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0 Introduction

Let (M, g) be a compact Riemannian manifold of dimension n (n > 3) with smooth
boundary. In [20], we established some sharp trace inequality on (M,g). In this
paper we establish some sharp Sobolev inequalities using the method in [20].

For n > 3, it was shown by Aubin [2] and Talenti [25] that, for p = 2n/(n — 2),

Jrn |Vu|2
(Jn [ulr)2/P

is achieved and the extremal functions are found. In particular,

inf {22 U e prmm)\ {0}, Vu e LA(R")), (0.1)
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It follows that for any genuine open subset €2 of R,

(/Q u|P)?? < 51/Q|Vu|2, Ve Hi(Q)\ {0}, (0.2)
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and, by even reflection,

([ e <22ms, [ (ol 03
R% RT
for all u satisfying v € LP(R"}) and Vu € L*(R"}), where R} = {(x1,--,2z,) € R" :
x, > 0}.
It was shown by P.L. Lions [23] that, for ¢ = 2(n — 1)/(n — 2),
1 . fR" |vu|2 2
— =inf {— | Vue L*(R}), ue LYORY)\ {0}}, (0.4)
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is achieved. The extremal functions are found independently by Escobar [14] and
Beckner [4]. In particular
L_n=2 yewy
s- 2 7
where o, denotes the volume of the unit sphere in R".

Some related sharp inequalities on R’} are given by Brezis and Lieb [6], Carlen and
Loss [8]-[9] . Many related problems were also discussed in Trudinger [26], Moser [24],
Lieb [21]-[22], Aubin [3], Brezis-Nirenberg [5], Cherrier [11]-[12], Carleson-Chang
[10], Escobar [13], Hamza [16], Beckner [4], Adimurthi and Yadava [1], Hebey and
Vaugon [18]-[19], Hebey [17], and the references therein.

In this paper we establish the following result.

Theorem 0.1. For n > 3, let (M, g) be a smooth n-dimensional compact Rieman-
nian manifold with smooth boundary. Then a necessary and sufficient condition for
the existence of some constant A(M, g) > 0 so that

( /M lulPduv,)?? < 2278, /M IV, ul2dv, + A(M, g) /a ulds,, Ve H'(M), (05)
holds is
(] luPdv,?r <228y | [9guldv, ¥ ue B0}, (06)

where dv, denotes the volume form of g, and ds, denotes the induced volume form
on OM.

An easy consequence of Theorem 0.1 is, in view of (0.2), the following.
Corollary 0.1. For n > 3, let {2 C R" be a smooth bounded open set. Then there
exists some A = A(2) > 0 such that

P\2/p 2/n 2 2 1
(/Q|u|) <2 sl/Q|W| +A(Q)/89u, Vue H(Q). (0.7)



Remark 0.1. One can not expect (0.5) to hold for all compact manifolds with
boundary, as shown by the following example.

Let ¢ C C°°(R™) be some positive function satisfying

() :{ el <V

1, || > 1/4

Consider g. = 2o, where go is the flat metric on R". On (B, g.), we take u €
C'2°(By) which is independent of € and satisfies u(z) = 1 for all || < 1/2. It is very
easy to see that for e > 0 small, u satisfies

(| lulrdu, )7 > 2208, [ |V, uldv,,.
B1 B

Therefore (0.5) does not hold for (By, g.).

Remark 0.2. In (0.5), the constant 2%/™S; in front of [y, |V,u|?dv, is sharp. It can
not be replaced by any smaller numbers.

Remark 0.3. In general, [,,, u?ds, in (0.5) can not be replaced by [y, u"ds, for
r < 2. For instance, this is the case for any bounded domain in R™ with the flat
metric.

Remark 0.4. Corollary 0.1 in the case n > 5 was established in [1] by Adimurthi
and Yadava. Our method is different.

As in [20], there are two main ingredients in our proof of the sufficient part of
Theorem 0.1. One is to obtain, by using the Moser iteration technique, appropriate
pointwise upper bound for blow up minimum energy solutions to certain critical
exponent equations with nonlinear Neumann boundary conditions. The other is
a local balance checking via Pohozaev identity. The method is useful in treating
similar problems. For instance, We also show the following.

Theorem 0.2. For n > 3, let (M, g) be some smooth n-dimensional compact
Riemannian manifold with smooth boundary. Then there exists some constant A; =
A;(M, g) > 0 such that for all u € H'(M),

(/M [ulPdvy)¥P < 22/mS, /M |V ul|*dv, + Ay /M w’dv, + Ay /8M u’ds,. (0.8)

Remark 0.5. In (0.8), the constant 22/%S; in front of [, |V,ul’dv, is sharp. It
can not be replaced by any smaller numbers.



In the following, we outline the ideas of the proof of Theorem 0.1. The necessary
part of Theorem 0.1 is rather short and is given at the beginning of Section 1. In
Section 1 we also derive some preliminary estimates with almost sharp constants
in front of [, |V ul|*dv,. We begin to prove the sufficient part of Theorem 0.1 by
contradiction argument from Section 2. Suppose there did not exist any positive
constant A(M, g) for which (0.5) holds under condition (0.6), we would find, for any
a > 0, some positive function u, € H*(M) such that

Jor IV gua*dvg + o fo, uZds, 0 S IV gulPdvg + a [y, uds,
(foy tbdvg)?/? HOD\0) (far lulpdug)?/
<

22/nS "

