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CLASSIFICATIONS OF NON-NEGATIVE
SOLUTIONS TO SOME ELLIPTIC PROBLEMS

YUAN LOU AND MEIJUN ZHU

Abstract. The main purpose of this paper is to show that all non-negative
solutions to ∆u = 0 (or ∆u = up) in the n-dimensional upper half space
H = {(x′, t)|x′ ∈ Rn−1, t > 0} with boundary condition ∂u/∂t = uq on ∂H
must be linear functions of t (or u ≡ 0) when n ≥ 2 and q > 1 (or n ≥ 2 and
p, q > 1).

1. Introduction

Let H = {(x′, t) | x′ = (x1, x2, ..., xn−1) ∈ Rn−1, t > 0} be the upper half space
in Rn with n ≥ 2. We are interested in the following problem.

(1)





∆u = 0, u ≥ 0 in H,

∂u

∂t
= cuq on ∂H.

Recently there are many work concerning the symmetry property about the
solutions in a half space, see, for example, [2], [4], [6], [7], [8], [9] and the references
therein. In [6], Hu studied (1) when c < 0, 1 < q < n/(n− 2) and n ≥ 3. Using the
moving plane method(see e.g., [5]), he proved that u ≡ 0 is the only solution. Later
in [7], all solutions of (1) are classified when q = n/(n− 2) and n ≥ 3 by using the
method of moving spheres regardless of the sign of c. In this note, by using some
technical lemmas developed in [7] and the moving plane method we shall classify
all solutions when c > 0 and q > 1. To this end, after rescaling and by the Strong
Maximum Principle, it suffices to consider the following problem.

(2)





∆u = 0, u > 0 in H,

∂u

∂t
= uq on ∂H.

Our first result can be stated as follows.

Theorem 1.1. If u(x) ∈ C2(H)∩C1(H̄) solves (2) and q > 1, then u = at+ b
for some positive constants a, b satisfying a = bq.

There are two ingredients in our proof. First, by virtue of the boundary condition
we can prove Theorem 1.1 in the super-critical case, i.e., q > n/(n−2) and n ≥ 3, by
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the moving plane method. In the proof some technical lemmas will play important
role as in [7]. Secondly, when q is sub-critical or q > 1 and n = 2, we observe that if
(2) is put into a high dimensional space setting(its meaning will be made precisely
in the proof), any super-linear power becomes a super-critical power. This reduces
all the cases to the super-critical one.

It turns out that these two ideas combined is also useful in treating some other
problems with so-called “good sign” coefficient in front of the nonlinearity. Among
them, the following problem serves as a good example.

(3)





∆u = up, u ≥ 0 in H,

∂u

∂t
= uq on ∂H.

For solutions of (3) we have the following result.

Theorem 1.2. If u(x) ∈ C2(H) ∩ C1(H̄) solves (3) for p, q > 1, then u ≡ 0.

Our paper is organized as follows: Theorem 1.1 will be established in section 2.
In this section, we first prove Theorem 1.1 in the super-critical case (Theorem 2.1
below), and then pursue the second ingredient to complete the proof of Theorem
1.1(Theorem 2.7 below). The proof of Theorem 1.2 will be presented in section 3.
In the last section we shall discuss some related things.
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2. Proof of Theorem 1.1

2.1 Case q > n/(n− 2), n ≥ 3.
We assume n ≥ 3 and q > n/(n− 2) throughout this subsection.

Theorem 2.1. If u(x) ∈ C2(H) ∩ C1(H̄) solves (2) and q > n/(n − 2), then
u = at + b with a = bq and b > 0.

Since there is no assumption on the decay rate of u(x) at infinity, as usual we
perform the Kelvin transformation on u, i.e., set

v(x) =
1

|x|n−2
u
( x

|x|2
)
.

Then v(x) satisfies

(4)





∆v = 0, v(x) > 0 in H,

∂v

∂t
= |x|αvq on ∂H \ {0},
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where α = (n−2)q−n > 0. Our purpose is to obtain some symmetry properties of
v(x), and we achieve this goal by using moving planes which are parallel to t-axis.
Our first lemma, which is a modification of Lemma 2.1 in [7], will be used to handle
the possible singular point.

