ≤ N . �

Admissible simple Lie algebras Before listing the admissible noncompact simple Lie
algebras we recall the way that real noncompact simple Lie algebras are constructed, up to
isomorphism. The results are due to Elie Cartan. For furtherdiscussion see for example
[H, pp. 451-455].

Let U be a real compact simple Lie algebra. ThenUC is a complex simple Lie algebra.
Conversely, any complex simple Lie algebra is isomorphic toUC for a real compact simple
Lie algebraU, and the compact real formU is uniquely determined up to isomorphism.

Let G be a complex simple Lie algebra. A real simple Lie algebraG0 is called a
real form for G if GC

0 = G. The noncompact real forms ofG are determined as fol-
lows by the involutions ofU, whereU is the compact real form ofG. Let θ : U → U be an
automorphism of order two, and letU = K0 ⊕ P∗, whereK0 andP∗ are the+1 and−1
eigenspaces ofθ in U. Let P0 = i P∗ ⊂ G, and letG0 = K0 ⊕ P0. ThenG0 is a real
simple noncompact Lie algebra and a real form forG. Moreover, ifθ0 : G0 → G0 is the
linear isomorphism whose+1 and−1 eigenspaces areK0 andP0 respectively, thenθ0 is
an automorphism ofG0 of order two. The subalgebraK0 is a maximal compact subalgebra
of G. All noncompact real formsG0 of G and Cartan involutionsθ0 of G0 arise in this
fashion from an appropriate involutive automorphismθ of the compact real formU of G.

Let G0 be a real simple noncompact Lie algebra with Cartan involutionθ0, and letU be
the compact simple Lie algebra with involutionθ that constructs{G0, θ0} as above. Since
UC = GC

0 it follows thatrank U = rank G = rank G0. Hence we obtain the following
criterion :

Lemma A real simple Lie algebraG0 = K0⊕P0 is admissible⇔ rank U = rank K0.
Using this criterion it is now easy to use the discussion on pages 451-455 and the Table

on page 518 of [H] to reach the following conclusion, using the notation of Helgason :

Proposition 5.8. 1) The admissible real simple noncompact Lie algebras arisefrom invo-
lutions of type A III, D III, C I, C II, E II, E III, E V, E VI, E VII,E VIII, E IX, F I, F II,
G.

2) The nonadmissible real simple noncompact Lie algebras arise from involutions of
type A I, A II, BD I, E I, E IV.

Example 3 The diagonal adjoint action of G onG x ... X G (p times)
The previous example lists necessary and sufficient conditions for M to take on negative

values for the adjoint action of G onG. Even when M does take on negative values it does
not do so on a Zariski open set as Examples 1 and 2 show. By contrast the situation is much
simpler if G acts by the diagonal adjoint action on p≥ 2 copies ofG.
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Proposition 5.9. Let G act on V= G x ... xG (p times) by the diagonal adjoint action. If
p ≥ 2, then there exists a nonempty G - invariant Zariski open subset O of V such thatGv

is finite and M(v)< 0 for all v in O.

Proof. By (3.12) it suffices to show thatGX = {0} for some0 6= X = (X1, ... Xp) ∈ V.
Hence it suffices to consider the casep = 2 sinceGX =

⋂ p
i=1GXi

.
We use two preliminary results whose proofs we give in Appendix 1.
Lemma 1 Let G be a finite dimensional real Lie algebra, and let p≥ 2 be an integer.

LetΣp = {(A1, ... , Ap) ∈ Gp = G x ...G(p times) : {A1, ... ,Ap} generate a proper subalgebra of G}.
ThenΣp is a variety inGp.

Lemma 2 Let G be a finite dimensional real semisimple Lie algebra, and letΣp ⊂ Gp

be the variety of Lemma 1. ThenΣp is a proper variety for every p≥ 2.
We now complete the proof of the proposition. LetO1 = {(X,Y ) ∈ G x G :

X and Y are
regular elements of G}. ThenO1 is a nonempty Zariski open subset ofG x G since the
regular elements ofG form a Zariski open subset ofG. Let O2 = {(X,Y ) ∈ G x G :
G is the smallest subalgebra
of G containing X and Y}. ThenO2 is a nonempty Zariski open subset ofG x G by
Lemmas 1 and 2. We assert that if (X,Y)∈ O = O1 ∩ O2, which is nonempty and Zariski
open inG x G, thenG(X,Y ) = GX ∩ GY = Z(X) ∩ Z(Y ) = {0}.