Without loss of generality, we assume [, ubdv, = 1. Since u, is an extremal, it
satisfies the Euler-Lagrange equation (see (2.2)). We mainly work with this equation
to derive a contradiction. Let x, € M be some maximum point of u,, we prove,
utilizing the preliminary estimates in Section 1, that u,(z,) — oo and u, blows
up at precisely one point. We then show that u,, after appropriate scaling, is close
to v in energy, where v is given explicitly in (2.13). Equivalently, if we scale back
v appropriately and denote the it by ¢, we know that |[uq — @ul gy — 0 as
a — 00. Since u, satisfies equation (2.2), we can write down some Pohozaev type
identity for u, in B, (x,), the geodesic ball of radius r, and centered at z,. If we
substitute ¢, for u, in the identity, with r, — 0 appropriately chosen (depending
on «, uy(r,)), we see that the identity is unbalanced. More specifically, the term in
the identity which is induced by the boundary term —aw, in (2.2) is much larger
than the rest of the terms. However we have u, instead of ¢, in the identity.
Therefore we need to obtain good enough estimates on the difference u, — ©q.
The estimate ||uq — @allmr () — 0 is not enough. In Section 2 we establish the
following crucial pointwise upper bound estimate of u,: u, < Cp, on M for some
constant C' independent of a. This is given in Proposition 2.1 and is proved, as
in [20], by using the Moser iteration technique. Once we have this pointwise upper
bound of u,, we derive from standard elliptic theories appropriate estimates on both
|Vu,| and |V?u,|. In dimension n > 4, these estimates are good enough to carry
out the balance checking via Pohozaev type identity described above to reach a
contradiction. For dimension n = 3, we still need another estimate: u, > C g,
in B, (z,). This pointwise lower bound of u, is obtained, as in [20], by using the
maximum principle. We complete the proof of the sufficient part of Theorem 0.1
in Section 3. Theorem 0.2 is proved in a similar way and we sketch the proof in
Section 4.



Throughout this paper we always denote p = 2n/(n —2), ¢ =2(n —1)/(n —2),
I fllear = (fag | f]7dvg)Y", Sy to be the constant in (0.1), C' to be various positive
constants.

1 Necessary part of Theorem 0.1 and preliminary
estimates

We first establish the necessary part of Theorem 0.1.
Proof of the necessary part of Theorem 0.1. It follows from (0.5) that

(] Jubdv,? < 2278y [ 9,ulfdv,, ¥ we H(M)\ {0},

If (0.6) did not hold, there would exist some nonnegative function ug € Hy(M)\ {0}
such that
/ lup|Pdv, =1, and 22/n51/ IV yuo|*dv, = 1. (1.1)
M M

Since ug is a minimizer to { [y, [V ul?dv, : [y [uPdv, = 1,u € Hy(M)}, there exists
some constant A such that

/ VyuoVyp = >\/ ub o, Y o € Hy(M).
M M

Take ¢ = ug in the above, we have A = 1/(22/"S;). Therefore uq satisfies

1 .
—Aguy = ﬁug , in M, (1.2)

ug =0, on OM.
Let vg € H' (M) with vol,,, = %, where % denotes differentiation in the direction

of the unit outer normal of M with respect to g. Set
F(e) = (/M lug + 6U0|P)2/p —2%ng, /M 1V, (uo + evp) %

It follows from (1.1), (1.2) and the Hopf Lemma that

69U0

F(0)=0, F'(0)=-2 )2 < 0.

8M( ov

On the other hand, in view of (0.5), we have

F(€> < A/8M(u0 + €U0)2 = A62 /3M Ug.



The above two inequalities lead to a contradiction for € < 0 and close to zero. This
establishes the necessary part of Theorem 0.1.

In the remaining section, we establish some rough inequalities which will serve
as a starting point in our blow up analysis of the minimum energy sequence.

Proposition 1.1. For n > 3, let (M, g) be a smooth n-dimensional compact Rie-
mannian manifold with smooth boundary. Then for all ¢ > 0, there exists some
constant B(e) depending only on € and (M, g) such that

( /M [ulPds, )P < (2278, +e) /M|Vgu|2dvg+B(e) /M|u|2dvg, Vue H (M) (13)

The above proposition is standard. Readers can find a proof on page 51 of Aubin
[3]. We omit the details.

Proposition 1.2 For n > 3, let (M, g) be a smooth n-dimensional compact Rie-
mannian manifold with smooth boundary. Suppose

(] Jubdv,? < 2278y [ 9,ulfdv,, ¥ we HY(M)\ {0},

Then for all € > 0, there exists some constant A(e) depending only on € and (M, g)
such that for all u € H'(M),

( / [ulPdu,)? < (2278 + €) / IV ul?dv, + Ae) / u?ds,. (1.4)
M M oM

Proof: We prove it by contradiction argument. Suppose the contrary of (1.4), there
exists some constant > 0, such that for all a > 0,

T IV gul?dvo, + a fo,, uds, < 1

— 0. 1.5
Hl(f\rﬂl)\{o} (Jur |u|Pdvg)2/p = 22/ng, (1.5)

goz =

Due to (1.5), we can show as in [20] (see the proof of proposition 1.2 there) that
there exists some nonnegative function u, € H'(M) satisfying

€o = /M IV yua|*dv, + oz/aM uZds,, /M ubdv, = 1. (1.6)

Notice ||uq||g1 < C, there exists uw € H'(M) such that u, — u in H'(M). Since
||tall2onr — 0 as a — oo, w € H{(M). Tt is easy to see that

/ Ug_/ ’ua_ﬂ’p_/ ﬂpﬁoa as & — 00, (17)
M M M



and, in view of (1.6),

=T <1+ o0(1), /*p<1, 1.8
| e =l <140), [ @< (18)

where and throughout this section o(1) — 0 as a — oo, Also from Proposition 1.1
we know that for §/2, there exists a constant B = B(d), such that

1 )
- rd 2/p</ 2 35/ 24, Vo€ H'(M). (1.9
(gamg, —5)( ], V) < [ [VyePdvg+BG) [ o*dv,. o H'(M). (19)

It follows from (1.9), the compact embedding of H' to L?, (1.5), (1.7), and (1.8)
that

§a S IVgual? + a fop ud,

Jar [V (o = W)+ [ [Vul* + o fop ug, + o(1)
(g = 5)Unr [ua —AlP)*P + &a(fyr @)>/7 + o fypy ul + 0(1)
(ﬁ_ 2 fa) fM |ua_u| +€a+afaMuoz+0(1>v

Therefore, ||ug — ||y — 0. From this, we derive

1Vl 13,01 1
[allpa — 275
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which contradicts to the assumption of Proposition 1.2. This establishes Proposition
1.2.

