Unknown Journal Series
Volume 000, Number 0, 0000

CLASSIFICATIONS OF NON-NEGATIVE
SOLUTIONS TO SOME ELLIPTIC PROBLEMS

YUAN LOU AND MEIJUN ZHU

ABSTRACT. The main purpose of this paper is to show that all non-negative
solutions to Au = 0 (or Au = wuP) in the n-dimensional upper half space
H = {(«/,t)]2’ € Rt > 0} with boundary condition du/0t = u9 on OH
must be linear functions of ¢ (or w = 0) when n > 2 and ¢ > 1 (or n > 2 and
p,q > 1).

1. INTRODUCTION

Let H = {(2',t) | ' = (z1,22,...,7n—1) € R"™1 ¢t > 0} be the upper half space
in R™ with n > 2. We are interested in the following problem.

Au=0, v>0 in H,
(1) ou

— =cu! on OH.

ot

Recently there are many work concerning the symmetry property about the
solutions in a half space, see, for example, [2], [4], [6], [7], [8], [9] and the references
therein. In [6], Hu studied (1) when ¢ < 0,1 < ¢ < n/(n—2) and n > 3. Using the
moving plane method(see e.g., [5]), he proved that v = 0 is the only solution. Later
in [7], all solutions of (1) are classified when ¢ = n/(n — 2) and n > 3 by using the
method of moving spheres regardless of the sign of c¢. In this note, by using some
technical lemmas developed in [7] and the moving plane method we shall classify
all solutions when ¢ > 0 and ¢ > 1. To this end, after rescaling and by the Strong
Maximum Principle, it suffices to consider the following problem.

Au=0, u>0 in H,
2
@ @ =u? on OH.
ot
Our first result can be stated as follows.

Theorem 1.1. If u(z) € C?(H)NCY(H) solves (2) and ¢ > 1, then u = at +b
for some positive constants a, b satisfying a = b9.

There are two ingredients in our proof. First, by virtue of the boundary condition
we can prove Theorem 1.1 in the super-critical case, i.e., ¢ > n/(n—2) and n > 3, by
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the moving plane method. In the proof some technical lemmas will play important
role as in [7]. Secondly, when g is sub-critical or ¢ > 1 and n = 2, we observe that if
(2) is put into a high dimensional space setting(its meaning will be made precisely
in the proof), any super-linear power becomes a super-critical power. This reduces
all the cases to the super-critical one.

It turns out that these two ideas combined is also useful in treating some other
problems with so-called “good sign” coefficient in front of the nonlinearity. Among
them, the following problem serves as a good example.

Au=u?, vw>0 in H,
3
) @:uq on OH.
ot

For solutions of (3) we have the following result.
Theorem 1.2. If u(z) € C?(H) N C(H) solves (3) for p,q > 1, then u = 0.

Our paper is organized as follows: Theorem 1.1 will be established in section 2.
In this section, we first prove Theorem 1.1 in the super-critical case (Theorem 2.1
below), and then pursue the second ingredient to complete the proof of Theorem
1.1(Theorem 2.7 below). The proof of Theorem 1.2 will be presented in section 3.
In the last section we shall discuss some related things.
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2. PROOF OF THEOREM 1.1

2.1 Case ¢ >n/(n—2), n > 3.
We assume n > 3 and ¢ > n/(n — 2) throughout this subsection.

Theorem 2.1. If u(x) € C?(H) N C*(H) solves (2) and ¢ > n/(n — 2), then
u = at + b with a = b% and b > 0.

Since there is no assumption on the decay rate of u(z) at infinity, as usual we
perform the Kelvin transformation on u, i.e., set

1 T

Then v(x) satisfies

Av=0, v(z)>0 in H,
(4) ov

5 |z|“v?  on OH \ {0},
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where @ = (n —2)g—mn > 0. Our purpose is to obtain some symmetry properties of
v(z), and we achieve this goal by using moving planes which are parallel to ¢-axis.
Our first lemma, which is a modification of Lemma 2.1 in [7], will be used to handle
the possible singular point.

