1.
$$L = \frac{1}{2} \left(\pi - \frac{3\sqrt{3}}{4} \right)$$

2. $L = \ln \left(\sqrt{4\pi^2 + 1} + 2\pi \right) - \frac{\sqrt{4\pi^2 + 1}}{2\pi} - \ln \left(\sqrt{\pi^2 + 1} + \pi \right) + \frac{\sqrt{\pi^2 + 1}}{\pi}$

- **3**. The sequence diverges
- **4**. 0
- **5**. 1
- **6**. $\frac{11}{6}$
- **7**. $\cos(1) 1$

8.
$$\frac{\pi^2}{6-\pi}$$

9. $-\frac{1}{35}$

- 10. converges by the integral test
- 11. diverges by the integral test
- 12. converges by the comparison test
- 13. diverges by the comparison test
- 14. converges by the alternating series test
- 15. converges by the alternating series test
- 16. converges by the root test and it converges absolutely
- 17. diverges by the ratio test
- **18**. $R = \infty$ and the interval of convergence is $(-\infty, \infty)$
- **19.** $R = \frac{1}{10}$ and the interval of convergence is $\left[\frac{49}{10}, \frac{51}{10}\right]$ **20.** $R = \infty$ and the interval of convergence is $(-\infty, \infty)$ **21.** $R = \frac{1}{2}$ and the interval of convergence is $\left[\frac{7}{2}, \frac{9}{2}\right)$

22.
$$a_n = \frac{2}{25n^2 + 15n - 4}$$
 and $\sum_{n=1}^{\infty} a_n = \frac{3}{5}$
23. $a_n = \frac{\pi^2 - 1}{36n^2 - 24n - 5}$ and $\sum_{n=1}^{\infty} a_n = \frac{\pi^2}{6}$