Homework 3 Solutions

1. Study Guide, page $15 \# 5 \mathrm{C}, \mathrm{D}$ and F
(C) This is already in standard form, so the center and radius can be read off immediately. Center: $\left(0, \frac{5}{6}\right)$ and Radius: $\frac{9}{11}$
(D) I complete the square:

$$
\begin{aligned}
& x^{2}+y^{2}+16 x-22 y-40=0 \\
& x^{2}+16 x+y^{2}-22 y=40 \\
& x^{2}+16 x+64+y^{2}-22 y+121=40+64+121 \\
& (x+8)^{2}+(y-11)^{2}=225
\end{aligned}
$$

Now we are in standard form for a circle so the center and radius can be read off immediately as Center: $(-8,11)$ and Radius: 15 .
(F) I complete the square:

$$
\begin{aligned}
& x^{2}+y^{2}+11 x-36 y-86.75=0 \\
& x^{2}+11 x+\frac{121}{4}+y^{2}-36 y+324=86.75+\frac{121}{4}+324 \\
& \left(x+\frac{11}{2}\right)^{2}+(y-18)^{2}=86.75+30.25+324 \\
& (x+5.5)^{2}+(y-18)^{2}=441
\end{aligned}
$$

Now we are in standard form for a circle so the center and radius can be read off immediately as Circle: $(-5.5,18)$ and Radius: 21 .
2. Study Guide, page $15, \# 6$

I find the midpoint of the two endpoints of the diameter to get the center of the circle

$$
\begin{aligned}
(h, k) & =\left(\frac{-4+8}{2}, \frac{18+34}{2}\right) \\
& =\left(\frac{4}{2}, \frac{52}{2}\right) \\
& =(2,26)
\end{aligned}
$$

Next I find the distance from the center to an endpoint of the diameter to find the radius of the circle:

$$
\begin{aligned}
r & =\sqrt{(-4-2)^{2}+(18-26)^{2}} \\
& =\sqrt{(-6)^{2}+(-8)^{2}} \\
& =\sqrt{36+64} \\
& =\sqrt{100}
\end{aligned}
$$

$$
=10
$$

With the center and radius I can write my equation of a circle in standard form as

$$
(x-2)^{2}+(y-26)^{2}=100
$$

3. Study Guide, page 17 \#3 (a), (b), and (d)
(a) A horizontal line passes through the y-axis, so has all the same y values. Therefore, my line is $y=-4$.
(b) A vertical line passes through the x-axis and thus has all the same x coordinates, so the line is $x=-1$.
(d) A vertical line with x-intercept of 9 must pass through the point $(9,0)$, since this is what it means to have an x-intercept of 9 . Therefore, as before, our vertical line must be $x=9$.
4. Study Guide, page 16 \#1 (d) and (e)
(d) To find an x-intercept, we must plug in $y=0$ to the equation:

$$
\begin{aligned}
& \frac{1}{2} x-\frac{1}{4}(0)=9 \\
& \frac{1}{2} x=9 \\
& x=18
\end{aligned}
$$

So our x-intercept is at $(18,0)$. To find the y-intercept, I plug in $x=0$. Therefore,

$$
\begin{aligned}
& \frac{1}{2}(0)-\frac{1}{4} y=9 \\
& -\frac{1}{4} y=9 \\
& y=-36
\end{aligned}
$$

So our y-intercept is at $(0,-36)$.
(e) I find the x-intercept by plugging in $y=0$:

$$
\begin{aligned}
& x^{2}-0^{3}=8 \\
& x^{2}=8 \\
& x=\sqrt{8} \text { and } x=-\sqrt{8}
\end{aligned}
$$

So we have two x-intercepts and they are $(2 \sqrt{2}, 0)$ and $(-2 \sqrt{2}, 0)$. Similarly, for the y intercepts, we plug in $x=0$ and find that

$$
\begin{gathered}
0^{2}-y^{3}=8 \\
-y^{3}=8 \\
y^{3}=-8 \\
y=-2
\end{gathered}
$$

We only have one y-intercept and it is at $(0,-2)$.
5. Find the x-intercept(s) and y-intercept(s), if any, for each of the following:
(a) $3 \sqrt{x}-1=y$

To find any x-intercepts I plug in $y=0$:

$$
\begin{aligned}
& 3 \sqrt{x}-1=0 \\
& 3 \sqrt{x}=1 \\
& \sqrt{x}=\frac{1}{3} \\
& x=\frac{1}{9}
\end{aligned}
$$

So we have an x-intercept at $\left(\frac{1}{9}, 0\right)$. We find the y-intercept by calculating:

$$
\begin{aligned}
& 3 \sqrt{0}-1=y \\
& -1=y
\end{aligned}
$$

so my y-intercept is at $(0,-1)$.
(b)

$x:$	1	2	0	3	4
$y:$	5	0	13	3	2

The x-intercepts is all values where $y=0$, thus the x-intercept is $(2,0)$. Similarly, the y-intercept is at $(0,13)$.
(c)

