CLOSED ORBITS OF SEMISIMPLE GROUP ACTIONS AND THE REAL
HILBERT-MUMFORD FUNCTION

P. EBERLEIN AND M. JABLONSKI

Abstract The action of a noncompact semisimple Lie group G on a finiteedisional
real vector space V is said to b&ible if there exists a nonempty Zariski open subset O of V
such that the orbit G(v) is closed in V for alkvO. We study a Hilbert-Mumford numerical
function M : V — R defined by A. Marian that extends the corresponding fundgtiche
complex setting defined by D. Mumford and studied further byX@mpfand L. Ness. The
G-action may be stable on V if M 0 on V, as in the adjoint action of G on its Lie algebra
. However, we show that the G-action on V is always stable W)M( 0 for some ve V.
We show that M(v)< 0 < the orbit G(v) is closed in V and the stability subgroup i
compact. The subset of V where M is negative is open in theovegptace topology of V
but not necessarily open in the Zariski topology of V. We givigeria for M to be negative
on a nonempty Zariski open subset of V, and we consider Sexxaeples.
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INTRODUCTION

Let G be a semisimple algebraic group in GL(V), where V is adiniimensional real
vector space. We study the closed orbits of G in V, primatigotugh a function M : V
— R introduced by Mumford for complex varieties and extendethtreal setting by A.
Marian [Ma]. The function M is semicontinous, invariant ends and takes on finitely
many values. The points v where M(v) is negative are padityinteresting, and these
points v occur precisely when G(v) is closed in V and the éitgliroup G, is compact.
The set of vectors v where M(V) is negative is open in the vegpace topology but not
necessarily Zariski open as we show for the adjoint reptatien of a noncompact
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semisimple Lie group. In this case, M is negative somewhetb®Lie algebr& < some
maximal compact subgroup of G contains a maximal abeliagrsuip of G. Equivalently,
for an element X o5, M(X) is negatives the stability grouf x is compact. In particular
ad X:® — & has purely imaginary eigenvalues, so M can never be negatiggonempty
Zariski open subset ab. Moreover, the stability groupS x have positive dimension for
all X € &. By contrast, in the complex setting M(v) is negatizeG(v) is closed and G
is discrete, and these two conditions hold on a nonemptgKiaspen subset .

We say that \e V is a stable point of the G action if M(v)< 0. In addition to implying
that G(v) is closed the condition M(& 0 also implies that H(v) is closed for any closed
subgroup H of G. This property does not hold in general if G§\glosed and M(v}= 0 as
we show by example at the end of section 3.

We say that G actstably on V if there is a nonempty Zariski open subset O of V such
that the orbit G(v) is closed in V for all & O. It is well known that G acts stably on its Lie
algebra® in the adjoint representation. If M is negative somewher®,dhen G acts stably
on V, and there is a nonempty subset O of V, open in the vectaresfppology, such that
M(v) < 0 and the stability group £is compact for all ve O. Conversely, if one stability
group G, is compact, then M is negative somewhere on V. If one stglgiibup G, is
discrete, then G acts stably on V, and M is negative on a notezdgiski open subset of
V.

Remark The problem of stability for reductive subgroups has alsenbeonsidered in
Theorem 4 of [Vin]. There it is shown that if a G-action is d&afor a reductive group G,
then the H-action of any reductive subgroup H is also stable.

There are other distinctions between the complex and réagefor linear actions that
are captured by the function M : ¥» R. In the complex setting the stability groups for
linear actions are conjugate on a nonempty Zariski openlgethe real case the stabil-
ity groups may be quite different topologically althougkithLie algebras have the same
complexification on a nonempty Zariski open set. This issiitated by the adjoint repre-
sentation. If O is the nonempty Zariski open subsebabnsisting of those vectors X such
that® xhas minimum dimension, then G(X) is closed for alEXO. Moreover, for Xe O
either M(X) = 0 andGx is noncompact or M(Xx 0 andGx is compact. The first case
always occurs, but the second case occurs only under thétiomsddiscussed above. In
the simplest case, where-5.SL(2,R), we have the following possibilities for X O : a)
det X> 0, M(X) < 0 and the stability groufi’x is a circle or b) det X< 0, M(X) = 0 and
the stability group x is a homeomorphic to a line.

For the adjoint representation there is a further stratificaof the vectors X in O for
which M(X) = 0. Let® = K@ denote the Cartan decompositiorgbinto the+1 and—1
eigenspaces of a Cartan involutiéiof &. Let rank3 denote the dimension of a maximal
abelian subspace @8, and let rank® denote the dimension of a Cartan subalgebr& of
(i.e. a maximal abelian subalgebra whose elements are ddisgie). For every integer r
with1 < r < rank B, there exists a subset.©f O such that Qis open in the vector space
topology of and for every Xe O,. it follows that M(X) = 0 and(Gx ), is homeomorphic
toR" z T(rank &=7) HereT? denotes the p-torus for any positive integer p.

In studying the closed orbits of G acting on V we make use ofitit®n of minimal vector
for the G-action, which is discussed by Ness in the complaingan [KN] and [Nes] and
is extended to the real setting by Richardson and Slodowi®8].[An orbit G(v) is closed
inV < G(v) intersects the sé1t of minimal vectors, and in this case G(w}t is a single
K orbit, where K is a maximal compact subgroup of G.

In the course of this article we develop sufficient condigidor M to be negative on V,
including negative on a nonempty Zariski open subset of V.siMely the M function for
several examples in addition to the adjoint representation
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1. THE MOMENT MAP AND MINIMAL VECTORS

1.1. Definitions and basic properties. In this article we consider the closed orbits of a
semisimple group G acting on a finite dimensional real vegpaice V. More precisely let
G® denote a semisimple algebraic subgroup of GCjrdefined oveR, and letGC(R)°
denote the identity component in the classical topologyhefreal Lie groupG®(R) =

G® N GL(n,R). In the sequel G will denote a closed subgrougibf(R) that contains
GC(R)? and is Zariski dense iG:C. These are the hypotheses of Richardson-Slodowy
[RS]. This article is an outgrowth of [RS] and [Ma], and thése works are extensions to
the real case of the work of G. Kempf and L. Ness ([KN],[Nesi)l &.Mumford ([Mu]).

Remark If G is a semisimple subgroup of GL{R) with finitely many connected com-
ponents, then G satisfies the conditions stated above.

We show this first in the case that G is connected. S&éég semisimple it is algebraic
in the sense of Chevalley ; that is, there exists a real adgelgroup HC GL(n,R) whose
Lie algebra is®. ( See pp. 171-185 of [C] or pp. 105-110 of [Bor] for furthettaiks.)
If H° andH, denote respectively the Hausdorff and Zariski componeritsthat contain
the identity, thenG = H° C H, since G is connected in both the Hausdorff and Zariski
topologies. LetGC denote the Zariski closure ofHn GL(n,C), and let&® denote the
complexification ofs. ThenGC is defined oveR, andL(G®) = &€ by Proposition 2 of
[C, Chapter Il, section 8]. I denotes the Zariski closure of G in GL(), thenG c G©,
andG is a connected algebraic group defined oRecf. [Bor, Chapter I, section 2.1]).
Moreover,L(G) = &€ sinced® ¢ L(G) ¢ L(Hy) = &°. HenceG = G° since both
groups are Zariski connected, defined oeand have Lie algebr&® (cf. [Bor, Chapter
I, section 7.1]). Finally, ifG®(R) denotesz® N GL(n,R), thenL(G®(R)) = L(G®) N
L(GL(n,R)) = & by [Bor, Chapter II, section 7.1]. We conclude tiiat= G®(R)° since
both groups are Hausdorff connected with Lie algetyra

Next, suppose that' = |Jaca 9.G°, Where A is a finite set, and 1&f¢ = G =
Uaea goH, WwhereH = GO GL(n,C). HenceH = G% since H is Zariski con-
nected, and.(G®) = L(H) = & by the discussion above. Cleady’ ¢ G®(R)°
and equality holds since both connected Lie groups havedime ¢ ie algebr&. Hence
GC(R)? = G° ¢ G ¢ GC. This completes the remark.

Now, letG®(R) ¢ G L(n,R) satisfy the basic conditions stated above. By a result from
section 7 of [Mo2] there exists an inner prodiicty onR™ such thatG®(R) is self adjoint,
that is, invariant under the involutiofy, : GL(n,R) — GL(n,R) given byfy(g) =
(¢*)~!, whereg? denotes the metric transpose of géltdenotes the Lie algebra 6f(R),
which is also the Lie algebra of G, thép defines a Lie algebra automorphismef also
denoted by, which is called aCartan involution of &. Let Ry, Py denote respectively
the+1 and—1 eigenspaces @ : & — &. Itis easy to see that the elementsgfand’3,
are skew symmetric and symmetric elements respectivelnd{iE"). It follows thatf is
the Lie algebra of the maximal compact subgrdiip= Fiz(6y) = G¢(R) N O(n,R),
andKy C K N G. See (2.2) of [RS]. Let, )¢ be any Ad K invariant inner product af;
for example, let{ X, Y)s = —B(6p(X),Y), where B is the Killing form of.

If G € GL(n,R) is a real algebraic group, then a representationG — GL(V) is
said to berational if f o p is a polynomial function with real coefficients on GLR),
wheneverf is a polymonial function with real coefficients on GL(V). L&tbe a finite
dimensional real vector space, andget G°(R) — GL(V) be a rational representation.
Thenp(GC(R)) is an algebraic group in GL(V) and G) satisfies the hypotheses above.
The remarks of the previous paragraph now exteng ) equipped with an inner product
(,) and corresponding involutiofh : GL(V) — GL(V) such thato(G®(R)) is #-stable
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andf o p = pofy : G5(R) — GL(V). The existence of,) andd follows from section
7 of [Mo2] and (2.3) of [RS]. If we le®), p andf, also denote the differentials of these
homomorphisms, thefho p = po 6y : & — End(V), where® is the Lie algebra of G
andGC(R). If & and denote the +1 and 1 eigenspaces @dfon p(&), thenp(Ky) = &
andp(Bo) = P. As above, the elements & and3 act on V by skew symmetric and
symmetric linear maps respectively.

In the sequel, by abuse of notation, we shall assume the fvarkeabove and we shall
identify G andG®(R) with their images(G) andp(G®(R)) in GL(V).

The moment map

If X € Randve V, then(X (v),v) = 0 by the skew symmetry of X. If &« V is fixed,
then for Xe B the mapX — (X (v),v) is an element of3*, which may be identified with
B by means of the inner produgt). We obtainamap: : V' — ‘B defined by the condition
(m(v), X)e = (X (v),v) forve VandX € . The map mis called thewoment map.
See [Ma] for a justification of this terminology. It followsdm the definitions that m is a
homogeneous polynomial function of degree two such thavim&kAd(k)(m(v)) for all v
€ Vandall ke K.

Remark

Let G be a self adjoint subgroup of GL(V) that is a direct prctds; x Go of self adjoint
subgroups. 31,9, andP are the—1 eigenspaces df in &1, &, and® = &; © B,
respectively, thef3 = 3, @ JB>. Moreover, it follows from the definitions that(v) =
m1(v) + ma(v) forv eV, wherem : V — P,m; : V — Py andms : V — Po are the
moment maps for G, Gand G respectively.

Ezxamples of moment maps

Example 1. Let G= SL(¢,R) and V= so(¢,R)? := s0(q,R) ® ... ®s0(q,R)
(p times). Let G act diagonally on V by(C*, ... ,C?) = (gC'gt, ... gCPg'). The Lie
algebra® acts on V byX (C*, ... CP) = (XC' + C*X?, ..., XC? 4+ CPX"). OnV we
define the inner produc{C" ... C?),(D! ... DP)) = =3P trace C'D'. Itis easy to
check that G is self adjoint with respect to this inner prddurcV. Moreover g = so(q, R)
andP={Xe€6:X =X}

Assertion If C = (C! ... CP) € V,then m(C)= —2>"7_ (C")? — \(C) Id,where
AC) = 2ICF,

Let X € P and Ce V be given. Extend the inner produgt) on so(g,R) to & by
(¢,m) = trace(¢nt) forall ¢, n € &. Then(m(C), X) = (X(C),C) = =3 P_ trace (XC" +C"X)(C") =
~23°7_trace X(C7) = (X, -2 S2_,(C")%) = (X, ~2 S0_,(C7) — M(C) Id).
This proves the assertion sine€ >_7_, (C?)? — \(C) Id is symmetric with trace zero and
hence belongs t@3.

Example 2. Let V = s0(q,R)? as in the first example, and observe that V is isomor-
phic toso(q, R) ® R? under the mag’ = (C*, ... ,C?) — > ?_ C* ®e; ,where{e;} is
the standard basis @". Let G = G, x Gy, where G = SL(¢,R) and G = SL(p,R),
and let G acton V by(g1,92) 3.1 1 C @ e;) = S0 1 (g1Cgt) ® g2(e;). Here G acts
onRP in the standard fashion. The previously defined inner prodymn V = so(q, R)?
now becomes the unique inner product oe=\60(q, R) ® R? such thatC ® v, D @ w) =
(C, D){v,w) for C,D € s0(¢q,R) and vwe RP. Here(C, D) = —trace(C'D) and(,) is
the standard inner product & for which the standard bas{g; } is orthonormal.

Note thatl} = 93; @B and the moment map mi/ — B becomes m(C (m;(C),m(C)),
where m — 3, is the moment map for (fori= 1, 2.
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Assertion For C= (C! ... C?) € V, let \(C) = % and letu(C) = ‘i‘z. Let
mj3(C) be the element B, such thatm(C);; = (C?, C7). Thenm(C)= 237, (C*)?—
A(C) Id, andmz(C) = m3(C) — u(C) Id.

The statement for m{C) was proved above in the discussion of the first example. If

Y e PoandC = 37 ,C*@e; €V are given, thenms(0),Y) = (Y(C),C) =
( €:101®Y(€i)7 o
L0 ®@ej) = 300, 1(CHLCI)(Y (i), ¢5) = trace m3(C)Y = trace (m3(C) —

w(C) Id)Y = ((m5(C) — u(C) Id),Y). The assertion for g(C) follows sincem’(C) —
u(C) Id has trace zero and hence belong$to

Example 3. Let V = M(n,R), the n x n matrices with real entries, and let=6
SL(n,R) act on V by conjugation.

Assertion For Ce V, m(C)= CC* — CtC.

