Homework 2 Solutions

1. Simplify:
$5 \sqrt{20 x}+3 \sqrt{80 x^{3}}$

$$
\begin{align*}
& =5 \cdot 2 \sqrt{5 x}+3 \cdot 4 \sqrt{5 x^{3}} \tag{1}\\
& =10 \sqrt{5 x}+12 \sqrt{5 x^{3}} \tag{2}\\
& =10 \sqrt{5 x}+12 x \sqrt{5 x} \tag{3}\\
& =(10+12 x) \sqrt{5 x} \tag{4}
\end{align*}
$$

Note: I can NOT combine 10 and $12 x$. One is a coefficient for x, the other is not.
2. What is the conjugate of $3+2 \sqrt{5}$? $3-2 \sqrt{5}$
3. Rationalize the denomiators:
(a) $\frac{1+2 \sqrt{5}}{3-4 \sqrt{7}}$

$$
\begin{aligned}
& =\frac{1+2 \sqrt{5}}{3-4 \sqrt{7}} \cdot \frac{3+4 \sqrt{7}}{3+4 \sqrt{7}} \\
& =\frac{(1+2 \sqrt{5})(3+4 \sqrt{7})}{(3-4 \sqrt{7})(3+4 \sqrt{7})} \\
& =\frac{(1+2 \sqrt{5})(3+4 \sqrt{7})}{9+12 \sqrt{7}-12 \sqrt{7}-16(7)} \\
& =\frac{(1+2 \sqrt{5})(3+4 \sqrt{7})}{9-112} \\
& =\frac{(1+2 \sqrt{5})(3+4 \sqrt{7})}{-103} \\
& =-\frac{(1+2 \sqrt{5})(3+4 \sqrt{7})}{103}
\end{aligned}
$$

(b) $\frac{12}{-\sqrt{15}}$

$$
\begin{aligned}
& =\frac{12}{-\sqrt{15}} \cdot \frac{\sqrt{15}}{\sqrt{15}} \\
& =\frac{12 \sqrt{15}}{-15} \\
& =-\frac{12 \sqrt{15}}{15}
\end{aligned}
$$

4. Factor $x^{2}-3 x-10$ using any method.

I find two numbers that multiply to -10 and add to -3 . I find these numbers to be -5 and 2. Thus I can factor to $(x-5)(x+2)$.
6. Factor:
(a) $x^{2}-121=(x-11)(x+11)$
(b) $x^{3}-1331=(x-11)\left(x^{2}+11 x+121\right)$
(c) $512 x^{9}+1$

$$
\begin{aligned}
& =\left(8 x^{3}+1\right)\left(64 x^{6}-8 x^{3}+1\right) \\
& =(2 x+1)\left(4 x^{2}-2 x+1\right)\left(64 x^{6}-6 x^{3}+1\right)
\end{aligned}
$$

(d) $9 x^{3}+15 x^{2}-12 x-20$

$$
\begin{aligned}
& =\left(9 x^{3}+15 x^{2}\right)(-12 x-20) \\
& =3 x^{2}(3 x+5)-4(3 x+5) \\
& =\left(3 x^{2}-4\right)(3 x+5)
\end{aligned}
$$

7. Simplify:

$$
\begin{aligned}
& \frac{x^{2}+4 x+4}{x^{2}+6 x+8} \\
= & \frac{(x+2)(x+2)}{(x+4)(x+2)} \\
= & \frac{(x+2)}{(x+4)}
\end{aligned}
$$

8. Simplify:

$$
\begin{aligned}
& \frac{x^{2}-144}{x^{2}+6 x} \div \frac{x^{2}-12 x}{x^{2}-36} \\
= & \frac{x^{2}-144}{x^{2}+6 x} \cdot \frac{x^{2}-36}{x^{2}-12 x} \\
= & \frac{(x-12)(x+12)}{x(x+6)} \cdot \frac{(x-6)(x+6)}{x(x-12)} \\
= & \frac{(x+12)}{x} \cdot \frac{(x-6)}{x} \\
= & \frac{(x+12)(x-6)}{x^{2}}
\end{aligned}
$$