Lemma 2.2. Let v € C*(H) N C*(H) \ {0} satisfy (4). Then for all 0 < e <
min{l, min v}, we have v(z) > § for all z € B \ {0}.
9B NoB,
Proof: For 0 < r < 1, we introduce an auxiliary function

r"2e et

€
— T L% LeBf\ B
2 ety T TAB;

¢o()

Set Py = v — pq. Clearly P, satisfies

APy=0 in By \ B,
(5) % —lel*v" = = on O(Bf \ Bf)noH.
We will show that
(6) Py>0 in By \ Bt

On OB} N 0B,, Pozv—(g—e—i—%t) > v > 0; on 0B NOBy, Py = v —
n726

(5 — =2 + <) > v —e > 0. Suppose that (6) fails, it follows from the Strong

Maximum Principle that there exists some Z = (Z’,0) with » < |#’| < 1 such that

Py(Z) = min < 0. Therefore %(i) > 0. By using the boundary condition of

BI\B! Py
Py, we have v(z)? > 5. Hence

€ ,rn—2€

Py(z) =v(zT) — (f

€
— =) > (@) - = >0,
2 |:z'|n72) v(@) =3
which contradicts Py(Z) < 0. This establishes (6). For z € By \ {0}, it follows from
(6) that for all 0 < r < |z| we have Py(z) > 0. Let r — 0, this finishes the proof of
Lemma 2.2.

Corollary 2.3 (scaled version). Let v € C2(H)NC*(H)\ {0} solve (4). Then

for all 0 < e < min{R®~™/2, min v}, we have v(z) > 5 forall v € ?E\ {0}.

dB}NdBr

n

Proof: It follows easily from applying Lemma 2.2 to 9(z) = R EQU(RJ:).

For A < 0 we define
Sa={z|t>0, z1> A} Th={z|t>0, z1 = A},
Sy =55\ {0}, z* is the reflection point of x about Ty,

oa(z) = v(z?), wy = v(z) — vx(z).
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Then w) (z) satisfies

A’w)\ =0 n E)\
7 B .
@ % < ci(z)wy on OH NIy,
where ¢1(x) = glz|* - €97 (z), & is a positive function between vy and v. Now we
are ready to apply the moving plane method.

Proposition 2.4. If |\| is large enough, then wjy(z) > 0 for all z € X,.

Proof: We argue by contradiction. Suppose that w) is negative somewhere in
Y. Since v(x) — 0 as |z| — +oo, and for any fixed ), |z}| — +oo as |z| — +oo,
we know that wy(z) — 0 as || — 4oo. It follows from Lemma 2.2 that if |A| is
large enough, wy(x) > 0 for x near the origin. Thus there exists some point Z such
that wy(Z) = min wy(z) < 0. By the Strong Maximum Principle, £ € 0H N Sas

TEX )

but this contradicts the boundary condition of ( 7).

Now we can define
(8) Ao =sup{A <0 | wu(xr) >0 in¥, for all —oo<p <A}
Proposition 2.5. Ay =0.

Proof : We again argue by contradiction. Suppose that Ag < 0, then we claim
that

(9) wy, = 0.

This will contradict (4) since o > 0. Hence from now on it suffices to prove (9)
under the assumption A\g < 0. Suppose that (9) fails, then by the definition of \g
and the Strong Maximum Principle, wy, > 0 in X\ Ty,. The following result is
needed to treat the singular point, and we relegate its proof to the end.

Lemma 2.6. For 7o < min{$|Ao|,1}, there exists some positive constant vy
depending only on Ag and 7y such that wy,(x) > v in B (0).

We continue the proof of Proposition 2.5. By the definition of Ay, there is a
sequence A\ — Ag with Ay > Ag such that infw,, < 0. It is not difficult to see

Z)‘k
from Lemma 2.6 and the continuity of v(z) away from the origin that for k large

enough, we have wy, () > /2, Va € B, \ {0}. We also know that wy, (z) — 0

as |z| — +oo, and it follows that there exists xy = (x},tx) € %, \ Bi, such

that wy, (zx) = minwy, < 0. It is clear that ro < |xx| and due to the boundary
Ak

condition, t; > 0. Since wy, is a harmonic function in ¥,,, we thus reach a

contradiction. Hence (9) is verified and this finishes the proof of Proposition 2.5.

Proof of Lemma 2.6. We know that w,, satisfies

Awy, =0, wy, >0, in B (0)\ {0},
(10) Owy,
ot

= |z|*0? — [z [*vl  on B, (0) N oH \ {0}.
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Let min wy, > € for some 0 < € < 1. Due to the continuity of v in R’ \ {0}, there
aB;: (0)

exists some positive constant Cy such that
(11) U (2) < C1 <400 for x € B (0)\ {0}.