The action of® on V is given by X(C)= XC — CX for X € & and Ce V. For
X € P and Ce V we compute(m(C), X) = (X(C),C) = trace(XC — CX)C?t =
traceX (CC* — C'C) = (X,CC* — C*C). The assertion follows sinc€C* — C*C'is
symmetric with trace zero and hence belong$to

Minimal vectors

Avector v of Vis calledminimal if m(v) = 0. We denote the set of minimal vectorsin
V by 99t. Note thatht is invariant under K by the Ad K equivariance of the moment map
m. We recall some results from [RS]. The next two results estatements of Theorem 4.3
of [RS].

Proposition 1.1. The following conditions are equivalent for a vector v of V :

1) v is minimal

2) The identityl € G is a critical point of the functior, : G — V given byF,(g) =
lg(v)|* forallg € G.

3) The identityl € G is a minimum point of the functiaf, : G — V.

If v € Vis minimal, then G is self adjoint. In particular®, = B, ® R,, whered,,
denotes the Lie algebra of GR, = &, N KandP, = &, N B.

Proposition 1.2. For v € V the orbit G(v) is closed in ¥& G(v) contains a minimal vector.
If w e G(v) N W for some ve V, thenG(v) N M = K (w).

Remark It may be the case th@d} is the only minimal vector.

Corollary 1.3. There is a bijection between the closed orbits of G in V andsitece
M/ K.

Proof. Given a closed orbit G(v) for some v in V we associate the p@v) N 91)/ K €
M/ K. This map is a well defined bijection by the preceding result. O

Corollary 1.4. Let G(v) be closed for & V, v# 0. Then G is completely reducible.

Proof. By (1.2) there exists g G such thatw = g(v) is minimal. By (1.1), = ¢ G, g~ !

is self adjoint, hence reductive. It suffices to show #fiatis completely reducible since
G, is conjugate to . To show thatG,, is completely reducible it suffices by Theorem
4 in section 6.5 of [Bou] to show that if X 3., the center of6,,, then X : V— Vis
semisimple. Note tha,, is f-invariant since,, is #-invariant. Let Xe 3,, be given, and
write X = K+ P, whereK = (1/2)(X +6(X)) € 8 N 3,andP = (1/2)(X —0(X)) €

T N 3,. The elements K and P are respectively skew symmetric anchgyrit on V, and
as elements a3, they commute. Hence X K + P is semisimple on V. O
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The next result is stated in section (7.2) of [RS]

Corollary 1.5. If G(v) is not closed in V for some & V, thenG(v) contains a unique
closed orbit of G.

The next resultis Lemma 3.3 of [RS]

Proposition 1.6. Let ve V and assume that G(v) is not closed. Then there exigts)X
and \y € V such thae!X (v) — vg as t— oo and the orbit G(y) is closed.

Rank of the moment map
Foré,v e Vlet¢, € T,V denoter/ (0), wherea(t) = v + t£. Similarly for X € 3 we
defineX,, ) € Ty ) B-

Proposition 1.7. Let X< ‘P be given. Then X, is orthogonal tom.(T,V) < X (v) =
0. In particular,

a) The rank of m at = dim B — dim P,

b) The moment map m : M ‘B fails to have maximal rank at a point v of& X (v) =0
for some nonzero elementeX.

Proof. Fix v € V. For¢ € V and X € B we compute(m. (&), Xon()) = % |i—o(m(v +
1), X) = Lo (X (v + &), v + t€) = (X (v),6) + (X(€),v) = 2(X (v),£). The result
follows since¢ € V is arbitrary. g

Corollary 1.8. Suppose thaf7, is a compact subgroup of G for somezW. Then there
exists a nonempty Zariski open subset O of V such that m= % has maximal rank at
every ve O.

Proof. If O = {x € V : m has maximal rank at x}, then O is a Zariski open subset of V.
LetG, be compact for some nonzer@Ww. We show that \e O by showing thaf3,, = {0}
and applying (1.7). Let X(v}= 0 for some Xe B. The eigenvalues of elements@f, have
modulus 1 sincé-, leaves invariant some inner product on V. However, X is sytnimen
V with real eigenvalueg, and the eigenvalues efp(tX) C G, have the forme**, which
have modulus 1 for all t only ik = 0. Hence, = 0. O

Proper maps
For a nonzero element& V let f, : G — V be theC> map given byf,(g) = g(v)
forge Gandve V.

Proposition 1.9. Let G be a closed subgroup of GL(V), and let v be a nonzero eleofie
V. Thenf, : G — V is a proper map= G(v) is closed in V and the stability group, is
compact.

Remark See Proposition 3.9 and the remarks that follow for an eidend this result.

Proof. If f, : G — V is a proper map, then it is routine to prove that G(v) is closed
G, is compact. To prove the converse we make a preliminary ghsen.

Lemma Letv# 0 € V be given. If the mapf, : G — V fails to be proper, then
there exists a nonzero element Y‘Bfand an element, € V such thatY (vg) = 0 and
exp(tY)(v) — vg as t— oo. In particularG,, is noncompact.

Proof of the lemma If f, is not proper, then there exists an unbounded sequence
{gn} C G such that{g,(v)} is a bounded sequence in V. By the selfadjointness of G
we may writeg,, = k,exp(X,,), wherek,, € K, X,, € P and|X,,| — oo as h— oc.
Since K is compact it follows thatrp(X,,)(v) — w € V by passing to a subsequence if
necessary.

LetY, = X,./|X.|,tn = |X,| and lety,, — Y € B, where|Y'| = 1, by passing to
a subsequence if necessary.fif(t) = |exp(tY,)(v)|?> and f(t) = |exp(tY)(v)|?, then
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fa(t) — f(t) foralltas n— oo. Itis proved in Lemma 3.1 of [RS] that the functions
fn(t) andf(t) are convex; thatis £/ (¢) > 0 for alln and all te R, andf”(¢) > 0 for all t

€ R. By hypothesis/,,(t,) — |w|? as n— co. By the convexity off,,(t) we conclude that
fn(t) < maz{fn(0), fu(tn)} < |v|* + |w|*> + 1if 0 <t < t, and n is sufficiently large.
Hence f(t)< |v|? 4 |w|? + 1 fort > 0, and it follows by convexity that f(t) is nonincreasing
onR.

Let A denote the set of nonzero eigenvalues of Y and/let V, @ > aca V) be the
direct sum decomposition of V into orthogonal eigenspades e 3, whereY = 0 on
VoandY = A IdonV, forall A € A. Write v = vy + >_ aeavxr, Wherevy € V4 and
vy € Vi forall A € A. Thenexp(tY)(v) = vo+_ rea vy and f(t)= |exp(tY)(v)|? =
lvo|2+ 3" aen €2 |vy]?. By the previous paragraghm, .. f(t) exists, and it follows that
A € A is negative ifvy # 0. We conclude thatzp(tY)(v) — vy ast — co. Moreover,
Y (vg) = 0 sincevy € Vy. The eigenvalues afY € G,, are unbounded in t since 3 0
and hencé7,,, is noncompact. This completes the proof of the lemma.

We complete the proof of the proposition. Suppose that forese € V the orbit G(v)
is closed in V and~, is a compact subgroup of G. ff, : G — V is not a proper map,
then by the lemma above there exists an elemgnt G(v) = G(v) such thatG,, is
noncompact. Choose g G such thaty(v) = v,. ThenG,, is compact since, is
compact and)G,g~ ! = Gy) = Gu,- This contradiction shows that, : G — Vis a
proper map. O

Proposition 1.10. The map m : V— B is a proper maps 9 = {0}. Moreover, if
9 = {0}, then for every nonzero& V there exists a nonzero&X P such thae!* (v) — 0
ast— +oo.

Proof. Let M = {0} and suppose that m : ¥~ ‘P is not a proper map. Then there
exists an unbounded sequeres,} in V such thatm(v,) — X for some Xe B. Let
w, = v,/|vy| and let we V be a unit vector that is an accumulation point{af,, }.
Since m : V— P is a homogeneous polynomial function of degree two it foidWwat
m(w) = limp_com(wy,) = limnﬂwmm(vn) = 0. This contradicts the hypothesis
that?t = {0}. Hence m : V— ‘B is proper.

Next suppose that m : ¥~ B is a proper map. If v is a nonzero elementoi,
thenm(tv) = t*>m(v) = 0 for all t € R, which contradicts the properness of m. Hence
o = {0} if m is proper.

The final assertion of the proposition follows immediatetyni (1.2) and (1.6). O

The deformation retraction
We recall some results of Neeman [Nee] and G.Schwarz [S]aBegRS] for a brief
discussion.

Proposition 1.11. Assume tha®t # {0}. Let h: V— R be given by h(v}= |m(v)?.
Then

1) (grad h)(v)= 4m(v)(v) (same vector components) and grad h is honzero ent.

2) Let{v;} denote the flow of- grad(h), and letp; = ian(r/2)- Thenp, is defined
for0 <t¢ < 1. Themap : V x [0,1] — 9 given byp(v,t) = p:(v) is a deformation
retraction of V ontdt = p; (V) such thatp(kv,t) = kp(v,t) forallk € Kand all te
[0,1]. In particular the mapr : V' — 91 given byr(v) = p;(v) is a continuous retraction
of V onto9t such thatr o k = k o 7w for all k € K.

3) The mapp; : V/K — V/K given byp;(K(v)) = K(p:(v)) is a well defined
deformation retraction of V/IK ontt/K = p1(V/K).
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Proof. The assertions in 2) are proved in [S] and [RS]. We note tleaKtequivariance of
p follows from the fact that ko k = h for all k € K. In particular,k,. grad h= grad h and k
permutes the integral curves efgrad h for all ke K.

The assertion in 3) follows from 2) and the K-equivariancthefretractiop : V 2 [0, 1] —
m.

We prove 1). We recall from the proof of (1.7) that.. (£,), X) = 2(X(v),¢) for all
¢eVandallX € B. Now (&, (grad h)(v)) = dh(&,) = & (h) = (h o a)'(0), where
a(t) = v + t€. By definition(h o a)(t) = (m(v + t§), m(v + t£)), and we conclude that
(hoa)'(0) = 2(m«(&), m(v)) = 4(m(v)(v),&). This proves the first assertion in 1) since
& € V was arbitrary.

Ifv e V-, then(grad h(v),v) =4 (m(v),m(v)) > 0, which completes the proof
of 1). O

Remark We recall the observation of [S] and [RS] that the defornratigtractionp :
V x [0,1] — 91 of 2) above has the property thaw, t) € G(v) forall (v,t) € V 2 [0, 1).
This is a consequence of the fact that the vector fielgrad(h) is tangent to the immersed
submanifolds G(v) for all & V.

2. THE SET OF VECTORS WITH CLOSE5-ORBITS

Let G,V be as above. We note that if an orbit G(v) is closed imksbme vector & V,
then G(v) is an imbedded submanifold of V. For a proof, seexample Theorem 2.9.7 of
[Va].

Proposition 2.1. Let G,V be as above, and let'\= {v € V : G(v) is closed in V and
dim G(v) is mazimal}. If V' is nonempty, then Vis a G-invariant Zariski open subset
of V.

Proof. This result is already known in the complex setting; thatds G© and \F. See for
example Proposition 3.8 of [New]. We indicate how to extdmelriesult to the real setting.
We note that Vis clearly G-invariant.

Let G and & be as above. ThenGhas a natural induced representation on the com-
plexification \F of V.

Lemma 2.2. Let ve V. Then the orbit G(v) is closed in ¥ the orbit G°(v) is closed in
VE,

Proof. We suppose first that G(v) is closed in V. Then w = g(v) is mirifiea some ¢
€ G ¢ GC by (1.2). By Lemma 8.1 of [RS] the vector w is minimal for theian of G©
on VC. Hence G(w) = G®(v) is closed in \F. Conversely, suppose that'®) is closed
in VC. By Proposition 2.3 of [BH] the set@v) N V is the union of finitely many orbits of
G®(R)°, and each of these orbits is closed. Sin¢dI®)° has finite index in G it follows
that G(v) is closed in V. O

The next observation will be useful, but we omit the proofjskhs routine.

Lemma 2.3. If O is a nonempty Zariski open subset df,\then ON V is a nonempty
Zariski open subset of V.

We now complete the proof of the proposition. By definitich= {v € V' : G(v) is closed in V
and dim G(v) is maximal}, and similarly we definéV’©)’ = {v € VC : GE(v) is closed in V©
and dim G®(v) is maximal}. For v € V we note thadimgG,, = dimcGS since®S =
(&,)C. HencedimrG(v) = dimcG€(v) since G(v) and G(v) are diffeomorphic to the
coset spaces G/ Gand G / G respectively. By (2.2) it follows that”’ = V n (V).
Since(V°)" is known to be Zariski open in Vit follows immediately from (2.3) that Vis
Zariski openin V. O
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Stability of the G — action

Let G,V be as above. We say that the action of G on Md$le or G actsstably on V if
there exists a nonempty Zariski open subset O of V such thagtl@as maximal dimension
and is closed in V for all \& O. It follows from (2.1) that G acts stably on V if there is a
single nonzero vector& V such that G(v) has maximal dimension and is closed in V. This
observation has simple but useful consequences.

Proposition 2.4. LetG;, V; be as above fork 1,2. LetG = G; XGs and letV = V1 ® V5.
Then G acts stably on ¥ G; acts stably ori; fori =1, 2.

Proof. Let v = (v1,v2) € Vi @ Va. ThenG(v) = (G1(v1),G2(v2)) has maximum
dimension and is closed in ¥ G;(v;) has maximal dimension and is closedVipfor
1 =1, 2. The assertion now follows immediately from (2.1). O

Remark Let G,V be as above, and let X be the union of all closed G-sibitv. If G
does not act stably on V, then X has empty interior in the wesppace topology of V.

If X contained a subset U of V that is open in the vector spapeltmgy of V, then the
stability groupG,, would have minimal dimension for somesvU sinceG,, has minimal
dimension for a nonempty Zariski open subset of V. It woultbf@ that G(v) has maximal
dimension and is closed in V, which by (2.1) would imply thaaGs stably on V.

Ezample Let Gy, V; be arbitrary, as above. L& = R™ and letG, = SL(n,R) act
on V4 in the standard way. LeX; be the union of all closed; orbits inV;. Since{0} is
the only closed7, orbitin V4 it follows thatX = X; x {0} C V3 x {0} is the union of all
closed G orbits in V.