9. Find the complete solution set

$$
(10-3 x)^{2}=100
$$

$$
\begin{aligned}
& 10-3 x=10 \\
& -3 x=0 \\
& \underline{x=0}
\end{aligned}
$$

$$
-(10-3 x)=10
$$

$$
-10+3 x=10
$$

$$
3 x=20
$$

$$
x=\frac{20}{3}
$$

Now I check my answers:

$$
\begin{array}{ll}
(10-3(0))^{2}=100 & \left(10-3\left(\frac{20}{3}\right)\right)=100 \\
(10)^{2}=100 & (10-20)^{2}=100 \\
100=100 & (-10)^{2}=100 \\
& 100=100
\end{array}
$$

Both solutions work, so the final answer is $x=0$ and $x=\frac{20}{3}$.
10. Solve the equation for T :

$$
\begin{gathered}
Y=\frac{3 A-2 B+5 T}{X}-2 \\
Y+2=\frac{3 A-2 B+5 T}{X} \\
X(Y+2)=3 A-2 B+5 T \\
X(Y+2)-3 A+2 B=5 T \\
\frac{X(Y+2)-3 A+2 B}{5}=T
\end{gathered}
$$

11. Find the complete solution set:
(a) $\sqrt{27-3 x}=\sqrt{11-7 x}$

$$
\begin{gathered}
27-3 x=11-7 x \\
16=-4 x \\
\underline{-4}=\underline{=x}
\end{gathered}
$$

Plug into the original equation:

$$
\begin{aligned}
\sqrt{27-3(-4)} & =\sqrt{11-7(-4)} \\
\sqrt{27+12} & =\sqrt{11+28} \\
\sqrt{39} & =\sqrt{39}
\end{aligned}
$$

The solution works, so the answer is $x=-4$.
(b) $\sqrt{27-13 x}=\sqrt{17-8 x}$

$$
\begin{aligned}
& 27-13 x=17-8 x \\
& 10-13 x=-8 x \\
& 10=5 x \\
& \underline{2}=x
\end{aligned}
$$

Plug back into the original equation:

$$
\begin{aligned}
\sqrt{27-13(2)} & =\sqrt{17-8(2)} \\
\sqrt{27-26} & =\sqrt{17-16} \\
\sqrt{1} & =\sqrt{1} \\
1 & =1
\end{aligned}
$$

The solution works so the answer is $x=2$.
(c) $|9-8 x|=x$

$$
\begin{array}{ll}
9-8 x=x & -(9-8 x)=x \\
9=9 x & -9+8 x=x \\
\underline{1=x} & -9=-7 x \\
& \overline{9}=x \\
& \underline{7}
\end{array}
$$

Plug both answers into the original equation:

$$
\begin{array}{ll}
|9-8(1)|=1 & \left|9-8\left(\frac{9}{7}\right)\right|=\frac{9}{7} \\
|9-8|=1 & \left|9-\frac{72}{7}\right|=\frac{9}{7} \\
|1|=1 & \left|\frac{63}{7}-\frac{72}{7}\right|=\frac{9}{7} \\
1=1 & \left|\frac{-9}{7}\right|=\frac{9}{7} \\
& \frac{9}{7}=\frac{9}{7}
\end{array}
$$

Both solutions work, so the answer is $x=1$ and $x=\frac{9}{7}$.
Note: In this problem all solutions worked, but in general that is not true. It is always important to check your answers, especially when I use the wording "find the complete solution set".
12. Find the complete solution set: (Hint: Square both sides and use the quadratic formula)

$$
\begin{gathered}
\sqrt{11 x-28}=x \\
11 x-28=x^{2} \\
0=x^{2}-11 x+28 \\
0=(x-7)(x-4)
\end{gathered}
$$

