1. Just plug in to check

2. Just plug in to check

3. $f(x,y) = x^4 \ln y$ and $\frac{\partial f}{\partial y} = \frac{x^4}{y}$, and the point in question is (1,1). Both f and $\partial f/\partial y$ are continuous at the point, therefore there exists a unique solution.

4. $f(x,y) = x^2 - y^7$ and $\frac{\partial f}{\partial y} = -7y^6$, and the point in question is (0,1). Both f and $\partial f/\partial y$ are continuous at the point, therefore there exists a unique solution.

5. $f(x,y) = 1 + x^9 + y^4$ and $\frac{\partial f}{\partial y} = 4y^3$, and the point in question is (0,2). Both f and $\frac{\partial f}{\partial y}$ are continuous at the point, therefore there exists a unique solution.

- $6. \quad y = \tan\left(C x \frac{1}{x}\right)$
- 7. $y = C \sin x$

8.
$$y = -1 + \frac{1}{C - \tan^{-1} x}$$

- **9**. $y = x^2 \sin x 3x^2$
- 10. $y = \frac{1}{3} + \frac{16}{3} (x^2 + 4)^{-\frac{3}{2}}$

11. $y = 3xe^{2x}$

12.
$$(x+e^y)^2 = 2x^2 + C$$

- **13**. $y = \sqrt[3]{Ce^x 3x^4 12x^3 36x^2 72x + 72}$
- 14. $y^2 = -4x^2 + (x\ln x + Cx)^2$
- 15. Just plug in to check