The next result shows that G acts stably on V if a single stailG, is discrete for some
v € V. This result is strengthened later in Corollary 3.12. Weenthat if G, is discrete,
then G, is finite.

Corollary 2.5. Suppose that G is discrete for some nonzer6in V. Then there exists a
nonzero G-invariant Zariski open subset O of V such that G(elosed and G is finite for
allv e O.

Proof. We recall thatGC(R)? € G ¢ G, whereG® is a semisimple algebraic group
defined overR. Since®S = (8,)C it follows that GS is discrete. If U= {v € VC :
GC is discrete}, then U is a nonemptg -invariant Zariski open subset &fC. For v ¢

U the stability groupGS is finite and hence reductive sin¢& is algebraic. Note that
the subgroupZ, is also finite for ve U. It follows from a result of V. Popov [P] that
there exists aC-invariant Zariski open subset’ Wf V' such thatG®(v) is closed and
has maximal dimension dim G. An orbit G(v) has dimension dires@-¢ is discrete, and
hencelU’ C U. If O = U’ NV, then by (2.2) O is a G-invariant nonempty Zariski open
subset of V, and G(v) is closed with, finite for all v € O. g

Remark If G, is discrete it is not necessarily true that G(v) is closed.iRdf example,
let V be the 4-dimensional real vector space of homogeneolyapmials of degree 3 in
the variables x,y. Let G= SL(2,R) act on V by (gf)(x,y)= f((x,y)9). If f(x,y) = 22y,
then it is easy to compute that; = {Id}. On the other hand G(f) is not closed since if
g(t) = diag(e™*,e"), theng(t)(f) = e 'f — 0ast— oo.

We extend the previous result to show that G acts stably ora\sifgle stabilizer Gis
compact for some ¢ V. This result will also be strengthened later in (3.13).

Proposition 2.6. Suppose that Gis compact for some nonzero v in V. Then
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1) There exists an open neighborhood U of v in V such thaig<compact for all we
u.
2) G acts stably on V.

Proof. 1) Let d be a complete Riemannian metric on End(V), and let R be chosen

so that d(e,gK R for all g € G,,. We assert that for every’R> R there exists an open
neighborhood U of v such that d(e ) R’ for all h € (G,,)o and all we U. Suppose this

is false for some R> R, and let{v,,} C V and{h,,} C (G,,)o be sequences such that
v, — Vandd(e, h,) > R’ forall n. Since(G,, )o is arc connected there exists a sequence
{gn} C (G,,)o such thatd(e, g,,) = R’ for all n. By the completeness of d there exists a
cluster point g of g,,}, and by continuity we see thatg G, and d(e,g)= R’ > R. This
contradicts the choice of R.

The argument above and the completeness of d show@hal, is compact for all w in
some neighborhood U of v. It follows that,&ds compact for all w in U sincéG,, )y has
finite index in G,,.

2) It is known that there exists a nonempty Zariski open subsef VC such that the
stabilizers{G¢,v € A} are conjugate ifG®. See for example section 7 of [PV]. If U
is the open set discussed in 1), thep & compact for all ve U. It follows that &, is
reductive and the center @f, consists of semisimple automorphisms of V. The same is
true for (&%), = (&,)° for all v € U, where®® is the Lie algebra oZ¢. Hence(&%),
is completely reducible iV for all v € U by Theorem 4 in section 6.5 of [Bou]. Since
A NV is Zariski open in V we see that AV N U is nonempty. In particular the generic
stabilizer(&%),,, w € A, is completely reducible iv. By Theorem 1 of [P] there exists
a nonempty Zariski open subset BWf such thaiG®(v) has maximal dimension and is
closed invVC forallv € B. If v € O = BNV, a nonempty Zariski open subset of V, then
G(v) has maximal dimension, and by (2.2) G(v) is closed in V. O

Connected components of the space of closed orbits

We consider the case that there exists a nonempty Zarishi sygeset O of V such that
G(v) is closed for all ve V. Since G has stabilizers of minimal dimension on a nonempty
Zariski open subset of V we shall also assume, without losgeokrality, that G has a
stabilizer of minimal dimension at every point v of O.

We consider the connected components of O. It is well knowhatzariski open set O
has only finitely many connected components. See for exaht@erem 4 of [W].

Leto' = 9N O. We first describe a decomposition of the 3@t

We recall from (1.11) that there is a continuous retractiol” — 2t such thatro k =
komallk € K, andw(v) € G(v) by the remark following (1.11). Given& O there exists
g € G such thatr(v) = g(v) since G(v) is closed in V. Hence(v) € G(O) = O, and it
follows that the mapr restricts to a continuous retractian O — 99t ’.

Proposition 2.7. Let Oy, ... O, denote the connected components of O.1Fgr o < r let
Mo = O, N M. Then

1) The set§M,, : 1 < a < r} are disjoint arc connected subsetsdf’, and9t ' =
Uaz1 Ma-

2) Go(M,,) = O,, for all «, whereG( denotes the identity component of G.

Proof. 1) Note thatr(O,) C M, N O, = M, for all « sincer : V — M is defined
by a deformation retraction and,, is both open and closed in O. The set inclusion is an
equality sincer is the identity ort)t. The setdM,, : 1 < a < r} are clearly disjoint since
they belong to the distinct componeqt3,, } of O, and each séht,, is arc connected since
the open sed),, is arc connected. Finallgt’ =M N O =, _, M N Oy =, _, M.

2) We start with two preliminary results.
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Lemma 1l Gy(M') = O.

Proof. Sincet ' C O it follows that Go(9 /) € G(O) C O. Conversely, let ve
O. Thenn(v) € M " andn(v) = g(v) for some ge G since G(v) is closed in V. By
(2.2) of [RS] we may writegy = k exp(X) for some ke K and some Xe B. Then
w=k"tn(v) = exp(X)(v) € M’ sincedM’ = M N O is invariant under K. It follows
thatv = exp(—X)(w) € Go(9M '), which proves tha® C Go(9’). O

Lemma 2 Go(M,) C 7~ 1(M,) = O,.

Proof. We note that it follows immediately from the definitions@f, and"1, = 7(O,)
thatO, = 7—1(M.,,).

Let o and ve 2, be given. Sincet, C O and O is G - invariant it follows that
Go(v) C G(v) C O. SinceGy(v) is arc connected),, is a connected component of
O and ve O, it follows that Go(v) C O,. The lemma is proved since € 9, was
arbitrary. O

We complete the proof of 2) of the proposition. By Lemmas 12add 1) of the propo-
sition we have) = Go(M ') = U, _; Go(Ma) € U.,_; Oa = O. HenceGy(M,) = O,
for all « by Lemma 2 since the sef{®),, } are disjoint. O

Proposition 2.8. For eachl < « < r there exist nonnegative integers, p., such that
a)dimRg, = k, forallv e 91,,.
b) dim*B, = p, for allv € M.
c)dimM, = dim V — dim P + p,.

Proof. Assertions a) and b) are contained in the next result.
Lemma 1 For eachl < «a < r there exist nonnegative integefs, p., such that
a)dimg, = k, forall v e 9m,,.
b) dimQ, = p, forallv e M,

Proof. Letv e 9, C O, C O be given. By continuity there exists an open set 9of
such that e U anddim B, < dim B, anddim R, < dim K, for allw € U. The stability
Lie algebrag &, } are self adjoint by (1.1) and by hypothesis they have condtarension
forallw € O. Sincedim &, = dim K, + dim P, anddim &, = dim R, + dim Py,
it follows thatdim K, = dim &, anddim B, = dim B, for allw € U. The assertion of
Lemma 1 follows sinc@ni,, is connected. O

We note that the elements of G permute the connected comizdqiien} of O since O is
invariant under G. Similarly, the elements of K permute tbereected componen{$i,, }
of M " sinceM ' is invariant under K. Fot < a <rletG, = {g € G : g(O.) = O4}
and letK,, = {k € K : k(OM,) = M, }. Note thatGy, C G, C GandK, C K, C K.
Moreover, K, C G, forall a sinceM, C k(O,) N O, forallk € K, and alla.

To prove 2) we need some additional preliminary results.

Lemma 2 Letl < a < randve O, be given. TherG, (v) N My = Kqo(7(v)).

Proof. We show first that (*Jr(v) € G, (v) N M, forallv e O,. Givenve O, choose
g € G such thatr(v) = g(v). It follows thatm(v) € O, N g(O,) sinceMt, C O, and it
follows that ge O,,. This proves (*).

SinceK, C G, it follows from (*) that K, (7(v)) C G4(v) N 9M,. Now letw €
Gq(v) N M, be given, and let w= 7(v) € Go(v) N M. Thenw' € Gu(w) N My,
and hencev’ = ¢(w) for somey € K by (1.2). It follows thaty € K, sincew’ €
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Mo N (M, ). This proves thatz, (v) N M, C Kq(w) = Kqo(m(v)) and completes the
proof of the lemma. O

Lemma3Lletp: 0, /G, — M, / K, be given byp(G,(v)) = K, (m(v)) forall v
€ O,. Thenp is a continuous bijection with respect to the quotient togas.

Proof. If Go(v) = Go(w) for elements v,w of0,, then K, (m(v)) = Kq(m(w)) by
Lemma 2. Hence is well defined. Suppose thatGy (v)) = p(Go(w)) for vw € O,.
ThenK,(n(v)) = Kq(m(w)), which implies thatG,(v) N M, = Go(w) N M, by
Lemma 2. Hencé€,(v) = G, (w), and we conclude thatis injective. Finally, if ve 91,,,
thenw(v) = v andp(Gqy(v)) = Ko(v). This shows thap is surjective. The continuity of
p follows routinely from the definitions gf and the quotient topologies. O

We now prove c) of the proposition by computing separatedydimensions 00, / G,
andi,, / K, and using Lemma 3.

For v e M, the stabilize(G,,), has dimensiof,, + p, by a) and b) of the proposition
sinceGy C G, C G and®,, is self adjoint by (1.2). Hence for allg O, the dimension
of the stabilizerG ), is k. + p SinceG, has constant dimension for allv O,. We
conclude that the dimension of the orbit, (v) is dim G —(k, + p,) forallv e O,. It
follows that the orbit spac@,, / G, has dimension equal to dim ¥ dim G+ k,, + pa.

The orbits ofK, in 901, all have dimension equal to dim Kk, by a) of the proposition
and the fact thak(y C K, C K. Hence the dimension of the orbit spagk, / K, equals
dim9Mt,— dmK + &,.

By Lemma 3 the dimensions 6f, / G, andd,, / K, are equal. Recall thatm 3 =
dim & — dim R = dim G — dim K. The assertion c) now follows from the formulas
above for the dimensions @i, / G, andM,, / K,. O

Example We use the adjoint representation to illustrate the reablbse. We begin with
some terminology and basic facts.

Let G be a connected, noncompact, semisimple Lie group whiesalgebra® has no
compact factors. Let’ = & and let Ad : G— GL(V) denote the adjoint representation.
For an element X o we note that the stabilizer Lie algebéay equals the centralizer
Z(X).

Let® = R @ ‘B be a Cartan decomposition &f determined by a Cartan involution
0 : G — G and its differential map : & — &. If B, B, are two maximal abelian
subspaces dB, then®B, = Ad(¢) (9B, ) for some elemenp of K = Fix(#). Conversely, if
B is a maximal abelian subspacefthen Ad{p)(B) is another for allp € K since Ad K
leaves]s invariant.

We letrank 3 denote the dimension of a maximal abelian subspag# &for a nonzero
element P< ‘B we let E» denote the intersection of all maximal abelian subspacg$ of
that contain P.

A Cartan subalgebra of & is a maximal abelian subalgeb?aof & such thatad Y :
® — & is semisimple for all Ye 2L.

Recall tha®)t denotes the set of minimal vectorsénfor the action of G.

Proposition 2.9. Let G and V= & be as above. Then

DM ={X €6:6x =7Z(X)isinvariant under 0}.

2)LetO={X € & : &x = Z(X) has minimal dimension and G(X) is closed in &}.
Then Xe O & 21 = &y is a Cartan subalgebra ab.

3) Let Xe M N O and write X= K+ P,whereK = (1/2)(X+6(X)) € Ax = 6x N K
andP = (1/2)(X — (X)) € Bx = &x N P. ThenPx = Ep. Conversely, for every
nonzero P P8 there exists K& K such thatif X= K+ P, then Xe 9t N O andPx = Ep.
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4) Letr be any integer with < r < rank B. Then there exists X 9t N O such that
dim mX =T.

Proof. If X € M, then®x is 6-invariant by (1.2). Conversely, Bx = Z(X) is 6-
invariant for X e O, then0 = [X,0(X)] and it follows that Xe 9t by Lemma 5.3.1 of
[RS]. This proves 1). We omit the proofs of 3) and 4) for reasohspace. We prove 2),
referring to results that will be proved in section 5. 11240, then X is semisimple by (5.5)
andZ(X) = &x is a Cartan subalgebra by (5.3). Conversely ([f{) = & x is a Cartan
subalgebra, then X Z(X) is semisimple and X O by (5.3) and (5.5). O

3. THE M-FUNCTION

The result (2.5) gives a useful criterion for the existenta aonempty Zariski open
subset O such that G(v) is closed for all v in O. However, iegino criterion for determin-
ing if the G orbit of a given vector v in V is closed in V. In thisdion we consider a G-
invariant function M : V— R with finitely many values such that G(v) is closed if M(v) is
negative. This result is the real analogue of a result of Maurthf The function M in this
context has also been used by A. Marian [Ma].

The p — function

Let (,) be an inner product for which G is self adjoint in its action\grand let® =
£ @& P be a Cartan decomposition compatible with. Let V' 3’ denote the nonzero
vectors in i3 respectively.

For X € P’ let Ax be the set of eigenvalues of X, and forc Ax let V,, x denote the
eigenspace in V correspondinggoFor ve V’ and Xe P’ let (X, v) denote the smallest
eigenvalug: such that v has a nonzero component jn..

We collect some properties of the functign B’ x V' — R.

Proposition 3.1. Let (Y,v)e P’ x V' be given.
1) (Y, v) = 0 < the following two conditions hold
a) The componengwof v in Ker Y is nonzero
b) e’ (v) — vy ast— —oo.
2) u(Y,v) >0 < et (v) — 0ast— —oco.