The following lemma is due to Brezis and Lieb [6].

Lemma 1.1. Let 2 C R" be a bounded domain with smooth boundary, equipped
with the standard Euclidean metric. Then there exists A(£2) > 0 such that

ullpo < S17|Vullao + AQ)|[ullgoo, e HY(Q),

where and throughout this paper, we assume ¢ =2(n —1)/(n — 2).

Using Lemma 1.1 and Young’s inequality, one easily sees that for any € > 0,

25/ 2A( Q)

lullpo < (S1+ )l Vull3 o + (A*(Q) + Nullgon, we HY(Q).

In turn, we obtain, using the partition of unit, the following.

Proposition 1.3. For n > 3, let (M, g) be a smooth n-dimensional compact Rie-
mannian manifold with smooth boundary. Then for any € > 0, there exists some
constant D(€) depending on € such that for all u € H*(M),

1l 0 < (St + OIVgull3 ar + D)l [ullg ors + D(e)]ull - (1.10)



2 Asymptotic Analysis

From now on we prove the sufficient part of Theorem 0.1. Namely, we establish
(0.5) under the assumption (0.6). In the next two sections, we always assume (0.6).
We argue by contradiction. Suppose not, we have, for all o > 1,

1
P 2.1
where &, is defined in (1.5).
As explained in Section 1, there exists some nonnegative function u, € H*(M)
satisfying (1.6). It follows that u, satisfies

(2.2)

OgUa
2 = —ouig on OM,

{ —Aguy = Equb? in M,

where, as always, % denotes differentiation in the direction of the unit outer normal
of M with respect to g.

In this section, we establish the main estimates of u,. The crucial estimate is
the pointwise upper bound estimate which we obtain in Proposition 2.1 through the
Moser iteration technique.

For any € > 0, it follows from (1.6), (2.1) and Proposition 1.2 that there exists
some A(e) such that

1+ ﬁ > (22/n5'1 + E)fa
= (22781 + )IVyuall3 ar + (22781 + €)luall3 onr
> (far [ualP)?? + [@(227S) + €) — A()]||uall3 orr
= 1+ (2781 +€) — A(O)]|uall3 oar-
Thus
1+ 22;5 > (2¥"8) + €)limsup &, > 1+ (22/"51 + €) lim sup aHuaHg,aM,
1 a—00 a—00
1+ 22/25 > (22/m8) + €) liminf &, > 1+ (22S) + €) liminf a|jua |2 ;-
1 a—00 a—0o0 ?

Send € — 0, we have

1
lim &, =

— 2.3
a—00 22/77,517 ( )

Jim a3 gy = 0. 24)



It follows from Cherrier [11] that u, is smooth up to boundary. Let z, be some

maximum point of u,, we set o = u;2/ "2 (1,).

Lemma 2.1.

Jim apq = 0. (2.5)
Proof: We first claim:
lim inf ||tallg00 > 0. (2.6)

If the claim were false, i.e., ||ua|/gom — 0 along a subsequence a@ — oo, then, in
view of (1.6) and (2.1), there would exist u € Hj (M) such that u, weakly converges
to @w. It is easy to check that @, u, satisfy (1.7) and (1.8). Therefore it follows from
Proposition 1.3 applied to u, — %, the compact embedding of H*(M) to L*(M), the
definition of &,, (1.7) and (1.8) that for any € > 0

o= Ju [Vgtal® +a oy ul
S IVg(ua =) + [3 [Vgal® + a fopr ug + o(1)
(1/S1 = ) (Jas [ua = alP)?P + Ea(for TP + @ [y ul + 0(1)
(1/81 = € = &) Jar [ta =P + o + o fop uly + 0(1),

VIV I

where o(1) — 0 as @« — oo. Take € small enough, we derive by using (2.1) that
||tq — Ul||pr — 0. In particular, in view of (1.6), [, @ = 1. From this and (2.1),
we have,

altdv, 2 = 220, [ |Vl
(] falrdvy)r = 2208, [ 9 uldv,

which contradicts to (0.6). This establishes (2.6).
It follows from (2.6), the definition of y,, and (2.4) that as o — oo,

aply, < Cajig /6M ulds, < C’oz/8 ui — 0.

M

We complete the proof of Lemma 2.1.

Let (y!,--+,y" 1 y") denote some geodesic normal coordinates given by the ex-
ponential map exp,_. In this coordinate system, the metric g is given by gij(y)dy'dy’.
For suitably small ; > 0 (independent of «), we define v,, in a neighborhood of z = 0
by

Vo (2) = uy (2o)ta(exps, (e ?)), z € Oy CR",

where
O ={z€R" : |2| <6 /tha, exps, (az) € M}. (2.7)
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We write 90, = '} UT?2, where
Il =1{2€00, : exp,, (iaz) €OMY}, T2={2€00, : erp,, (taz) € M}.