Lemma 2.2. Let v ∈ C2(H) ∩ C1(H̄) \ {0} satisfy (4). Then for all 0 < ε <

min{1, min
∂B+

1 ∩∂B1

v}, we have v(x) ≥ ε
2 for all x ∈ B+

1 \ {0}.

Proof: For 0 < r < 1, we introduce an auxiliary function

ϕ0(x) =
ε

2
− rn−2ε

|x|n−2
+

εt

2
, x ∈ B+

1 \B+
r .

Set P0 = v − ϕ0. Clearly P0 satisfies

(5)





∆P0 = 0 in B+
1 \B+

r ,

∂P0

∂t
= |x|αvq − ε

2
on ∂(B+

1 \B+
r ) ∩ ∂H.

We will show that

(6) P0 ≥ 0 in B+
1 \B+

r .

On ∂B+
r ∩ ∂Br, P0 = v − ( ε

2 − ε + εt
2 ) > v > 0; on ∂B+

1 ∩ ∂B1, P0 = v −
( ε
2 − rn−2ε

|x|n−2 + εt
2 ) > v − ε > 0. Suppose that (6) fails, it follows from the Strong

Maximum Principle that there exists some x̄ = (x̄′, 0) with r < |x̄′| < 1 such that
P0(x̄) = min

B+
1 \B+

r P0

< 0. Therefore ∂P0
∂t (x̄) ≥ 0. By using the boundary condition of

P0, we have v(x̄)q ≥ ε
2 . Hence

P0(x̄) = v(x̄)−
( ε

2
− rn−2ε

|x̄′|n−2

)
> v(x̄)− ε

2
> 0,

which contradicts P0(x̄) < 0. This establishes (6). For x ∈ B+
1 \{0}, it follows from

(6) that for all 0 < r < |x| we have P0(x) ≥ 0. Let r → 0, this finishes the proof of
Lemma 2.2.

Corollary 2.3 (scaled version). Let v ∈ C2(H)∩C1(H̄)\{0} solve (4). Then
for all 0 < ε < min{R(2−n)/2, min

∂B+
R∩∂BR

v}, we have v(x) > ε
2 for all x ∈ B+

R \ {0}.

Proof: It follows easily from applying Lemma 2.2 to v̄(x) = R
n−2

2 v(Rx).

For λ < 0 we define

Σλ = {x | t > 0, x1 > λ}, Tλ = {x | t ≥ 0, x1 = λ},
Σ̃λ = Σλ \ {0}, xλ is the reflection point of x about Tλ,

vλ(x) = v(xλ), wλ = v(x)− vλ(x).
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Then wλ(x) satisfies

(7)





∆wλ = 0 in Σλ

∂wλ

∂t
≤ c1(x)wλ on ∂H ∩ Σ̃λ,

where c1(x) = q|x|α · ξq−1
1 (x), ξ1 is a positive function between vλ and v. Now we

are ready to apply the moving plane method.

Proposition 2.4. If |λ| is large enough, then wλ(x) ≥ 0 for all x ∈ Σ̃λ.

Proof: We argue by contradiction. Suppose that wλ is negative somewhere in
Σ̃λ. Since v(x) → 0 as |x| → +∞, and for any fixed λ, |xλ| → +∞ as |x| → +∞,
we know that wλ(x) → 0 as |x| → +∞. It follows from Lemma 2.2 that if |λ| is
large enough, wλ(x) > 0 for x near the origin. Thus there exists some point x̄ such
that wλ(x̄) = min

x∈Σ̃λ

wλ(x) < 0. By the Strong Maximum Principle, x̄ ∈ ∂H ∩ Σ̃λ,

but this contradicts the boundary condition of ( 7).

Now we can define

(8) λ0 = sup{λ < 0 | wµ(x) ≥ 0 in Σ̃µ for all −∞ < µ < λ}.
Proposition 2.5. λ0 = 0.

Proof : We again argue by contradiction. Suppose that λ0 < 0, then we claim
that

(9) wλ0 ≡ 0.

This will contradict (4) since α > 0. Hence from now on it suffices to prove (9)
under the assumption λ0 < 0. Suppose that (9) fails, then by the definition of λ0

and the Strong Maximum Principle, wλ0 > 0 in Σ̃ \ Tλ0 . The following result is
needed to treat the singular point, and we relegate its proof to the end.