Proof. We prove only 1) since the proof of 2) is just a slight modificatof the proof of
1). ForY e ¢ let A/Y denote the set of nonzero eigenvalues of Y acting on V. Write
v=uvg+ . Aea’, Uns wherevy € Ker Y andvy € Vy. Then

™ etY(v) =vy+ Y. AeA;,et)\vA-

If u(Y,v) = 0, thenyg is nonzero and. > 0 whenevew, is nonzero. It follows from
(*) that e?¥ (v) — wvo as t— —oo. Hence conditions a) and b) of 1) hold. Conversely, if
these two conditions hold, then it is easy to see from (*) that v) = 0. O

Next we prove a semicontinuity property of B’ x V' — R.

Proposition 3.2. Let Y,v be nonzero vectors 8,V respectively. Given > 0 there exist
neighborhoods UC V of v and OC P of Y such thapu(Y',v") < u(Y,v) + ¢ for all
(Y',v') € OxU.

Proof. Suppose the assertion is false for some nonzero vectar¥\and Y € . Then
there exist > 0 and sequence,, } C Vand{Y,} C ‘B such tha(y,,,v,) — (Y,v)asn
— oo andu (Y, v,) > u(Y,v) + € for all n. Using the fact that,, — Y as n— oo and by
passing to a subsequence we conclude that there existegeiit> 0 with the following
properties :
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a) Foreveryn, Y, has N distinct eigenvalue{s\gn), - )\53)} and there exist orthogonal
subspace$\/1(”), ,V]E,”)} of V such that = Vln) D ..o VJS,") andY,, = /\E”) Idon
V" for every n.

b) There exist subspacés, ... ,Vy of V and real numbers,, ... , Ay such that for
1<i< Nwe haveAZ(.") — A\;jash— oo andv;(") — V; (uniformly on compact subsets)
as n— oo.

)V =Vi& ... & Vy,orthogonal direct sum, arid = \; IdonV; for1 <: < N.

By c) the eigenvalues of Y (possibly with repetition) & , ... , A\ }. Choose k such
thatu(Y,v) = Ax. Then v has a nonzero component ip,\and by b) we conclude that

there exists a positive integepMuch that y has a honzero componentm(" forall n
> Ny. Hence for n> N, we have)\(") > w(Yn,vn) > p(Y,v) +e. SlnceA(”) — M\ as
n — oo by b) we conclude tha/u(Y v) = A\, > u(Y,v) + ¢, which is |mp053|ble This
completes the proof of the lemma. O

The M — function

We define M : V— R by M(v) = maz{u(X,v) : X € B, | X| =1}

This definition is closely modeled on the discussion of L. NiedNes]. We recall some
results about the M function from [Ma].

Proposition 3.3. The function M : V- R has the following properties.

1) M is constant on G-orbits

2) M has finitely many values

3) Let K be a maximal compact subgroup of G with Lie algerd et2( be a maximal
abelian subalgebra of3, and define M : V— R by M*(v) = maz{u(X,v) : X €
2,|X| = 1}. Then M(V)}= maz{M>(kv) : k € K}.

Proposition 3.4. Let T be an element of GL(V) that commutes with the eleme@sTdien
M(T(v)) = M(v) for all nonzero elements v of V.

Proof. It suffices to show that (X, v) = u(X, T'(v)) for all nonzero v V and all nonzero
X € B. Given a nonzero X if3 let A denote the eigenvalues of X, and fore A let V,
denote the\ - eigenspace for X. Since T commutes with the elements of @nitrutes
with the elements o®, and in particular, T commutes with X. It follows that T leave
invariant each eigenspace VIf v € V has a honzero component in V , then T(v) also
has a nonzero component Rjvin V, since T is invertible. It follows immediately that
(X, ) = p(X,T()). 0

Corollary 3.5. Let V be a G-module and let p be an integer with< p < dim V. Let
G act diagonally on W=V x ... x V (p times). LetVy = {v = (v1, ... vp,) € W :
{v1, ..., vp} is linearly independent

in V}. Forv = (v, ... vp) € Wy let span(v)= span{vi, ... v,} C V. If vw are elements
of Wy with span(v)= span(w) then M(vy= M(w).

Proof. Fix the standard basige:, ... ,e,} of R?. Then W=V x ... x V (p times) is
isomorphic as a vector space toR? under the magvy, ... ,v,) — >, 7 v; @ e;. Let
G x GL(pR) act on V® RP by (g,h)(v ® ¢) = g(v) @ h(¢). Define an action of G x
GL(pR) on W=V x ... xV (ptimes) by(g,h)(v1, ... ,vp) = (w1, ... ,wp), Where
w; = > 7 hjig(vi) andh(e;) = > %_ hjie;. Itis routine to check that the isomorphism
given above between W V x ... x V (p times) and V®RP preserves the actions of G x
GL(p,R). It is obvious that the actions of G and GL),commute on \» R?, and hence
they also commute on W V x ... x V (p times).

Now suppose that = (vq, ... ,v,) andw = (w1, ... ,w,) are elements of¥; such
that span(v)= span(w). Then there exists a unique elemest (h;;) of GL(p,R) such that
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wj =Y. ¥ hjv; forl <i <p. Thenh(v) = w and it follows from the preceding result
that M(v) = M(w) since he GL(W') commutes with G. O

Proposition 3.6. For every nonzero elementvV there exists a neighborhood O of vin V
such that M(w)< M(v) for allw € O.

Proof. Suppose the statement of the proposition is false for someero element v in
V. Then there exists a sequengg,} C V such thatv, — v as n— co and M (v,,) >

M (v) for all n. Since M has only finitely many values we may assunyepdssing to a
subsequence, thdt/(v,,) = ¢ > M (v) for some real number c and for all n. Choose
unit vectors{8,} C P such thatt = M (v,) = u(B,,vy) for all n. Passing to a further
subsequence I¢13,, } converge to a unit vectgt € 3. Choose > 0 suchthat > M (v)+

e. By (3.2) above there exists a positive integgradich thatu(3,,v,) < u(8,v) + € for
n> No. Hencec = M(v,) = p(Bn,vn) < p(B,v) +€ < M(v) + € < ¢, which is
impossible. O

Proposition 3.7. Let V,W be G-modules, and lettW be the induced G-module. Then
M(v,w) < min{M (v), M (w)} for all nonzero vectors & V and we W.

Proof. Let X be a unit vector if3 and let v,w be nonzero vectors in V,W respectively.
By the definitions ofu and M it follows thatu(X, (v, w)) = min{u(X,v), u(X,w)} <
min{M (v), M (w)}. The result follows since X is an arbitrary unit vectorjin O

Null cone
We say that \e V lies in thenull cone if G(v) contains the zero vector. The next two
results are the real analogues of Theorem 3.2 of [Nes].

Proposition 3.8. For ve V the following conditions are equivalent :
1) v lies in the null cone
2) M(v) > 0.
3) There exists X 9 such thae!X (v) — 0 ast— + oco.

Proof. We show that 1) 3). By (1.6) there exists X 9 andv, € V such that!X (v) —
vo as t— + oo and G(v) is closed in V. By 1){0} and G(v) are closed orbits ii(v),
and hence y= 0 by (1.5).

We show that 3)= 2). If e!X(v) — 0 as t— + oo for some nonzero vector X ‘B,
thenp(—X,v) > 0 by (3.1). Without loss of generality we may assume that X iia u
vector, and hence M(\% u(—X,v) > 0.

We show that 2}=- 1). Choose a unit vector ¥ 8 so that M(v)= u(Y,v) > 0. Then
etY (v) — 0ast— — oo by (3.1). O

Stable vectors

Following [Mu] and [Nes] we call a nonzero vectoeW stable if M(v) < 0. By
(3.6) the stable vectors form an open set in the Hausdorfilogyy of V. We shall see later
that the set of stable vectors is not always Zariski open i8&& Example 1 in section
5. In the complex setting for a linear action the stable vectahere M is negative, are
those vectors where G(v) is closed ang i6 discrete, and here the stable vectors form a
nonempty Zariski open subset.

Proposition 3.9. The following conditions are equivalent for a nonzero veetm V :
1) M(v) < 0; that is, v is stable.
2) The orbit G(v) is closed and the stability group & compact.
3)Themap F: G — [0, c0) is proper, whereF, (g) = |g(v)]|?.
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Remarks

1) The inner product, ) on V relative to which G is self adjoint is not unique, and the
values of the M function depend on the choice gf However, equivalence 2) of the result
above shows that the stable vectors of V are independen¢aftbice of(, ).

2) Itis easy to see that the map FG — [0, co) is proper= the map f : G — V given
by f.(g) = g(v) is proper. Hence the result above extends (1.9).

Proof. We prove 1)= 2). Since G is semisimple G is a closed subgroup of SL(V). (See th
main theorem in section 6 of [Mo1]). If G(v) is not closed, titee mapf, : G — V given
by f,(g) = g(v) is not a proper map by (1.9). By (3.1) and the lemma in the pob¢f.9)
it follows that(Y, v) = 0 for some nonzero element& 3. Hence M(v)> n(Y,v) = 0,
which contradicts 1). Hence G(v) is closed in V. If, &vere noncompact, then it would
follow immediately thatf, : G — V is not a proper map, which would lead to the same
contradiction as above. Hence) 2).

We prove 2)= 3). If F, : G — R is not proper, therf, : G — V is also not proper,
which contradicts (1.9).

We prove 3)=- 1). Suppose that M(v} 0 and choose a unit vector ¥ 3 such that
w(Y,v) = M(v) > 0. By (3.1) there exist a nonzero vector&y 3 and a vectow, €
V such thate!¥ (v) — vg as t— —oo. Hence F : G — [0,00) is not proper since
F,(e’Y) — |ug|? as t— —oo. This contradiction to the hypothesis of 3) shows that 3)
=1). O

In the remainder of this section we derive some useful agiitios of the result above.

Corollary 3.10. Suppose M(Y < 0 for some nonzero vectof 8f V. Then G acts stably on
V.

Proof. If U = {v € V : M(v) < 0}, then U is open in the Hausdorff topology of V by
(3.6). If U’ = {v € V : G(v) has maximal dimension}, then U is a nonempty Zariski
open subset of V. Since’lis dense in V relative to the Hausdorff topology it followsth
U NU'is nonempty. Ifv € U N U’, then G(v) is closed by (3.9) and G(v) has maximal
dimension since ¥ U’. The assertion now follows from (2.1). O

Remark LetG actstablyonV,andl€d = {v € V : G(v) is closed and dim G(v) is maximal}
If M(v’) < 0 for some nonzero vector wf V, then by (3.6}{v € O : M(v) < 0} is a
nonempty open subset of O in the Hausdorff topology of V. Hmvethis subset may not
be Zariski open ; in particular it may not be a dense subset &&@ Example 1 in section
5.

Corollary 3.11. Let v e V be a nonzero minimal vector. The following conditions are
equivalent :

1) M(v)< 0

2) G(v) is closed and Gis compact.

3) The moment map m : M B has maximal rank at v.

4) If X(v) = 0 for some X B3, then X= 0.

Proof. The conditions 3) and 4) are equivalent by (1.7). Conditigrend 2) are equivalent
by the preceding result. Since v is minimal the Lie alge®taof G, is self adjoint by
(1.1),and henc&,, = &, & .. It follows thatG, is compact= B, = {0}. Hence 2)=
4). Since v is minimal G(v) is closed by (1.2) and hence:4). O

Corollary 3.12. Suppose that & is discrete for some nonzero vectdérev V. Then there
exists a honempty G - invariant Zariski open subset O of V thathG(v) is closed, Gis
finite and M(v)< 0 for all v € O.
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Proof. By (2.5) there exists a nonempty G - invariant Zariski opdssti O of V such that
G(v) is closed and Gis finite for all ve O. It now follows from (3.9) that M(vx 0 for all
veO. O

Proposition 3.13. Suppose that & is compact for some nonzero vectérev V. Then G
acts stably on V, and M(\ 0 for some nonzero vectorev V.

Proof. G acts stably on V by 2) of (2.6). Let O be a nonempty Zariskiropebset of
V such that G(v) has maximal dimension and is closed for &l ®@. If U = {v € V :
G, is compact}, then U is nonempty and open in V by 1) of (2.6). IevO N U, then
M(v) < 0 by (3.9). O

Remarks

1) Examples 1 and 2 of section 5 illustrate the conditionSdfJ).

2) It is not necessarily true thatd, is compact then M(vk 0. The remark following
(2.5) gives an example whe¢¢, = {Id} and M(v)> 0.

The next application of (3.9) shows that stability of a veatds, in a certain sense,
inherited by closed subgroups H of G.

Corollary 3.14. Let H be a closed subgroup of G. Ifdv) < 0, then H(v) is closed and
H, is compact.

Proof. Letw € H(v), and let{h,,} C H C G be a sequence such that(v) — wasn
— 00. Since Mz (V) < 0it follows from 3) of (3.9) that{ ,,} has a subsequence converging
to an element h of G, andé H since H is closed in G. Henae = h(v) € H(v), which
proves that H(v) is closed in V. By 2) of (3.9),Gs compact. Since H is closed in G, &
compact and{, = H N G, it follows that H,, is compact. O

Remark The corollary above is false if G(v) is closed hui; (v) = 0.

Ezample Let H = SL(2,R) act by conjugation o) = {A € M(2,R) : trace A =
0.}. LetG=HxHacton V=6 @ H by (h1, h2)(X,Y) = (i Xh]', haXh;'). Define
elements v,w irf) by v = < (1) _01 > andw = ( (1) :? ) Note that hvii! = w if h
(11
N0 1
5 shows that H(v}= H(w) is closed in§), and hence G((v,w)= (H(v),H(w)) is closed in
V = 9 @ $H. Note that the stability groupr(,, .., = H, * H,, is noncompact sincél,,
consists of the diagonal matrices in H aHg, = hH,h~!. It follows thatMq(v) > 0 by
(3.9), and we conclude that; (v) = 0 by (3.8) since G((v,w)) is closed.

LetA = {(h,h) € G: h € H}. ClearlyA is a closed subgroup of G, but we show that
the orbitA((v,w)) is not closed in V. If h(t}= diag (e, et) and g(t)= (h(t), h(t)) € A,
then g(t)((v,w))— (v,v) as t— +oo. Hence (v,\v)e A((v,w)). However,A(, ., =
H, N H, = £{Id}, while A, . contains g(t) for all t. It follows that (v, A((v,w))—
A((v, w)) sincel, . is notconjugate il to A, ,,.y. We conclude that the orb ((v, w))
is not closed in V.