Let (X,Y ) ∈ O andξ ∈ Z(X) ∩ Z(Y) be given. Then Z(ξ) is a subalgebra ofG that
contains X and Y, and henceZ(ξ) = G by the definition ofO2. It follows thatξ = 0 since
G is semisimple. �

Example 4 The action of H= SL(q,R) x SL(p,R) on V = so(q,R) x ... x so(q,R) (p
times)

LetG = SL(q,R) act onso(q,R) by g(C) = gCgt. LetH = SL(q,R) x SL(p,R) act
onV = so(q,R)⊗Rp by (g, h)(C⊗ v) = gCgt ⊗h(v). Recall thatV = so(q,R)⊗Rp is
isomorphic to V= so(q,R) x ... x so(q,R) (p times). See the next example and the proof
of (3.5) for further discussion.

We say that a pair (p,q) isexceptional if HC has positive dimension for all C in V. If
(p,q) is a nonexceptional pair, then by Corollary 3.12 thereexists a nonempty Zariski open
subset O ofV = so(q,R) ⊗ R

p such that if v∈ O, then H(v) is closed, Hv is finite and
M(v) < 0.

If a pair (p,q) is exceptional, then so is the dual pair (D−p,q), where D= (1/2)q(q −
1) = dim so(q,R). For a discussion of duality in this context see Corollary 5.8, Proposi-
tion 5.9 and Corollary 5.10 of [Eb3]. That discussion is a special case of a more general
treatment of duality in Lemma 2 of [El].

The following is a complete list of exceptional pairs, up to the duality between (p,q) and
(D−p,q),

TABLE OF EXCEPTIONAL PAIRS

(1,q) for q≥ 2
(q(q−1)/2, q) for q≥ 2
(2,2k+1)
(2,2k) for k≥ 3
(2,4
(3,4)
(3,5)
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(3,6)

The table above comes from Table 1 of the proposition in section 5.4 of [Eb2]. Table 1
is based on Table 6 of [El] and Tables 2a,2b of [KL].

Example 5 The action of G= SL(q,R) on V = so(q,R) x ... x so(q,R) (p times)

Let G = SL(q,R) act onso(q,R) by g(X) = gXgt for g ∈ G and X∈ so(q,R). Let
G act diagonally onV = so(q,R) x ... x so(q,R) (p times). Equivalently, if we identify
V with so(q,R) ⊗ Rp under the map(C1, ... , Cp) → ∑ p

i=1C
i ⊗ ei, theng(C ⊗ v) =

gCgt ⊗ v for all C ∈ so(q,R) and all v∈ Rp. Here{e1, ... , ep} is the standard basis of
Rp.

For p≥ 2 the action of G is stable on V in all cases except when (p,q)= (2, 2k+1) and
(D − 2, 2k + 1), whereD = (1/2)(2k + 1)(2k). However, it is not always the case that
M < 0 on a nonempty Zariski open subset of V. We begin with a summarywhere the first
entry is the value for (p,q). When an M value is designated as generic it means the value
of M on a nonempty Zariski open subset of V. Otherwise, open for a subset means open in
the Hausdorff topology of V.

In all casesp ≤ D = (1/2)q(q − 1), and a statement valid for (p,q) is also valid for
(D−p,q).

1) (2,2k). The generic stabilizer for G is isomorphic toSL(2,R) ⊕ ... ⊕ SL(2,R) (k
times). M is zero generically.

2) (2,2k+1). A generic point of V has a G-orbit that is open in V. M is positive generi-
cally.

3) (3,4). The generic stabilizer of G is 3-dimensional. There exist nonempty disjoint
open setsO1, O2 in V such that

a) M is negative onO1, and the stabilizers of G onO1 are isomorphic to SU(2).
b) M is zero onO2, and the stabilizers of G onO2 are isomorphic toSL(2,R).

4) (3,6) The generic stabilizer of G is 1-dimensional. Thereexist nonempty disjoint
open setsO1, O2 in V such that

a) M is negative onO1, and the stabilizers of G onO1 are isomorphic to SO(2)= S1.
b) M is zero onO2, and the stabilizers of G onO2 are isomorphic toR.

5) (p,2k+1), where p≥ 3. The stabilizers of G are generically finite and M is negative
generically.

