Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

1. Given the following Sturm-Liouville problem

$$\begin{cases} \Delta v + \lambda v = 0\\ v|_{\partial\Omega} = 0 \end{cases}$$

Show that the eigenfunctions are orthogonal, i.e. show that for two different eigenvalues $\lambda_1 \neq \lambda_2$,

$$\int \int_{\Omega} \varphi_1(x, y) \varphi_2(x, y) \, dA = 0$$

HINT: You will need Lagrange's identity, $\int \int_{\Omega} (u\Delta v - v\Delta u) \, dA = \int_{\partial\Omega} (u\nabla v - v\nabla u) \cdot \mathbf{n} \, ds$ and consider for the two Sturm-Liouville problems for λ_1 associated to the solution $\varphi_1(x, y)$ and λ_2 associated to the solution $\varphi_2(x, y)$.

2. Given the following Sturm-Liouville problem

$$\begin{cases} \Delta v + \lambda v = 0\\ v|_{\partial \Omega} = 0 \end{cases}$$

Show that the eigenvalues are real, i.e. show that $\lambda = \overline{\lambda}$. HINT: You will need Lagrange's identity, $\int \int_{\Omega} (u\Delta v - v\Delta u) \, dA = \int_{\partial\Omega} (u\nabla v - v\nabla u) \cdot \mathbf{n} \, ds$ and consider for the two Sturm-Liouville problems for λ associated to the solution $\varphi(x, y)$ and $\overline{\lambda}$ associated to the solution $\overline{\varphi}(x, y)$.

3. Solve the following PDE subject to the following boundary and initial conditions:

$$\begin{cases} u_{tt} = c^2 \Delta u \\ u(a, \theta, t) = 0 \\ u(r, \theta, 0) = \alpha(r, \theta), \ u_t(r, \theta, 0) = \beta(r, \theta) \end{cases}$$

HINT: When you do the separation of variables $u(r, \theta, t) = h(t)v(r, \theta)$ and you will need the radial form of the Laplacian. That is if $v(r, \theta) = f(r)g(\theta)$, then

$$\Delta v = \frac{1}{r} \frac{d}{dr} \left(r \frac{df}{dr} \right) g(\theta) + \frac{1}{r^2} f(r) \frac{d^2 g}{d\theta^2}$$

You do not need to derive or state what the coefficients are in the resulting series solution.

4. Solve the following PDE subject to the following boundary and initial conditions:

$$\begin{cases} u_{tt} = c^2 \Delta u \\ u_r(a, \theta, t) = 0 \\ u(r, \theta, 0) = \alpha(r, \theta), \ u_t(r, \theta, 0) = \beta(r, \theta) \end{cases}$$

HINT: When you do the separation of variables $u(r, \theta, t) = h(t)v(r, \theta)$ and you will need the radial form of the Laplacian. That is if $v(r, \theta) = f(r)g(\theta)$, then

$$\Delta v = \frac{1}{r} \frac{d}{dr} \left(r \frac{df}{dr} \right) g(\theta) + \frac{1}{r^2} f(r) \frac{d^2 g}{d\theta^2}$$

You do not need to derive or state what the coefficients are in the resulting series solution.

5. Given the following ODE:

$$(x^{6} + x^{2})\frac{d^{2}y}{dx^{2}} + (x^{7} + x)\frac{dy}{dx} + (6x^{5} - 4)y = 0$$

What is the expected approximate behavior of the solutions near x = 0.

6. Given the following ODE:

$$(x^8 + x^2)\frac{d^2y}{dx^2} + \left(x^5 + \frac{3}{16}\right)y = 0$$

What is the expected approximate behavior of the solutions near x = 0.

7. Using the eigenfunction expansion method, solve the following PDE subject to the following boundary and initial conditions:

$$\begin{cases} u_t = ku_{xx} + Q(x,t) \\ u_x(0,t) = A(t), \ u(L,t) = B(t) \\ u(x,0) = f(x) \end{cases}$$

HINT: You will need Lagrange's identity, $\int_0^L \left(c \frac{d^2 h}{dx^2} - h \frac{d^2 c}{dx^2} \right) dx = \left(c \frac{dh}{dx} - h \frac{dc}{dx} \right) \Big|_0^L.$

8. Using the eigenfunction expansion method, solve the following PDE subject to the following boundary and initial conditions:

$$\begin{cases} u_t = k u_{xx} + Q(x, t) \\ u_x(0, t) = A(t), \ u_x(L, t) = B(t) \\ u(x, 0) = f(x) \end{cases}$$

HINT: You will need Lagrange's identity, $\int_0^L \left(c \frac{d^2 h}{dx^2} - h \frac{d^2 c}{dx^2} \right) dx = \left(c \frac{dh}{dx} - h \frac{dc}{dx} \right) \Big|_0^L.$

9. Let **b** be a vector in \mathbb{R}^2 , that is $\mathbf{b} = (b_1, b_2)$. Also let *g* be a differentiable function in \mathbb{R}^2 . Define

$$u(x, y, t) = g(x - b_1 t, y - b_2 t) + \int_0^t f(x + (s - t)b_1, y + (s - t)b_2, s) \, ds$$

Show that $u_t + \mathbf{b} \cdot \nabla u = f$ HINT: Just compute the derivatives and see what happens.