Let

en % et(l—

p1(x) = o |2 2
where p < 1 will be chosen later. Set P(z) = wy,(z) — ¢1(x). Pi(x) satisfies
APi(z) =0 in B[ (0)\ B} (0)

(12) 0P (x e(l—p — —
8125( ) — |1~|auq — |;L'/\O|a1)§\0 - % on B;B(O) \ B;L(O) NoOH.
On OB} (0)NOB,,(0) : Pi(z) > e—(e— E |n 2%y S 0; on OB (0)NOB.(0) : Pi(x) >
Wy, (x) > 0. If there exists some minimum point Z of P;(x) such that P;(Z) < 0,

we must have Z € By, (0)\ B, (0)NOH and aPl(”g)( ) > 0. From P, (Z) < 0 we have
v(Z) — vx, () — ¢1(Z) < 0, and then

“ in B (0)\ B (0),

(13) v(Z) < Cy < 400
for some constant Cy depending only on Cy. Again by P;(Z) < 0,
n—2
e "% en

By (11), (13) and the Mean Value Theorem we have |z[*v?(z) — |[z*|*v (Z) <
Cswy, (Z) for some positive constant C5 depending only on C7, Cy and /\0 Thus
oOP;

from 5 (7) > 0 we have

(15) Wy (T) = 5= (1= p)-
Combining (14)and (15) we have

€p € B
T

ie., pu> 1+1C If v is chosen in such a way that p < from the beginning, we

1+C
can then deduce that P;(z) > 0 in Bfo( )\ Bi( ). Let r — 0, we thus establish
Lemma 2.6 by choosing v = 4 for some p < 1/(1 + C3).

Proof of Theorem 2.1.

By Proposition 2.5 and also by moving planes from the positive direction of x1,
we see that v(a/,t) is symmetric with respect to x;. Clearly the above argument
also applies to any direction perpendicular to t-axis, therefore we conclude that
v(z’,t) is symmetric with respect to z’. It follows that u(z’,t) is also symmetric
with respect to 2’ due to the inverse Kelvin transformation. Since we can choose
the origin arbitrarily on the hyperplane ¢ = 0, it is easy to see that u(a’,t) is
independent of z’. This reduces (2) to solving an ordinary differential equation,
and the proof of Theorem 2.1 is now complete.
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22 Casel<g<n/(n—2),n>3o0rqg>1n=2.

Theorem 2.7. If u(z) € C?*(H) N CY(H) solves (2), 1 < ¢ < n/(n —2) and
n > 3,or ¢ >1and n = 2, then u = at 4+ b for some positive constants a,b with
a = bl.

Proof: It suffices to show that u(z) is independent of z’. For fixed ¢ > 1 and

n > 2, we choose a positive integer m so large that ¢ > ni;”EQ. Set

U}(.’Ifl,xg, vy In—15 Tnt 1, '”7$n+’mat) = U(ﬂ?h "'7xn717t)7
where z; e Rfori=1,....,.n—1,n+1,...,n+m, t > 0. Then w satisfies

Aw =0, w>0, in RT‘m,
ow

E =w? on 8R1+nl.

By the choice of m we see that ¢ is a super-critical power in this new setting. Then
Theorem 2.1 applies and we know that w is independent of z; for ¢ = 1,...,n —
1,n+1,...,n+m. Thus u is independent of z; fori =1,...,n — 1.

3. PROOF OF THEOREM 1.2

In this section we focus on establishing the following result.

Theorem 3.1. Suppose that n > 3. If u(z) € C*(H) N CY(H) solves (3) for
g>n/(n—2)and p> (n+2)/(n—2), then u = 0.

Remark 3.2. Theorem 1.2 follows from Theorem 3.1 and some argument similar
to the proof of Theorem 2.7.

Remark 3.3. When p = (n+2)/(n — 2) and ¢ = n/(n — 2), Theorem 1.2 has
already been established in [4].

As usual we set
1 T
v) = ()

then v(z) satisfies

Av = |z|™P, v(z) >0 in H,
(16) ov

pri |z[Pv? on OH \ {0},

where 7 =p(n —2) — (n+2) > 0, 8 = q(n —2) —n > 0. We need the following

lemma to take care of the possible singular point.

Lemma 3.4. Let v € C2(H) N C*(H) \ {0} satisfy (16). Then for all 0 < e <

min{1, _min v}, we have v(z) > § for all x € BT/Q \ {0}.
0BY,,N0B) 2

Proof: Set

€ r2e et et?
pa(T) = 5 —

— - s = b = B+ B+
2 b TEBR\B
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and Py(x) = v(x) — ¢a(x). Then we have

APy = |z|"v? — e in BDQ
(17) OP;

- = |z[P? — % on (B, \ BY)NORT.

We want to show that

\ B,

(18) P,>0 in B, \B/.
Let N
S={z : [z["v" —e>0}N(By/2(0)\ B-(0)),
S¢={z : [2]T0P —e <0} N (By/2(0)\ B(0)).
In S, since 1 > |z| > 0, we have vP(z) > €/|z|” > e. It follows that v(x) > € > o
for x € S, ie, P, >01in S; in S¢, AP, < 0. Therefore arguing similarly as in the

proof of Lemma 2.2, we can show that P, > 0 in S¢. This thus establishes (18).
Let » — 0, we obtain Lemma 3.4.

