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0 Introduction

Let (M, g) be a compact Riemannian manifold of dimension n (n ≥ 3) with smooth
boundary. In [20], we established some sharp trace inequality on (M, g). In this
paper we establish some sharp Sobolev inequalities using the method in [20].

For n ≥ 3, it was shown by Aubin [2] and Talenti [25] that, for p = 2n/(n− 2),

1

S1

= inf {
∫
Rn |∇u|2

(
∫
Rn |u|p)2/p

| u ∈ Lp(Rn) \ {0}, ∇u ∈ L2(Rn)}, (0.1)

is achieved and the extremal functions are found. In particular,

1

S1

= πn(n− 2)(Γ(n/2)/Γ(n))2/n.

It follows that for any genuine open subset Ω of Rn,

(
∫

Ω
|u|p)2/p < S1

∫

Ω
|∇u|2, ∀ u ∈ H1

0 (Ω) \ {0}, (0.2)
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and, by even reflection,

(
∫

Rn
+

|u|p)2/p < 22/nS1

∫

Rn
+

|∇u|2 (0.3)

for all u satisfying u ∈ Lp(Rn
+) and ∇u ∈ L2(Rn

+), where Rn
+ = {(x1, · · · , xn) ∈ Rn :

xn > 0}.
It was shown by P.L. Lions [23] that, for q = 2(n− 1)/(n− 2),

1

S
= inf {

∫
Rn

+
|∇u|2

(
∫
∂Rn

+
|u|q)2/q

| ∇u ∈ L2(Rn
+), u ∈ Lq(∂Rn

+) \ {0}}, (0.4)

is achieved. The extremal functions are found independently by Escobar [14] and
Beckner [4]. In particular

1

S
=

n− 2

2
σ1/(n−1)

n ,

where σn denotes the volume of the unit sphere in Rn.
Some related sharp inequalities on Rn

+ are given by Brezis and Lieb [6], Carlen and
Loss [8]-[9] . Many related problems were also discussed in Trudinger [26], Moser [24],
Lieb [21]-[22], Aubin [3], Brezis-Nirenberg [5], Cherrier [11]-[12], Carleson-Chang
[10], Escobar [13], Hamza [16], Beckner [4], Adimurthi and Yadava [1], Hebey and
Vaugon [18]-[19], Hebey [17], and the references therein.

In this paper we establish the following result.

Theorem 0.1. For n ≥ 3, let (M, g) be a smooth n-dimensional compact Rieman-
nian manifold with smooth boundary. Then a necessary and sufficient condition for
the existence of some constant A(M, g) > 0 so that

(
∫

M
|u|pdvg)

2/p ≤ 22/nS1

∫

M
|∇gu|2dvg + A(M, g)

∫

∂M
u2dsg, ∀ u ∈ H1(M), (0.5)

holds is

(
∫

M
|u|pdvg)

2/p < 22/nS1

∫

M
|∇gu|2dvg, ∀ u ∈ H1

0 (M) \ {0}, (0.6)

where dvg denotes the volume form of g, and dsg denotes the induced volume form
on ∂M .

An easy consequence of Theorem 0.1 is, in view of (0.2), the following.
Corollary 0.1. For n ≥ 3, let Ω ⊂ Rn be a smooth bounded open set. Then there
exists some A = A(Ω) > 0 such that

(
∫

Ω
|u|p)2/p ≤ 22/nS1

∫

Ω
|∇u|2 + A(Ω)

∫

∂Ω
u2, ∀ u ∈ H1(Ω). (0.7)
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Remark 0.1. One can not expect (0.5) to hold for all compact manifolds with
boundary, as shown by the following example.

Let ϕε ⊂ C∞(Rn) be some positive function satisfying

ϕε(x) =

{
ε−1, |x| ≤ √

ε,
1, |x| ≥ 1/4.

Consider gε = ϕ2
εg0, where g0 is the flat metric on Rn. On (B1, gε), we take u ∈

C∞
c (B1) which is independent of ε and satisfies u(x) = 1 for all |x| ≤ 1/2. It is very

easy to see that for ε > 0 small, u satisfies

(
∫

B1

|u|pdvgε)
2/p > 22/nS1

∫

B1

|∇gεu|2dvgε .

Therefore (0.5) does not hold for (B1, gε).

Remark 0.2. In (0.5), the constant 22/nS1 in front of
∫
M |∇gu|2dvg is sharp. It can

not be replaced by any smaller numbers.

Remark 0.3. In general,
∫
∂M u2dsg in (0.5) can not be replaced by

∫
∂M urdsg for

r < 2. For instance, this is the case for any bounded domain in Rn with the flat
metric.

Remark 0.4. Corollary 0.1 in the case n ≥ 5 was established in [1] by Adimurthi
and Yadava. Our method is different.

As in [20], there are two main ingredients in our proof of the sufficient part of
Theorem 0.1. One is to obtain, by using the Moser iteration technique, appropriate
pointwise upper bound for blow up minimum energy solutions to certain critical
exponent equations with nonlinear Neumann boundary conditions. The other is
a local balance checking via Pohozaev identity. The method is useful in treating
similar problems. For instance, We also show the following.

Theorem 0.2. For n ≥ 3, let (M, g) be some smooth n-dimensional compact
Riemannian manifold with smooth boundary. Then there exists some constant A1 =
A1(M, g) > 0 such that for all u ∈ H1(M),

(
∫

M
|u|pdvg)

2/p ≤ 22/nS1

∫

M
|∇gu|2dvg + A1

∫

M
u2dvg + A1

∫

∂M
u2dsg. (0.8)

Remark 0.5. In (0.8), the constant 22/nS1 in front of
∫
M |∇gu|2dvg is sharp. It

can not be replaced by any smaller numbers.
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In the following, we outline the ideas of the proof of Theorem 0.1. The necessary
part of Theorem 0.1 is rather short and is given at the beginning of Section 1. In
Section 1 we also derive some preliminary estimates with almost sharp constants
in front of

∫
M |∇gu|2dvg. We begin to prove the sufficient part of Theorem 0.1 by

contradiction argument from Section 2. Suppose there did not exist any positive
constant A(M, g) for which (0.5) holds under condition (0.6), we would find, for any
α > 0, some positive function uα ∈ H1(M) such that

∫
M |∇guα|2dvg + α

∫
∂M u2

αdsg

(
∫
M up

αdvg)2/p
= inf

H1(M)\{0}

∫
M |∇gu|2dvg + α

∫
∂M u2dsg

(
∫
M |u|pdvg)2/p

<
1

22/nS1

.

