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Commutative Disk and
Annulus
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Spaces and Operator

I Let Dw+ = {z ∈ C : |z | ≤ w+} and
Aw−,w+ = {z ∈ C : 0 < w− ≤ |z | ≤ w+}.

I Notice ∂Dw+ ∼= S1 and ∂Aw−,w+
∼= S1 ∪ S1.

I Let

D =
∂

∂z

be the operator acting on the space of H1 functions.
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Two Short Exact Sequences

I Let σf (ϕ) = f (w+e iϕ) for z = re iϕ.

I

0→ C0(Dw+)→ C (Dw+)
σ→ C (S1)→ 0

I Let σ±f (ϕ) = f (w±e iϕ).

I

0→ C0(Aw−,w+)→ C (Aw−,w+)
σ+⊕σ−→ C (S1)⊕ C (S1)→ 0
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APS Setup

I Let M be a closed manifold with boundary Y and let D be a
Dirac operator defined on M.

I Let M have a “product” structure near the boundary so that
an infinite cylinder can be attached.

I Let D have a “special” decomposition structure so that it
extends naturally to the infinite cylinder.
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APS Boundary Condition

Study D with domain:

I F ∈ H1(M)

I There is a F ext ∈ H1
loc(cylinder) such that DF ext = 0,

F ext
∣∣
Y

= F |Y and F ext ∈ L2(cylinder)
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Boundary Conditions

I Let DD = D and DA = D where

I dom(DD) consists of a ∈ H1(Dw+) such that there is
aext ∈ H1

loc(C \ Dw+) such that aext
∣∣
S1 = a|S1 , Daext = 0,

aext ∈ L2(C \ Dw+)

I and dom(DA) consists of a ∈ H1(Aw−,w+) such that there is
aext ∈ H1

loc(C \ Aw−,w+) such that aext
∣∣
S1∪S1 = a|S1∪S1 ,

Daext = 0, aext ∈ L2(C \ Aw−,w+).

I DD and DA have parametrices, i.e. they are almost invertible.
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A Fourier Series and Boundary Conditions Equivalence

I

a =
∞∑
n=0

e inϕfn(r) +
∞∑
n=1

gn(r)e−inϕ

I Let a ∈ dom(DD), then fn(w+) = 0 for n ≥ 0.

I Let a ∈ dom(DA), then fn(w+) = 0 for n ≥ 0 and
gn(w−) = 0 for n ≥ 1.
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Dirac Operator in Polar Form and Parametrix
Decomposition

I

D =
e iϕ

2

(
∂

∂r
+

i

r

∂

∂ϕ

)

I

Qa = −
∞∑
n=0

e inϕ
∫ w+

r
fn+1(ρ)

rn−1

ρn
dρ

+
∞∑
n=1

e−inϕ
∫ r

w−
gn−1(ρ)

ρn−1

rn
dρ

Matt McBride D-bar Operators in Commutative and Noncommutative Domains



Dirac Operator in Polar Form and Parametrix
Decomposition

I

D =
e iϕ

2

(
∂

∂r
+

i

r

∂

∂ϕ

)
I

Qa = −
∞∑
n=0

e inϕ
∫ w+

r
fn+1(ρ)

rn−1

ρn
dρ

+
∞∑
n=1

e−inϕ
∫ r

w−
gn−1(ρ)

ρn−1

rn
dρ

Matt McBride D-bar Operators in Commutative and Noncommutative Domains



Results

Theorem
The operators DD and DA are unbounded Fredholm operators.
Moreover their respective parametrices QD and QA are compact
operators. This also means these are elliptic boundary value
problems.
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Quantum Disk
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Gelfand-Naimark Theorem

I Let X compact topological space and C (X ) the continuous
functions on X . Can associate C (X ) with X

I C (X ) commutative C ∗−algebra with unit

I GN says if A is a commutative C ∗−algebra with unit, then
there is a X , compact topological space such that A = C (X )

I We think of a noncommutative (quantum) space as a
noncommutative C ∗−algebra.
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Some Weights

I Let {ek} be the canonical basis for `2(N).