For A\ < 0, we recall that Xy, Th, x>‘, vy and wy are defined as in section 2. It is

easy to check that wy(z) satisfies

Awy < co(z)wy  in Xy,

19 3
( ) % < C3(x)wA on OHN E)\a

where ¢y (z) = pla|™ - &£ (x), es(x) = glz|? - €47 (z), & and & are two functions
between vy and v. In the following we again apply the moving plane method.

Proposition 3.5. If |\| is large enough, then wy(z) > 0 for all z € ¥y.

Proof: Suppose that wy (z) is negative somewhere in . Note that wy(z) — 0
as x — 0o, thus by Lemma 3.4 we know for some |)A| large enough, there exists T

such that wy(Z) = min wy(xz) < 0. Since c3(z) is non-negative, by the Strong
TEX N

Maximum Principle we know that z, € OH N X, but this contradicts to the
boundary condition in (19). This finishes the proof.

Then we can define
Ao =sup{\ < 0| w,(z) >0 in¥, for all —oo<p <A}

Proposition 3.6. )y =0.

Proof : The proof is similar to that of Proposition 2.5. It suffices to show that
if \g < 0, then
(20) Wr, = 0.

Suppose that (20) fails, then by the Strong Maximum Principle we have wy, > 0
in ¥\ T»,. The following lemma is needed to treat the possible singular point, and
we postpone its proof till the end.
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Lemma 3.7. For 79 < min{3|Ao|,1/2} , there exists some positive constant
depending only on Ag and 7o such that wy, (x) > v in B;f (0).

We now continue the proof of Proposition 3.6. By the definition of Ay, there

exists a sequence A\, — Ao with Ay > Ag such that infw,, < 0. From Lemma 3.7
and the continuity of v(z) away from the origin it follows that for k large enough,

there exists zj, = (2, tx) € Xz, \ Brf such that

(21) wy, () = minw,, < 0.

Clearly |zg| > ro and tx > 0 as from Lemma 3.7 and the boundary condition. But
(21) contradicts to the Strong Maximum principle since ca(z) > 0 in (19). This
finishes the proof of Proposition 3.6.

Proof of Lemma 3.7: Set

e 2% et(l—p) n et?(1 — )

- - in B (0)\ B
2 |x|n_2 2 2 m ’l"()( )\ T (0)’

p3(z) =

where € is some small positive constant such that m+in Wy, > €. p <1 will be
8B} (0)

chosen later in the proof. Let P3(x) = wy,(x) — p3(x), then Ps(z) satisfies the
following equation.

APy(x) = |z[Tv? — |27} — e(1 = p) in B (0)\ BF(0)
ot

= |z|"v? — |x>‘°|Tv§\O - M on B (0)\ B (0)NoH.

On 0B} (0) N dBy,(0) and B, (0) N dB,(0), we know P3(x) > 0. Let Z be one
of the minimum points of Ps(z). If P5(Z) < 0, arguing similarly as in the proof of
Lemma 2.6 we know that there exists some 11 = p1(Ag) > 0 such that Z can not be
on OH for all p < py. Hence for p < pg, if P3(Z) < 0, then AP5(z) > 0. Using the
same method as in the proof of Lemma 2.6, we can derive a contradiction if u < uq
for some pg = p2(Ao) > 0. Set u = min{p1, u2}, then we know that P3(x) > 0 in
B (0)\ B (0). Let r — 0, we thus obtain Lemma 3.7 with v = ey/2.

Proof of Theorem 3.1: Arguing similarly as in the proof of Theorem 2.1, we
can show that u(z) depends only on ¢, and thus (3) becomes

(23) '(0) = u4(0).

u'=uP, u>0 for t>0
u
Since p > 1, it is easy to check that (23) has no global solution (see [4] for details).

4. MISCELLANEOUS RESULTS

4.1 Sign-changing solutions.
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Brezis [1] proved that v = 0 is the only solution to the following entire space
problem.
—Au+uftu=0 in R",
we L? (R"), p>1.

loc

Thus one may wonder whether for ¢ > 1, all solutions to the following equation

Au=0 in H,
(24) du
ot

=|ulT'u on OH

depend only on t. It turns out that this is not always the case as the following
example shows.

Example 4.1. u(z) = 23t — 21t® + 21 solves (24) with ¢ = 3.