€ %, and hence H(v¥ H(w). The discussion later in Example 1 of section

4. THE INDEX METHOD

Let V be a nontrivial G-module. For a nonzero element Xbfet I (X) denote the
largest dimension of a subspace W of V on which X is negatifnite. Let (V) =
min{lg(X):0# X € B}. We calll (V) theindez of G acting on V. Note that trace X
= 0 for every Xe P8 since G is semisimple, which implies that, &] = &. Hence every
nonzero element X df8 has a negative eigenvalue. This shows fhgfl”) > 1 since V is
a nontrivial G-module.
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The index of G apparently depends on the choice of a G-cobipatiner product, ) on
V ;thatis, aninner product ) such that G is invariant under the involutién g — (g*) 1.
However, this is not the case.

Proposition 4.1. The index of G acting on V does not depend on the choice of Gatiste
inner product(, ).

Proof. Let (,); and(, )2 be two G-compatible inner products on V, anddet= &; @© P,
and® = R; @ P, denote the corresponding Cartan decompositions. It is kit
there exists g= G such that®, = Ad(g)(R1) andPs = Ad(g)(*B1) ; see for example
Theorem 7.2 of Chapter Il in [H]. Since X and Ad(g)(X) actimgp V have the same
eigenvalues for all X 9 if follows that I3 (V') = I3, x) (V). It follows immediately

thatZl (V) = 13(V). O

Proposition 4.2. Let K denote a maximal compact subgroup of GIJfV) > dim K,
then{v € V : M(v) < 0} is an open subset of V with full measure in V.

Proof. We carry out the proof in several steps

(1) Weight space decomposition of V

Let (,) be an inner product on V relative to which G is self adjointt e= 8 © P be
the Cartan decomposition &f defined by the Cartan involutigh: g — (¢*)~! that leaves
GC(R) invariant. Fix a maximal abelian subspateof 3. It is well known that every
maximal abelian subspace %fhas the form Ad(k}¥) for some ke K, and every element
of 3 lies in some maximal abelian subspac&®bfThe elements dff are symmetric with
respect tq, ), and hencel is a commuting family of symmetric linear maps on V.

ForheA*letVy ={veV:Xw =AX)vforallX eA}. If A ={\ e A*:
Vi # 0}, thenA is a finite set, called theeights of the representation, and we obtain the
weight space decomposition

V=V reaVa

whereVy = {v eV : X(v) =0forall X € A}.

(2) The subspacds; andVy

For a nonzero element X @f we letA, = {A € A: A\(X) >0} andAy = {\ € A:
A(X) < 0}. We defineVy = Vo @ 37,4+ Va andVy = 37,5~ Va. The following
assertions follow routinely from the definitions :

a) u(X,v) > 0 for some nonzero X A < v € V.

b) Ic(X) = dim Vy .

oV =ViaVy.

(3) There exists a finite set of nonzero vectdss;, ... , Xny} C A such that for every
nonzero Xe 2 there existd < i < N such that/{ = V.

SinceA is a finite set the number of distinct subséfst : 0 # X € 2} is also finite.
Choose nonzero elementX;, ... , Xy} C 2 such that for every nonzero X 3 there
existsl <i < N suchthat\} = A% . This is the desired set.

@) {veV:Mw) >0} =UN,K(Vy), where{X,, ..., Xy} are chosen as in (3).

By (2) it follows that M(v)> O forall v e V;&,l < i < N. From the G-invariance of M
we conclude that M(v} O forallve | i’\ilK(V;Z ). Conversely, let v be a nonzero vector
in V such that M(v)> 0. Let X be a unit vector if such thatu(X,v) = M(v) > 0.
Choose ke K such that Y = Ad(K)(X)e 2. Thenu(Y,k(v)) = w(X,v) > 0. By (2)
and (3) it follows that k(v)e V3 = V{ for somei,1 <i < N. Henceve K(V{) C
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f\’:lK(V;i), which completes the proof of (4).

We now complete the proof of the proposition. By hypothesid @) we obtain dim K
<Ig(V) < Ig(X) =dim Vg =dimV — dim Vi for all nonzero elements X ¢g.
Forl < i < N we definep; : K x Vi — V by ¢;(k,v) = k(v). Note that dim(K x
Vi) =dim K +dim Vi < dimV forevery i, and henc& (Vy ) = ¢;(K x Vi ) has
measure zero in V. Hende» € V : M (v) > 0} has measure zero in V by (4). O

Proposition 4.3. Let {4, ..., Vy} be nontrivial G-modules, and & = V; x ... XV be
the corresponding G-module. Théa(V) > SN I(V;).

Proof. Let X € 2 be a nonzero element. Using the notation and discussion) @b@ve
it is easy to see thaty = YN, (Vi) andl%(X) = N 15 (X) > N I6(Vy).
If X € 9 is any nonzero element, théh = Ad(k)(X) € 2 for some ke K. It follows
that I (X) = 1% (Y) since X and Y have the same eigenvalues on V. Heladé’) =
min{I}(X):0#£ X € P} =min{I%(X):0#£ X € A} > SN I (Vi). O

Corollary 4.4. Let V be a G-module that is the direct sum ofpdim K nontrivial
submodules. Thefv € V : M (v) < 0} is an open subset of full measure in V.

Proof. For each of the submodules Yhe index of G is at least 1 by the discussion at the
beginning of this section. Hende;(V') > p > dim K by (4.3), and the assertion now
follows from (4.2). O

We can strengthen the result above in the case that the Geslibes are all equivalent.

Proposition 4.5. Let V be a nontrivial G-module of dimension n, and let G acgdizally
onVP =V & ... @V (ptimes), where p is any positive integer. Then

1) If p > n, then there exists a nonempty Zariski open subset O of V kath#(v) < 0
for all ve O.

2) If p = n, then there exists a negative real number ¢ and a honempigkiapen
subset O o#/? such that M(v)= cforall v € O.

3) If G=SL(V) andl < p < n — 1, then there exists a positive real number ¢ such that
M(v) = c for all nonzero v inV/?.

Proof. 1) By (3.12) it suffices to prove tha, = {0} for some nonzero ¥ V?. Since
p > n there exist® = (v1, ... ,vp) € VP such thal’ = span{vi, ... ,v,}. If X € &,,
then0 = X (v) = (X(v1), ... , X(vp)), Which implies thatX (v;) = 0for1 < i < p.
HenceX = 0.

2) Sincep = n there exists a nonempty Zariski open subset @%s$uch thaf vy, ..., v, }
is a basis of V foralb = (v1, ..., v,) € O. By (3.5) it follows that there exists a real num-
ber ¢ such that M(v}= c for all v € O. To show that c is negative it suffices by (3.12) to
show that,, = {0} for every ve O. This follows as in 1) above.

3) Letv = (v, ... ,vp) be a nonzero element &7, wherel < p <n —1, and let X
€ B be an element such that = —Id on span(v). Ther!*(v) — 0 ast— oo, and it
follows from (3.8) that M(v)> 0. Since G acts transitively ovi* and M is G-invariant we
conclude that M is constant dr¥ — {0}. O

Remark If G = SL(V), then by the argument above a generic stabiliZgfis discrete
for G acting onV™, n = dim V. By (3.11) and the result above a generic orbit G(v) is
therefore a closed hypersurfacdift. It is not difficult to show that = (vq, ... v,) € V"
is minimal for the G actior= there exists a positive constant ¢ such thatv;) = c d;;.
Note that GL(V) acts transitively o™ — {0}.

For the index of G on a tensor product we have the following



20 P. EBERLEIN AND M. JABLONSKI

Proposition 4.6. Let V,W be G-modules. Théa(V @ W) > I5(V) - IcW.

Proof. If 0 # X € 9, then X is negative definite oWy, ® Wy . Hencel;®" (X) >
(dim Vi) - (dim Wy) = I4(X) - IY(X) > Ig(V) - Io(W). If0 # X € g and
Y = Ad(k)(X) € 2Aforsome ke K, then;®W (X) = 15V (V) > I(V)-Ic(W). O

We now apply the results above to the representations-ef$3.(2, R).

Proposition 4.7. Let G= SL(2,R), and let V be a G-module with dim¥ 4. If V has no
trivial G-submodules, thefw € V : M (v) < 0} is a nonempty open subset of full measure
inV.
Proof. Let p : G — GL(V) be a rational representation. Lgt, be the standard inner
product onR?, and letdy, Ko, Po, (, ), 8, & and be defined as in the beginning of section
(1.1). The elements ofy andP3, are skew symmetric and symmetric 2x2 matrices respec-
tively. Relative to(, ) the elements af = p(Ry) andP = p(Po) are symmetric and skew
symmetric linear transformations on V respectively. Theimal compact subgroup( K)
of p(G) is 1-dimensional, ang is 2-dimensional.

If Vis notirreducible, then the result follows by (4.4). Sagse now that V is irreducible.
We need a preliminary result.

Lemma Let Hy be any nonzero element @f,. Then there existc 0, and X,Y€ &
such that if H = cHy, then [H,X] =2X, [H’,Y] = — 2Y and [X,Y] =H’.

0 -1 0 0 1 0
satisfies the conditions of the Lemma with=c1. Hence{ Ad(y)Hy, Ad(p)X, Ad(p)Y }
also satisfies the conditions of the lemma for@alE K. The group Ad K acts transitively
on the lines through the origin fi$, since dimB, = 2. This completes the proof. O

Proof. If Hy = ( 10 ),X: < 0 1)andY: <0 0 ),then{Ho,X,Y}

We complete the proof of the proposition by showing thatH) > 2 for all nonzero H
€ P = p(Po). By the lemma above, for any nonzero elemeptdfi3, there exist c> 0
and elements X,Y o® such that H = cHy, X and Y satisfy the conditions of the lemma. It
suffices to prove thal; (p(H')) > 2 sincelg(H) = I¢(cH) for all positive real numbers
c and all He 3. By the representation theory @& = s((2,R) it is well known that the
eigenvalues op(H') decrease from dim V-1 to 1— dim V in jumps of two. Since dim V
> 4 it follows that p(H') has at least two distinct negative eigenvalues. Hdadél) =
I¢(H') > 2 for all nonzero He 3, and it follows thatl¢ (V) > 2 > 1 = dim p(K). The
result now follows from (4.2). O

Corollary 4.8. Let G= SL(2,R), and let V be a G-module with dim¥ 3. If V has no
trivial G-submodules, then G acts stably on V.

Proof. If dim V > 4, then the assertion follows from the previous result antQ).If dim
V = 3, then the G-module is equivalent to the adjoint represemtaf G on® = s[(2,R)
since V has no trivial G-submodules. In this case the asseftilows from Example 1 in
section 5. O

Remark The strict inequalityl; (V) > dim K in the statement of (4.2) cannot be
relaxed to the weak inequalith; (V) > dim K. If G = SL(2,R),V = & and G acts on
V by the adjoint representation,then the eigenvalues ofre@@ element X 3 are A, 0
and— )\ for some positive numbe. Hencel (V') = dim K = 1. However, M(v)> 0 for
all v in a nonempty subset of V that is Hausdorff open but natskaopen. It is still true
that G(v) is closed for v in a nonempty Zariski open subset.(8& Example 1 in section
5.

If V = R? and G acts on V in the standard way, then G&R? — {0} for all nonzero
v € V, and hence M(v)> 0 for all nonzero ve R? by (3.8).
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5. EXAMPLES

In this section we compute information about the M-funciioseveral cases, and we
give special attention to the case that M is negative somedreV.

Example 1(Adjoint representation of SL(R)) Let G= SL(2,R) and let V= & =
{A € M(2,R) : traceA = 0}. We let G act on V by conjugation. L€t) be the
inner product on V given byA, B) = trace AB, where B denotes the standard transpose
operationin M(2R). For g= G let g* denote the metric transpose of g acting on V relative to
the inner product, ). A routine computation shows thgt = ¢¢, and we conclude that G is
self adjointrelative td, ). Moreover, the Cartan involution aéhis the standard one, and the
corresponding Cartan decompositién= 8 & Pis givenbyf = {X € & : X' = —X}
andP={Xe&: X'=X}

Proposition 5.1. LetO; = {A € V : det A < 0},05 = {A € V : det A > 0} and
Y={AeV:det A=0}={AecV:A?=0}. Then

a) The set$),, O, andX are G-invariant, and V is their disjoint union. The sélg and
O, are nonempty open subsets of V in the standard topology of V.

b) If 2 denotes the minimal vectors for the action of G on V, thés= 8 U 3.

¢) G(A) is closed in V ifA € O; U O,. The zero matrix lies in the closure of G(A) if
Ac .

d) M(A)=0forall Ac O; ; M(A) = —/2/2for all A € O, and M(A)= /2/2 for all
Ac k.

Remark Assertion d) shows thedtv € V : M(v) < 0} is nonempty and open in the
Hausdorff topology of V but is not open in the Zariski topojoof V. Assertion d) also
shows thafv € V : M (v) = 0} has nonempty interior.

Proof. Assertion a) is clearly true. We prove b). By Example 3 of YIvg& know that A
€M e AA' = A'A. Since A€ M(2,R) it is easy to show that & 9t < A = A’ or
A = —At, which proves b).

We prove c). Recall that G(A) is closed in& G(A) N 9t is nonempty. Assertion c)
now follows immediately from b) and the next result.

Lemma 1) IfA € O, thenthere existsg G such thatg(A)y gAg~—! = ( ())‘ _0)\ ) €
B, where\ = |det A|'/2.

2) If A € O,, then there exists g G such that g(A)= gAg~! = < ())\ _O/\ > or

( _0)\ ())\ ) € R, where\ = (det A)'/2.

3) If A € &, then there exists a sequengg,} C G such thay,(A) = ( 8 )‘0” )

where),, — 0 as n— oo.

Proof. For A € V = & we recall that the characteristic polynomial of A actingtarsiard
fashion orR? is given byca (z) = x2 4 detA.