Lemma 2.6. For r0 < min{ 1
2 |λ0|, 1}, there exists some positive constant γ

depending only on λ0 and r0 such that wλ0(x) > γ in B+
r0

(0).

We continue the proof of Proposition 2.5. By the definition of λ0, there is a
sequence λk → λ0 with λk > λ0 such that inf

Σ̃λk

wλk
< 0. It is not difficult to see

from Lemma 2.6 and the continuity of v(x) away from the origin that for k large
enough, we have wλk

(x) ≥ γ/2, ∀x ∈ B+
r0 \ {0}. We also know that wλk

(x) → 0
as |x| → +∞, and it follows that there exists xk = (x′k, tk) ∈ Σ̃λk

\ B+
r0 such

that wλk
(xk) = min

Σ̃λk

wλk
< 0. It is clear that r0 < |xk| and due to the boundary

condition, tk > 0. Since wλk
is a harmonic function in Σ̃λk

, we thus reach a
contradiction. Hence (9) is verified and this finishes the proof of Proposition 2.5.

Proof of Lemma 2.6. We know that wλ0 satisfies

(10)





∆wλ0 = 0, wλ0 > 0, in B+
r0

(0) \ {0},
∂wλ0

∂t
= |x|αvq − |xλ0 |αvq

λ0
on B+

r0(0) ∩ ∂H \ {0}.
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Let min
∂B+

r0 (0)
wλ0 ≥ ε for some 0 < ε < 1. Due to the continuity of v in Rn

+\{0}, there

exists some positive constant C1 such that

(11) vλ0(x) < C1 < +∞ for x ∈ B+
r0(0) \ {0}.

Let

ϕ1(x) =
εµ

2
− rn−2ε

|x|n−2
+

εt(1− µ)
2

in B+
r0

(0) \B+
r (0),

where µ < 1 will be chosen later. Set P1(x) = wλ0(x)− ϕ1(x). P1(x) satisfies

(12)





∆P1(x) = 0 in B+
r0

(0) \B+
r (0)

∂P1(x)
∂t

= |x|αvq − |xλ0 |αvq
λ0
− ε(1− µ)

2
on B+

r0(0) \B+
r (0) ∩ ∂H.

On ∂B+
r0

(0)∩ ∂Br0(0) : P1(x) ≥ ε− (ε− rn−2ε
|x|n−2 ) > 0; on ∂B+

r (0)∩ ∂Br(0) : P1(x) >

wλ0(x) ≥ 0. If there exists some minimum point x̄ of P1(x) such that P1(x̄) < 0,
we must have x̄ ∈ B+

r0(0)\B+
r (0)∩∂H and ∂P1(x)

∂t (x̄) ≥ 0. From P1(x̄) < 0 we have
v(x̄)− vλ0(x̄)− ϕ1(x̄) < 0, and then

(13) v(x̄) < C2 < +∞
for some constant C2 depending only on C1. Again by P1(x̄) < 0,

(14) wλ0(x̄) <
εµ

2
− rn−2ε

|x̄|n−2
<

εµ

2
.

By (11), (13) and the Mean Value Theorem we have |x̄|αvq(x̄) − |x̄λ|αvq
λ0

(x̄) ≤
C3wλ0(x̄) for some positive constant C3 depending only on C1, C2 and λ0. Thus
from ∂P1

∂t (x̄) ≥ 0 we have

(15) wλ0(x̄) ≥ ε

2C3
· (1− µ).

Combining (14)and (15) we have
εµ

2
>

ε

2C3
· (1− µ),

i.e., µ > 1
1+C3

. If µ is chosen in such a way that µ < 1
1+C3

from the beginning, we

can then deduce that P1(x) ≥ 0 in B+
r0(0) \ B+

r (0). Let r → 0, we thus establish
Lemma 2.6 by choosing γ = εµ

2 for some µ < 1/(1 + C3).