In view of this example, it seems that the set of sign-changing solutions to (24)
is more complicated than that of non-negative solutions.

4.2 Some other results.
Consider the following equation:

Au—u? =0, u>0 in R,
(25)

u € C*R"), 1<p< +oo.

The result of Brezis in [1] implies the following theorem.
Theorem 4.2. If u(x) solves (25), then u = 0.

We would like to present a different proof of Theorem 4.2 here. This does not
mean that our method is simpler or more flexible (actually it seems that the moving
plane method does not apply to sign-changing solutions). The point which we want
to make is that the sign of the coefficient for the nonlinear term in (25) is a “good”
sign, which allows us to apply the moving plane method for the super-critical case.

The proof of Theorem 4.2 is similar to that of Theorem 1.2. It suffices to prove
it for the case when p > (n + 2)/(n — 2),n > 3, since all the other cases can be
treated similarly as in the proof of Theorem 2.7. As before we let

1 T
v(x) = WU(W),

then v(z) satisfies
(26) Av — |z]°0P =0, v(x) >0 in R™\ {0}

where 6 = p(n—2)—(n+2) > 0. We set to show that v(x) is symmetric with respect
to the origin. The following result will be needed to take care of the singularity.

Lemma 4.3. Assume that v(x) satisfies (26). If for some 0 < e < 1, v(z) > €
on 0B1(0), then v(z) > €/2 in B1(0) \ {0}.
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Proof: For small r, Set
@=Lt
P =y T g T
Then A¢ = ¢, and A(u — ¢) = |z[°u? — €. Let
S={z : |z|°uP —e>0}N(B1(0)\ B.(0)),
S¢={x : |z]°uP —e <0} N (B1(0)\ B,(0)).
Since |z| < 1 in S, thus we have u? > ¢/|z|° > e. It follows that u(z) > € > ¢4
for z € S; in S° A(u — ¢4) < 0. It is easy to check the following facts: On
{x : |z|°w? — € = 0} and OBy, u > ¢4; On OB,, u > 4. By the Maximum
Principle, we know that u > ¢4 in S¢. Thus we always have u > ¢4 in By \ B;.
Let 7 — 0, we obtain u > 5. This proves Lemma 4.3.

z € B1(0)\ B,(0).

Once we establish Lemma 4.3, we can apply the moving plane method to prove
Theorem 4.2. We refer readers to [3], [5] for details about such kind of process.

In our proofs of Theorems 1.1 and 1.2, the assumption p,q > 1 plays an essen-
tial role in the adding dimension argument. In the following we present a simple
example to show that Theorem 4.2 breaks down for p = 1. The same example also
serves as a counterexample to Theorem 1.2 for p = ¢ = 1.

Example 4.4. u(z) = e’ solves (25) with p = 1.

Moreover, there exist positive solutions to (25) which depend on more than one
variable.

Example 4.5. u(z) = @ +72)/V2 golves (25) with p = 1.
Thus it seems interesting to ask whether Theorem 1.1 still holds for ¢ = 1.

REFERENCES

1. H. Brezis, Semilinear equations in RN without condition at infinity., Appl. Math. Optim 12
(1984), 271-282.

2. H. Berestycki, L. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space,
Boundary Value Problems for Partial Differential Equations, ed by J.L.Lions et al. Masson,
Paris (1993), 27-42.

3. W. Chen and C. Li, Classification of solutions of some monlinear elliptic equations, Duke
Math. J. 63 (1991), 615-623.

4. M. Chipot, I. Shafrir and M. Fila, On the solutions to some elliptic equations with nonlinear
Neumann boundary conditions, Advances in Diff. Equs. 1 (1996), 91-110.

5. B. Gidas, W.M. Ni and L. Nirenberg, “Symmetry of positive solutions of nonlinear elliptic
equations itn R™” in Mathematical Analysis and Applications Part A, ed. L. Nachbin, Adv.
Math. Suppl. Stud. 7, Academic Press, New York, 1981,, 369-402.

6. B. Hu, Nonezistence of a positive solution of the Laplace equation with a nonlinear boundary
condition, Differential and Integral equations 7 (1994), 301-313.

7. Y.Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke math
J. 80 (1995), 383-417.

8. B. Ou, Positive harmonic functions on the upper half space satisfying a nonlinear boundary
condition, Differential and Integral equations 9 (1996), 1157-1164.

9. S. Terracini, Symmetry properties of positive solutions to some elliptic equations with non-
linear boundary conditions, Differential and Integral equations 8 (1995), 1911-1922.

MSRI, 1000 CENTENNIAL DRIVE, BERKELEY, CA 94720

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, N.J 08903