1) If A € Oy, then A has eigenvaluesand —\, where\ = |det A|'/2. Let {vy,v2}
be a positively oriented basis & such thatd(v;) = X v; andA(v2) = —\ ve. Letg
€ GL(2,R) be an element with det g 0 such thaty(v;) = e; andg(ve) = e, where
{e1,ea} is the standard basis &?2. Write ¢ = ch, wherec > 0 and det h= 1. Then

h(A) = hAh=! = gAg~! = ( 3 _OA ) e,

2) If A € O, then A has eigenvalues and —\i, where\ = (det A)Y/2. Letvy, v, be
vectors in V, not both zero, such thd{v, + ive) =i A(v; + dvs). Itis routine to check
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thatv; andv, are linearly independenti(v;) = —A ve and A(v2) = A v1. Hence A has

matrix ( relative to the basi$v;, v2} of R2. If the basis{v;, v2} is positively

-2 0
oriented, then chooseq GL(2,R) with detg > 0, g(v1) = e; andg(vz) = es. If the
basis{v1, v2 } is negatively oriented, then choosed+L (2, R) with detg > 0, g(v1) = e1
andg(vs) = —e2. In either case choosexe 0 and h in G such thag = ch. It follows that

hAh™' = gAg~! = < 0 A > in the first case andAr~! = gAg~! = ( 0 —A >

-2 0 A0
in the second case.
3) If A € X, thenA? = 0. It suffices to consider the case that A is nonzero. Choose
a basisvy, v, of R? such thatA(v;) = 0 and A(v2) = v;. As in 2) we choose ¢
GL(2,R) with det ¢ > 0 such thatg(v1) = e; andg(vz) = ez or g(vy) = e; and
g(va) = —eq, depending upon whethdmw,,v2} is a positively oriented basis or not. If
0 1

we write g = ch, wherec > 0 and he G, thenhAh™! = gAg~! = 0 0 )or

0 -1 _(1/n O (0 n?
(O 0 ).Ifhn—( 0 n)eG,then(hnh)A(hnh) _(O 0 )—>0

2
or (hph)A(h,h)~t = < 8 T(L) ) — 0 as n— oo. This completes the proof of the

lemma. O

We prove assertion d) of the proposition. L& = < (1) _01 >,X = ( 8 (1) > and
0 0

Y = ( 1 0 > Then{Hy, X,Y} is a basis o such thafH,, X] = 2X,[Hy, Y] =
—2Y and[X,Y] = Hy. The spacep is 2-dimensional and the 1-dimensional maximal
compact subgroup kK S acts transitively on the circle of vectorsghwith a fixed length

c for every positive number c. If ¥ 3, then H has eigenvaluésand—\ for some real
number), and|H|? = trace(H?) = 22 It follows that H is a unit vector ifl3 < H has
eigenvalues/2/2 and—+/2/2. In particular, if H is any unit vectog 93, then there exists

k € Ksuch thatt Hk~! = Hy/2V/2.

We show that M(A)= v/2/2 if A € X. The argument in the proof of 3) of the lemma
above shows that for any A X there exist gc G and\ € R such thatgydg—! = M\ X.
HenceM(A) = M(AX) = M(X) by the G-invariance of M and by (3.4) sinceld
commutes with G on V. It suffices to prove that(X) = v/2/2.

Note thatu(Hy, X) = 2 since[Ho, X] = 2 X. Henceu(H,/2v2, X) = v/2/2. Now
let H be an arbitrary unit vector if8 and let ke K be an element such thatk—! =

[ cosf —sinb 1
Hy/2+/2. Choose a real numbérsuch thatt = sinf  cosf ) ThenkXk™" =

—sin 6 cos 0 Hy+cos?0 X —sin?0Y . Ifa) sind # 0, thenu(H, X) = pu(kHk™ kXk™1) =
w(Ho/2v2,kXk™Y) = —/2/2. Ifb) sin® = 0, then k= Id or k = —Id, which
implies thatH,/2v2 = kHk™ = H and X= kXk~'. In this caseu(H,X) =
w(Ho/2v/2, X) = +/2/2. From a) and b) it follows that M(X}= v/2/2.

We show that M(A)= —+/2/2forall A € O,. For Ac O, we write A= ( Z _ba ) =
aHy + bX + cY for suitable real numbers a,b,c. By hypothesist- bc = —det A < 0,
and hence b and c are always nonzero. It follows by inspectiahu(Hy, A) = —2
and henceu(Hy/2v/2,A) = —/2/2. If H is any unit vector in, then choose k K
such thatk Hk~' = H,/2+/2. By the argument above(H, A) = u(kHk™ ', kAk~') =
w(Ho/2v/2,kAk™Y) = —/2/2. This proves that M(A)= —/2/2.
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We prove that M(A)= 0 forall A € O;. Since A has eigenvaluesand— A there exists g
€ GwithgAg~! = AH, by 1) of the Lemma. Henc&/ (A) = M (gAg~') = M(\Hy) =
M (H,y). It suffices to prove thad/ (Hy) = 0. Note thatH, € Ker Hy sinceHy(Hy) =
[Ho, Ho) = 0, and henc® = u(Ho, Hy) = pu(Ho/2v2, Hy). If H is any unit vector

in 93,then choosé = cosf - =sin b\ sich thatkHk— = Hy/2v/2. Then
sin@  cos 0

w(H, Ho) = p(kHE™Y, kHok™") = p(Ho/2v/2, cos(20) Hy + sin(20) X + sin(20) Y).
If sin(20) # 0, thenu(H, Hy) = —+/2/2. If sin(20) = 0, thenkHyk~! = +H,, and
w(H, Hy) = +pu(Ho/2v/2, Hy) = 0. HenceM (Hy) = maz{u(H, Hy) : H € B, |H| =
1} =0. 0

Example 2 The adjoint representation of G ah

We generalize the first example. Before stating the mainltréBroposition 5.5) we
establish some terminology and recall some useful facts.

Let G be a connected, noncompact semisimple Lie group wittalgebra®, and let G
act on V= & by the adjoint action. Let B® x & — R denote the Killing form of®.
By Proposition 7.4 of [H,p.184] there exists a decomposiio= & & P such that B is
positive definite o3 and negative definite of and the linear mag : & — & given by
(K 4+ P) = K — P is an automorphism o of order two withg andj3 as the+1 and
—1 eigenspaces. If,) is the inner product o® given by(X,Y) = —B(6(X),Y), then
ad(®) and ad{3) consist of skew symmetric and symmetric linear map® oéspectively.
In particular, Ad(G) is a self adjoint subgroup of G&)Y. Fix & = 8 ® B,0 and(,) as
above.

Semisimple elements, Cartan subalgebras, root space decomposition and rank

An element X of® is said to besemisimple if the extension of ad X & — & to &€ is
diagonalizable. A subalgebgbof & is a Cartan subalgebra of & if 2l is a maximal abelian
subalgebra o#® and every element &fl is semisimple. Equivalently, a subalgel3tas a
Cartan subalgebra a# if its complexification2® is a Cartan subalgebra &f®. Every
semisimple element X ab is contained in a Cartan subalgebrago{cf. Proposition 4.6,
page 420 of [H]).

For a Cartan subalgebf of & one has theoot space decomposition &€ = B @
> xca®$, where ad B= A\(B) Id on the 1-dimensional subspaé4 for all A € ® and
all B € 8. The finite set® C Hom(B, C) is the set ofroots determined bys.

Any two Cartan subalgebras df have the same dimension. The:k of a semisimple
Lie algebra, real or complex, is the dimension of a Cartamakgeébra.

There are only finitely many orbits of Ad(G) acting on the se€Cartan subalgebras of
. For every Cartan subalgeb® of & there exists g= G such that Ad(g)B) is a0 -
invariant Cartan subalgebra &f(cf. Corollary 4.2, page 419 of [H]).

Regular elements

If X € 6, thenletZ(X) = {Y € & : [X,Y] = 0} denote the centralizer of X
in . Note thatZ(X) = &x since X= ad X on® by the definition of the adjoint
action. Let®(X,0) = {Y € & : (ad X)*(Y) = 0 for some positive integer k} =
Ker{(ad X)4™ ®}_An element X of® is regular if dim &(X,0) < dim &(Y,0) forall Y
€ &. Let! denote the set of regular elementsfofin similar fashion we defin&® (X, 0)
for X € &C and what it means for X to be regular #. We let?RC denote the regular
elements of5C. We note that? and9i* are nonempty Zariski open subsetsfiand&*
respectively.
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Proposition 5.2. R = RN & = {X € & : dim &(X,0) = rank &}. If X € R, then
Z(X) = ®(X,0) is a Cartan subalgebra a$.

Proof. If X € € c &C, then itis well known tha®® (X, 0) is a Cartan subalgebra &f;
see for example Theorem 3.1 of [H, p. 163]. In particulanc &C(X,0) = rankc &C.
By the definition of regularity i€ it follows thatdimc &©(X,0) > rankc &€ for any
X € &€ with equality< X € RC. If X € &, then it is easy to see thai(X,0)¢ =
®8C(X,0). Sincerankg & = rankc & it follows thatdimg &(X,0) > rankg & with
equalitys X € RC N &. This proves the first assertion of the proposition. To prove
the second assertion note thHatX) ¢ &(X,0) forall X € &. If X ¢ ;% ¢ RE, then
®(X,0)¢ = &¢(X,0) is a Cartan subalgebraéf. Hence® (X, 0) is a Cartan subalgebra
of &. Since®(X,0) is abelian and X &(X, 0) it follows that®(X,0) C Z(X). Hence
&(X,0) = Z(X) = By is a Cartan subalgebra &f. This completes the proof of the
second assertion. O

Remark We include some further information about regular elemehes, but we omit
the details of the proofs since this information is not nekie the article. Note that the
third assertion of the next statement together with the dissertion of (5.5) below shows
that the set of regular elementsdhnis the set of elements i& whose orbits under Ad G
are closed and of maximal dimension.

Proposition 5.3. For a noncompact semisimple Lie algel#ahe following assertions are
equivalent :

1) X'is a regular element a.

2) X is semisimple and Z(>§ & x is a Cartan subalgebra ab.

3) Xis semisimple and diix < dim®&y forall Y € &.

Minimal elements in & By (5.3.1) of [RS] one knows that X & is minimal for
the action of Ad G on® < 0 = [X,0(X)]. By 29)M = {X € 6 : &6x =
Z(X) is invariant under 6}. We give a third description @mt.

Proposition 5.4. Let G be as above, and |&1t denote the set of minimal vectors for the
action of Ad G or&. Thent is the union of alb-invariant Cartan subalgebras @b.

Proof. Let 2 be ad-invariant Cartan subalgebra &. We show first tha®l C 90t. Let X
be an element ofl and writeX = K + P, whereK = (1/2)(X +6(X)) € 2 N K and
P=(1/2)(X —0(X)) € A n P. Theno = [K, P] = (1/2)[0(X), X]. Hence Xe M,
which proves tha®l C 9.

To complete the proof we first note that Ad K leaves invari@arnd3, and it follows
immediately that commutes with the elements of Ad K. In particula®liis ag-invariant
Cartan subalgebra @, thenAd(p)(2l) is also &-invariant Cartan subalgebra &ffor all
p eK.

It remains only to prove that if X is an element®ft, then X lies in &-invariant Cartan
subalgebra of5. Since X is minimal the orbit Ad G(X) is closed & by (1.2), and it
follows from 1) of the next result that X is semisimple. By learremarks we may choose
a Cartan subalgebRaof & that contains X and an element g of G such fBat Ad(g)(2A)
is af-invariant Cartan subalgebra éf The element Y = Ad(g)(X) lies i3 C 2t by the
first paragraph of the proof, and henceeXAd G(Y) n 2. By (1.2) it follows that
X = Ad(y)(Y) for somep € K. HenceX € Ad(y)(®B), which is af-invariant Cartan
subalgebra o® by the discussion above. O

Proposition 5.5. Let G act on \'= & by the adjoint action. Then
1) Let0 # X € &. Then the orbit Ad G(X) is closed # < X is semisimple.
2) Let0 # X € &. ThenM (X) > 0 < ad X : % — & is nilpotent.
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3) Let0 # X € &. Then the following conditions are equivalent.
a)M(X) < 0.
b) The stability groufty x is compact.
C)Gx = Z(X) C Ad(g)(R) for some ge G.

Remark Assertion 1) of the result above is due to Borel-Harish-Gamwvith a different
proof. See Proposition 10.1 of [BH].

Proof. 1) Letd : & — & be the Cartan involution corresponding to the Cartan decom-
position® = R @ P. Let X € & be semisimple. By earlier discussioneX53, where
B is a Cartan subalgebra @f. Choose g= G such tha®l = Ad(g)(B) is ab- invariant
Cartan subalgebra @. By the first paragraph of the proof of the previous result ee s
thatY = Ad(g)(X) is a minimal element of, and hence Ad(G)(Y3> Ad(G)(X) is closed
in & by (1.2).

Conversely, suppose that Ad(G)(X) is closed®n By (1.2) there exists an element g
€ G such thaV” = Ad(g)(X) is minimal. If we writeY = K + P, whereK € £ and
P € 3, then by Lemma5.3.1 of [RS] we obtdin= [0(Y), Y] = 2]K, P]. Hence ad K and
ad P commute. We observed earlier that ad K and adP are skemedyimand symmetric
respectively relative to the canonical inner prod(igton &. Hence both ad K and adP
are semisimple o and since they commute they have a common basis of eigemsecto
in 8¢, HenceY = K + P is semisimple, and we conclude th&t = Ad(g~!)(Y) is
semisimple since the set of semisimple elements of invariant under all automorphisms
of &.

2) Suppose first that ad X®& — & is nilpotent for some element X a&. Then
ad(p(X)) = poad X o p~1is nilpotent for allp € Aut(®). In particular adY & — &
is nilpotent for all Y& Ad G(X), the closure in® of the orbit Ad G(X). Note that Ad
G(X) is not closed in® by 1) ; ad X cannot be both semisimple and nilpotent unless ad
X = 0, which implies that X= 0 since the center of a semisimple Lie algebra is trivial.
By (1.6) there exists H= 8 and Y € Ad G(X) such that Ad G(Y) is closed i® and
Ad et (X) = et (X) — Y ast— oco. Since Ad G(Y) is closed i it follows
from 1) that ad Y is semisimple. Hence=¥ 0 by the argument above since ad Y is also
nilpotent. It follows from (3.8) that M(X}> 0.

Conversely, suppose that M(%) 0 and choose a unit vector&3 such thaj(H, X) =
M(X) > 0. LetA denote the set of all eigenvalues of ad H, including zeroJet®, C &
denote the corresponding eigenspace for ad H.

Lemma Let Y € & be arbitrary. If ad X(Y)£ 0, thenu(H,ad X(Y)) > u(H, X) +
p(H,Y).