6) (p,2k), where p≥ 3 and k≥ 4. The stabilizers of G are generically finite and M is
negative generically.

We omit the details of 1) and 2). We give a brief outline of 3) and 4) in Appendix 2. We
prove only 5) and 6), beginning with 5).

Proposition 5.10. Let G= SL(q,R) act onso(q,R) by g(X) = gXgt for g ∈ G and X
∈ so(q,R). Let G act diagonally onV = so(q,R) x ... x so(q,R) (p times), wherep ≥ 3.
If q is odd, then there exists a Zariski open subset O of V such that M(D)< 0 and GD is
finite for all D ∈ O.
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Proof. Since q is odd there exists an irreducible representation ofH = SU(2) onRq. If
Rq is given an H-invariant inner product〈, 〉, thenH = su(2) may be identified with a
3-dimensional subalgebra ofso(q,R).

Next we prove a preliminary result that is valid for all positive integers q. An element
C = (C1, ... , Cp) ∈ V is said to beirreducible if the elements{C1, ... , Cp} do not
leave invariant any proper subspace ofRq. It follows from the two lemmas of the previous
example that the set of irreducible elements of V contains a nonempty Zariski open subset
of V.

Lemma Let H be a p-dimensional compact semisimple subalgebra ofso(q,R), and let
{C1, ... , Cp} be any basis ofH. Let C = (C1, ... , Cp) ∈ V , and suppose that C is
irreducible. Then M(C)< 0.

Proof. Let C be as above, and letH = span{C1, ... , Cp} ⊂ so(q,R). By hypothesisRq is
an irreducibleH - module. By the lemma in the proof of Proposition 3.21A of [EH] there
exists a basis{D1, ... , Dp} of H such that− traceDiDj = 〈Di, Dj〉 = δij for 1 ≤ i, j ≤
p and

∑ p
i=1(D

i)2 = −λ Id for some positive numberλ. If D = (D1, ... , Dp), then D
is minimal for the action of G on V by the first example of a moment map in section 1. By
(3.5) it follows that M(C)= M(D) since span{C1, ... , Cp} = span{D1, ... , Dp} = H.
It suffices to prove that M(D)< 0.

Since D is minimal it follows from (1.1) that the Lie algebraGD is self adjoint. Equiva-
lently,GD = KD ⊕PD, whereKD = GD ∩ K andPD = GD ∩ P. To prove that M(D)
< 0 we need to prove thatPD = {0} by (3.11).

The elements ofG act on V byX(C) = (XC1 + C1Xt, ... , XCp + CpXt) for
C = (C1, ... , Cp) ∈ V andX ∈ G. If X ∈ PD, then0 = X(D), or equivalently,XDi +
DiX = 0 for 1 ≤ i ≤ p. It follows that X commutes with the elements{[Di, Dj], 1 ≤
i, j ≤ p}, which generate the commutator ideal[H,H]. Note that[H,H] = H sinceH

is semisimple, and hence X commutes withH. It follows that H leaves invariant each
eigenspace of the symmetric linear map X, and we conclude that X = λ Id for some real
numberλ sinceRq is an irreducibleH - module. SinceXDi +DiX = 0 for 1 ≤ i ≤ p it
follows thatλ = 0. The proof of the lemma is complete. �

We complete the proof of the proposition. By (3.12) it suffices to prove thatGC is
discrete for some C in V. IfC = (C1, ... , Cp) ∈ V, thenGC =

⋂p
i=1GCi . Hence it

suffices to prove thatGC is discrete for some C∈ V in the case that p= 3.
As we observed aboveH = su(2) is a 3-dimensional subalgebra ofso(q,R) such that

Rq is irreducible underH. LetD = (D1, D2, D3) ∈ V = so(q,R) x so(q,R) x so(q,R)
be the element constructed in the proof of the lemma above. Weshow thatGD = {0}).