Without loss of generality, we assume
∫
M up

αdvg = 1. Since uα is an extremal, it
satisfies the Euler-Lagrange equation (see (2.2)). We mainly work with this equation
to derive a contradiction. Let xα ∈ M be some maximum point of uα, we prove,
utilizing the preliminary estimates in Section 1, that uα(xα) → ∞ and uα blows
up at precisely one point. We then show that uα, after appropriate scaling, is close
to v in energy, where v is given explicitly in (2.13). Equivalently, if we scale back
v appropriately and denote the it by ϕα, we know that ‖uα − ϕα‖H1(M) → 0 as
α → ∞. Since uα satisfies equation (2.2), we can write down some Pohozaev type
identity for uα in Brα(xα), the geodesic ball of radius rα and centered at xα. If we
substitute ϕα for uα in the identity, with rα → 0 appropriately chosen (depending
on α, uα(xα)), we see that the identity is unbalanced. More specifically, the term in
the identity which is induced by the boundary term −αuα in (2.2) is much larger
than the rest of the terms. However we have uα instead of ϕα in the identity.
Therefore we need to obtain good enough estimates on the difference uα − ϕα.
The estimate ‖uα − ϕα‖H1(M) → 0 is not enough. In Section 2 we establish the
following crucial pointwise upper bound estimate of uα: uα ≤ Cϕα on M for some
constant C independent of α. This is given in Proposition 2.1 and is proved, as
in [20], by using the Moser iteration technique. Once we have this pointwise upper
bound of uα, we derive from standard elliptic theories appropriate estimates on both
|∇uα| and |∇2uα|. In dimension n ≥ 4, these estimates are good enough to carry
out the balance checking via Pohozaev type identity described above to reach a
contradiction. For dimension n = 3, we still need another estimate: uα ≥ C−1ϕα

in Brα(xα). This pointwise lower bound of uα is obtained, as in [20], by using the
maximum principle. We complete the proof of the sufficient part of Theorem 0.1
in Section 3. Theorem 0.2 is proved in a similar way and we sketch the proof in
Section 4.
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Throughout this paper we always denote p = 2n/(n− 2), q = 2(n− 1)/(n− 2),
‖f‖r,M = (

∫
M |f |rdvg)

1/r, S1 to be the constant in (0.1), C to be various positive
constants.

1 Necessary part of Theorem 0.1 and preliminary

estimates

We first establish the necessary part of Theorem 0.1.
Proof of the necessary part of Theorem 0.1. It follows from (0.5) that

(
∫

M
|u|pdvg)

2/p ≤ 22/nS1

∫

M
|∇gu|2dvg, ∀ u ∈ H1

0 (M) \ {0}.

If (0.6) did not hold, there would exist some nonnegative function u0 ∈ H1
0 (M)\{0}

such that ∫

M
|u0|pdvg = 1, and 22/nS1

∫

M
|∇gu0|2dvg = 1. (1.1)

Since u0 is a minimizer to {∫M |∇gu|2dvg :
∫
M |u|pdvg = 1, u ∈ H1

0 (M)}, there exists
some constant λ such that

∫

M
∇gu0∇gϕ = λ

∫

M
up−1

0 ϕ, ∀ ϕ ∈ H1
0 (M).

Take ϕ = u0 in the above, we have λ = 1/(22/nS1). Therefore u0 satisfies
{ −∆gu0 = 1

22/nS1
up−1

0 , in M,

u0 = 0, on ∂M.
(1.2)

Let v0 ∈ H1(M) with v0|∂M = ∂gu0

∂ν
, where ∂g

∂ν
denotes differentiation in the direction

of the unit outer normal of ∂M with respect to g. Set

F (ε) = (
∫

M
|u0 + εv0|p)2/p − 22/nS1

∫

M
|∇g(u0 + εv0)|2.

It follows from (1.1), (1.2) and the Hopf Lemma that

F (0) = 0, F ′(0) = −2
∫

∂M
(
∂gu0

∂ν
)2 < 0.

On the other hand, in view of (0.5), we have

F (ε) ≤ A
∫

∂M
(u0 + εv0)

2 = Aε2
∫

∂M
v2

0.
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The above two inequalities lead to a contradiction for ε < 0 and close to zero. This
establishes the necessary part of Theorem 0.1.

In the remaining section, we establish some rough inequalities which will serve
as a starting point in our blow up analysis of the minimum energy sequence.

Proposition 1.1. For n ≥ 3, let (M, g) be a smooth n-dimensional compact Rie-
mannian manifold with smooth boundary. Then for all ε > 0, there exists some
constant B(ε) depending only on ε and (M, g) such that

(
∫

M
|u|pdsg)

2/p ≤ (22/nS1+ε)
∫

M
|∇gu|2dvg +B(ε)

∫

M
|u|2dvg, ∀ u ∈ H1(M). (1.3)

The above proposition is standard. Readers can find a proof on page 51 of Aubin
[3]. We omit the details.

Proposition 1.2 For n ≥ 3, let (M, g) be a smooth n-dimensional compact Rie-
mannian manifold with smooth boundary. Suppose

(
∫

M
|u|pdvg)

2/p ≤ 22/nS1

∫

M
|∇gu|2dvg, ∀ u ∈ H1

0 (M) \ {0}.

Then for all ε > 0, there exists some constant A(ε) depending only on ε and (M, g)
such that for all u ∈ H1(M),

(
∫

M
|u|pdvg)

2/p ≤ (22/nS1 + ε)
∫

M
|∇gu|2dvg + A(ε)

∫

∂M
u2dsg. (1.4)

Proof: We prove it by contradiction argument. Suppose the contrary of (1.4), there
exists some constant δ > 0, such that for all α > 0,

ξα := inf
H1(M)\{0}

∫
M |∇gu|2dvg + α

∫
∂M u2dsg

(
∫
M |u|pdvg)2/p

≤ 1

22/nS1

− δ. (1.5)

Due to (1.5), we can show as in [20] (see the proof of proposition 1.2 there) that
there exists some nonnegative function uα ∈ H1(M) satisfying

ξα =
∫

M
|∇guα|2dvg + α

∫

∂M
u2

αdsg,
∫

M
up

αdvg = 1. (1.6)

Notice ||uα||H1 ≤ C, there exists u ∈ H1(M) such that uα ⇀ u in H1(M). Since
||uα||2,∂M → 0 as α →∞, u ∈ H1

0 (M). It is easy to see that
∫

M
up

α −
∫

M
|uα − u|p −

∫

M
up → 0, as α →∞, (1.7)
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and, in view of (1.6),
∫

M
|uα − u|p ≤ 1 + o(1),

∫

M
up ≤ 1, (1.8)

where and throughout this section o(1) → 0 as α → ∞, Also from Proposition 1.1
we know that for δ/2, there exists a constant B = B(δ), such that

(
1

22/nS1

− δ

2
)(

∫

M
|ϕ|pdvg)

2/p ≤
∫

M
|∇gϕ|2dvg+B(δ)

∫

M
ϕ2dvg, ∀ ϕ ∈ H1(M). (1.9)

It follows from (1.9), the compact embedding of H1 to L2, (1.5), (1.7), and (1.8)
that

ξα =
∫
M |∇guα|2 + α

∫
∂M u2

α

=
∫
M |∇g(uα − u)|2 +

∫
M |∇gu|2 + α

∫
∂M u2

α + o(1)
≥ ( 1

22/nS1
− δ

2
)(

∫
M |uα − u|p)2/p + ξα(

∫
M up)2/p + α

∫
∂M u2

α + o(1)

≥ ( 1
22/nS1

− δ
2
− ξα)

∫
M |uα − u|p + ξα + α

∫
∂M u2

α + o(1),

Therefore, ||uα − u||p,M → 0. From this, we derive

||∇gu||22,M

||u||2p,M

≤ 1

22/nS1

− δ,

which contradicts to the assumption of Proposition 1.2. This establishes Proposition
1.2.

The following lemma is due to Brezis and Lieb [6].

Lemma 1.1. Let Ω ⊂ Rn be a bounded domain with smooth boundary, equipped
with the standard Euclidean metric. Then there exists A(Ω) > 0 such that

||u||p,Ω ≤ S
1/2
1 ||∇u||2,Ω + A(Ω)||u||q,∂Ω, u ∈ H1(Ω),

where and throughout this paper, we assume q = 2(n− 1)/(n− 2).

Using Lemma 1.1 and Young’s inequality, one easily sees that for any ε > 0,

||u||2p,Ω ≤ (S1 + ε)||∇u||22,Ω + (A2(Ω) +
2S

1/2
1 A(Ω)

ε
)||u||2q,∂Ω, u ∈ H1(Ω).

In turn, we obtain, using the partition of unit, the following.

