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Two equivalent definitions

Classical Case: Disk and Annulus

Quantum(Non-Commutative) Case: Disk and Annulus
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Two equivalent definitions

Two equivalent definitions

» Definition: An operator D is said to be an
unbounded Fredholm operator if D is closed, D has closed
range, dim KerD < oo and dim KerD* < oco.
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Two equivalent definitions

Two equivalent definitions

» Definition: An operator D is said to be an
unbounded Fredholm operator if D is closed, D has closed
range, dim KerD < oo and dim KerD* < oco.

» Definition: A closed operator D is said to be an
unbounded Fredholm operator if there exists a bounded
operator @ such that DQ — / and QD — I are compact.
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Classical Case: Disk and Annulus

Classical Case

» We define the disk as follows:

D={zeC : |z|] <p}

3.1
ID={zecC : |z|=p} ~S! 1)
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Classical Case: Disk and Annulus

Classical Case

» We define the disk as follows:

D={zeC : |z|] <p}

1 (3.1)
D={zeC : |z|=p} =S
» We define the annulus as follows:
A, , ={zeC : 0<p_<|z| <
p—ws =1 P |z| < p+} (32)

08y p. ={z€C : |z =ps}~S'US!
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Classical Case: Disk and Annulus

Classical Case: Disk and Annulus short exact sequences

» Let D be the following operator:
D=— (3.3)

defined on C° functions
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Classical Case: Disk and Annulus

Classical Case: Disk and Annulus short exact sequences

> Let D be the following operator:
D=_— (3.3)
defined on C*° functions
» There are short exact sequences
0 — C°(D) — C®(D) - C®(AD) — 0
00— G (Ap_p.) — CF(Ap_p,) =g (3.4)

r=r_®ory

88 co(8Y) @ C(SY) — 0
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Classical Case: Disk and Annulus

Classical Case: Disk and Annulus short exact sequences

» Let D be the following operator:

D=2 (3.3)

defined on C*° functions
» There are short exact sequences
0 — C§°(D) — C®(D) —— C®(dD) — 0
00— G (Ap_p) — CF(Ap ) g (3.4)
r=r_®ory

88 co(8Y) @ C(SY) — 0

» Here r is the restriction to the boundary and

C5o() = €=() N Go(-).



Classical Case: Disk and Annulus

Classical Case: APS boundary conditions

» Let ma(/) be the spectral projection of a self-adjoint operator,
A, onto an interval /. Let

PN:FLA(—OO,N] NeZ

i Op
35
Py =m 10 (—00,N] NeZ (3:5)
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Classical Case: Disk and Annulus

Classical Case: Definition of Dy and Dy n

» Let Dy be the operator D with domain

dom(Dy) = {f € C>°(D) c L?(D) : rf € RanPy} (3.6)
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Classical Case: Disk and Annulus

Classical Case: Definition of Dy and Dy n

» Let Dy be the operator D with domain
dom(Dy) = {f € C>°(D) c L?(D) : rf € RanPy} (3.6)
> Let Dy n be the operator D with domain

dOm(D[\/LN) = {f € COO(AP—’p+) - LZ(AP—7P+) :

3.7
rif € RanPy,, r_f € RanPy} (3.7)
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Classical Case: Disk and Annulus

Classical Case: Index theorems

» Theorem
The closure of Dy is an unbounded Fredholm operator in L?(DD)
and ind(Dy) = N + 1.
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Classical Case: Disk and Annulus

Classical Case: Index theorems

» Theorem

The closure of Dy is an unbounded Fredholm operator in L?(DD)
and ind(Dy) = N + 1.