It follows from (2.2) that v, satisfies

_ —1 .
gAgaUa = 07, in O,
Va __ 1
L = —QUflVa, on I}, (2.8)

’UOC(O) = 1, 0 S Ve S 17

where g, denotes the metric on O, given by g, = gij(paz)dz'dz?. Tt follows from
(2.8), Lemma 2.1 and standard elliptic estimates that for all R > 1,

lvalls(aro,) < C(R),  Ya=>1 (2.9)

Let lim, o dist(xa, OM) /1o = T € [0, 00]. Therefore v, — v in C*(0,N Br(0))
for all R > 1, where v satisfies

—Av = 22/1lslvp_1 in R";p,
P~ on OR",, (2.10)
v(0) =1, 0 <w(x) <1,

where R”, = {2z = (¢, 2,) : 2, > =T} for 0 < T < o0; for T' = 00, R ., = R" and
there is no boundary condition in the above.

Lemma 2.2. T'= 0.

Proof: We prove it by contradiction argument. If 0 < T' < oo, then after making
an even reflection of v, we obtain a positive solution of —Av = 27278 yP~1 in
R™ with two local maximum points. This is impossible due to the results of Gidas-
Ni-Nirenberg [15] or Caffarelli-Gidas-Spruck [7]. If 7" = oo, we know from [7] the
explicit form of v which yields

=2 (2.11)

Rn
The above can also be deduced from some well known results. For reader’s conve-
nience, we include it here. We know from the explicit expression of v given by [7]
that v is an extremal function for the Sobolev inequality, i.e.,

Jan | V[? _ i
( Jin Up)Q/p S
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Multiplying the equation of v by v and integrating by parts, we obtain, in view of
the explicit expression of v given by [7], that

1
2 _ P
/Rn Vvl ST an )

Equality (2.11) follows immediately from the above two identities.
However for all R > 0,

/ vhdvg, = / ubdvg < 1.
BR(O) Bp.aR(xa)

Sending a to oo, we have

/ P <1,
Br(0)
which violates (2.11). We have thus established Lemma 2.2.

It follows from Lemma 2.2 that
lim dist(zq,0M)/pia =0, vo —v in C*(04 N Bg(0)) forall R>1, (2.12)

where
1 n—2

v(z) = (W)T, (2.13)

and c(n) = 1/(2%/"(n — 2)nS;). A direct calculation, or similar argument as above,
yields
/ =1, (2.14)
RY
Recall that the conformal Laplacian operator L, and the conformal boundary
operator By corresponding to g are given by

{ ng = %gw - a(n)R9w7 (215)
By = agij + b(n)Hyt),
where a(n) = 4&__21), b(n) = "52, R, is the scalar curvature of M, and H, is the

mean curvature of M with respect to the inner normal of M (e.g., the unit ball
in R™ has positive mean curvature).
Let § = p* (™24 for some positive function ¢ being chosen later, then

Ly /) = =D/ () in M, )16
B;(0/¢) = ¢ "D By(v) on OM. (2.16)
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Rewrite (2.2) as

—Agua = Lauf ! in M
Dytta (2.17)
ot 4+ b(n)Hyuq = —tiq +b(n)Hyu, — on OM.
Let 1 = u, in (2.16) and write w, = us /@, we have
Aguy — a(n)Ryu, = oD/ 0= (Ajw, — a(n)Rw,)  in M, (2.18)
6%# + b(n)nga _ SOn/(n*Q)(aga# + b(n)Hﬁwa) on OM. '
Let ¢ = ¢ in (2.16), we get
n42 .
{ —a(n)ngs/:_Q— Agi— a(n)Ryp in M, (2.19)
+b(n)Hyp =22 4 b(n)Hyp  on OM.
Combining (2.17), (2.18) and (2.19), we reach the following equation
n42 :
—Ajwe = &P + (Agp/pn=2 ) w, in M (2.20)
a%# = —(a/p* (=2 4 %—f/g&"/("_m)wa on OM.

We will choose appropriate ¢ = ¢, to simplify (2.20) and then apply the Moser
iteration technique to show that w, is bounded above by some constant independent
of a. Without loss of generality, we assume (M, g) is a smooth bounded open set of
a slightly larger Riemannian manifold (M, g). Let @, be the closest point on OM
to x4, v be the geodesic in M with y(0) = Q,, 7'(0) = v. Set P, = Y(tajta) With
ta = (n—2)/&. Let (y',---,y" "', y") be some geodesic normal coordinate system
of Tp, M, with % = —(tapta), €xpp, : Tp,M — M denoting the exponential map,

gij(y) =< 8?/1" %yj > denoting the metric of M, with g;;(0) = di5, T1;(0) = 0, where

% is the Christoffel symbol. We define Gp, by

—A,Gp, =n(n —2)w,op, in M,
Gp, =0 on OM,

where w, is the volume of the unit ball in R™. It follows from Appendix B in [20]
that

Gp, o expr,(y) = > ™" + E(y),
where E(y) satisfies

" PIEW)] + [y" IV E@y) < C01), Y lyl < dr. (2.21)
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Define ¢, : M — R by
o = to 2ul P Gp,. (2.22)

Clearly, ¢, satisfies
—Agpo =0, in M.

The following lemma was established in [20] (Lemma 2.2 there).

Lemma 2.3. For a large,

9%a

5 JoV =2 >0, on OM.
v

o/ +

From Lemma 2.3 and (2.20), we know that for § = ¢/ 2g w, = ua/pa, we

have, for large «,

—Ajw, = EuP? in M
- a 2.93
{ 6%)/“ <0 on OM. ( )
Lemma 2.4.
lim |vg — 0P =0, (2.24)
a—00 Oa
where v is given by (2.13) and O, is given by (2.7).
Proof: Using (2.12) and the fact O, tends to R, we have for all R > 1,
JLI%O ||’Ua - U||LP(OaﬂBR(O)) = 0. (2.25)
Consequently, in view of (2.14),
im [|valzr(0anBro) =1+ or(1), (2.26)

a—00

where op(1) tends to zero as R — oo.
We see easily from (1.6) that |[va|zr(0,) < 1. Therefore, in view of (2.26), we
have
limsup [|[va = v||zr(0a\Br(0)) = OR(1)- (2.27)

a— 00

Lemma 2.4 follows from (2.25) and (2.27).
Now we are ready to prove the following crucial estimate.