Proposition 1.3. For n ≥ 3, let (M, g) be a smooth n-dimensional compact Rie-
mannian manifold with smooth boundary. Then for any ε > 0, there exists some
constant D(ε) depending on ε such that for all u ∈ H1(M),

||u||2p,M ≤ (S1 + ε)||∇gu||22,M + D(ε)||u||2q,∂M + D(ε)||u||22,M . (1.10)
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2 Asymptotic Analysis

From now on we prove the sufficient part of Theorem 0.1. Namely, we establish
(0.5) under the assumption (0.6). In the next two sections, we always assume (0.6).
We argue by contradiction. Suppose not, we have, for all α ≥ 1,

ξα <
1

22/nS1

, (2.1)

where ξα is defined in (1.5).
As explained in Section 1, there exists some nonnegative function uα ∈ H1(M)

satisfying (1.6). It follows that uα satisfies

{ −∆guα = ξαup−1
α in M,

∂guα

∂ν
= −αuα on ∂M,

(2.2)

where, as always, ∂g

∂ν
denotes differentiation in the direction of the unit outer normal

of ∂M with respect to g.
In this section, we establish the main estimates of uα. The crucial estimate is

the pointwise upper bound estimate which we obtain in Proposition 2.1 through the
Moser iteration technique.

For any ε > 0, it follows from (1.6), (2.1) and Proposition 1.2 that there exists
some A(ε) such that

1 + ε
22/nS1

> (22/nS1 + ε)ξα

= (22/nS1 + ε)‖∇guα‖2
2,M + α(22/nS1 + ε)‖uα‖2

2,∂M

≥ (
∫
M |uα|p)2/p + [α(22/nS1 + ε)− A(ε)]‖uα‖2

2,∂M

= 1 + [α(22/nS1 + ε)− A(ε)]‖uα‖2
2,∂M .

Thus

1 +
ε

22/nS1

≥ (22/nS1 + ε) lim sup
α→∞

ξα ≥ 1 + (22/nS1 + ε) lim sup
α→∞

α‖uα‖2
2,∂M ,

1 +
ε

22/nS1

≥ (22/nS1 + ε) lim inf
α→∞ ξα ≥ 1 + (22/nS1 + ε) lim inf

α→∞ α‖uα‖2
2,∂M .

Send ε → 0, we have

lim
α→∞ ξα =

1

22/nS1

, (2.3)

lim
α→∞α‖uα‖2

2,∂M = 0. (2.4)
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It follows from Cherrier [11] that uα is smooth up to boundary. Let xα be some
maximum point of uα, we set µα = u−2/(n−2)

α (xα).

Lemma 2.1.
lim

α→∞αµα = 0. (2.5)

Proof: We first claim:
lim inf
α→∞ ||uα||q,∂M > 0. (2.6)

If the claim were false, i.e., ||uα||q,∂M → 0 along a subsequence α → ∞, then, in
view of (1.6) and (2.1), there would exist u ∈ H1

0 (M) such that uα weakly converges
to u. It is easy to check that u, uα satisfy (1.7) and (1.8). Therefore it follows from
Proposition 1.3 applied to uα−u, the compact embedding of H1(M) to L2(M), the
definition of ξα, (1.7) and (1.8) that for any ε > 0

ξα =
∫
M |∇guα|2 + α

∫
∂M u2

α

=
∫
M |∇g(uα − u)|2 +

∫
M |∇gu|2 + α

∫
∂M u2

α + o(1)
≥ (1/S1 − ε)(

∫
M |uα − u|p)2/p + ξα(

∫
M up)2/p + α

∫
∂M u2

α + o(1)
≥ (1/S1 − ε− ξα)

∫
M |uα − u|p + ξα + α

∫
∂M u2

α + o(1),

where o(1) → 0 as α → ∞. Take ε small enough, we derive by using (2.1) that
||uα − u||p,M → 0. In particular, in view of (1.6),

∫
M up = 1. From this and (2.1),

we have,

(
∫

M
|u|pdvg)

2/p ≥ 22/nS1

∫

M
|∇gu|2dvg,

which contradicts to (0.6). This establishes (2.6).
It follows from (2.6), the definition of µα, and (2.4) that as α →∞,

αµα ≤ Cαµα

∫

∂M
uq

αdsg ≤ Cα
∫

∂M
u2

α → 0.

We complete the proof of Lemma 2.1.

Let (y1, · · · , yn−1, yn) denote some geodesic normal coordinates given by the ex-
ponential map expxα

. In this coordinate system, the metric g is given by gij(y)dyidyj.
For suitably small δ1 > 0 (independent of α), we define vα in a neighborhood of z = 0
by

vα(z) = u−1
α (xα)uα(expxα(µαz)), z ∈ Oα ⊂ Rn,

where
Oα = {z ∈ Rn : |z| < δ1/µα, expxα(µαz) ∈ M}. (2.7)
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We write ∂Oα = Γ1
α ∪ Γ2

α, where

Γ1
α = {z ∈ ∂Oα : expxα(µαz) ∈ ∂M}, Γ2

α = {z ∈ ∂Oα : expxα(µαz) ∈ M}.

It follows from (2.2) that vα satisfies





−∆gαvα = ξαvp−1
α , in Oα,

∂gαvα

∂ν
= −αµαvα, on Γ1

α,
vα(0) = 1, 0 ≤ vα ≤ 1,

(2.8)

where gα denotes the metric on Oα given by gα = gij(µαz)dzidzj. It follows from
(2.8), Lemma 2.1 and standard elliptic estimates that for all R > 1,

‖vα‖C3(BR∩Oα) ≤ C(R), ∀ α ≥ 1. (2.9)

Let limα→∞ dist(xα, ∂M)/µα = T ∈ [0,∞]. Therefore vα → v in C3(Oα∩BR(0))
for all R > 1, where v satisfies





−∆v = 1
22/nS1

vp−1 in Rn
−T ,

∂v
∂ν

= 0 on ∂Rn
−T ,

v(0) = 1, 0 ≤ v(x) ≤ 1,

(2.10)

where Rn
−T = {z = (z′, zn) : zn > −T} for 0 ≤ T < ∞; for T = ∞, Rn

−∞ = Rn and
there is no boundary condition in the above.

Lemma 2.2. T = 0.
Proof: We prove it by contradiction argument. If 0 < T < ∞, then after making
an even reflection of v, we obtain a positive solution of −∆v = 2−2/nS−1

1 vp−1 in
Rn with two local maximum points. This is impossible due to the results of Gidas-
Ni-Nirenberg [15] or Caffarelli-Gidas-Spruck [7]. If T = ∞, we know from [7] the
explicit form of v which yields ∫

Rn
vp = 2. (2.11)

The above can also be deduced from some well known results. For reader′s conve-
nience, we include it here. We know from the explicit expression of v given by [7]
that v is an extremal function for the Sobolev inequality, i.e.,

∫
Rn |∇v|2

(
∫
Rn vp)2/p

=
1

S1

.
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Multiplying the equation of v by v and integrating by parts, we obtain, in view of
the explicit expression of v given by [7], that

∫

Rn
|∇v|2 =

1

22/nS1

∫

Rn
vp.

Equality (2.11) follows immediately from the above two identities.
However for all R > 0,

∫

BR(0)
vp

αdvgα =
∫

BµαR(xα)
up

αdvg ≤ 1.

Sending α to ∞, we have ∫

BR(0)
vp ≤ 1,

which violates (2.11). We have thus established Lemma 2.2.

