Name:__

Math 221 Section 10336

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

For problems 1 - 4 find the limit if it exists.

1.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$2. \quad \lim_{x \to 3} \frac{2x^2 + 2x - 24}{x - 3}$$

3.
$$\lim_{x \to \infty} \frac{3x^2 + x - 2}{8x^2 + 23x + \pi}$$

4.
$$\lim_{x \to \infty} \frac{7x^3 - 4x^2 + 3}{9x^3 - x^2 - x + 2}$$

For problems 5 and 6 use the definition of the derivative (4-step process) to comupte the derivative of the following functions.

5. $f(x) = \sqrt{x-2}$

6.
$$f(x) = 3x^2 + 1$$

For problems 7 - 14 differentiate each function.

7. $f(x) = 5x^7 + 3x^6 + \pi x^5 + ex^2 - 1$

8.
$$s(t) = 2t^8 + 3t^5 - 8t^4 + t^2 - 98t + e\pi$$

9.
$$y = x^2 \sqrt{x^4 - 3}$$

10.
$$y = 4x^5\sqrt[3]{x^8 + 3x + 1}$$

11.
$$g(t) = \frac{5t^2 + 2t + 1}{7t + 9}$$

12.
$$h(r) = \frac{5t+1}{\sqrt{t^2+3t+2}}$$

13.
$$p(x) = \left(x^2 + \frac{1}{x}\right)^{200}$$

14.
$$q(x) = \left(x^2 + x^5 + \frac{1}{x^9}\right)^{\pi}$$

For problems 15 and 16 use implicit differentiation to compute $\frac{dy}{dx}$ for each of the following implicit functions.

15.
$$2x^3 + x^2y - xy^3 = 2$$

16.
$$x^4(x+y) = y^2(3x-y)$$

For problems 17 and 18 compute the equation of the tangent to the given curve at the indicated point.

17.
$$f(x) = x^2 + \frac{1}{x^2}$$
 at $x = 1$.

18. $g(x) = x^2 \sqrt{x+1}$ at x = 1.

For problems 19 and 20 do a complete curve sketching analysis of the indicated curves. In other words find all critical numbers, critical points, inflection points, intervals on which f(x) is increasing/decreasing, intervals of concave up/concave down, and all relative maximum and minimum and finally sketch the curve.

19.
$$f(x) = x^4 - 4x^3$$

20.
$$f(x) = 2x^3 + 3x^2 - 36x - 5$$

21. Compute
$$\frac{d^8y}{dx^8}$$
 for $y = x^8$.

22. Compute
$$\frac{d^{10}y}{dx^{10}}$$
 for $y = x^{10}$.