Proposition 2.1. There exists some constant C' independent of « such that for all
a>1
Ug/pe < C  for x € M. (2.28)
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Proof: We only need to show (2.28) holds for « large, thus, without loss of generality,
we assume w, = Uy /P, satisfies (2.23).

Let 1 be some smooth cutoff function. Multiplying (2.23) by w*n? for k > 1 and
integrating by parts, we obtain

Vs - Va(wEn?)dv, < a/ wP~ " En2du, .
/ g g( an ) g —5 M a n g
Direct computation yields:

S Vgt - Vy(whoP vy
(kHQerw R s + il Bl

k+1 2 k 13
(k+1 12 Jarwi® |Vg77| dvg — (k+1 5 Jonr W * ng

We derive from last two inequalities that
Ju !Vg(wfi“/ “n)|*dvg

< L kA, ( )dvg + [or w’“*lrvgnlzdvg (2.29)
—f-% fdekHa dsg—i- ga(kﬂ Jar w2y,

For all € > 0, it follows from Lemma 2.4 that there exists 6y = do(¢) > 0 such
that

p P p
whdvy = ubdvy < e.

/M\By,a/éo (3304) /M\Bp,a/éo (3304)

Then by the Moser iteration process (e.g. see the proof of Lemma 2.3 in [20]), we
know for €, small but independent of «, there exists some dy = dp(€p) > 0 and
s0 = So(€0) > p,

wldvy; < C. 2.30
/M\Bua /60 (@a) g (2:30)

Without loss of generality, we assume that 6y > 0 is small enough so that
B, 60(%a) C Bay,/sy(Pa). Set, § = do/8,

1
2i—1

Rl:'ua(2_ )/67 22172737

Clearly,
Bua/(;O(Ia) C BRi(Pa>7 Y i. (231)

Note that for p,/d < |y| < 2pa/0,

pETRIC < paly) < CuGR Ol g < < Cuy’y. (2.32)
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We can choose some smooth cutoff function n; satisfying

nz(y) = 17 ‘y' > R1+1> nz(y): 07 ‘y’ < Rza
Vo] < C2, |V2n,| < C4,

In the following we use notation Br, = Bg,(P,). Take n = n; in (2.29), we have,

Ju |v (w02, Pdug
<4 CfM\B we " dvg +2° OfaM\B wedsg (2.33)

(k+1 )2C p—1+k
+ fM \Bg, Wa dvy

It follows from the Sobolev embedding theorems (see Appendix A in [20]) that

2/p
{/ (wék“mm)pd%} <C |V (w20, 2 doy, (2.34)
M\Bg, M\Bg,
2/q
L] s b <o [ P, (23)
OM\Bg, M\BR,

Using (2.34) and (2.35), we can derive from (2.33) that

(++1)/2 o (k+1)/2 2/a
{fM\BR (wg ')pdvg} + { Jorn B, (W m)(ldsg}
S 4lOfM\B ’LU dvg + 2 CfaM\BR §+1d8g (236)

+(k+1 )2C fM \Bn, WPy,
Set ro = so/(p — 2), it follows from (2.30) and the Holder’s inequality that

Ptk g, < / (k+1)ro/(ro=1) gy, y(ro=1)/r0 2.
Joyy, < OCf ) (2:37)
It follows from (2.36) and (2.37) that

ka2, |7 (k41a2,, |7
{fM\BR L Wa PIEdvy + {IBM\BRiﬂ wy M dsﬁ}

k 2c ro/(r ro—1)/r
#EEC <fM\BRi w&k+l> o -

Set f = min{p(ro — 1)/(2r0), q/2}, it is easy to see from sy > p that § > 1. It
follows from Holder’s inequality that

{ / wEHDBrO/ (o1 gy,
M\Bgr

i+1

(ro—1)/(Bro) 2/p
} < C{ / wgk+1>P/2dvg} . (2.39)
M\Bpg

i+1
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1/8 2/'1
o ot} el [ ctomeanf”.
8M\BRZ.Jrl 8M\BRZ’+1
d
an (ro—1)/7o
/ W, < C’{/ w&k+1)ro/(ro—1)dvg} , (2.41)
M\BRi M\BRi

It follows from (2.38), (2.39), (2.40), and (2.41) that

(ro—1)/(Bro) 1/8
{ Jv\Br,., w8 (To_l)d%} + { Jorn\sy,,, WS dsg}

< 0(41 k+1) ){fM\BRi w((lkJrl)ro/(rofl)dvg)(rofl)/T‘o + f@M\BRZ. wloc(Jrlng}‘

Taking k + 1 = 23" for i > 1 in the above, setting p; = 28'r¢/(ro — 1), ¢; = 26", we
have "
lwally:, , ansg s + ||w0¢||qz+1,8M\BRi+l

< C(4 + B (|lwa || %

i, M\BR + [Jwa Zz,aM\BRi)-

Since 3 > 1, we have a” + b° < (a + b)? for all a,b > 0. It follows that

i i 1/qi
(llwa f):l M\, T+ 0a Zii oy, )
1/qi
< (Hwa piy1,M\BR,, | + [[wa qm OM\Bp, +1) /e (2.42)
7 7 1/q;
S (04 +Cﬁ )1/%( 'wo¢||pZ M\Bg, + Hwa”flhaM\BRi) /a .
It is easy to see that
[J(Cc4' + B < ¢ < 0,
i=1
It follows that
1/(2
||waHpi+11M\BRz+1 - (Hwale M\BR + Hwqul aM\BRl) /(25) S C
Send i to co, we have
[wall Lo (an\B,,.,, 15,) < C(00)- (2.43)
0

It is easy to see that inside Bsy,,, /(50)(Fa), |y| < Clia. Therefore, it follows from
the definition of ¢, and (2.21) that ¢, (y) > C~tu"=2/2) Wy € Ba,. j50)(Pa)- It
follows that

Wo = U)o < O 2uy = Cgfua(va) <O, ¥V y € Bop, js)(Pa).  (2.44)

Proposition 2.1 follows from (2.43) and (2.44).
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3 Balance checking via Pohozaev Identity

Let Q, € OM be the closest point on OM to x,. By choosing an appropriate
coordinate system centered at ()., we can assume without loss of generality that
Qa =0, gi;(0) = 6,5, B (0) € M, {(«/,0) : |2/|] <1} COM .