It follows from Lemma 2.2 that

lim
α→∞ dist(xα, ∂M)/µα = 0, vα → v in C3(Oα ∩BR(0)) for all R > 1, (2.12)

where

v(x) = (
1

1 + c(n)|x|2 )
n−2

2 , (2.13)

and c(n) = 1/(22/n(n− 2)nS1). A direct calculation, or similar argument as above,
yields ∫

Rn
+

vp = 1. (2.14)

Recall that the conformal Laplacian operator Lg and the conformal boundary
operator Bg corresponding to g are given by

{
Lgψ = ∆gψ − a(n)Rgψ,

Bgψ = ∂gψ
∂ν

+ b(n)Hgψ,
(2.15)

where a(n) = n−2
4(n−1)

, b(n) = n−2
2

, Rg is the scalar curvature of M , and Hg is the

mean curvature of ∂M with respect to the inner normal of ∂M (e.g., the unit ball
in Rn has positive mean curvature).

Let ĝ = ϕ4/(n−2)g for some positive function ϕ being chosen later, then
{

Lĝ(ψ/ϕ) = ϕ−(n+2)/(n−2)Lg(ψ) in M,
Bĝ(ψ/ϕ) = ϕ−n/(n−2)Bg(ψ) on ∂M.

(2.16)
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Rewrite (2.2) as

{ −∆guα = ξαup−1
α in M

∂guα

∂ν
+ b(n)Hguα = −αuα + b(n)Hguα on ∂M.

(2.17)

Let ψ = uα in (2.16) and write wα = uα/ϕ, we have

{
∆guα − a(n)Rguα = ϕ(n+2)/(n−2)(∆ĝwα − a(n)Rĝwα) in M,
∂guα

∂ν
+ b(n)Hguα = ϕn/(n−2)(

∂ĝwα

∂ν
+ b(n)Hĝwα) on ∂M.

(2.18)

Let ψ = ϕ in (2.16), we get

{
−a(n)Rĝϕ

n+2
n−2 = ∆gϕ− a(n)Rgϕ in M,

+b(n)Hĝϕ
n/n−2 = ∂gϕ

∂ν
+ b(n)Hgϕ on ∂M.

(2.19)

Combining (2.17), (2.18) and (2.19), we reach the following equation

{
−∆ĝwα = ξαwp−1

α + (∆gϕ/ϕ
n+2
n−2 )wα in M

∂ĝwα

∂ν
= −(α/ϕ2/(n−2) + ∂gϕ

∂ν
/ϕn/(n−2))wα on ∂M.

(2.20)

We will choose appropriate ϕ = ϕα to simplify (2.20) and then apply the Moser
iteration technique to show that wα is bounded above by some constant independent
of α. Without loss of generality, we assume (M, g) is a smooth bounded open set of
a slightly larger Riemannian manifold (M̃, g). Let Qα be the closest point on ∂M
to xα, γ be the geodesic in M̃ with γ(0) = Qα, γ′(0) = ν. Set Pα = γ(tαµα) with
tα = (n − 2)/ξα. Let (y1, · · · , yn−1, yn) be some geodesic normal coordinate system
of TPαM̃ , with ∂

∂yn = −γ′(tαµα), expPα : TPαM̃ → M̃ denoting the exponential map,

gij(y) =< ∂
∂yi ,

∂
∂yj > denoting the metric of M̃ , with gij(0) = δij, Γ

k
ij(0) = 0, where

Γk
ij is the Christoffel symbol. We define GPα by

{
−∆gGPα = n(n− 2)ωnδPα in M̃,

GPα = 0 on ∂M̃,

where ωn is the volume of the unit ball in Rn. It follows from Appendix B in [20]
that

GPα ◦ expPα(y) = |y|2−n + E(y),

where E(y) satisfies

|y|n−3|E(y)|+ |y|n−2|∇gE(y)| ≤ C(δ1), ∀ |y| ≤ δ1. (2.21)
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Define ϕα : M → R by
ϕα = tn−2

α µ(n−2)/2
α GPα . (2.22)

Clearly, ϕα satisfies
−∆gϕα = 0, in M.

The following lemma was established in [20] (Lemma 2.2 there).

Lemma 2.3. For α large,

α/ϕ2/(n−2)
α +

∂ϕα

∂ν
/ϕn/(n−2)

α ≥ 0, on ∂M.

From Lemma 2.3 and (2.20), we know that for ĝ = ϕ4/(n−2)
α g, wα = uα/ϕα, we

have, for large α, { −∆ĝwα = ξαwp−1
α in M

∂ĝwα

∂ν
≤ 0 on ∂M.

(2.23)

Lemma 2.4.
lim

α→∞

∫

Oα

|vα − v|p = 0, (2.24)

where v is given by (2.13) and Oα is given by (2.7).

Proof: Using (2.12) and the fact Oα tends to Rn
+, we have for all R > 1,

lim
α→∞ ‖vα − v‖Lp(Oα∩BR(0)) = 0. (2.25)

Consequently, in view of (2.14),

lim
α→∞ ‖vα‖Lp(Oα∩BR(0)) = 1 + ◦R(1), (2.26)

where ◦R(1) tends to zero as R →∞.
We see easily from (1.6) that ‖vα‖Lp(Oα) ≤ 1. Therefore, in view of (2.26), we

have
lim sup

α→∞
‖vα − v‖Lp(Oα\BR(0)) = ◦R(1). (2.27)

Lemma 2.4 follows from (2.25) and (2.27).

Now we are ready to prove the following crucial estimate.

Proposition 2.1. There exists some constant C independent of α such that for all
α ≥ 1

uα/ϕα ≤ C for x ∈ M. (2.28)
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Proof: We only need to show (2.28) holds for α large, thus, without loss of generality,
we assume wα = uα/ϕα satisfies (2.23).

Let η be some smooth cutoff function. Multiplying (2.23) by wk
αη2 for k > 1 and

integrating by parts, we obtain

∫

M
∇ĝwα · ∇ĝ(w

k
αη2)dvĝ ≤ ξα

∫

M
wp−1+k

α η2dvĝ.

Direct computation yields:

∫
M ∇ĝwα · ∇ĝ(w

k
αη2)dvĝ

= 4k
(k+1)2

∫
M |∇ĝ(w

k+1/2
α η)|2dvĝ + k−1

(k+1)2

∫
M wk+1

α ∆ĝ(η
2)dvĝ

− 4k
(k+1)2

∫
M wk+1

α |∇ĝη|2dvĝ − k−1
(k+1)2

∫
∂M wk+1

α
∂ĝ(η2)

∂ν
dsĝ.

We derive from last two inequalities that

∫
M |∇ĝ(w

k+1/2
α η)|2dvĝ

≤ −k−1
4k

∫
M wk+1

α ∆ĝ(η
2)dvĝ +

∫
M wk+1

α |∇ĝη|2dvĝ

+k−1
4k

∫
∂M wk+1

α
∂ĝ(η2)

∂ν
dsĝ + ξα(k+1)2

4k

∫
M wp−1+k

α η2dvĝ.

(2.29)

For all ε > 0, it follows from Lemma 2.4 that there exists δ0 = δ0(ε) > 0 such
that ∫

M\Bµα/δ0
(xα)

wp
αdvĝ =

∫

M\Bµα/δ0
(xα)

up
αdvg < ε.

Then by the Moser iteration process (e.g. see the proof of Lemma 2.3 in [20]), we
know for ε0 small but independent of α, there exists some δ0 = δ0(ε0) > 0 and
s0 = s0(ε0) > p, ∫

M\Bµα/δ0
(xα)

ws0
α dvĝ ≤ C. (2.30)

Without loss of generality, we assume that δ0 > 0 is small enough so that
Bµα/δ0(xα) ⊂ B4µα/δ0(Pα). Set, δ = δ0/8,

Ri = µα(2− 1

2i−1
)/δ, i = 1, 2, 3, · · · .

