	Name:	
Math 221 Section 16279	Practice Exam 1	September 24, 2009

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

For problems 1-3, compute the following limits if they exist.

1.
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 2x - 3}$$

$$2. \lim_{x \to \infty} \frac{4x^3 + 3x + 1}{7x^3 - 8x^2 + 13}$$

$$3. \quad \lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2 - x} \right)$$

Find the derivative of the following function using the four-step process. All other methods will have zero point value.

4. $\varphi(x) = 2x^2 + x + 6$

For problems 5-8, differentiate the following functions with respect to the indicated independent variable.

5.
$$f(x) = \frac{x^3 + 3x - 1}{x^2 + 7}$$

6.
$$y = (3x^3 + 2)^{2000}$$

7.
$$h(r) = (5r - 6)^5 (r^3 - 7)^7$$

8. $y^7 + x^3y^2 = y^2 - x^6$, here the function is defined implicitly, so find $\frac{dy}{dx}$.

For problems 9 and 10, find the equation of the tangent line of the following functions at the indicated point.

9. $y = (1 - 5x)^{13}$, at (0, 1)

10. $x^3 + y^3 = 54$, at (3,3)

For the following function: find all critical values, critical points, inflection points, relative max/min, absolute max/min (if any), where the function is increasing/decreasing, where it is concave up /concave down, and sketch the graph.

11. $h(x) = x^4 - 4x^3$

12. Find two real numbers whose difference is 100 and whose product is minimal.

13. Let
$$f(x) = x^6$$
, Find $\frac{d^6 f}{dx^6}$