Name:_

Math 165 Section 5915

Practice Exam 2

October 14, 2010

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

For problems 1 - 8, calculate the derivative of the function with respect to the indicated independent variable.

1. $f(x) = \sin(\csc x)$

2.
$$g(r) = r^3 \tan(3r^6 - 9r + 2)$$

3.
$$y = \cot(1 + 5x^7)$$

4.
$$h(p) = \frac{\sqrt{p^4 + 2p - 7}}{\sin 6p}$$

5.
$$h(\theta) = \frac{\tan(6\theta)}{7 - \cos(2\theta)}$$

6.
$$h(z) = \sqrt[5]{\frac{z^2 + \cos z}{z - 3z + \tan z}}$$

7. $y = \sin(\sin(\cos x))$

8. $g(y) = y^6 \cos(4y - \sin y)$

9. Let $f(x) = \sin x$. Calculate $f^{(35)}(0)$.

10. Let $f(x) = \cos x$. Compute $f^{(150)}(x)$.

11. Let y be implicitly defined in x by $x^3 \cot(y) - \tan(y^2) = 12$. Compute $\frac{dy}{dx}$.

12. Let z be implicitly defined in t by $\sin t \sin z = \sin(t+z)$. Compute $\frac{dz}{dt}$.

13. Let r be implicitly defined in y by $r^2 + 3yr^7 = 2y + \sin r$. Compute $\frac{dr}{dy}$.

14. Let y be implicitly defined in r by $r^2 + 3yr^7 = 2y + \sin r$. Compute $\frac{dy}{dr}$.

15. Find the equation of the tangent line of $y = \sin x + \cos^2 x$ at $x = \frac{\pi}{3}$.

16. Find the equation of the tangent line of $y = \sin(\sin x)$ at $x = \frac{\pi}{2}$.

For problems 17 - 21, evaluate the following limits

17. $\lim_{x \to \infty} \frac{3x+5}{x-4}$

18.
$$\lim_{y \to \infty} \frac{2 - 3y^2}{5y^2 + 4y}$$

$$19. \quad \lim_{x \to -\infty} x + \sqrt{x^2 + 5x}$$

20.
$$\lim_{x \to \infty} \frac{5x+6}{\sqrt{9x^2+4}}$$

21.
$$\lim_{x \to \infty} \sqrt{x} \sin\left(\frac{1}{x}\right)$$

22. Air is being pumped into a spherical ballon so that its volume increases at a rate of $200 \ cm^3/s$. How fast is the radius of the ballon increasing when the diameter is 40 cm?

23. A particle is moving along the curve $y = \sqrt{x}$. As the particle goes through the point (9,3), the *x*-coordinate decreases at a rate of 6 cm/s. How fast is the distance from the particle to the origin changing at this moment?

24. A trough is 12 ft long and its ends have the shape of isosceles triangles that are 4 ft across at the top and have a height of 2 ft. If the trough is being filled with slop at a rate of 14 ft^3/min , how fast is the slop level rising when the slop is 6 inches deep?

25. Two people start from the same point. One walks west at 4 mi/h and the other walks southwest at 3 mi/h. How fast is the distance between the people changing after 45 minutes?

26. Estimate $\sqrt{9.001}$ by using linear approximation.

27. Estimate $\sin\left(\frac{\pi}{100000}\right)$ by using linear approximation.

28. Given that $y = \tan x$, compute the differential dy when $x = \frac{\pi}{4}$ and dx = .002.

29. Compute the differential dy when $y = \frac{t^2}{\sqrt{t+2}}$ when t = 2 and dt = -0.03.

For problems 30 - 36, do a complete curve sketching analysis of the given functions, in otherwords find all critical numbers, critical points, inflection points, all relative extrema, on what intervals the function is increasing/decreasing, on what intervals the function is concave up/down, find all asymptotes if there are any and sketch the curve.

30. $y = x^3 + x$

31. $y = x^4 + 4x^3$

32.
$$y = (4 - x^2)^5$$

33.
$$f(x) = \frac{x^2 - 4}{x^2 - 2x}$$

34.
$$f(x) = \frac{1}{x^2 - 9}$$

35.
$$f(x) = \frac{x}{x^3 - 1}$$

36. $y = x^3 + 6x^2 + 9x$

37. If f(0) = 21 and $f'(x) \le 4$ for $0 \le x \le 5$, how large can f(5) possibly be?

38. Show that the equation $x^3 - 15x + 9 = 0$ has at most one root in the interval [-2, 2].

39. Does there exist a function f such that f(0) = -1, f(2) = 4, and $f'(x) \le 2$ for all real numbers x?

40. Suppose f'(x) = 0 for all x in (a, b). Show that f must be constant on (a, b), in otherwords show that $f(x_1) = f(x_2)$ for every x_1 and x_2 in (a, b).