Proof of Theorem 2.1.
By Proposition 2.5 and also by moving planes from the positive direction of x1,

we see that v(x′, t) is symmetric with respect to x1. Clearly the above argument
also applies to any direction perpendicular to t-axis, therefore we conclude that
v(x′, t) is symmetric with respect to x′. It follows that u(x′, t) is also symmetric
with respect to x′ due to the inverse Kelvin transformation. Since we can choose
the origin arbitrarily on the hyperplane t = 0, it is easy to see that u(x′, t) is
independent of x′. This reduces (2) to solving an ordinary differential equation,
and the proof of Theorem 2.1 is now complete.
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2.2 Case 1 < q ≤ n/(n− 2), n ≥ 3 or q > 1, n = 2.
Theorem 2.7. If u(x) ∈ C2(H) ∩ C1(H̄) solves (2), 1 < q ≤ n/(n − 2) and

n ≥ 3, or q > 1 and n = 2, then u = at + b for some positive constants a, b with
a = bq.

Proof: It suffices to show that u(x) is independent of x′. For fixed q > 1 and
n ≥ 2, we choose a positive integer m so large that q > n+m

n+m−2 . Set

w(x1, x2, ..., xn−1, xn+1, ..., xn+m, t) = u(x1, ..., xn−1, t),

where xi ∈ R for i = 1, ..., n− 1, n + 1, ..., n + m, t ≥ 0. Then w satisfies




∆w = 0, w ≥ 0, in Rn+m
+ ,

∂w

∂t
= wq on ∂Rn+m

+ .

By the choice of m we see that q is a super-critical power in this new setting. Then
Theorem 2.1 applies and we know that w is independent of xi for i = 1, ..., n −
1, n + 1, ..., n + m. Thus u is independent of xi for i = 1, ..., n− 1.

3. Proof of Theorem 1.2

In this section we focus on establishing the following result.

Theorem 3.1. Suppose that n ≥ 3. If u(x) ∈ C2(H) ∩ C1(H̄) solves (3) for
q > n/(n− 2) and p > (n + 2)/(n− 2), then u ≡ 0.

Remark 3.2. Theorem 1.2 follows from Theorem 3.1 and some argument similar
to the proof of Theorem 2.7.

Remark 3.3. When p = (n + 2)/(n − 2) and q = n/(n − 2), Theorem 1.2 has
already been established in [4].

As usual we set
v(x) =

1
|x|n−2

u
( x

|x|2
)
,

then v(x) satisfies

(16)





∆v = |x|τvp, v(x) > 0 in H,

∂v

∂t
= |x|βvq on ∂H \ {0},

where τ = p(n − 2) − (n + 2) > 0, β = q(n − 2) − n > 0. We need the following
lemma to take care of the possible singular point.

Lemma 3.4. Let v ∈ C2(H) ∩ C1(H̄) \ {0} satisfy (16). Then for all 0 < ε <

min{1, min
∂B+

1/2∩∂B1/2

v}, we have v(x) > ε
2 for all x ∈ B+

1/2 \ {0}.

Proof: Set

ϕ2(x) =
ε

2
− rn−2ε

|x|n−2
+

εt

2
+

εt2

2
, x ∈ B+

1/2 \B+
r
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and P2(x) = v(x)− ϕ2(x). Then we have

(17)





∆P2 = |x|τvp − ε in B+
1/2 \B+

r ,

∂P2

∂t
= |x|βvq − ε

2
on ∂(B+

1/2 \B+
r ) ∩ ∂Rn

+.

We want to show that

(18) P2 ≥ 0 in B+
1/2 \B+

r .

Let
S = {x : |x|τvp − ε > 0} ∩ (B1/2(0) \Br(0)),

Sc = {x : |x|τvp − ε ≤ 0} ∩ (B1/2(0) \Br(0)).

In S, since 1 ≥ |x| > 0, we have vp(x) > ε/|x|τ > ε. It follows that v(x) > ε ≥ ϕ2

for x ∈ S, i.e., P2 ≥ 0 in S; in Sc, ∆P2 ≤ 0. Therefore arguing similarly as in the
proof of Lemma 2.2, we can show that P2 ≥ 0 in Sc. This thus establishes (18).
Let r → 0, we obtain Lemma 3.4.

