- 1. $\frac{1}{6}(5\sqrt{5}-1)$ (2)4⁶
- **2**. $\frac{(2)4^6}{5}$

3. Yes **F** is a conservative vector field and $f(x, y) = xe^{xy} + C$

4. Yes **F** is a conservative vector field and $f(x, y) = \frac{1}{2}x^2y^2 + C$

5. $\frac{14}{3}$

6. 36π

7. curl $\mathbf{F} = \mathbf{0}$ and div $\mathbf{F} = y(x^2 + z^2)e^{xz}$. Since the curl is the zero vector \mathbf{F} is conservative and $f(x, y, z) = ye^{xz} + C$ 8. curl $\mathbf{F} = \mathbf{0}$ and div $\mathbf{F} = -x \sin y - y \cos z$. Since the curl is the zero vector \mathbf{F} is conservative and $f(x, y, z) = x \sin y + y \cos z + C$ 9. 0

10. $\frac{16}{3}$ **11**. $\frac{174}{35}$ **12**. 0

13. Use the fact that $\nabla(fg) = g\nabla f + f\nabla g$, the fact that div $(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$ and then write out everything component wise.