$x:$	1	8	0	3	4
$y:$	5	0	6	3	2

Same as before. The x-intercept is at $(8,0)$ and the y-intercept is at $(0,6)$.
6. Study Guide, page 16, \#2 (c) (e) and (f)
(c) I check for x-axis symmetry by plugging in $-y$:

$$
-y=5 x
$$

This can not be simplified further, but it is not my original equation, so it is

$$
\text { not } \mathrm{x} \text {-axis symmetric }
$$

. I check for y-axis symmetry by plugging in $-x$

$$
\begin{aligned}
& y=5(-x) \\
& y=-5 x
\end{aligned}
$$

Again, this is not my original equation, so this is
not y-axis symmetric
. Finally, I check for origin symmetry by plugging in $-x$ and $-y$:

$$
\begin{aligned}
& -y=5(-x) \\
& -y=-5 x \\
& y=5 x
\end{aligned}
$$

I get to the last step above by multiplying both sides by (-1). Thus

> yes, this is origin symmetric
, since this is my original equation.
(e) Checking for x-axis symmetry:

$$
\begin{gathered}
3 x(-y)=11 \\
-3 x y=11
\end{gathered}
$$

So

$$
\text { this is not } \mathrm{x} \text {-axis symmetric }
$$

. Checking for y-axis symmetry:

$$
\begin{gathered}
3(-x) y=11 \\
-3 x y=11
\end{gathered}
$$

This is not my original equation, so

$$
\text { no this is not } \mathrm{y} \text {-axis symmetry }
$$

. Finally, I check for origin symmetry:

$$
3(-x)(-y)=11 \quad 3 x y=11
$$

This is my original equation, so

> yes this is origin symmetry
(f) I check for x-axis symmetry:

$$
-y=x^{2}-2
$$

no this is not x -axis symmetric
. I check for y-axis symmetry:

$$
\begin{aligned}
& y=(-x)^{2}-2 \\
& y=x^{2}-2
\end{aligned}
$$

yes this is y-axis symmetric. I check for origin symmetry:

$$
\begin{aligned}
& -y=(-x)^{2}-2 \\
& -y=x^{2}-2
\end{aligned}
$$

no this is not origin symmetric .
7. Study Guide, page 19, \# 4

I use the vertical line test and find that two points on the graph hit the same vertical line. Therefore, no this is not a function.
8. Is the following a function? Justify your answer.

$x:$	3	4	-1	6	3
$y:$	9	-1	0	1	-9

There is a repeated x value, so no this is not a function.
9. State if the following are functions. Justify your answer:
(a) $x=3$

This is a vertical line, so by the Vertical Line test, no this is not a function.
(b) $y=3$

This is a horizontal line, so by the Vertical Line test, yes this is a function.
(c) $y^{2}+x^{2}=4$

I plug in $x=0$ and see that:

$$
\begin{aligned}
& y^{2}+0^{2}=4 \\
& y^{2}=4 \\
& y=2 \text { and } y=-2
\end{aligned}
$$

Thus one value of x gives two values of y, so no this is not a function.
(d) $y=x^{2}-1$

I plug in a value of x, say $x=0$ and get $y=0^{2}-1$, which gives $y=-1$, just one answer. So yes this is a function.
10. Study Guide, page $19 \# 5$

The domain is all the possible x-values I can plug in, which are all x-values where my graph exists, which is $[-6,6]$. The range is all the possible y-values I can get, so its all the y-values
where my graph exists which are $[0,6]$.
11. Study Guide, page 18 \#1 (A), (b), (C), (D), and (E)
(A) The domain is all the x-values: $\{1,-4,0\}$. The range is all the y-values: $\{2,7, \pi\}$.
(b) The domain is all the inputs: $\{5,7\}$. The range is all the outputs $\{8\}$.
(C) The domain is all the x-values: $\{3,4,-1,6,9\}$. The range is all the y-values: $\{9,0,1,-9,18\}$
(D) The domain is all possible numbers I can plug in for x. There are no restrictions, so my domain is $(-\infty, \infty)$. The range is all possible numbers I can get for y. Note that y can never be negative, so the range is $[0, \infty)$.
(E) The domain is all possible numbers I can plug in for x. There are no restrictions, so my domain is all real numbers. The range is all possible numbers I can get for y. Since the range of $y=x^{2}$ is $[0, \infty)$, the range of this equation is $[11, \infty)$.
12. Study Guide, page 20 \#3 (A), (B), and (C)
(A) Underneath a square root all numbers must be greater than or equal to 0 , therefore:

$$
\begin{aligned}
& 3 x-12 \geq 0 \\
& 3 x \geq 12 \\
& x \geq 4 \\
& {[4, \infty)}
\end{aligned}
$$