For λ < 0, we recall that Σλ, Tλ, xλ, vλ and wλ are defined as in section 2. It is
easy to check that wλ(x) satisfies

(19)





∆wλ ≤ c2(x)wλ in Σλ,

∂wλ

∂t
≤ c3(x)wλ on ∂H ∩ Σ̃λ,

where c2(x) = p|x|τ · ξp−1
2 (x), c3(x) = q|x|β · ξq−1

3 (x), ξ2 and ξ3 are two functions
between vλ and v. In the following we again apply the moving plane method.

Proposition 3.5. If |λ| is large enough, then wλ(x) ≥ 0 for all x ∈ Σ̃λ.

Proof: Suppose that wλ(x) is negative somewhere in Σ̃λ. Note that wλ(x) → 0
as x →∞, thus by Lemma 3.4 we know for some |λ| large enough, there exists x̄λ

such that wλ(x̄λ) = min
x∈Σ̃λ

wλ(x) < 0. Since c2(x) is non-negative, by the Strong

Maximum Principle we know that x̄λ ∈ ∂H ∩ Σ̃λ, but this contradicts to the
boundary condition in (19). This finishes the proof.

Then we can define

λ0 = sup{λ < 0 | wµ(x) ≥ 0 in Σ̃µ for all −∞ < µ < λ}.

Proposition 3.6. λ0 = 0.

Proof : The proof is similar to that of Proposition 2.5. It suffices to show that
if λ0 < 0, then

(20) wλ0 ≡ 0.

Suppose that (20) fails, then by the Strong Maximum Principle we have wλ0 > 0
in Σ̃ \ Tλ0 . The following lemma is needed to treat the possible singular point, and
we postpone its proof till the end.
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Lemma 3.7. For r0 < min{1
2 |λ0|, 1/2} , there exists some positive constant γ

depending only on λ0 and r0 such that wλ0(x) > γ in B+
r0

(0).

We now continue the proof of Proposition 3.6. By the definition of λ0, there
exists a sequence λk → λ0 with λk > λ0 such that inf

Σ̃λk

wλk
< 0. From Lemma 3.7

and the continuity of v(x) away from the origin it follows that for k large enough,
there exists xk = (x′k, tk) ∈ Σ̃λk

\B+
r0 such that

(21) wλk
(xk) = min

Σ̃λk

wλk
< 0.

Clearly |xk| > r0 and tk > 0 as from Lemma 3.7 and the boundary condition. But
(21) contradicts to the Strong Maximum principle since c2(x) ≥ 0 in (19). This
finishes the proof of Proposition 3.6.

Proof of Lemma 3.7: Set

ϕ3(x) =
εµ

2
− rn−2ε

|x|n−2
+

εt(1− µ)
2

+
εt2(1− µ)

2
in B+

r0
(0) \B+

r (0),

where ε is some small positive constant such that min
∂B+

r0 (0)
wλ0 ≥ ε. µ < 1 will be

chosen later in the proof. Let P3(x) = wλ0(x) − ϕ3(x), then P3(x) satisfies the
following equation.

(22)





∆P3(x) = |x|τvp − |xλ0 |τvp
λ0
− ε(1− µ) in B+

r0
(0) \B+

r (0)

∂P3(x)
∂t

= |x|τvq − |xλ0 |τvq
λ0
− ε(1− µ)

2
on B+

r0(0) \B+
r (0) ∩ ∂H.

On ∂B+
r0

(0) ∩ ∂Br0(0) and ∂B+
r (0) ∩ ∂Br(0), we know P3(x) ≥ 0. Let x̄ be one

of the minimum points of P3(x). If P3(x̄) < 0, arguing similarly as in the proof of
Lemma 2.6 we know that there exists some µ1 = µ1(λ0) > 0 such that x̄ can not be
on ∂H for all µ ≤ µ1. Hence for µ ≤ µ1, if P3(x̄) < 0, then ∆P3(x̄) ≥ 0. Using the
same method as in the proof of Lemma 2.6, we can derive a contradiction if µ ≤ µ2

for some µ2 = µ2(λ0) > 0. Set µ = min{µ1, µ2}, then we know that P3(x) ≥ 0 in
B+

r0(0) \B+
r (0). Let r → 0, we thus obtain Lemma 3.7 with γ = εµ/2.