Clearly,
Bµα/δ0(xα) ⊂ BRi

(Pα), ∀ i. (2.31)

Note that for µα/δ < |y| ≤ 2µα/δ,

µ(2−n)/2
α /C ≤ ϕα(y) ≤ Cµ(2−n)/2

α , C−1µ−2
α g ≤ ĝ ≤ Cµ−2

α g. (2.32)
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We can choose some smooth cutoff function ηi satisfying
{

ηi(y) = 1, |y| > Ri+1; ηi(y) = 0, |y| < Ri;
|∇ĝηi| ≤ C2i, |∇2

ĝηi| ≤ C4i.

In the following we use notation BRi
= BRi

(Pα). Take η = ηi in (2.29), we have,

∫
M |∇ĝ(w

(k+1)/2
α ηi)|2dvĝ

≤ 4iC
∫
M\BRi

wk+1
α dvĝ + 2iC

∫
∂M\BRi

wk+1
α dsĝ

+ (k+1)2C
k

∫
M\BRi

wp−1+k
α dvĝ

(2.33)

It follows from the Sobolev embedding theorems (see Appendix A in [20]) that

{ ∫

M\BRi

(w(k+1)/2
α ηi)

pdvĝ

}2/p

≤ C
∫

M\BRi

|∇ĝ(w
(k+1)/2
α ηi)|2dvĝ, (2.34)

{ ∫

∂M\BRi

(w(k+1)/2
α ηi)

qdsĝ

}2/q

≤ C
∫

M\BRi

|∇ĝ(w
(k+1)/2
α ηi)|2dvĝ. (2.35)

Using (2.34) and (2.35), we can derive from (2.33) that

{ ∫
M\BRi

(w(k+1)/2
α ηi)

pdvĝ

}2/p

+
{ ∫

∂M\BRi
(w(k+1)/2

α ηi)
qdsĝ

}2/q

≤ 4iC
∫
M\BRi

wk+1
α dvĝ + 2iC

∫
∂M\BRi

wk+1
α dsĝ

+ (k+1)2C
k

∫
M\BRi

wp−1+k
α dvĝ.

(2.36)

Set r0 = s0/(p− 2), it follows from (2.30) and the Hölder′s inequality that
∫

M\BRi

wp−1+k
α dvĝ ≤ C(

∫

M\BRi

w(k+1)r0/(r0−1)
α dvĝ)

(r0−1)/r0 . (2.37)

It follows from (2.36) and (2.37) that

{ ∫
M\BRi+1

w(k+1)p/2
α dvĝ

}2/p

+
{ ∫

∂M\BRi+1
w(k+1)q/2

α dsĝ

}2/q

≤ 4iC
∫
M\BRi

wk+1
α dvĝ + 2iC

∫
∂M\BRi

wk+1
α dsĝ

+ (k+1)2C
k

(
∫
M\BRi

w(k+1)r0/(r0−1)
α dvĝ)

(r0−1)/r0 .

(2.38)

Set β = min{p(r0 − 1)/(2r0), q/2}, it is easy to see from s0 > p that β > 1. It
follows from Hölder′s inequality that

{ ∫

M\BRi+1

w(k+1)βr0/(r0−1)
α dvĝ

}(r0−1)/(βr0)

≤ C
{ ∫

M\BRi+1

w(k+1)p/2
α dvĝ

}2/p

, (2.39)
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{ ∫

∂M\BRi+1

w(k+1)β
α dsĝ

}1/β

≤ C
{ ∫

∂M\BRi+1

w(k+1)q/2
α dsĝ

}2/q

, (2.40)

and ∫

M\BRi

wk+1
α dvĝ ≤ C

{ ∫

M\BRi

w(k+1)r0/(r0−1)
α dvĝ

}(r0−1)/r0

. (2.41)

It follows from (2.38), (2.39), (2.40), and (2.41) that

{ ∫
M\BRi+1

w(k+1)βr0/(r0−1)
α dvĝ

}(r0−1)/(βr0)

+
{ ∫

∂M\BRi+1
w(k+1)β

α dsĝ

}1/β

≤ C(4i + (k+1)2

k
)
{ ∫

M\BRi
w(k+1)r0/(r0−1)

α dvĝ)
(r0−1)/r0 +

∫
∂M\BRi

wk+1
α dsĝ

}
.

Taking k + 1 = 2βi for i ≥ 1 in the above, setting pi = 2βir0/(r0 − 1), qi = 2βi, we
have

‖wα‖qi

pi+1,M\BRi+1
+ ‖wα‖qi

qi+1,∂M\BRi+1

≤ C(4i + βi)(‖wα‖qi

pi,M\BRi
+ ‖wα‖qi

qi,∂M\BRi
).

Since β > 1, we have aβ + bβ ≤ (a + b)β for all a, b ≥ 0. It follows that

(‖wα‖qi+1

pi+1,M\BRi+1
+ ‖wα‖qi+1

qi+1,∂M\BRi+1
)1/qi+1

≤ (‖wα‖qi

pi+1,M\BRi+1
+ ‖wα‖qi

qi+1,∂M\BRi+1
)1/qi

≤ (C4i + Cβi)1/qi(‖wα‖qi

pi,M\BRi
+ ‖wα‖qi

qi,∂M\BRi
)1/qi .

(2.42)

It is easy to see that
∞∏

i=1

(C4i + Cβi)1/(2βi) ≤ C < ∞.

It follows that

‖wα‖pi+1,M\BRi+1
≤ C(‖wα‖2β

p1,M\BR1
+ ‖wα‖2β

q1,∂M\BR1
)1/(2β) ≤ C.

Send i to ∞, we have
‖wα‖L∞(M\B2µα/δ0

) ≤ C(δ0). (2.43)

It is easy to see that inside B2µα/(δ0)(Pα), |y| ≤ Cµα. Therefore, it follows from
the definition of ϕα and (2.21) that ϕα(y) ≥ C−1µ−(n−2)/2

α , ∀y ∈ B2µα/(δ0)(Pα). It
follows that

wα = uα/ϕα ≤ Cµ(n−2)/2
α uα = Cuα/uα(xα) ≤ C, ∀ y ∈ B2µα/(δ0)(Pα). (2.44)

Proposition 2.1 follows from (2.43) and (2.44).
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3 Balance checking via Pohozaev Identity

Let Qα ∈ ∂M be the closest point on ∂M to xα. By choosing an appropriate
coordinate system centered at Qα, we can assume without loss of generality that
Qα = 0, gij(0) = δij, B+

1 (0) ⊂ M , {(x′, 0) : |x′| < 1} ⊂ ∂M .
Let Rα = 1/(αµα), hα = gij(µαx)dxidxj in B+

10Rα
(0), and

v̄α(x) = µ(n−2)/2
α uα(µαx), for x ∈ B+

10Rα
(0).

It follows from (2.5) and (2.2) that Rα →∞ as α →∞, and v̄α satisfies





−∆hα v̄α = ξαv̄p−1
α in B+

10Rα
(0)

∂hα v̄α

∂ν
= −αµαv̄α on {(x′, 0) : |x′| < 10Rα}

0 < v̄α ≤ µ(n−2)/2
α uα(0).

(3.1)

Clearly,
|hij

α (x)− δij| ≤ C|µαx|, |Γk
ij(x)| ≤ Cµα in B+

10Rα
(0), (3.2)

where Γk
ij is the Christoffel symbol of hα.

