- 1. $\frac{1}{6}(5\sqrt{5}-1)$
- 2. $\frac{(2)4^6}{5}$
- **3**. Yes **F** is a conservative vector field and $f(x,y) = xe^{xy} + C$
- **4**. Yes **F** is a conservative vector field and $f(x,y) = \frac{1}{2}x^2y^2 + C$
- 5. $\frac{14}{3}$
- **6**. 36π
- 7. curl $\mathbf{F} = \mathbf{0}$ and div $\mathbf{F} = y(x^2 + z^2)e^{xz}$. Since the curl is the zero vector \mathbf{F} is conservative and $f(x, y, z) = ye^{xz} + C$
- 8. curl $\mathbf{F} = \mathbf{0}$ and div $\mathbf{F} = -x \sin y y \cos z$. Since the curl is the zero vector \mathbf{F} is conservative and $f(x, y, z) = x \sin y + y \cos z + C$
- **9**. 0
- **10**. $\frac{16}{3}$
- 11. $\frac{174}{35}$
- **12**. 0
- 13. Use the fact that $\nabla(fg) = g\nabla f + f\nabla g$, the fact that div $(\mathbf{F} + \mathbf{G}) = \text{div } \mathbf{F} + \text{div } \mathbf{G}$ and then write out everything component wise.