In the proof of the lemma we showed that M(D)< 0 andGD = KD ⊂ K. Let X ∈ KD

be given. Then0 = X(D) = (XD1 −D1X, ... ,XD3 −D3X), which is equivalent to
the statement that X commutes with the elements of span{D1, ... , D3} = H. Hence the
elements ofH commute withX2, which is symmetric and negative semidefinite. SinceRq

is an irreducibleH - module andH leaves invariant every eigenspace ofX2 it follows that
X2 = −λ Id for someλ ≥ 0. If λ = 0, thenX = 0. If λ > 0, then q must be even since
Ker X 6= {0} if X ∈ so(q,R) and q is odd. In particularGD = KD = {0} if q is odd,
which completes the proof of the proposition. �

Remark 1 If 0 6= GD = KD, whereD = (D1, ... , Dp) is the minimal element of V
discussed in the Lemma above, then the argument there shows that there exists a nonzero
element X inKD such thatX2 = − Id and X commutes with the elements ofH. In
particularRq with q even becomes a complex vector space of dimension q/2, where the
complex multiplication onRq is given by (a + bi) v= a v + b Xv. Moreover,Rq becomes
an irreducible complexH module.
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Conversely, suppose thatH is a compact, semisimple Lie algebra and V is an irreducible
complexH - module that is also irreducible as a realH - module of dimension 2q. Let J∈
GL(V) denote multiplication by i. Then there exists an innerproduct〈, 〉 on V, regarded as
a 2q-dimensional real vector space, such that J and the elements ofH are skew symmetric
relative to〈, 〉 (see below). By the argument in the proof of 1) in the Lemma above there
exists a basis{D1, ... Dp} of H such thatD = (D1, ... , Dp) is a minimal element of
so(2q,R)p relative to the action ofG = SL(2q,R) on V and the inner product〈, 〉 on V.
It follows that J is a nonzero element ofKD since J commutes withH. The stability group
GD is compact by the proof of 1) above, butGD is not discrete since J∈ GD.

We prove the existence of the inner product〈, 〉 on V with the properties stated above,
regarding V as a real vector space of dimension 2q. First, consider the connected subgroup
H of GL(V) with Lie algebraH. It is known that H is compact since the Killing form on
H is negative definite. See for example Chapter II, Proposition 6.6, Corollary 6.7 and The-
orem 6.9 of [H]. If H′ is the subgroup of GL(V) generated by H and J, then H has index
two in H′ sinceJ2 = − Id and J commutes with the elements of H. It follows that H′ is
compact. If〈, 〉 is any H′ - invariant inner product on V, then the elements ofH are skew
symmetric andJJ t = Id. SinceJ2 = − Id it follows that J is also skew symmetric.

Remark 2 Let H = su(2) and let V be an irreducible complexH - module of dimension
q, where q is even. If V is regarded as a real vector space of dimension 2q, then it is known
that V is also irreducible as a realH - module. See sections 5 and 6 of [B-tD] for relevant
discussion. The discussion of the remark above also appliesto theseH - modules.

We conclude with the proof of 6) in the summary above.

Proposition 5.11. LetG = SL(q,R) andV = so(q,R)p, where p≥ 3, q ≥ 3 and (p,q)
6= (3,4) or (3,6). Let G act on V as in (5.10). Then there exists a nonempty G - invariant
Zariski open set O of V such thatGC is finite and M(C)< 0 for all C = (C1, ... , Cp) ∈
O.

Proof. By the argument used in the proof of (5.10) it suffices to provethatGC is discrete
for some C∈ V in the case that p= 3.

The assertion of the proposition for q odd was proved in the previous result. It remains
only to consider the case thatp = 3 andq ≥ 8 is even. LetH = SL(q,R) x SL(p,R)
act on V≈ so(q,R) ⊗ Rp by (g, h)(C) ⊗ v) = (gCgt ⊗ h(v)). Then V is an irreducible
H-module sinceSL(q,R) acts irreducibly onso(q,R) andSL(p,R) acts irreducibly on
Rp. From the table in Example 4 it is known, up to duality, thatHC is discrete on a
nonempty Zariski open subset of V except in the following cases : a)p = 1, q ≥ 2 b)
p = q(q− 1)/2, q ≥ 2 c) p = 2, q ≥ 3 d) p = 3, q = 4, 5 or 6. The proof is now complete
since we are considering only the case thatp = 3 andq ≥ 8 is even. �

Appendix 1

In this appendix we give the proofs of two results that were used in the proof of (5.9).
Proof of Lemma 1 Let G andp ≥ 2 be given, and let{A1, ... , Ap} be elements ofG.

