Name:__

Math 165 Section 5915

Practice Exam 1

September 14, 2010

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

1. Let $f(x) = \sqrt{x}$ and g(x) = 3x + 2. Find the compositions $f \circ g$ and $g \circ f$ and find their respective domains.

2. Let $f(x) = \cos x$ and $h(x) = \frac{2x}{1+2x}$. Find the compositions $h \circ f$ and $f \circ h$ and find their domain.

3. Use the table to evaluate each expression: (a) f(g(1)), (b) g(f(1)), (c) f(f(1)), (d) g(g(1)), (e) $(g \circ f)(3)$, and (f) $(f \circ g)(6)$

x	1	2	3	4	5	6
f(x)	3	1	4	2	2	5
g(x)	6	3	2	1	1	3

For problems 4-8, find the limit of the function if it exists.

4.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

5.
$$\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2}$$

6.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

7.
$$\lim_{h \to 0} \frac{(2+h)^4 - 16}{h}$$

8.
$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{x^2}$$

9. If $4x - 10 \le f(x) \le 3x^2 - 5x - 4$ for $x \ge 0$, then find $\lim_{x \to 2} f(x)$

10. Prove that $\lim_{x\to 0} \sqrt{x} \sin\left(\frac{42}{\sqrt[3]{x}}\right) = 0.$

11. Let $f(x) = \begin{cases} 2x - 1 & \text{if } x < a \\ x^2 & \text{if } x > a \end{cases}$ For what value of the constant *a* is the function *f* continuous on $(-\infty, \infty)$?

12. Find numbers a and b such that $\lim_{x\to 0} \frac{\sqrt{ax+b}-2}{x} = 1$

For problems 13 and 14 find the derivative of the following functions using the definition of the derivative.

13. $g(x) = x^2 + 2x + 5$

14.
$$h(t) = t^3 + 2t - 1$$

For problems 15-10, differentiate the following functions with respect to the indicated independent variable.

15.
$$f(x) = 4x^5 + 7x^4 - 2x^3 + 10x^2 + \pi x - 5$$

16.
$$y(t) = \frac{t}{1-t^2}$$

17.
$$u(x) = (2x^3 + 3)(x^4 - 2x)$$

$$18. \quad h(w) = \frac{2w^2 + 5}{w^5 - 2w + 6}$$

19.
$$v(s) = \left(\frac{2}{3s^4} - \frac{4}{s^2 + 1}\right)(s^2 + 3)$$

$$20. \quad g(r) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$$

21.
$$w(y) = \sqrt[7]{3y^5} + 3\sqrt{y^7}$$

For problems 21-23, find the equation of the tangent line of the following functions at the indicated point.

22.
$$y = x^5 + 2x^4 - 3x + 2$$
, at (0,2)

23.
$$y = x + \frac{1}{x}$$
, at $\left(1, \frac{3}{2}\right)$

24.
$$u(x) = \frac{x}{x^2 - 1}$$
, at $\left(2, \frac{2}{3}\right)$

25. Given that $\lim_{x\to 2} (14-5x) = 4$, use the precise definition of a limit to find a δ that corresponds to $\varepsilon = 1$.

26. Let
$$f(x) = \begin{cases} x \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
. Determine if $f'(0)$ exists and if so compute it.

(Hint: Use the definition of the derivative.)