Let Ry = 1/(afta), ha = gij(pa)dz’dz? in Biy, (0), and

. (n—2)/2

Ua(x) = p Uo(pox), for x € Bijg (0).

It follows from (2.5) and (2.2) that R, — oo as a — 00, and v, satisfies

—Ap U = B! n BIBRQ(O)
Ohalo — 1,y on {(2/,0) : |2/| < 10R,} (3.1)
0 < To < pl"=2/29,,(0).

Clearly, B B
B (@) = 09 < Cluaal,  [05(@)] < Cha i B, (0), (3:2)

where Ffj is the Christoffel symbol of h,,.
As in the proof of Lemma 2.2) |z, — Qu|/tta — 0 as a — oo. Therefore

p=2/24,(0) — 1. As explained in Section 2,
ahlgo ||@o¢ - UHCQ(B;;(O)) = 07 VR > 17 (33)

where v is the function defined in R, given in (2.13). It is not difficult to see from
Proposition 2.1 that

Vo () < ¢

We need some further estimates on v,.

Lemma 3.1. For all @ > 1, z € Bf; (0), we have

C C
[V*0a(2)] <

Vig(2)| £ ————, S T
Vel S T T JoP

n

where |V?0,| = 37;_; |0°0/0x'027|, and C' is some constant independent of o and

x.

Proof. It follows from (3.3) that

Vi (z)| < C, |V*,(2)] <C, in Bf(0).
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So we only need to show Lemma 3.1 for |z| > 1. For all 2y € Bj_(0) \ By (0), set
R = |zo|, u(x) = R" %0, (Rx) and §;;(z) = (ha)ij(Rz). It follows from (3.1) that

{ —Agit = R 0(Ra)P~" in By (0)\ By5(0)

6575 = —R" lap.0,(Rz) on {(2/,0) : 1/5 < |2/| < 5}.

From (3.4) we can derive that: In B (0)\ B;L/E)(O)

a(2)] <O, |R"€0a(Ra)" ™| < CR™? < O
On {(2/,0) : 1/5 < |2'| <5}

8§ﬂ n—1 =

‘87’ = | - R Oé/iaUa(Rx))! < COC,LLQR <C.

v
It follows from standard elliptic estimates that for some 0 < 3 < 1,
il s grgry < C (3.5)
1/4

Rewriting the equations of u as

{ —Agii = R2&,a7™ in BE(0)\ B;(0)

%% — —ap,Ri, on {(2/,0) : 1/5 < |2/| <5},

and noticing (see (3.5) )

2e a7l — < VP ——
1Bt leoriag,) <O lomaltillosgrar,) < ©
we have, by standard elliptic estimates, that
||| <C. (3.6)

C2B(B\By5) —
Therefore
[Via(20)] = R'"|Vgt(xo/R)| < Clao)' ™ < C/(1 4 |z|" ™),

which gives us the gradient estimate.
Also the second derivatives can be estimated as

[V*0a(w0)| = R7"|V*i(w0/R)| < Clao| ™ < C/(1 + |wo[").
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For n = 3, we need to obtain an appropriate lower bound of 9, in order to reach
a contradiction from the balance checking by using the Pohozaev type identity.

Lemma 3.2. For n = 3, as « large enough,
() > o Vae B (0)
a\l) 2 A7 v xz )
! 1+ z)) R
where C' > 0 is some constant independent of «.

Proof. In view of (3.3), we only need to prove the above estimate for |z| > 20.
In the following, « is always assumed to be suitably large. Let z = (0,...,0,1) and

1 1
Ga - - i B 1 T B T).
) e=3l  RPa—az ry/s(2) \ Ba(T)
It is easy to see that
< Gu@) S i Bys(@)\ Ba(a)
al\l) > — m 1/3(X xT).
2 — x| — |z — 7| R 2

Using (3.2), it is easy to see that in B/s(Z) \ Ba(Z)

1 1 1 Clig
ha(— ) > SN VAVH )| <
( V2o —z|V2 T CRY | — z)p? |z

|z — z| —z[*

It follows that A, G, > 0.
Also, it follows from (3.2) that for all z = (2/,0), 1 < |2/| < RY/3,

On 1 1
= — ) S A =2
ov |z — | Cle — z|?

One, 1 C
|7( 1/2 — )l é 1/4 _1a
ov " RY*|x — z|1/2 Rz — z)?

Therefore, using (3.4) also, we have

9 C 1
Tha > _
gy \Ge) Z iy T e — e

— Qg Vg — >0, Vo= (2,0), 1<|z/| <R3

We will use the maximum principle on A = {z € R? : 10 < |z — | < RY3}. Let
Y1 =0AN{x, =0}, 8y = AN {|z — z| = 10}, and X3 = AN {|z — z| = RY/>}.
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Choose 0 < 7 < 1 small enough (independent of «) such that 7G, < v, on .

Define H, = 7G, — maxy, (7G,), then
Aha(@a - Ha) S 0 in A,

v —HQZO on EQUZg
Ora(ta—Ha) -, g, on %

It follows from the maximum principle that
Uq > H, in A.