We may assume without loss of generality that someAk is nonzero. For A= (A1, ... , Ap)
setP1(A) = {A1, ... , Ap} and define inductivelyPk+1(A) = Pk(A) ∪ adA1(Pk(A)) ∪ ... adAp(Pk(A)).
We regard the elements ofPk(A) as formal Lie bracket expressions in the variablesA1, ... , Ap.
It follows that|Pk(A)| =

∑

k
i=1 p

i.
Let Gk(A) = R − span(Pk(A)) and letH(A) be the Lie subalgebra ofG generated by

{A1, ... , Ap}. Then
(1) Gk(A) ⊆ Gk+1(A) ⊆ H(A) for all positive integers k.
Let N be the smallest positive integer such thatGN (A) = GN+1(A). If N(A) =

{X ∈ G : adX(GN (A)) ⊂ GN (A)}, thenN(A) is a subalgebra ofG that contains
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{A1, ... , Ap}. HenceN(A) ⊃ H(A) ⊃ GN (A), which proves thatGN (A) is a Lie
algebra. We conclude thatGN (A) = H(A). By (1) and the definition of N it follows that
dim Gk(A) < dim Gk+1(A) for 1 ≤ k ≤ N − 1. This proves

(2) If Gk(A) 6= H(A), thendim Gk(A) ≥ k.
If H(A) is a proper subalgebra ofG, thendim Gn(A) ≤ dim H(A) ≤ n − 1, where

n = dim G. Conversely, ifdim Gn(A) ≤ n − 1, thenGn(A) = H(A) since otherwise
n ≤ dim Gn(A) by (2). We have proved

(3) H(A) is a proper subalgebra ofG ⇔ dim Gn(A) ≤ n− 1, wheren = dim G.
Let m = |Pn(A)| =

∑

n
i=1 p

i ≥ n, and let{ξ1(A), ... , ξm(A)} be an enumera-
tion of the elements ofPn(A). Let Φ(n) = {α = (α1, ... , αn) ∈ Zn : 1 ≤ α1 <
α2 < ... < αn ≤ m.}. Forα ∈ Φ(n) define a polynomial mapΦα : Gp → Λn(G) ≃ R

byΦα(A) = Φα(A1, ... , Ap) = ξα1
(A) ∧ ... ∧ξαn

(A). Then dimGn(A) ≤ n−1 ⇔ any
n elements ofPn(A) are linearly dependent⇔ Φα(A) = 0 for all α ∈ Φ(n). This proves
thatΣ = {(A1, ... , Ap) ∈ Gp : {A1, ... , Ap} generate a proper subalgebra of G} =
{(A1, ... ,Ap) ∈ Gp : Φα(A) = 0 for all α ∈ Φ(n). �

Proof of Lemma 2 For p≥ 2 letπ : Gp → G2 be the projection given byπ(C1, ... , Cp) =
(C1, C2). Note thatπ(Σp) ⊂ Σ2. If Σ2 is proper, thenΣp is proper for all p≥ 2. Hence it
suffices to consider the case p= 2.

Let GC denote the complexification ofG, and letB denote a Cartan subalgebra ofGC.
Let Φ ⊂ Hom(B,C) denote the roots determined byB, and letGC = B ⊕

∑

α∈ΦGC
α

denote the corresponding rootspace decomposition ofGC.
Let Φ

′

= Φ ∪ {α − β : α, β are distinct elements of Φ} ⊂ A∗. ChooseA ∈ A :

λ(A) 6= 0 for all λ ∈ Φ
′

. Then{α(A) : α ∈ Φ} are distinct nonzero complex numbers.
For B∈ GC we writeB = B0 +

∑

α∈ΦBα, whereB0 ∈ B andBα ∈ GC
α for all α ∈ Φ.

LetU = {B ∈ GC : Bα 6= 0 for all α ∈ Φ}, and letO = U ∩ G. Let B be any element
in the nonempty Zariski open subset O ofG.

We show thatH(A,B) = G, whereH(A,B) denotes the subalgebra ofG generated
by A and B. This will show thatΣ2 is a proper variety inG2. It suffices to prove that
H(A,B)C = GC.

For an elementα ∈ Φ we define a linear mapPα = (ad A) ◦ ∏

β∈Φ,β 6=α(ad A −
β(A)Id) : GC → GC. Note thatPα leaves invariant every subspaceGC

β , β ∈ Φ,B ⊂
Ker A andGC

β ⊂ Ker (ad A− β(A) Id) if β 6= α. HencePα(B) = λαBα, whereλα is
a nonzero complex number, andPα(B) ∈ H(A,B)C. It follows thatGC

α ⊂ H(A,B)C for
all α ∈ Φ since eachGC

α is 1-dimensional. However, [GC
α,G

C
−α] = C Hα, whereHα ∈ A

is the root vector determined byα. SinceB = C − span{Hα : α ∈ Φ} it follows that
B ⊕

∑

α∈ΦGC
α = GC ⊂ H(A,B)C.�

Appendix 2

1) We discuss the case (p,q)= (3,4), which is case 3) of the summary of the action of G
= SL(q,R) onV = so(q,R)p, as stated just before (5.10).