(B) Underneath a square root must be greater than or equal to 0 . A denominator cannot be zero, so

$$
\begin{aligned}
& 2 x+10>0 \\
& 2 x>-10 \\
& x>-5 \\
& (-5, \infty)
\end{aligned}
$$

(C) A denominator cannot be zero. In this case, this is when

$$
\begin{aligned}
& 4 x-2=0 \\
& 4 x=2 \\
& x=\frac{1}{2}
\end{aligned}
$$

So I must take this number out of my domain. My domain is $\left(-\infty, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)$
13. Identify the domain of the following functions:
(a) $y=\frac{7}{x^{2}+x-20}$

I factor the bottom and get

$$
y=\frac{7}{(x-4)(x+5)}
$$

so the denominator equals 0 when $x=4$ and $x=-5$ so my domain is all $x \neq\{4,-5\}$. I write this in interval notation by $(-\infty,-5) \cup(-5,4) \cup(4, \infty)$.
(b) $y=\frac{7}{x^{2}+x-12}$

I factor the bottom and get

$$
y=\frac{7}{(x+4)(x-3)}
$$

so the denominator equals 0 when $x=-4$ or $x=3$ so my domain is all $x \neq\{-4,3\}$. I write this in interval notation by $(-\infty,-4) \cup(-4,3) \cup(3, \infty)$.
14. Identify the range of $y=x^{2}+10$

The range of $y=x^{2}$ is $[0, \infty)$, so the range of $y=x^{2}+10$ is $[10, \infty)$.
15. Study Guide, page 20, \#1

To calculate $f(0)$, wherever I see x I replace with 0 to get

$$
\begin{aligned}
& f(0)=2(0)+5 \\
& f(0)=0+5 \\
& f(0)=5
\end{aligned}
$$

Likewise:

$$
\begin{aligned}
& f(-2)=2(-2)+5 \\
& f(-2)=-4+5 \\
& f(-2)=1
\end{aligned}
$$

$$
\begin{aligned}
& f(k)=2(k)+5 \\
& f(k)=2 k+5
\end{aligned}
$$

$$
f(t+1)=2(t+1)+5
$$

$$
f(t+1)=2 t+2+5
$$

$$
f(t+1)=2 t+7
$$

$$
\begin{aligned}
& f(x-2)=2(x-2)+5 \\
& f(x-2)=2 x-4+5 \\
& f(x-2)=2 x+1
\end{aligned}
$$

$$
\begin{aligned}
& f(x+h)=2(x+h)+5 \\
& f(x+h)=2 x+2 h+5
\end{aligned}
$$

16. Study Guide, page 20, \#2

$$
\begin{aligned}
& f(2)=5(2)-2^{2} \\
& f(2)=10-4 \\
& f(2)=6
\end{aligned}
$$

$$
\begin{aligned}
& f(-3)=5(-3)-(-3)^{2} \\
& f(-3)=-15-9 \\
& f(-3)=-24
\end{aligned}
$$

$$
\begin{aligned}
& f(2 k)=5(2 k)-(2 k)^{2} \\
& f(2 k)=10 k-4 k^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(-3 k^{2}\right)=5\left(-3 k^{2}\right)-\left(-3 k^{2}\right)^{2} \\
& f\left(-3 k^{2}\right)=-15 k^{2}-9 k^{4} v
\end{aligned}
$$

$$
\begin{aligned}
& f(2 x+h)=5(2 x+h)-(2 x+h)^{2} \\
& f(2 x+h)=10 x+5 h-(2 x+h)(2 x+h) \\
& f(2 x+h)=10 x+5 h-\left(4 x^{2}+4 x h+h^{2}\right) \quad f(2 x+h)=10 x+5 h-4 x^{2}-4 x h-h^{2}
\end{aligned}
$$

17. Study Guide, page 21, \#4

To evaluate $f(0)$ I find which interval 0 is in to determine which function of my piecewise function to use. The second interval, $-1 \leq x<1$ is the correct interval, so I plug in 0 to $f(x)=2 x^{2}$. Therefore, $f(0)=2\left(0^{2}\right)=0$. Similarly, -1 is also in that interval, so

$$
\begin{aligned}
& f(-1)=2(-1)^{2} \\
& f(-1)=2
\end{aligned}
$$

2 is in the last interval, so

$$
\begin{aligned}
& f(2)=5-2(2) \\
& f(2)=5-4 \\
& f(2)=1
\end{aligned}
$$

1 is also in the last interval, since $1 \geq 1$,

$$
\begin{aligned}
& f(1)=5-2(1) \\
& f(1)=5-2 \\
& f(1)=3
\end{aligned}
$$

$\frac{1}{2}$ is in the second interval so

$$
\begin{aligned}
& 2\left(\frac{1}{2}\right)^{2} \\
& =2 \frac{1}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

Lastly, -3 is in the first interval, so

$$
\begin{aligned}
& f(-3)=3(-3)-1 \\
& f(-3)=-9-1 \\
& f(-3)=-10
\end{aligned}
$$