Consequently,

Ua(7) = Ha(2) >

Lemma 3.2 is established.

Cr Cr Cr

>
Tlr—al RPT 22

V@€ B},.(0)\ Biy(3).

For convenience, throughout the rest of this section we set I'y = 9B (0) N
{(2,0) : o’ e R"" '}, Ty = 0B} (0)N{(2',z,) : x, > 0}. We always use dV for the
volume element of the standard Euclidean metric, dS for the surface element of the
standard Euclidean metric, v for the unit outer normal vector of the corresponding
surface with respect to the specified metrics, and “” for the inner product under

the standard Euclidean metric .
As in [20], we have the following identity,

/ AT, (V, - x)

. 0aAU,dV = J(Ry, Ua) + I(Ra, V),

Bz,

2

where

004 5 00,
J(Rarta) = 5 /{| 2] = [ntallal + (n = 2) 520 }dS,

Raavoz - 2/ {
Replacing A7, in (3.7) by

ATy = Ap,Ta = (hg = 67)03j00 + hdT};0k0a,

a1y

" ! 8% 8va (%a,

+ (n— ) Ua }dS.

we have
—fB+ (20100 ) Ap, VadV — ™= 2fB+ VaAp, VadV
—l—fB+ (z* Vo) (I —5”)8wvadV fB+ (x lalva)(hijf’“ OkUa)dV
122 2 fB+ Uo (R — 69)0;0,dV — 252 fB+ Ua(h4TE ) OkDadV
= —J(Ra,va) — I(Ry, Ua)-

(3.7)

(3.8)

(3.9)
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So far, we have not used the equation of v, yet. Now we use equation (3.1) satisfied
by v, and obtain
A(ha,To) = —J(Ra, Vo) — I(Ry, Ua), (3.10)

where

Alhe,To) = % [, O2]|dS )
+fB+ (20,04 ) (W — 5”)@”%&/ fB+ (2'0y06 ) (R T,0000)dV
+15= 2 fBg Vo (R — §9)0;0,dV — ™52 fB+ Ua(RYTY;)OkUadV.
(3.11)
Consequently, by using (3.2), we have

A(hq; o) = O(Jr, Uh|z|dS)
+O0([p; ol 2*|V0a| [V?0aldV) + O([5: palzl[VOa?dV) (3.12)
‘I’O(fB+ Ma|x|va|vzva|dv)+0(fB+ :uava|vva|dv)

We simplify I(R,,v,) by using the boundary condition in (3.1). It is easy to see
from (3.2) that
8hoﬂ_fa . 8v

v 874—0(,”&‘1" ’vva‘) on F1-

It follows that

21(Ra, ) = Jr {20575 @i 500) 28 4 (n — 2) %5220, }dS
+O(Jp, a2’ 2 [V8af? + pra2 |5 VT [1dS).

(3.13)

Using the boundary condition in (3.1), we have

Jr 20205 ng’;”‘)ahgfa +(n — Q)Bhava Uo }dS
o {20t 722 — (1 = 2)apaa?}dS
— (1 — 1)ata fr, 1205 — fyr, apat2leldS — (n — iy Jy, 72dS
= Qo Jr, 025 — for, aﬂaﬁ§|x|d5.
Thus
I(Ra,0) = 5= Jp, U3dS + O( for, apta3|2|dS)

+O( i a2 PV Tal? + 0l |a [V5a]]dS) (3.14)

Clearly,
T(Ra,5a) = 0(/F (12||V5al? + Ta |Va|)dS). (3.15)
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In view of all the above estimates, we can rewrite (3.10) as the following Pohozaev
type identity

Ofia fp, 1205 = O(y, #8]2|dS)

+O0(Jgy; Halz|*|V0a| [V*0aldV) + O[5y palz]|VIa]*dV)

+0( fBj{’ fa|7[0a| V204 |dV) + O( IBE [aVa| VUa|dV)

+O(Jr, ([2]|V0al* + Vo [VTa|)dS)

+O( Jor, apatylz|dS)

+O(n, (a2’ PIVTa]* + pra2’ |00 [VTal]dS).

(3.16)
We will derive a contradiction from (3.16) by showing that the left hand side is
much large than the right hand side.

Lemma 3.3. For n > 3, there exists some constant C' > 0 independent of «, such
that [p, 02dS > 1/C for all @ > 1. Moreover for n = 3, [, 72dS > (log R,)/C for
all o > 1.

Proof: Clearly we only need to prove the lemma for large . It follows easily from
(3.3) that

/ #2dS > 1/C.
I

For n = 3, it follows from Lemma 3.2 that

1 1
2dS > — 24s > (1 R,)/C.
/1“1 Yo - C 6R3+QBR1/4(1 + |$|) > (log o)/

Lemma 3.4. The following estimates holds.

/ o V2|2]dS < oo R,
or,

/2 — 12 /= — ClualogRom TL:?),
[ ol P10+l [V <  OHe o8 e 7 25
[ (2l1V 22 + 50 [V0a[)dS < Claga)™ 2

[ wlalas < Clapa)",
T2

[ (alolPI95a] 1V200] + pralal Ve )V <

Rq

Clglog Ry, n =3,
Cla, n >4,
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[, (nalal0al V22| + patal Vi)V <

Ro

Proof. It follows easily from (3.4), Lemma 3.1, and some elementary calculation.

Cuglog Ry, n =3,
Clia, n >4,

Proof of the sufficient part of Theorem 0.1. We draw contradiction from
(3.16) using Lemma 3.3 and Lemma 3.4. Since the left hand side is clearly much
large than the right hand side in (3.16) as « tends to infinity.