As in the proof of Lemma 2.2, |xα − Qα|/µα → 0 as α → ∞. Therefore
µ(n−2)/2

α uα(0) → 1. As explained in Section 2,

lim
α→∞ ‖v̄α − v‖

C2(B+
R(0))

= 0, ∀R > 1, (3.3)

where v is the function defined in Rn
+, given in (2.13). It is not difficult to see from

Proposition 2.1 that

v̄α(x) ≤ C

1 + |x|n−2
for x ∈ B+

10Rα
(0). (3.4)

We need some further estimates on v̄α.

Lemma 3.1. For all α ≥ 1, x ∈ B+
Rα

(0), we have

|∇v̄α(x)| ≤ C

1 + |x|n−1
, |∇2v̄α(x)| ≤ C

1 + |x|n ,

where |∇2v̄α| = ∑n
i,j=1 |∂2v̄α/∂xi∂xj|, and C is some constant independent of α and

x.

Proof. It follows from (3.3) that

|∇v̄α(x)| < C, |∇2v̄α(x)| ≤ C, in B+
1 (0).
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So we only need to show Lemma 3.1 for |x| > 1. For all x0 ∈ B+
Rα

(0) \ B+
1 (0), set

R = |x0|, ũ(x) = Rn−2v̄α(Rx) and g̃ij(x) = (hα)ij(Rx). It follows from (3.1) that

{ −∆g̃ũ = Rnξαv̄α(Rx)p−1 in B+
5 (0) \B+

1/5(0)
∂g̃ũ

∂ν
= −Rn−1αµαv̄α(Rx) on {(x′, 0) : 1/5 < |x′| < 5}.

From (3.4) we can derive that: In B+
5 (0) \B+

1/5(0)

|ũ(x)| ≤ C, |Rnξαv̄α(Rx)p−1| ≤ CR−2 ≤ C;

On {(x′, 0) : 1/5 < |x′| < 5}

|∂g̃ũ

∂ν
| = | −Rn−1αµαv̄α(Rx))| ≤ CαµαR ≤ C.

It follows from standard elliptic estimates that for some 0 < β < 1,

||ũ‖
Cβ(B+

4 \B+
1/4

)
≤ C. (3.5)

Rewriting the equations of ũ as

{ −∆g̃ũ = R−2ξαũp−1 in B+
5 (0) \B+

1/5(0)
∂g̃ũ

∂ν
= −αµαRũ, on {(x′, 0) : 1/5 < |x′| < 5},

and noticing (see (3.5) )

||R−2ξαũp−1||
Cβ(B+

4 \B+
1/4

)
≤ C, ||αµαRũ||

Cβ(B+
4 \B+

1/4
)
≤ C,

we have, by standard elliptic estimates, that

||ũ||
C2,β(B+

3 \B+
1/3

)
≤ C. (3.6)

Therefore

|∇v̄α(x0)| = R1−n|∇g̃ũ(x0/R)| ≤ C|x0|1−n ≤ C/(1 + |x0|n−1),

which gives us the gradient estimate.
Also the second derivatives can be estimated as

|∇2v̄α(x0)| = R−n|∇2ũ(x0/R)| ≤ C|x0|−n ≤ C/(1 + |x0|n).
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For n = 3, we need to obtain an appropriate lower bound of v̄α in order to reach
a contradiction from the balance checking by using the Pohozaev type identity.

Lemma 3.2. For n = 3, as α large enough,

v̄α(x) ≥ 1

C(1 + |x|) , ∀ x ∈ B+

R
1/4
α

(0),

where C > 0 is some constant independent of α.

Proof. In view of (3.3), we only need to prove the above estimate for |x| > 20.
In the following, α is always assumed to be suitably large. Let x̄ = (0, ..., 0, 1) and

Gα(x) =
1

|x− x̄| −
1

R
1/2
α |x− x̄|1/2

in B
R

1/3
α

(x̄) \B2(x̄).

It is easy to see that

1

2|x− x̄| ≤ Gα(x) ≤ 2

|x− x̄| in B
R

1/3
α

(x̄) \B2(x̄).

Using (3.2), it is easy to see that in B
R

1/3
α

(x̄) \B2(x̄)

∆hα(− 1

R
1/2
α |x− x̄|1/2

) ≥ 1

CR
1/2
α |x− x̄|5/2

, |∆hα(
1

|x− x̄|)| ≤
Cµα

|x− x̄|2 .

It follows that ∆hαGα ≥ 0.
Also, it follows from (3.2) that for all x = (x′, 0), 1 < |x′| < R1/3

α ,

∂hα

∂ν
(

1

|x− x̄|) ≤ − 1

C|x− x̄|3 ,

|∂hα

∂ν
(

1

R
1/2
α |x− x̄|1/2

)| ≤ C

R
1/4
α |x− x̄|3

.

Therefore, using (3.4) also, we have

−αµαv̄α−∂hα

∂ν
(Gα) ≥ − C

Rα(1 + |x|)+
1

C|x− x̄|3 ≥ 0, ∀ x = (x′, 0), 1 < |x′| < R1/3
α .

We will use the maximum principle on A = {x ∈ Rn
+ : 10 < |x − x̄| < R1/3

α }. Let
Σ1 = ∂A ∩ {xn = 0}, Σ2 = ∂A ∩ {|x − x̄| = 10}, and Σ3 = ∂A ∩ {|x − x̄| = R1/3

α }.
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Choose 0 < τ < 1 small enough (independent of α) such that τGα ≤ v̄α on Σ2.
Define Hα = τGα −maxΣ3(τGα), then





∆hα(v̄α −Hα) ≤ 0 in A,
v̄α −Hα ≥ 0 on Σ2 ∪ Σ3
∂hα (v̄α−Hα)

∂ν
> 0, on Σ1

It follows from the maximum principle that

v̄α ≥ Hα in A.

Consequently,

v̄α(x) ≥ Hα(x) ≥ Cτ

|x− x̄| −
Cτ

R
1/3
α

≥ Cτ

2|x− x̄| , ∀ x ∈ B+

R
1/4
α

(0) \B+
10(x̄).

Lemma 3.2 is established.

For convenience, throughout the rest of this section we set Γ1 = ∂B+
Rα

(0) ∩
{(x′, 0) : x′ ∈ Rn−1}, Γ2 = ∂B+

Rα
(0)∩ {(x′, xn) : xn > 0}. We always use dV for the

volume element of the standard Euclidean metric, dS for the surface element of the
standard Euclidean metric, ν for the unit outer normal vector of the corresponding
surface with respect to the specified metrics, and “·” for the inner product under
the standard Euclidean metric .

As in [20], we have the following identity,
∫

B+
Rα

∆v̄α(∇v̄α · x)dV +
n− 2

2

∫

B+
Rα

v̄α∆v̄αdV = J(Rα, v̄α) + I(Rα, v̄α), (3.7)

where

J(Rα, v̄α) =
1

2

∫

Γ2

{|∂v̄α

∂ν
|2|x| − |∂tanv̄α|2|x|+ (n− 2)

∂v̄α

∂ν
v̄α}dS, (3.8)

I(Rα, v̄α) =
1

2

∫

Γ1

{2(
n−1∑

i=1

xi
∂v̄α

∂xi

)
∂v̄α

∂ν
+ (n− 2)

∂v̄α

∂ν
v̄α}dS. (3.9)

Replacing ∆v̄α in (3.7) by

∆v̄α = ∆hα v̄α − (hij
α − δij)∂ij v̄α + hij

α Γk
ij∂kv̄α,

we have

− ∫
B+

Rα
(xi∂iv̄α)∆hα v̄αdV − n−2

2

∫
B+

Rα
v̄α∆hα v̄αdV

+
∫
B+

Rα
(xk∂kv̄α)(hij

α − δij)∂ij v̄αdV − ∫
B+

Rα
(xl∂lv̄α)(hij

α Γk
ij∂kv̄α)dV

+n−2
2

∫
B+

Rα
v̄α(hij

α − δij)∂ij v̄αdV − n−2
2

∫
B+

Rα
v̄α(hij

α Γk
ij)∂kv̄αdV

= −J(Rα, v̄α)− I(Rα, v̄α).
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So far, we have not used the equation of v̄α yet. Now we use equation (3.1) satisfied
by v̄α and obtain

A(hα, v̄α) = −J(Rα, v̄α)− I(Rα, v̄α), (3.10)

where

A(hα, v̄α) = ξα

p

∫
Γ2

v̄p
α|x|dS

+
∫
B+

Rα
(xk∂kv̄α)(hij

α − δij)∂ij v̄αdV − ∫
B+

Rα
(xl∂lv̄α)(hij

α Γk
ij∂kv̄α)dV

+n−2
2

∫
B+

Rα
v̄α(hij

α − δij)∂ij v̄αdV − n−2
2

∫
B+

Rα
v̄α(hij

α Γk
ij)∂kv̄αdV.

