- 1. Just plug in to check
- 2. Just plug in to check
- 3. $f(x,y)=x\ln y$ and $\frac{\partial f}{\partial y}=\frac{x}{y}$, and the point in question is (1,1). Both f and $\partial f/\partial y$ are continuous at the point, therefore there exists a unique solution.
- 4. $f(x,y)=x^2-y^2$ and $\frac{\partial f}{\partial y}=-2y$, and the point in question is (0,1). Both f and $\partial f/\partial y$ are continuous at the point, therefore there exists a unique solution.
- 5. $f(x,y)=1+x^2+y^2$ and $\frac{\partial f}{\partial y}=2y$, and the point in question is (0,2). Both f and $\partial f/\partial y$ are continuous at the point, therefore there exists a unique solution.
- $6. \quad y = \tan\left(C x \frac{1}{x}\right)$
- 7. $y = C \sin x$
- 8. $y = -1 + \frac{1}{\sqrt[3]{C 3\tan^{-1}x}}$
- 9. $y = x^2 \sin x 3x^2$
- **10**. $y = \frac{1}{2} + 4(x^2 + 4)^{-\frac{3}{2}}$
- **11**. $y = 3xe^{2x}$
- **12**. $(x+e^y)^2 = 2x^2 + C$
- **13**. $y = \sqrt[3]{Ce^x 3x^4 12x^3 36x^2 72x + 72}$
- 14. $2y + \sqrt{x^2 + 4y^2} = Cx^{\frac{3}{2}}$
- **15**. Just plug in to check