Proof of Theorem 3.1: Arguing similarly as in the proof of Theorem 2.1, we
can show that u(x) depends only on t, and thus (3) becomes

(23)

{
u′′ = up, u > 0 for t > 0

u′(0) = uq(0).

Since p > 1, it is easy to check that (23) has no global solution (see [4] for details).

4. Miscellaneous Results

4.1 Sign-changing solutions.
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Brezis [1] proved that u = 0 is the only solution to the following entire space
problem. {

−∆u + |u|p−1u = 0 in Rn,

u ∈ Lp
loc(R

n), p > 1.

Thus one may wonder whether for q > 1, all solutions to the following equation

(24)





∆u = 0 in H,

∂u

∂t
= |u|q−1u on ∂H

depend only on t. It turns out that this is not always the case as the following
example shows.

Example 4.1. u(x) = x3
1t− x1t

3 + x1 solves (24) with q = 3.

In view of this example, it seems that the set of sign-changing solutions to (24)
is more complicated than that of non-negative solutions.

4.2 Some other results.
Consider the following equation:

(25)

{
∆u− up = 0, u ≥ 0 in Rn,

u ∈ C2(Rn), 1 < p < +∞.

The result of Brezis in [1] implies the following theorem.

Theorem 4.2. If u(x) solves (25), then u ≡ 0.

We would like to present a different proof of Theorem 4.2 here. This does not
mean that our method is simpler or more flexible (actually it seems that the moving
plane method does not apply to sign-changing solutions). The point which we want
to make is that the sign of the coefficient for the nonlinear term in (25) is a “good”
sign, which allows us to apply the moving plane method for the super-critical case.

The proof of Theorem 4.2 is similar to that of Theorem 1.2. It suffices to prove
it for the case when p > (n + 2)/(n − 2), n ≥ 3, since all the other cases can be
treated similarly as in the proof of Theorem 2.7. As before we let

v(x) =
1

|x|n−2
u
( x

|x|2
)
,

then v(x) satisfies

(26) ∆v − |x|δvp = 0, v(x) > 0 in Rn \ {0}

where δ = p(n−2)−(n+2) > 0. We set to show that v(x) is symmetric with respect
to the origin. The following result will be needed to take care of the singularity.

Lemma 4.3. Assume that v(x) satisfies (26). If for some 0 < ε < 1, v(x) ≥ ε
on ∂B1(0), then v(x) ≥ ε/2 in B1(0) \ {0}.
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Proof: For small r, Set

ϕ4(x) =
ε

2
− rn−2ε

|x|n−2
+

t2ε

2
, x ∈ B1(0) \Br(0).

Then ∆φ = ε, and ∆(u− φ) = |x|δup − ε. Let

S = {x : |x|δup − ε > 0} ∩ (B1(0) \Br(0)),

Sc = {x : |x|δup − ε ≤ 0} ∩ (B1(0) \Br(0)).

Since |x| ≤ 1 in S, thus we have up > ε/|x|δ > ε. It follows that u(x) > ε ≥ ϕ4

for x ∈ S; in Sc, ∆(u − ϕ4) ≤ 0. It is easy to check the following facts: On
{x : |x|δup − ε = 0} and ∂B1, u ≥ ϕ4; On ∂Br, u > ϕ4. By the Maximum
Principle, we know that u ≥ ϕ4 in Sc. Thus we always have u ≥ ϕ4 in B1 \ Br.
Let r → 0, we obtain u ≥ ε

2 . This proves Lemma 4.3.

Once we establish Lemma 4.3, we can apply the moving plane method to prove
Theorem 4.2. We refer readers to [3], [5] for details about such kind of process.

In our proofs of Theorems 1.1 and 1.2, the assumption p, q > 1 plays an essen-
tial role in the adding dimension argument. In the following we present a simple
example to show that Theorem 4.2 breaks down for p = 1. The same example also
serves as a counterexample to Theorem 1.2 for p = q = 1.

Example 4.4. u(x) = et solves (25) with p = 1.

Moreover, there exist positive solutions to (25) which depend on more than one
variable.

Example 4.5. u(x) = e(x1+x2)/
√

2 solves (25) with p = 1.

Thus it seems interesting to ask whether Theorem 1.1 still holds for q = 1.
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