Name:_

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

Practice Exam 1

For problems 1 and 2, determine if the following limit exists. If it does compute it, otherwise show it does not exist.

1.
$$\lim_{(x,y)\to(0,0)} \frac{x^* - y^*}{x^2 + y^2}$$

2.
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

3. Find the equation of the tangent plane for $z = x \sin(x + y)$ at the point (-1, 1, 0).

4. Find the equation of the tangent plane for $z = \ln(x - 2y)$ at the point (3, 1, 0).

5. Let $P = \sqrt{u^2 + v^2 + w^2}$, $u = xe^y$, $v = ye^x$, and $w = e^{xy}$. Compute the following partial derivatives: $\partial p \qquad \partial p$

$$\frac{\partial p}{\partial x}$$
 and $\frac{\partial p}{\partial y}$

6. Let $N = \frac{p+q}{p+r}$, p = u + vw, q = v + uw, and r = w + uv. Compute the following partial derivatives:

$$\frac{\partial N}{\partial u}$$
, $\frac{\partial N}{\partial v}$, and $\frac{\partial N}{\partial w}$

7. If z = f(x, y), x = g(t), y = h(t), g(4) = 5, h(4) = 12, g'(4) = 9, h'(4) = 7, $f_x(5, 12) = 8$, and $f_y(5, 12) = -7$, compute:

$$\left. \frac{dz}{dt} \right|_{t=4}$$

8. If z = f(x, y), x = g(t), y = h(t), $g(\pi) = 4$, $h(\pi) = e$, $g'(\pi) = 10$, $h'(\pi) = 23$, $f_x(4, e) = 2$, and $f_y(4, e) = 0$, compute:

$$\left. \frac{dz}{dt} \right|_{t=\pi}$$

9. Compute the directional derivative of $f(x, y) = e^x \sin y$ at the point $(0, \pi/3)$ in the direction of $\mathbf{v} = -6\mathbf{i} + 8\mathbf{j}$.

10. Compute the directional derivative of $g(s,t) = te^{st}$ at the point (0,2) in the direction of $\mathbf{v} = 3\mathbf{i} + 5\mathbf{j}$.

11. Use Lagrange multipliers to find the max and min values of $f(x, y) = x^2 + y^2$ subject to xy = 1.

12. Use Lagrange multipliers to find the max and min values of $f(x, y) = y^2 - x^2$ subject to $x^2 + 4y^2 = 4$.

13. If z = f(t), where t = x - y show that $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$