» Theorem

The closure of Dy is an unbounded Fredholm operator in
L2(A,_,,) and ind(Dyy) =M+ N + 1.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case

» Let S=N, or S =Z. We have the following definition:
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case

» Let S=N, or S =Z. We have the following definition:

» Definition: Let {ex}kes, be the canonical basis for £2(S), let
{wx} be a bounded sequence of numbers, called weights. The
weighted shift operator in £2(S) is defined by:

Wek = Wk€k41 (4.1)
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case

» Let S=N, or S =Z. We have the following definition:

» Definition: Let {ex}kes, be the canonical basis for £2(S), let
{wx} be a bounded sequence of numbers, called weights. The
weighted shift operator in £2(S) is defined by:

Wek = Wk€k41 (4.1)

» We also need the shift and diagonal operator defined

respectively

Uek = exy1 (4.2)
/\ek = Wk€k .
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Conditions on W

» The {wy} are positive.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Conditions on W

» The {wy} are positive.

» The {wy} are increasing.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Conditions on W

» The {wy} are positive.
» The {wy} are increasing.
> S=[W*wW]>o0.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Conditions on W

» The {wy} are positive.
» The {wy} are increasing.
> S=[W*wW]>o0.

> S defined above is injective.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Disk and Cylinder short exact
sequences

> Let C*(W) be the C* — algebra generated by W.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Disk and Cylinder short exact
sequences

> Let C*(W) be the C* — algebra generated by W.

» Let K be the ideal of compact operators.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Disk and Cylinder short exact
sequences

> Let C*(W) be the C* — algebra generated by W.
» Let K be the ideal of compact operators.
>

0— K — C*(W) = C(SY) —0

r=r_®ory

(4.3)
0—K— C*(W) =" C(sY)®e C(s')—0
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Disk and Cylinder short exact
sequences

>

Let C*(W) be the C* — algebra generated by W.

Let K be the ideal of compact operators.

v

0— K — C*(W) = C(SY) —0

r=r_®ory

(4.3)
0—K— C*(W) =" C(sY)®e C(s')—0

v

Here r represents the symbol map, r(/) =1 and r(W) = e'%.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Definition of D

» Let Pol(W) be the space of polynomials in W and W*.
Pol(W) c C*(W).
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Definition of D

» Let Pol(W) be the space of polynomials in W and W*.
Pol(W) C C*(W).

> Let H = C*(W),(:,-)s be the Hilbert space completion where
(a, b)s = tr(Sba*) for a, b € C*(W).
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Definition of D

» Let Pol(W) be the space of polynomials in W and W*.
Pol(W) C C*(W).

> Let H = C*(W),(:,-)s be the Hilbert space completion where
(a, b)s = tr(Sba*) for a, b € C*(W).

» For a € Pol(W) define

D : Pol(W) —H

Da= S"'[a, W] (44)
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case

» D(W™) =0

» D(W*) =1

» The above suggests that D looks like %, except for the
non-commutativity.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Definition of Dy and Dy y

» Let Py and Pﬁ be the orthogonal projections in L.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Definition of Dy and Dy y

» Let Py and Pﬁ be the orthogonal projections in L.
» Let Dy be the operator D with domain

dom(Dy) = {a € Pol(W) : r(a) € RanPy} (4.5)
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Definition of Dy and Dy n

» Let Py and Pﬁ be the orthogonal projections in L.
» Let Dy be the operator D with domain

dom(Dy) = {a € Pol(W) : r(a) € RanPy} (4.5)
» Let Dy n be the operator D with domain

dom(Dy n) = {a € Pol(W) : ri(a) € RanPy, r_(a) € RanP,,}
(4.6)
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Index theorems

» Theorem
The closure of Dy is an unbounded Fredholm operator and
ind(Dy) = N + 1.
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Quantum(Non-Commutative) Case: Disk and Annulus

Non-Commutative Case: Index theorems

» Theorem
The closure of Dy is an unbounded Fredholm operator and

ind(Dy) = N + 1.

» Theorem
The closure of Dy n is an unbounded Fredholm operator and

ind(DM,N) =M+ N+1.
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Quantum(Non-Commutative) Case: Disk and Annulus

The End

Thank You
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