Then I have two possible solutions:

$$
\begin{array}{ll}
0=x-7 & 0=x-4 \\
\underline{7}=x & \underline{4}=x
\end{array}
$$

I check both answers by plugging into the original equation.

$$
\begin{array}{ll}
\sqrt{11(7)-28}=7 & \sqrt{11(4)-28}=4 \\
\sqrt{77-28}=7 & \sqrt{44-28}=4 \\
\sqrt{49}=7 & \sqrt{16}=4 \\
7=7 & 4=4
\end{array}
$$

Both answers are true so $x=7$ and $x=4$.
13. Are the following True or False?
(a) $5 \geq 5$ True
(b) $5>4$ True
14. Find the complete solution set. Write your answer in interval notation.
(a) $8-\frac{1}{10} x \geq-2$

$$
\begin{aligned}
& -\frac{1}{10} x \geq-10 \\
& \underline{x \leq 100}
\end{aligned}
$$

Next I check the value 0 :

$$
\begin{aligned}
& 8-\frac{1}{10}(0) \geq-2 \\
& 8 \geq-2
\end{aligned}
$$

This works, so my answer is indeed $x \leq 100$. I write this in interval notation by $(-\infty, 100$]. (b) $-12 \leq 2 x-7<13$

$$
\begin{aligned}
& -5 \leq 2 x<20 \\
& -\frac{5}{2} \leq x<10 \\
& \hline
\end{aligned}
$$

I check a value that works for this interval, 0 .

$$
\begin{aligned}
& -12 \leq 2(0)-7<13 \\
& -12 \leq-7<13
\end{aligned}
$$

This is true so my answer is correct. I write it in interval notation by $\left[-\frac{5}{2}, 10\right)$.
15. Write the intervals in inequality notation:
(a) $(-\infty, 7)=x<7$
(b) $(-1,1) \cup(3, \infty)=-1<x<1$ or $x>3$
16. Study Guide, p. 14 \#2 A
A. Call $x_{1}=3, y_{1}=-4, x_{2}=-2$, and $y_{2}=8$. Then the distance formula, which is

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

gives that

$$
\begin{aligned}
& d=\sqrt{(-2-3)^{2}+(8-(-4))^{2}} \\
& d=\sqrt{(-5)^{2}+12^{2}} \\
& d=\sqrt{25+144} \\
& d=\sqrt{169} \\
& d=13
\end{aligned}
$$

17. Study Guide, p. 14 \#3 I use the midpoint formula, which is

$$
(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

To find the midpoint for (A) I use the same numbering as in \#16 and plug them into the Midpoint Formula to get

$$
\begin{aligned}
(x, y) & =\left(\frac{3+(-2)}{2}, \frac{-4+8}{2}\right) \\
& =\left(\frac{1}{2}, \frac{4}{2}\right) \\
& =\left(\frac{1}{2}, 2\right)
\end{aligned}
$$

For the points in part (B) I call $x_{1}=-16, y_{1}=24, x_{2}=-8$, and $y_{2}=-10$ then plug these values into the Midpoint Formula to get:

$$
\begin{aligned}
(x, y) & =\left(\frac{-16+(-8)}{2}, \frac{24+(-10)}{2}\right) \\
& =\left(\frac{-24}{2}, \frac{14}{2}\right) \\
& =(-12,7)
\end{aligned}
$$

18. Study Guide, p. 14 \#4 From the Midpoint Formula, I have

$$
\left(\frac{-5+x}{2}, \frac{17+y}{2}\right)=(8,2)
$$

This gives me two equations:

$$
\begin{array}{ll}
\frac{-5+x}{2}=8 & \frac{17+y}{2}=2 \\
-5+x=16 & 17+y=4 \\
x=21 & y=-13
\end{array}
$$

So $B=(21,-13)$.