I Define UW ek = w(k)ek+1 where {w(k)}k∈N is an increasing
sequence of positive real numbers such that

w+ := lim
k→∞

w(k)

exists.
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The Quantum Disk and a Short Exact Sequence

I Let C ∗(UW ) be the C ∗−algebra generated by UW .

I

0→ K → C ∗(UW )
σ→ C (S1)→ 0

I σ(U) = e iϕ, σ(U∗) = e−iϕ, σ(compact) = 0

I This C ∗−algebra is the quantum disk.
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Informal Idea About Noncommutative Spaces

Classical

I D −→ C (D) C ∗−algebra generated by z and z

I A −→ C (A) C ∗−algebra generated by z and z

Quantum

I Dq −→ C ∗(UW ), generated by unilateral shift

I Aq −→ C ∗(UW ), generated by bilateral shift
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A Formal Series I

I Kek = kek , and let a(n)(k) be an inversely summable sequence
whose sum goes to zero at n→∞.

I Let a ∈ C ∗(UW ) define

aseries :=
∞∑
n=0

Unfn(K ) +
∞∑
n=1

gn(K )(U∗)n

I fn(k) = 〈ek , (U∗)naek〉, gn(k) = 〈ek , aUnek〉
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A Formal Series II

I

‖aseries‖2 =
∞∑
k=0

∞∑
n=0

1

a(n)(k)
|fn(k)|2 +

∞∑
k=0

∞∑
n=1

1

a(n)(k)
|gn(k)|2

I This series looks very similar to the Fourier series for the
classical case. Think of k as the discretization of the radial
variable r where we divide up the unit interval into infinitely
many subintervals so the 1/a(n)(k) appear as the differential
term in the integral for the norm.
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Hilbert Space

I Let H be the Hilbert space consisting of the formal series
aseries such that ‖aseries‖ is finite.

I Proposition

If a ∈ C ∗(UW ), then aseries converges to a in H and moreover
C ∗(UW ) is dense in H.
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A Commutator and Trace

I Define S := [U∗W ,UW ].

I S is hyponormal, injective, and trace class with tr S = (w+)2.

I S is also invertible with unbounded inverse.

I Set a(n)(k) = S−1/2(k)S−1/2(k + n)
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The Operator

I Da = S−1/2[a,UW ]S−1/2

I dom(D) = {a ∈ H : Da ∈ H}
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Boundary Conditions

I Let

a =
∞∑
n=0

Unfn(K ) +
∞∑
n=1

gn(K )(U∗)n

I If a ∈ dom(D), then fn(∞) = 0 for n ≥ 0.

I D also has a parametrix Q.
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Unbounded Jacobi Operators

I

A(n)h(k) = a(n)(k)
(
h(k)− c(n)(k − 1)h(k − 1)

)
A
(n)

h(k) = a(n+1)(k)
(
h(k)− c(n)(k)h(k + 1)

)

I where c(n)(k) = w(k)/w(k + n + 1)
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Operator Decomposition

I

Da = −
∞∑
n=0

Un+1A
(n)

W (n)fn(K )

+
∞∑
n=1

W (n−1)A(n−1)gn(K )(U∗)n−1
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The Parametrix

Qa =

−
∞∑

m=0

Un

 ∞∑
i=k

n∏
j=1

w(k + j)

w(i + j)
· S

1/2(i)S1/2(i + n + 1)

w(k + n)
fn+1(i)


+
∞∑
n=1

 k∑
i=0

n−1∏
j=0

w(i + j)

w(k + j)
· S

1/2(i)S1/2(i + n − 1)

w(i + n − 1)
gn−1(i)

 (U∗)n
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Results

Theorem
The operator D is an unbounded Fredholm operator. Moreover it’s
parametrix Q is a compact operator and hence this is an elliptic
boundary value problem.
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The End

Thank You
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