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Korteweg-de Vries Equation

I ut = 6uux − uxxx

I Can transform this PDE into the following Lax pair

I
dL

dt
= [P, L]

I where L = −D2 + u, P = −4D3 + 3 (uD + Du), and
D = ∂/∂x

I Studying the KdV equation will amount to studying the
operator L.
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One-dimensional Schrödinger Operators

I Want to study:

L = − d2

dx2
+ V (x)

I on L2(R), where V ∈ L1
loc(R) and have limit point case at

±∞.

I In general, Ly = λy with a condition at 0, Dirichlet for
example, will yield limit points or limit circles, known as Weyl
circles.
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Limit points and Limit Circles

Study D with domain:

I Given an interval (a, b),

I L is in the limit circle case at a if there is a u ∈ dom(L) with
W (u∗, u)(a) = 0 such that W (u, f ) 6= 0 for at least one
f ∈ dom(L).

I Otherwise we call L in the limit point case.
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Weyl-Titchmarsh Functions I

I For λ ∈ C+, assuming the limit point case for L, Dirichlet
condition at 0, and the other conditions on L from before,
there are unique solutions u±, up to a constant factor, of

Ly = λy

such that u± ∈ L2 near ±∞ respectively.

I This is also the domain of L.

I Define the Weyl-Titchmarsh m−functions as

m±(λ) =
u′±(0, λ)

u±(0, λ)
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Weyl-Titchmarsh Functions II

I Can think of these functions as splitting L into two parts, L−
corresponding to (−∞, 0), and L+ corresponding to (0,∞)
and thinking them as a matrix

I Then studying the resolvent set on the diagnoal
〈δ0, (L± − λ)−1δ0〉

I Which can also be thought of as a Green’s function.

I m±(λ) has the following asymptotics as |λ| → ∞ in
ε < argλ < π − ε

m±(λ) =
√
−λ+ o(1)
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Reflectionless Operators

I L is said to be reflectionless on a Borel set S ⊂ R with
m(S) > 0 if its m−functions satisfy the following:

I

m+(x) = −m−(x)

for a.e. x ∈ S .

I Define the following set

MR =
{

L : L is reflectionless on (0,∞) and σ(L) ⊂ [−R2,∞)
}
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Herglotz Functions

I Recall a function f (λ) : C+ → C+ which is holomorphic is
called a Herglotz function and has the following
representation:

I

f (λ) = a + bλ+

∫
R

(
1

t − λ
− t

1 + t2

)
dσ(t)

a and b are real, and b > 0, σ nonzero measure on R such
that

∫
R(1 + t2)−1 dσ(t) <∞.
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Some Preperation

I For a reflectionless L, we get the following function:

I

M(λ) =

{
m+(λ) λ ∈ C+

−m−(λ) λ ∈ C−

I This M : Ω→ C+ is holomophic where Ω = C+ ∪ (0,∞)∪C−

I Using the conformal map ϕ : C+ → Ω given by ϕ(λ) = −λ2,
we get

I the following Herglotz function F (λ) = M(ϕ(λ)).
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Main Theorem (Continuous Case)

Theorem
L ∈MR iff the associated F−function is of the form

F (λ) = λ+

∫
R

dσ(t)

t − λ

for some finite Borel measure σ on (−R,R) such that

1 +

∫
R

dσ(t)

t2 − R2
≥ 0

Moreover if L ∈MR , then V is real analytic. More specifically
V (x) has a holomophic continuation V (z) to the strip
|Im z | < 1/R.
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Jacobi Operators

I Now interested in Jacobi operators/matrices

I Recall a Jacobi operator on a numerical function u ∈ `p(Z) is

(Ju)n = anun+1 + an−1un−1 + bnun

where a and b are in `∞(Z), an > 0, and bn ∈ R.

I We can again study the equation Ju = λu with u ∈ `2(Z).
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Reflectionless Jacobi Operators

I Now we want J to be reflectionless on (−2, 2). The definiton
for reflectionless is the same, but the m−functions here are
different

I For various reasons, it’s necessary that ‖J‖ ≤ R for some
R ≥ 2. Want to study this J now on `2(Z).

I We have a similar M space like in the continuous case.

I Let

MR = {J : J is reflectionless on (−2, 2) for R ≥ 2}
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m−Functions Again

I For λ ∈ C+, let u±(n, λ) be the two solutions to

anu(n + 1, λ) + an−1u(n − 1, λ) + bnu(n, λ) = λu(n, λ)

that are square summable near ±∞ respectively

I The fact that ‖J‖ < R guarantees these are unique solutions
up to a factor

I The m−functions are then defined to be

m±(λ) = ∓ u±(1, λ)

a0u±(0, λ)
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More Herglotz

I Since J is reflectionless, we again get the function:

I

M(λ) =

{
m+(λ) λ ∈ C+

−m−(λ) λ ∈ C−

I This M : Ω→ C+ is again holomophic where now
Ω = C+ ∪ (−2, 2) ∪ C−

I Using the conformal map ϕ : C+ → Ω given by
ϕ(λ) = −λ− λ−1 we get

I the following Herglotz function F (λ) = M(ϕ(λ)).

I It should be noted ϕ : S+ → (−2, 2), ϕ : D+ → C+, and
ϕ : (D+)c → C−.
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I It should be noted ϕ : S+ → (−2, 2), ϕ : D+ → C+, and
ϕ : (D+)c → C−.
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Some Setup

I let r be the solution to r + 1/r = R with 0 < r ≤ 1 (Well
defined as R ≥ 2).

I Also denote

σn =

∫
R

tn dσ(t)

the moments of the measure σ for n ∈ Z.
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Main Theorem (Discrete Case)

Theorem
J ∈MR iff the associated F−function is of the form

F (λ) = −σ−1 + (1− σ−2)λ+

∫
R

dσ(t)

t − λ

for some finite Borel measure σ on (−1/r ,−r) ∪ (r , 1/r) such that

1− σ−2 +

∫
R

dσ(t)

t2 + ct + 1
> 0

for all |c | > R.
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Meaning

I These theorems say if we have L or J, then they determine
their respective m−functions and thus their respective
F−functions and measures σ

I On the otherhand, if we have a measure σ satisfying the
conditions of either theorem, we can define an F−function
and thus completely determine a unique L or J.

I In otherwords, we can uniquely determine an operator of these
types knowing only the associated measure satisfying some
conditions.
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The End

Thank You
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