Let H denote the quaternions, and let P denote the purely imaginary quaternions. In
H we have the canonical inner product〈x, y〉 = Re(xy). In P we have the Lie algebra
structure [x,y]= xy − yx. Forα, β ∈ P defineLα,β : H → H by Lα,β(x) = αx − xβ.
If L = {Lα,β : α, β ∈ P}, thenL is a Lie algebra isomorphic toso(4,R) when given the
bracket structure[Lα,β, Lγ,δ] = Lα,β Lγ,δ − Lγ,δ Lα,β = L[α,γ],[β,δ]. Note thatL has
commuting idealsL1 = {Lα,0 : α ∈ P} andL2 = {L0,β : β ∈ P}, both of which are
isomorphic toso(3,R).

In V = L3 = so(4,R)3 we define
a)L1 = (Lα1,0, Lα2,0, Lα3,0), whereα1, α2, α3 are linearly independent elements of P.
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b) L2 = (Lλ1α,β1
, Lλ2α,β2

, Lλ3α,β3
), whereα, β1, β2, β3 are elements of P,α 6= 0, W

= span{β1, β2, β3} is a 2-dimensional subspace of P andλ1, λ2, λ3 are real numbers, not
all zero, such that

∑

3
k=1λkβk = 0. Then

L1, L2 are minimal elements for the action ofG = SL(4,R) on V since
∑

3
k=1(Lαk,0)

2 =
−λ Id and

∑

3
k=1(Lλkα,βk

)2 = −µ Id, whereλ =
∑

3
k=1|αk|2 andµ =

∑

3
k=1|βk|2 +

|α|2(∑ 3
k=1λ

2
k).

The generic stabilizer of G onV = so(4,R)3 is 3-dimensional (cf. [KL]). One may
show that there exist nonempty open subsetsO1, O2 of V such thatL1 ∈ O1 and M is
negative onO1 while L2 ∈ O2 and M is zero onO2. The stabilizers of G inO1, O2 are
isomorphic to SU(2) andSL(2,R) respectively. Moreover, the setsO1, O2 are invariant
under the involution of V induced by the involutionLα,β → Lβ,α on L ≈ so(4,R). The
action of G on V is stable by (3.10).

2) We discuss the case (p,q)= (3,6), which is case 4) of the summary of the action of G
= SL(q,R) onV = so(q,R)p, as stated just before (5.10).

Let {C1, C2, C3} be an orthonormal basis ofso(3,R) with respect to the inner product
on so(3,R) given by〈X,Y 〉 = −traceXY . Then

∑

3
k=1(C

k)2 = − Id (cf. the lemma
in Proposition 3.21A of [EH]). For1 ≤ i ≤ 3 letEi, F i be the elements ofso(6,R) given

in 3 x 3 block matrix form asEi =

(

Ci 0
0 Ci

)

andF i =

(

Ci 0
0 −Ci

)

. Then

E = (E1, E2, E3) andF = (F 1, F 2, F 3) are minimal elements inV = so(6,R)3 for
the action ofG = SL(6,R) since

∑

3
k=1(E

k)2 =
∑

3
k=1(F

k)2 = − Id. In particular
GE andGF are self adjoint. If we write elements ofG in 3 x 3 block matrix form as

X =

(

A B
C D

)

, then it is routine to compute :

1) PE = {0},KE = {
(

0 λ Id
−λ Id 0

)

: λ ∈ R}

2) KF = {0},PF = {
(

0 λ Id
λ Id 0

)

: λ ∈ R}
The generic stabilizer of G onV = so(6,R)3 is 1-dimensional (cf. [KL]).One may

show that there exist nonempty open subsetsO1, O2 of V such thatE ∈ O1 and M is
negative onO1 while F ∈ O2 and M is zero onO2. The stabilizers of G inO1, O2 are
isomorphic toS1 andR respectively. The action of G on V is stable by (3.10).
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