Proof. Write X = >~ xeaXy andY = > ;eaY,. Then ad X(Y)= Y xoen[Xn, Yo
Note that X, Y,] € &, since ad H is a derivation @. If [X,,Y,] # 0, thenX, # 0,
which implies that\ > p(H, X)), andY, # 0, which implies thar > u(H,Y). Hence
Ao >u(H,X)+ p(HY)If [ Xy, Y,] # 0. This proves the lemma. O

We now complete the proof of 2). Suppose that (ad"§)) is nonzero for some
positive integer N and some element Y éf From the lemma above it follows that
w(H, (ad X)N(Y) > Nu(H,X) + p(H,Y). If ¢; andc, are the smallest and the largest
eigenvalues of ad H o®, thency > u(H, (ad X)N(Y) > Nu(H,X) + u(H,Y) >
Nu(H, X) + ¢1. We conclude thalV < (co — ¢1)/pu(H, X) = (c2 — ¢1)/M(X). It
follows that (ad X}V = 00on® if N > (co —c1)/M(X). Hence ad X ® — & is nilpotent
if M(X)>D0.
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We prove 3). The assertion &} b) follows immediately from (3.9). We show b3
a). If Gx is compact, then the elements of the Lie algebra are skew symmetric hence
semisimple relative to a & - invariant inner product on \= &. In particular ad X :
® — & is semisimple, and by 1) it follows that Ad G(X) is closedé&n It follows that
M(X) < 0 by (3.9).

We show a)= c). If M(X) < 0, thenGx is compact by (3.9). Let K* be a maximal
compact subgroup of G that contaifig, and let gc G be an element such thak g—! =
Kx. Then®x = Z(X) C 8 = Ad(g)(R).

We show c)= a). Choose @ G such that Z(X)c Ad(g)(R) and let Y= Ad(g~1)(X).
ThenZ(Y) C & and M(Y) = M(X). It suffices to prove that M(Yx 0. SinceY € Rt
follows thatf(Y) = Y and hence Y is minimal by (5.3.1) of [RS] sin€g, 0(Y)] = 0.
Since&y N P=Z(Y)N P C ANP = {0} it follows that M(Y) < 0 by (3.11). O

We now reach the main result of this example, which generalize first example where
G = SL(2,R).

Proposition5.6. Let M~ = {X € & : M(X) < 0}. Then

1) M~ is nonempty= rank & = rank K, whereg is the +1 eigenspace of the Cartan
involutionf : & — &.

2) Letrank & = rank K. Then

a) M~ C U gecAd(g)(R).

)R N UgecAd(g)(®) C M~

Remark Itis not difficult to show that J ;e Ad(g)(R) = {X € & : ad X is semisimple with
eigenvalues in iR}. We omit the details of the proof.

Proof. We prove 1). If M~ is nonempty, then M(Xx 0 for some X &. By 3) of (5.5)
there exists @ G suchthatbx = Z(X) C Ad(g)(R). If Y = Ad(g~')(X)), then Z(Y)

C R. Since ad Y is skew symmetric afi with respect to the canonical inner product it
is semisimple or* and there exists a Cartan subalgefiraf & with Y € 2. Hence Y

e C Z(Y) C Rand it follows thatrank & = rank .

Conversely, suppose thatnk 8 = rank &, and let be a Cartan subalgebra &f
with 20 C K. It suffices to show that there exists an element X(afuch thatZ (X) = 2,
for thenX € M~ by 3) of the previous result. Siné" is a Cartan subalgebra & we
have the root space decompositish = A€ @ Y \ea 85, If X is an element of, then
a routine argument shows thaf X )© = {Z € 6 : [X,Z] = 0} = AT ® > y(x)=0 Ba.
For every root\ we know that\ : A¢ — C is nonzero, and hence Kar N 2 must be a
proper subspace &f. Since there are only finitely many rootasve may choose a nonzero
X € 2 such that\(X) # 0 for all roots\. It follows thatZ (X )© = €, which implies that
Z(X) =20 and completes the proof of 1).

Letrank 8 = rank &, and let Xe M ~. By 3) of (5.5) Xe Ad(g)(R) for some ge G,
which proves 2a). We prove 2b). LetXfR be an element such that=¥ Ad(g)(X) € 8
for some element g G. Note that M(Y)= M(X) by the G-invariance of M, and hence it
suffices to prove that M(YX 0. Let2l be a maximal abelian subspacesothat contains
Y. Itis known that Ad K acts transitively on the maximal alaglisubspaces of, and one
of these subspaces is a Cartan subalgebéasihce rank? = rank®. Hence all maximal
abelian subspaces @&f and in particulaR(, are Cartan subalgebras®f Moreover2l C
Z(Y) and Z(Y) is a Cartan subalgebra®fby (5.2) since X and” = Ad(g)X are regular.
It follows that = Z(Y) C & The element Y is minimal for the action of Ad G since
Y, 0(Y)] =[Y.Y]=0,and®y N P =Z() N P = {0}. It follows from (3.11) that
M(Y) = M(X) < 0. This proves 2b), O
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Admissible semisimple Lie algebras We say that a noncompact semisimple Lie alge-
bra® is admissible if rank & = rank K, wheref is a maximal compact subalgebra of
&. We wish to determine the admissible noncompact semisimigl@lgebras. If® is
admissible an@. is compact and semisimple, thénd &, is admissible. Hence, without
loss of generality, we may assume tiktathas no compact factors. Next we reduce to the
case tha® is simple and noncompact.

Lemma 5.7. Let & be a semisimple Lie algebra with no compact factors, andevdit=
&1 D ... PGy, where{®,, ... ,8y} are simple noncompact Lie algebras. Theris
admissibles &, is admissible fon < k < N.

Proof. If &; is a maximal compact subalgebra®ffor1 <i < N,thenR=8%, P ... ®

Ky is a maximal compact subalgebra &éf = &, @& ... © &y. Hencerank 8 =
NN rank & < Y N rank ; = rank &, with equality< rank & = rank &,
forl1 <i < N. O

Admissible simple Lie algebras Before listing the admissible noncompact simple Lie
algebras we recall the way that real noncompact simple lgetahs are constructed, up to
isomorphism. The results are due to Elie Cartan. For furdisrussion see for example
[H, pp. 451-455].

Let 4 be a real compact simple Lie algebra. Thénis a complex simple Lie algebra.
Conversely, any complex simple Lie algebra is isomorphigtdor a real compact simple
Lie algebrail, and the compact real forghis uniquely determined up to isomorphism.

Let & be a complex simple Lie algebra. A real simple Lie alge#ais called a
real form for & if &§ = &. The noncompact real forms @ are determined as fol-
lows by the involutions ofl, whereil is the compact real form ad. Let6 : il — £l be an
automorphism of order two, and let= Ky & PB., whereR, and®}3, are the+1 and—1
eigenspaces df in 4. LetPBy = i P. C &, and let&, = Ky d Po. Thend, is a real
simple noncompact Lie algebra and a real formd&orMoreover, ifdy : &y — B¢ is the
linear isomorphism whose 1 and—1 eigenspaces arg, and3, respectively, thed, is
an automorphism ab, of order two. The subalgebs? is a maximal compact subalgebra
of &. All noncompact real form®, of & and Cartan involutiong, of &, arise in this
fashion from an appropriate involutive automorphiéif the compact real forril of &.

Let &, be a real simple noncompact Lie algebra with Cartan invoiutj, and letil be
the compact simple Lie algebra with involutiérihat construct$®,, 6, } as above. Since
UC = & it follows thatrank U = rank & = rank &,. Hence we obtain the following
criterion :

Lemma A real simple Lie algebr&, = K9 ® o is admissible= rank U = rank Ko.

Using this criterion it is now easy to use the discussion arepa51-455 and the Table
on page 518 of [H] to reach the following conclusion, using iotation of Helgason :

Proposition 5.8. 1) The admissible real simple noncompact Lie algebras drtsa invo-
lutions of type AIILLD I, CI,CILEIN,ENLEV,EVI,EVIEVIL,EIX FI FII,
G.

2) The nonadmissible real simple noncompact Lie algebrésedrom involutions of
type AILAI,BDI,EI, EIV.

Example 3 The diagonal adjoint action of G ai x ... X & (p times)

The previous example lists necessary and sufficient camdifor M to take on negative
values for the adjoint action of G a. Even when M does take on negative values it does
not do so on a Zariski open set as Examples 1 and 2 show. Byasbitte situation is much
simpler if G acts by the diagonal adjoint action o2 copies of&.
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Proposition 5.9. Let G act on V= & x ... x& (p times) by the diagonal adjoint action. If
p > 2, then there exists a nonempty G - invariant Zariski opensuBsof V such thatz,,
is finite and M(v)< 0 for all v in O.

Proof. By (3.12) it suffices to show thatt x = {0} for some0 # X = (X, ... X,) € V.
Hence it suffices to consider the case- 2 since&x = (?_, &x,.

We use two preliminary results whose proofs we give in Appetd

Lemma 1 Let & be a finite dimensional real Lie algebra, and let 2 be an integer.
LetX? = {(A4y, ..., Ap) € B = Gz ... &(p times) : {Aq, ..., A} generate a proper subalgebra of &}.
ThenXP? is a variety in&?.

Lemma 2 Let & be a finite dimensional real semisimple Lie algebra, andlteC &?
be the variety of Lemma 1. Thex¥ is a proper variety for every p 2.

We now complete the proof of the proposition. L@ = {(X,Y) € & z & :
X and Y are
regular elements of }. ThenO; is a nonempty Zariski open subset®fxr & since the
regular elements o® form a Zariski open subset @. LetO; = {(X,Y) € & 2 & :
& is the smallest subalgebra
of & containing X and Y}. ThenO, is a nonempty Zariski open subset &fz & by
Lemmas 1 and 2. We assert that if (X,¥)O = O, N O3, which is nonempty and Zariski
openin® r &, thend xy) =6x N &y = Z(X) N Z(Y) = {0}.

Let (X,Y) € O and¢ € Z(X) N Z(Y) be given. Then Z) is a subalgebra ob that
contains X and Y, and hencg(¢) = & by the definition ofO-. It follows that¢ = 0 since
& is semisimple. O

Example 4 The action of H= SL(gR) x SL(pR) on V= s0(q,R) z ... z s0(q,R) (p
times)

LetG = SL(q,R) actonso(q, R) by g(C) = gCgt. LetH = SL(q,R) z SL(p,R) act
onV =so0(q, R) @ R? by (g, h)(C ®@v) = gCg' @ h(v). Recall thal’ = so(q,R) @ R? is
isomorphic to V= so(q,R) z ... z so(¢q, R) (p times). See the next example and the proof
of (3.5) for further discussion.

We say that a pair (p,q) iszceptional if Heo has positive dimension for all C in V. If
(p,q) is a nonexceptional pair, then by Corollary 3.12 thextists a nonempty Zariski open
subset O of” = s0(¢,R) ® RP such that if ve O, then H(v) is closed, His finite and
M(v) < 0.

If a pair (p,q) is exceptional, then so is the dual pai{Rq), where D= (1/2)q(q —

1) = dim so(q,R). For a discussion of duality in this context see Corollag, Proposi-
tion 5.9 and Corollary 5.10 of [Eb3]. That discussion is acéplecase of a more general
treatment of duality in Lemma 2 of [EI].

The following is a complete list of exceptional pairs, uptie tuality between (p,q) and

(D_p,q),

TABLE OF EXCEPTIONAL PAIRS

(1,9) forq> 2
(a(a—-1)/2, q) forq> 2
(2,2k+1)

(2,2k) fork> 3

(2,4

(3.4)

(3.5
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(3.6)

The table above comes from Table 1 of the proposition inse&i4 of [Eb2]. Table 1
is based on Table 6 of [El] and Tables 2a,2b of [KL].
Example 5 The action of G= SL(qR) on V = s50(¢,R) z ... = s0(q, R) (p times)

Let G= SL(q,R) act onso(q,R) by g(X) = gXg¢* forg € G and X€ so(q,R). Let
G act diagonally o’/ = so(q,R) = ... x s0(g,R) (p times). Equivalently, if we identify
V with so(gq, R) ® R? under the magC?, ... ,C?) — > C'®e;, theng(C @ v) =
gCg¢' @ v forall C € so(¢,R) and all ve RP. Here{ey, ... ,¢,} is the standard basis of
RP.

For p> 2 the action of G is stable on V in all cases except when (®,@, 2k + 1) and
(D — 2,2k + 1), whereD = (1/2)(2k + 1)(2k). However, it is not always the case that
M < 0 on a nonempty Zariski open subset of V. We begin with a summamere the first
entry is the value for (p,q). When an M value is designatedemegc it means the value
of M on a nonempty Zariski open subset of V. Otherwise, opemfsubset means open in
the Hausdorff topology of V.

In all casepp < D = (1/2)q(¢ — 1), and a statement valid for (p,q) is also valid for

(D—p.q9)-

1) (2,2k). The generic stabilizer for G is isomorphic®d(2,R) ® ... & SL(2,R) (k
times). M is zero generically.

2) (2,2k+1). A generic point of V has a G-orbit that is open inWis positive generi-
cally.

3) (3,4). The generic stabilizer of G is 3-dimensional. Ehexist nonempty disjoint
open set$)1, O, in V such that

a) M is negative o0, and the stabilizers of G of); are isomorphic to SU(2).

b) M is zero onO2, and the stabilizers of G ofi; are isomorphic t&&'L(2, R).

4) (3,6) The generic stabilizer of G is 1-dimensional. Thexest nonempty disjoint
open set¥);, O, in V such that

a) M is negative orD;, and the stabilizers of G of?; are isomorphic to SO(2} S!.

b) M is zero onO-, and the stabilizers of G ofi; are isomorphic tdR.

5) (p,2k+1), where p> 3. The stabilizers of G are generically finite and M is negative
generically.

6) (p,2k), where p> 3 and k> 4. The stabilizers of G are generically finite and M is
negative generically.

We omit the details of 1) and 2). We give a brief outline of 3jidn in Appendix 2. We
prove only 5) and 6), beginning with 5).

Proposition 5.10. Let G= SL(q,R) act onso(q,R) by g(X) = gXg* forg € G and X
€ so0(q,R). Let G act diagonally oV = so(q,R) z ... x s0(q, R) (p times), wherg > 3.
If q is odd, then there exists a Zariski open subset O of V sumhM(D) < 0 and Gp is
finite for all D € O.
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Proof. Since q is odd there exists an irreducible representatidth ef SU(2) onR4. If
RY is given an H-invariant inner produgt), then$ = su(2) may be identified with a
3-dimensional subalgebra e§ (¢, R).