(3.11)
Consequently, by using (3.2), we have

A(hα, v̄α) = O(
∫
Γ2

v̄p
α|x|dS)

+O(
∫
B+

Rα
µα|x|2|∇v̄α| |∇2v̄α|dV ) + O(

∫
B+

Rα
µα|x||∇v̄α|2dV )

+O(
∫
B+

Rα
µα|x|v̄α|∇2v̄α|dV ) + O(

∫
B+

Rα
µαv̄α|∇v̄α|dV )

(3.12)

We simplify I(Rα, v̄α) by using the boundary condition in (3.1). It is easy to see
from (3.2) that

∂hα v̄α

∂ν
=

∂v̄

∂ν
+ O(µα|x′| |∇v̄α|), on Γ1.

It follows that

2I(Rα, v̄α) =
∫
Γ1
{2(

∑n−1
i=1 xi

∂v̄α

∂xi
)∂hα v̄α

∂ν
+ (n− 2)∂hα v̄α

∂ν
v̄α}dS

+O(
∫
Γ1

[µα|x′|2 |∇v̄α|2 + µα|x′|v̄α|∇v̄α|]dS).
(3.13)

Using the boundary condition in (3.1), we have

∫
Γ1
{2(

∑n−1
i=1 xi

∂v̄α

∂xi
)

∂hα v̄α

∂ν
+ (n− 2)

∂hα v̄α

∂ν
v̄α}dS

=
∫
Γ1
{−2αµαv̄α(

∑n−1
i=1 xi

∂v̄α

∂xi
)− (n− 2)αµαv̄2

α}dS

= (n− 1)αµα

∫
Γ1

v̄2
αdS − ∫

∂Γ1
αµαv̄2

α|x|dS − (n− 2)αµα

∫
Γ1

v̄2
αdS

= αµα

∫
Γ1

v̄2
αdS − ∫

∂Γ1
αµαv̄2

α|x|dS.

Thus
I(Rα, v̄α) = αµα

2

∫
Γ1

v̄2
αdS + O(

∫
∂Γ1

αµαv̄2
α|x|dS)

+O(
∫
Γ1

[µα|x′|2|∇v̄α|2 + µα|x′|v̄α |∇v̄α|]dS)
(3.14)

Clearly,

J(Rα, v̄α) = O(
∫

Γ2

(|x||∇v̄α|2 + v̄α |∇v̄α|)dS). (3.15)
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In view of all the above estimates, we can rewrite (3.10) as the following Pohozaev
type identity

αµα

∫
Γ1

v̄2
αdS = O(

∫
Γ2

v̄p
α|x|dS)

+O(
∫
B+

Rα
µα|x|2|∇v̄α| |∇2v̄α|dV ) + O(

∫
B+

Rα
µα|x||∇v̄α|2dV )

+O(
∫
B+

Rα
µα|x|v̄α|∇2v̄α|dV ) + O(

∫
B+

Rα
µαv̄α|∇v̄α|dV )

+O(
∫
Γ2

(|x||∇v̄α|2 + v̄α |∇v̄α|)dS)
+O(

∫
∂Γ1

αµαv̄2
α|x|dS)

+O(
∫
Γ1

[µα|x′|2|∇v̄α|2 + µα|x′|v̄α |∇v̄α|]dS).
(3.16)

We will derive a contradiction from (3.16) by showing that the left hand side is
much large than the right hand side.

Lemma 3.3. For n ≥ 3, there exists some constant C > 0 independent of α, such
that

∫
Γ1

v̄2
αdS > 1/C for all α ≥ 1. Moreover for n = 3,

∫
Γ1

v̄2
αdS ≥ (log Rα)/C for

all α ≥ 1.

Proof: Clearly we only need to prove the lemma for large α. It follows easily from
(3.3) that ∫

Γ1

v̄2
αdS ≥ 1/C.

For n = 3, it follows from Lemma 3.2 that
∫

Γ1

v̄2
αdS ≥ 1

C

∫

∂R3
+∩B

R
1/4
α

(
1

1 + |x|)
2dS ≥ (log Rα)/C.

Lemma 3.4. The following estimates holds.
∫

∂Γ1

αµαv̄2
α|x|dS ≤ αµαR3−n

α ,

∫

Γ1

(µα|x′|2|∇v̄α|2 + µα|x′|v̄α |∇v̄α|)dS ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4,

∫

Γ2

(|x||∇v̄α|2 + v̄α |∇v̄α|)dS ≤ C(αµα)n−2,

∫

Γ2

v̄p
α|x|dS ≤ C(αµα)n,

∫

B+
Rα

(µα|x|2|∇v̄α| |∇2v̄α|+ µα|x||∇v̄α|2)dV ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4,
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∫

B+
Rα

(µα|x|v̄α|∇2v̄α|+ µαv̄α|∇v̄α|)dV ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4,

Proof. It follows easily from (3.4), Lemma 3.1, and some elementary calculation.

Proof of the sufficient part of Theorem 0.1. We draw contradiction from
(3.16) using Lemma 3.3 and Lemma 3.4. Since the left hand side is clearly much
large than the right hand side in (3.16) as α tends to infinity.

4 Proof of Theorem 0.2

We now begin to prove Theorem 0.2 by contradiction argument. Suppose Theorem
0.2 were false, we would have ∀α ≥ 1,

ζα := inf
H1(M)\{0}

∫
M |∇gu|2dvg + α

∫
M u2dvg + α

∫
∂M u2dsg

(
∫
M |u|pdvg)2/p

<
1

22/nS1

. (4.1)

As shown in Section 1, we know that there exists some nonnegative uα ∈ H1(M)
such that

ζα =
∫

M
|∇gu|2dvg + α

∫

M
u2dvg + α

∫

∂M
u2dsg,

∫

M
up

αdvg = 1. (4.2)

Therefore, uα satisfies
{ −∆guα = ζαup−1

α − αuα, in M,
∂guα

∂ν
= −αuα, on ∂M,

(4.3)

For any ε > 0, it follows from (4.1), (4.2) and Proposition 1.1 that there exists
some B(ε) such that

1 + ε
22/nS1

> (22/nS1 + ε)ζα

= (22/nS1 + ε)‖∇guα‖2
2,M

+α(22/nS1 + ε)‖uα‖2
2,∂M + α(22/nS1 + ε)‖uα‖2

2,M

≥ (
∫
M |uα|p)2/p + α(22/nS1 + ε)‖uα‖2

2,∂M

+[α(22/nS1 + ε)−B(ε)]‖uα‖2
2,M

= 1 + α(22/nS1 + ε)‖uα‖2
2,∂M + [α(22/nS1 + ε)−B(ε)]‖uα‖2

2,M .

Thus
1 + ε

22/nS1
≥ (22/nS1 + ε) lim supα→∞ ζα

≥ 1 + (22/nS1 + ε) lim supα→∞ α‖uα‖2
2,∂M

+(22/nS1 + ε) lim supα→∞ α‖uα‖2
2,M ,
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1 + ε
22/nS1

≥ (22/nS1 + ε) lim infα→∞ ζα

≥ 1 + (22/nS1 + ε) lim infα→∞ α‖uα‖2
2,∂M

+(22/nS1 + ε) lim infα→∞ α‖uα‖2
2,M .

Send ε → 0, we have

lim
α→∞ ζα =

1

22/nS1

, (4.4)

lim
α→∞α‖uα‖2

2,∂M = 0, lim
α→∞α‖uα‖2

2,M = 0. (4.5)

It follows from Cherrier [11] that uα is smooth up to boundary. Let xα be some
maximum point of uα, we set µα = u−2/(n−2)

α (xα).
Now we prove the following asymptotic behavior about µα.

Lemma 4.1.
lim

α→∞αµα = 0. (4.6)

Proof: The proof is similar to that of Lemma 2.1. First we claim:

lim inf
α→∞ ||uα||q,∂M > 0. (4.7)

If the claim were false, i.e., ||uα||q,∂M → 0 along a subsequence α → ∞, then, in
view of (4.1) and (4.2), there would exist u ∈ H1

0 (M) such that uα weakly converges
to u. It follows from Proposition 1.3 applied to uα − u, the compact embedding of
H1(M) to L2(M), the definition of ζ, (1.7) and (1.8) that for ε > 0

ζα =
∫
M |∇guα|2 + α

∫
∂M u2

α + α
∫
M u2

α

≥ (1/S1 − ε− ζα)
∫
M |uα − u|p + ζα + α

∫
∂M u2

α + α
∫
M u2

α + o(1),

where o(1) → 0 as α → ∞. Take ε small enough, we derive ||uα − u||p,M → 0,
therefore ||u||p,M = 1. But from (4.5) we know ||u||2,M = 0. Contradiction.

Similar to the proof of Proposition 2.1, we have

Proposition 4.1. There exists some constant C such that for all α ≥ 1

uα/ϕα ≤ C for x ∈ M, (4.8)

where ϕα was defined in (2.22).
Let Qα ∈ ∂M be the closest point to xα. By choosing an appropriate coordinate

system centered at Qα, we can assume without loss of generality that Qα = 0,
gij(0) = δij, B+

1 (0) ⊂ M , {(x′, 0) : |x′| < 1} ⊂ ∂M .
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Let Rα = 1/(αµα), hα = gij(µαx)dxidxj in B+
10Rα

(0), and

v̄α(x) = µ(n−2)/2
α uα(µαx), for x ∈ B+

10Rα
(0).

It follows from (4.6) and (4.3) that Rα →∞ as α →∞, and v̄α satisfies





−∆hα v̄α = ζαv̄p−1
α − αµ2

αv̄α in B+
10Rα

(0),
∂hα v̄α

∂ν
= −αµαv̄α on {(x′, 0) : |x′| < 10Rα},

0 < v̄α ≤ µ(n−2)/2
α uα(0).

(4.9)

Clearly,
|hij

α (x)− δij| ≤ C|µαx|, |Γk
ij(x)| ≤ Cµα in B+

10Rα
(0), (4.10)

where Γk
ij is the Christoffel symbol of hα.

As in Section 2, we know

||v̄α − v||C2(B+
10Rα

) → 0, (4.11)

where v was defined by (2.13).
Also from Proposition 4.1, one can see that

v̄α(x) ≤ C

1 + |x|n−2
for x ∈ B+

10Rα
(0). (4.12)

In turn, we derive as in Section 3 the following estimates of |∇v̄α| and |∇2v̄α| by
applying standard elliptic theories.

Lemma 4.2. For all α ≥ 1, x ∈ B+
Rα

(0), we have

|∇v̄α(x)| ≤ C

1 + |x|n−1
, |∇2v̄α(x)| ≤ C

1 + |x|n ,

where |∇2v̄α| = ∑n
i,j=1 |∂2v̄α/∂xi∂xj|, and C is some constant independent of α and

x. For n = 3, as α large enough, we also have

v̄α(x) ≥ 1

C(1 + |x|) , ∀ x ∈ B+

R
1/4
α

(0).

As in Section 3, we can derive from (4.9) the following.

Ā(hα, v̄α) = −J(Rα, v̄α)− I(Rα, v̄α), (4.13)
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where J(Rα, v̄α), I(Rα, v̄α) are defined by (3.8), (3.9) respectively;

Ā(hα, v̄α) = A(hα, v̄α) + αµ2
α

∫

B+
Rα

v̄2
αdV − αµ2

α

2

∫

Γ2

v̄2
α|x|dS,

A(hα, v̄α) is defined by (3.11), Γ1 and Γ2 are defined in a same way in Section 3.
Therefore we have the following Pohozaev type identity

αµα

∫
Γ1

v̄2
αdS = O(

∫
Γ2

v̄p
α|x|dS + αµ2

α

∫
B+

Rα
v̄2

αdV + αµ2
α

∫
Γ2

v̄2
α|x|dS)

+O(
∫
B+

Rα
µα|x|2|∇v̄α| |∇2v̄α|dV ) + O(

∫
B+

Rα
µα|x||∇v̄α|2dV )

+O(
∫
B+

Rα
µα|x|v̄α|∇2v̄α|dV ) + O(

∫
B+

Rα
µαv̄α|∇v̄α|dV )

+O(
∫
Γ2

(|x||∇v̄α|2 + v̄α |∇v̄α|)dS)
+O(

∫
∂Γ1

αµαv̄2
α|x|dS)

+O(
∫
Γ1

[µα|x′|2|∇v̄α|2 + µα|x′|v̄α |∇v̄α|]dS).
(4.14)

From (4.11) and Lemma 4.2, we have the following lemma.

Lemma 4.3. For n ≥ 3, there exists some constant C > 0 independent of α, such
that

∫
Γ1

v̄2
αdS > 1/C for all α ≥ 1. Moreover for n = 3,

∫
Γ1

v̄2
αdS ≥ (log Rα)/C for

all α ≥ 1.

Also, by (4.12), Lemma 4.2 and some elementary calculations, we have

Lemma 4.4. The following estimates hold.
∫

∂Γ1

αµαv̄2
α|x|dS ≤ αµαR3−n

α ,

αµ2
α

∫

Γ2

v̄2
α|x|dS ≤ 1

α
(αµα)n−2,

αµ2
α

∫

B+
Rα

v̄2
αdV ≤





Cµα, n = 3,
Cαµ2

α log Rα, n = 4,
Cαµ2

α, n ≥ 5,

∫

Γ1

(µα|x′|2|∇v̄α|2 + µα|x′|v̄α |∇v̄α|)dS ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4,

∫

Γ2

(|x||∇v̄α|2 + v̄α |∇v̄α|)dS ≤ C(αµα)n−2,

∫

Γ2

v̄p
α|x|dS ≤ C(αµα)n,
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∫

B+
Rα

(µα|x|2|∇v̄α| |∇2v̄α|+ µα|x||∇v̄α|2)dV ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4,

∫

B+
Rα

(µα|x|v̄α|∇2v̄α|+ µαv̄α|∇v̄α|)dV ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4,

Proof of Theorem 0.2. By Lemma 4.3 and Lemma 4.4, we easily derive a contra-
diction from (4.14) as α tends to infinity.
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