Next we prove a preliminary result that is valid for all positintegers g. An element
C = (C, ... ,CP) € V is said to beirreducible if the elements(C*, ... ,C?} do not
leave invariant any proper subspacerst It follows from the two lemmas of the previous
example that the set of irreducible elements of V containgreempty Zariski open subset
of V.

Lemma Let §) be a p-dimensional compact semisimple subalgebsa(@f R), and let
{C*, ... ,CP} be any basis ofy. LetC = (C*, ... ,CP) € V, and suppose that C is
irreducible. Then M(CXx 0.

Proof. Let C be as above, and I6t= span{C", ... ,C?} C so(q, R). By hypothesi®R¢ is
an irreducibles - module. By the lemma in the proof of Proposition 3.21A of [Ekkre
exists a basi§ D!, ..., DP} of § such that- traceD* D7 = (D*, D7) = §;; for1 < i, j <
pand)_ ¥, (D%)? = —\ Id for some positive numbex. If D = (D!, ..., D?), then D
is minimal for the action of G on V by the first example of a moi@ap in section 1. By
(3.5) it follows that M(C)= M(D) since spaf{C*, ... ,CP} = span{D!, ... , DP} = §.
It suffices to prove that M(Dx 0.

Since D is minimal it follows from (1.1) that the Lie algel#g, is self adjoint. Equiva-
lently, p = Kp @ Pp, whereRp = &p N KRandPp = &p N P. To prove that M(D)
< 0 we need to prove th&@ p = {0} by (3.11).

The elements o5 act on V by X(C) = (XC! + C'X?, ... ,XCP + CPX?) for
C=(Cl ..,CP)eVandX € &. If X € PBp, thend = X (D), or equivalently,X D* +
D'X = 0for1 < i < p. It follows that X commutes with the elementfD?, D7],1 <
i,7 < p}, which generate the commutator idégl $]. Note that[$, H] = $ since$
is semisimple, and hence X commutes with It follows that $ leaves invariant each
eigenspace of the symmetric linear map X, and we concludexiiza A 1d for some real
number\ sinceRY is an irreducible? - module. SinceXD? + DX = 0for1 <i < pit
follows thatA = 0. The proof of the lemma is complete. O

We complete the proof of the proposition. By (3.12) it suffide prove thalG¢ is
discrete for some C in V. 1€ = (C!, ... ,C?) €V, thenGc = (_, Gc:. Hence it
suffices to prove that ¢ is discrete for some € V in the case that p- 3.

As we observed abov® = su(2) is a 3-dimensional subalgebraaf(q, R) such that
R is irreducible undef. Let D = (D', D%, D3) € V = s0(q,R) X s0(q, R) X s0(q, R)
be the element constructed in the proof of the lemma aboveshdde that® p, = {0}).

In the proof of the lemma we showed that M(R)0 and®p, = Kp C K. Let X € Rp
be given. Ther) = X (D) = (XD! — DX, ..., XD? — D3X), which is equivalent to
the statement that X commutes with the elements of §gah ..., D3} = §. Hence the
elements ofy commute withX 2, which is symmetric and negative semidefinite. SiRée
is an irreducible - module and) leaves invariant every eigenspaceot it follows that
X? = —\ Id for someX > 0. If A = 0, thenX = 0. If A > 0, then g must be even since
Ker X # {0} if X € so(q,R) and q is odd. In particulabp, = Rp = {0} if g is odd,
which completes the proof of the proposition. O

Remark 1 1f 0 # 8p = &p, whereD = (D*, ..., DP) is the minimal element of V
discussed in the Lemma above, then the argument there shathére exists a nonzero
element X infp such thatX? = — Id and X commutes with the elements Hf In
particularR? with q even becomes a complex vector space of dimension digrerthe
complex multiplication orR? is given by (a + bi) v= a v + b Xv. MoreoverR? becomes
an irreducible comple module.
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Conversely, suppose thétis a compact, semisimple Lie algebra and V is an irreducible
complex$) - module that is also irreducible as a r&al module of dimension 2q. Letd
GL(V) denote multiplication by i. Then there exists an inpesduct(, ) on V, regarded as
a 2g-dimensional real vector space, such that J and the elsmmi) are skew symmetric
relative to(, ) (see below). By the argument in the proof of 1) in the Lemmavelibere
exists a basi§ D!, ... DP} of § such thatD = (D*, ... , DP) is a minimal element of
50(2¢,R)? relative to the action off = SL(2¢,R) on V and the inner produgt) on V.

It follows that J is a honzero element 8, since J commutes with. The stability group
Gp is compact by the proof of 1) above, b}, is not discrete sinced &p.

We prove the existence of the inner prodcton V with the properties stated above,
regarding V as a real vector space of dimension 2q. Firssidenthe connected subgroup
H of GL(V) with Lie algebra$). It is known that H is compact since the Killing form on
$ is negative definite. See for example Chapter I, Propasii®, Corollary 6.7 and The-
orem 6.9 of [H]. If H is the subgroup of GL(V) generated by H and J, then H has index

two in H' sinceJ? = — Id and J commutes with the elements of H. It follows thati$4
compact. If(,) is any H - invariant inner product on V, then the elementsipére skew
symmetric and/.J! = Id. SinceJ? = — Id it follows that J is also skew symmetric.

Remark 2 Let$) = su(2) and let V be an irreducible compléx- module of dimension
g, where g is even. If V is regarded as a real vector space dadrtiion 2q, then it is known
that V is also irreducible as a regl- module. See sections 5 and 6 of [B-tD] for relevant
discussion. The discussion of the remark above also applibese - modules.

We conclude with the proof of 6) in the summary above.

Proposition 5.11. Let G = SL(q,R) andV = so(q,R)?, where p> 3, g > 3 and (p,q)
#(3,4) or (3,6). Let G acton V as in (5.10). Then there exist®aempty G - invariant
Zariski open set O of V such that is finite and M(C)< 0 forall C = (C*, ... ,CP) €
0.

Proof. By the argument used in the proof of (5.10) it suffices to pritng G- is discrete
for some Ce V in the case that p- 3.

The assertion of the proposition for g odd was proved in tlegipus result. It remains
only to consider the case that= 3 andq > 8 is even. LetH = SL(q,R) z SL(p,R)
acton V= so(q,R) ® RP by (¢g,h)(C) ®@v) = (9Cg* @ h(v)). Then V is an irreducible
H-module sinceSL(q,R) acts irreducibly orso(q, R) and SL(p,R) acts irreducibly on
RP. From the table in Example 4 it is known, up to duality, tf&t is discrete on a
nonempty Zariski open subset of V except in the followingesasa)p = 1,q > 2 h)
p=gqlqg—1)/2,q>2 c)p=2,9 >3 d)p=3,q=4,50r6. The proof is now complete
since we are considering only the case that 3 andq > 8 is even. O

Appendix 1

In this appendix we give the proofs of two results that werediia the proof of (5.9).

Proof of Lemma 1 Let® andp > 2 be given, and lefA,, ..., A,} be elements ob.
We may assume without loss of generality that sotpés nonzero. For A= (Ay, ..., 4,)
setP; (A) = {44, ..., A, } and define inductively, 1 (A) = Pr(A) UadA; (Py(A)) U ... ad A, (Pi(A)).
We regard the elements 8 (A) as formal Lie bracket expressionsin the variables... , 4,.
It follows that| Py, (A)| = S &, p'.

Let &4 (A) = R — span(Py(A)) and let(A) be the Lie subalgebra @ generated by
{41, ..., Ap}. Then

(1) Bk (A) C Bry1(A) C H(A) for all positive integers k.

Let N be the smallest positive integer such tiigt (A) = Gni1(A). If N(A) =
{X € 6 : adX(&n(4)) C Bn(A)}, thenDN(A) is a subalgebra o$ that contains
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{41, ..., A,}. HenceN(A) D H(A4) D &xn(A), which proves thatsy(A) is a Lie
algebra. We conclude thdiy (A) = H(A). By (1) and the definition of N it follows that
dim &, (A) <dim&;,,(A) for1 <k < N — 1. This proves

(2) If B,(A) # H(A), thendim &, (A) > k.

If 5(A) is a proper subalgebra df, thendim &,,(A) < dim $H(A) < n — 1, where
n = dim &. Conversely, ifdim &,(A) < n — 1, then®,,(A) = H(A) since otherwise
n < dim 6,(A) by (2). We have proved

(3) H(A) is a proper subalgebra &f < dim &,,(A) <n — 1, wheren = dim &.

Letm= |P,(A)] = Y%, p' > n, and let{&(4), ... ,&n(A)} be an enumera-
tion of the elements of,(4). Let®(n) = {a = (a1, ... ,an) €Z" : 1 < a3 <
ag < ... <ap <m.}. Fora € ®(n) define a polynomial ma@® : & — A™(&) ~ R
by ®*(A) = ®*(Ay, ..., Ap) = &a, (A) A ... Aa,, (A). Thendim&,,(A) < n—1 < any
n elements of?, (A) are linearly dependert ®“(A) = 0 for all & € ®(n). This proves
thaty = {(A1, ... ,4p) € & : {4, ..., A,} generate a proper subalgebra of &} =
{(A1, ..., Ap) € B : d¥(A) =0foralla € &(n). O

Proof of Lemma 2 Forp> 2letr : &? — &2 be the projection given by(C*, ..., C?) =
(C1,C?). Note thatr(¥P) C 2. If ¥.2 is proper, therE? is proper for all p> 2. Hence it
suffices to consider the case2.

Let &€ denote the complexification af, and let denote a Cartan subalgebra®f.
Let® ¢ Hom(B,C) denote the roots determined B, and let&C = B @ > ,caBC
denote the corresponding rootspace decompositigifof

Letd = d U {a — B : «,( are distinct elements of &} C A*. Choosed € A :
AMA) # 0forall X € . Then{a(A) : a € ®} are distinct nonzero complex numbers.
ForBe &© we write B = By + Y. aeaBa, WhereBy € B andB,, € &S forall a € .
LetU = {B € &% : B, #0foralla € ®},andletO = U N &. Let B be any element
in the nonempty Zariski open subset Of

We show that)(A, B) = &, where$)(A, B) denotes the subalgebra &f generated
by A and B. This will show that:? is a proper variety ire2. It suffices to prove that
H(A, B)¢ = &C.

For an elementr € ® we define a linear mag’, = (ad A) o [[5c4 grq(ad A —
B(A)Id) : © — &C. Note thatP, leaves invariant every subspaég, 5 € ®,B C
Ker Aand®§ C Ker (ad A — $(A) Id) if 3 # a. HenceP,(B) = Ao Ba, Where), is
a nonzero complex number, ait (B) € $(A, B)C. It follows that&$ c H(A, B) for
all « € @ since eact is 1-dimensional. Howeverd$, &€ | = C H,, whereH,, €
is the root vector determined hy. Since® = C — span{H, : a € ®} it follows that
BOY aeca®S = 6% C H(4, B)C.O

Appendix 2

1) We discuss the case (p;g)(3,4), which is case 3) of the summary of the action of G
=S5L(q,R) onV = so0(q,R)?, as stated just before (5.10).

Let H denote the quaternions, and let P denote the purely imagmaeaternions. In
H we have the canonical inner produget,y) = Re(xg). In P we have the Lie algebra
structure [X,y]= xy — yx. Fora, 3 € P defineL, g : H — H by L, g(z) = az — xf.
If £={Lap:a,B € P} thengis a Lie algebra isomorphic tw(4, R) when given the
bracket structur¢L g, L~5] = La,g Ly,s — Ly,s Lag = Lja,4),3,6- NoOte thatl has
commuting idealst; = {L,0 : « € P} and&s = {Lo g : § € P}, both of which are
isomorphic toso(3, R).

InV = £3 = s0(4,R)3 we define

a)L1 = (Lay,0, Las 0, Las,0), Whereas, as, s are linearly independent elements of P.



CLOSED ORBITS OF SEMISIMPLE GROUP ACTIONS AND THE REAL HILBE-MUMFORD FUNCTION 33

D) Ly = (Lxja.81s Lasa, sy Lasa,8s ), Wherea, 51, B2, Bs are elements of By # 0, W
= span{f1, 32, B3} is a 2-dimensional subspace of P and )., A5 are real numbers, not
all zero, such tha} " 3_, A\x 3, = 0. Then

Ly, Ly are minimal elements for the action@f= SL(4,R) onVsinced 3 _; (La,.0)? =
—AIdand) }_  (La,a,p,)* = —p Id, where = >3 Jog|* andp = Y73 |6kl +
lal2(X 32, 22).

The generic stabilizer of G oW = so0(4,R)? is 3-dimensional (cf. [KL]). One may
show that there exist nonempty open subg2tsO, of V such thatl; € O; and M is
negative on0; while Ly, € O, and M is zero orD,. The stabilizers of G ir0,, O; are
isomorphic to SU(2) and L(2, R) respectively. Moreover, the set¥, O, are invariant
under the involution of V induced by the involutidn, 3 — Lg o 0n £ =~ s0(4,R). The
action of G on V is stable by (3.10).

2) We discuss the case (p4)(3,6), which is case 4) of the summary of the action of G
= SL(q,R) onV = s0(q,R)?, as stated just before (5.10).

Let {C*, C?,C3} be an orthonormal basis &6(3, R) with respect to the inner product
onso(3,R) given by (X,Y) = —traceXY. Then) %_,(C*)? = — Id (cf. the lemma
in Proposition 3.21A of [EH]). Fot < i < 3 let E¢, I be the elements ab(6,R) given

in 3 x 3 block matrix form ast® = 0 C ) and F* = ( 0 _ci > Then
E = (EY E% E®) andF = (F!,F?, F3) are minimal elements ilv = so0(6,R)3 for
the action ofG = SL(6,R) sinced_3_, (E¥)? = S"2_ (F¥)? = — Id. In particular

®Br and & are self adjoint. If we write elements @ in 3 x 3 block matrix form as
X = ( A B ),then it is routine to compute :

C D
Pe= (05 = Yy, N0 ) rem

e =03 = (5, 0 )rem

The generic stabilizer of G ol = s0(6,R)? is 1-dimensional (cf. [KL]).One may
show that there exist nonempty open subgetsO, of V such thatE € O; and M is
negative onD; while F € O, and M is zero orO,. The stabilizers of G ir0O,, O, are
isomorphic taS* andR respectively. The action of G on V is stable by (3.10).
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