4 Proof of Theorem 0.2

We now begin to prove Theorem 0.2 by contradiction argument. Suppose Theorem
0.2 were false, we would have Vo > 1,
o= inf S IV gul?do, + o [y, udo, + a [y, uds, 1
O\ (fas lulpdog)?/v 22/n g,

(4.1)

As shown in Section 1, we know that there exists some nonnegative u,, € H*(M)
such that

Ca = /M |V gul*dvg + o /M u’dv, + o /(,)M u’ds,, /M ugdvg = 1. (4.2)

Therefore, u,, satisfies

{ —Aguy = Cub! — auy, in M, (4.3)

OgUa
L = — g, on OM,

For any € > 0, it follows from (4.1), (4.2) and Proposition 1.1 that there exists
some B(e) such that

I+ g > (2781 +€)Ca
= (22751 + )| Vyuall3 o
+a(2%7S) + €)[uall3 onr + (22" S1 + €)[uall3 s
> (Ju |ua|p)2/p + a(22/n5«1 + E)HuaH%,aM
+Ha(2¥7S1 + €) — B(e)][[uall3 s
= 1+ a(2"S1 + €)[[uall3 o + [@(277"S1 + €) — B(e)][|uall3 -

Thus

14+ m Z (22/n51 -+ 6) lim SUP 0 Ca
> 1+ (2275 + €) limsup, oo af|ua|?onr

+(22/n51 + ¢€) limsup,,_, OZHUaH;Ma
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1+ 22/7251 > (22/7151 + E) lim infozﬂoo Ca
> 14 (22"S) + €) liminf oo af|uall3 o0
+<22/n51 -+ 6) lim infa%oo O‘HUGH%M'

Send ¢ — 0, we have

. 1
d G = g (4:4)
Tim afualon =0, lim afualZy =0, (4.5)

It follows from Cherrier [11] that u, is smooth up to boundary. Let z, be some
maximum point of u,, we set p, = u; %™ (z,).
Now we prove the following asymptotic behavior about p,,.

Lemma 4.1.
lim ap, = 0. (4.6)

a—00

Proof: The proof is similar to that of Lemma 2.1. First we claim:
lim inf [|ua|[g.om > 0. (4.7)

If the claim were false, i.e., ||ua|lgon — 0 along a subsequence a@ — oo, then, in
view of (4.1) and (4.2), there would exist u € Hj (M) such that u,, weakly converges
to u. It follows from Proposition 1.3 applied to u, — u, the compact embedding of
H'(M) to L*(M), the definition of ¢, (1.7) and (1.8) that for ¢ > 0

Ca

= fM|Vg“a|2+afaMUi+O‘fMUi
> (1/S1 — €= (o) Jar [tta — TP + Co + @ fopy u2 + « [ u2 +o(1),

where o(1) — 0 as @« — oo. Take € small enough, we derive ||u, — ul|par — 0,
therefore ||@||, s = 1. But from (4.5) we know ||u||2,as = 0. Contradiction.

Similar to the proof of Proposition 2.1, we have

Proposition 4.1. There exists some constant C such that for all a > 1

Ue/Po < C for xe M, (4.8)

where ¢, was defined in (2.22).

Let QQ, € OM be the closest point to z,. By choosing an appropriate coordinate
system centered at (),, we can assume without loss of generality that @, = 0,
gi;(0) = &;5, BF (0) € M, {(2/,0) : |2'| <1} C OM .
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Let Ry = 1/(afta), ha = gij(pa)dz’dz? in Biy, (0), and

= (n—2)/2

Ua(x) = 1) Uo (o),  for x e Bfyp (0).

It follows from (4.6) and (4.3) that R, — oo as o — oo, and v, satisfies

—Ap, U = GO —aplt,  in Biyg (0),
8’3‘7:‘” = —QfioUq on {(2/,0) : |2'| < 10R.}, (4.9)
0 < U < p"=2/2y,(0).

«

Clearly, B B
[hel (@) = 69| < Cluaz|,  T5(2)] < Cpa in Bigp, (0), (4.10)

where Ffj is the Christoffel symbol of h,,.
As in Section 2, we know

10 = vlle2sx ) — 0, (4.11)

10Rq,

where v was defined by (2.13).
Also from Proposition 4.1, one can see that

Ua(z) < ¢

——  f B . (0). 4.12
S T or x € Biyg, (0) (4.12)

In turn, we derive as in Section 3 the following estimates of |V,| and |V?9,| by
applying standard elliptic theories.

Lemma 4.2. For all « > 1, z € B}, (0), we have

_c
1+ |znt’

C

V@a.’ﬂ < )
Voa(o)] < ERD

[V*0a(2)] <

where |V?0,| = 372, |0°0a/0x'027|, and C' is some constant independent of o and

x. For n = 3, as a large enough, we also have
1 -

v > BT )
Vo) > T Ve Ri/“(o)

As in Section 3, we can derive from (4.9) the following.

A(ha, Vo) = —J(Ra, V) — I(Ry, Ua), (4.13)
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where J(Ry,Va), I(Ra,Vs) are defined by (3.8), (3.9) respectively;

2
A(ha, Ba) = Alha, 7a) + oz,ui/ B2dV — %/ 2] dS,
Bt 2 Jr,

Ra

A(ha,Uy) is defined by (3.11), I'y and T'y are defined in a same way in Section 3.
Therefore we have the following Pohozaev type identity

g Jp, 02dS = O(fp, WB|x|dS + ap? fB+ v2dV + ap fp, va|x|dS)
+O(f3+ fa|z[?|VT,] |V2?7a\dv)+0(f3+ fa| 2] Vo *dV)
(fB+ Lo |T|Ua| V204 |dV) + O(fB+ ,uava|Vva|dV)
O( Jr, (|CL’||VUa|2 + Vo [V0a|)dS)
(farl apa vy |dS)
O Jr, [1al [V l® + o] 2|00 [V0a|]dS).
(4.14)

From (4.11) and Lemma 4.2, we have the following lemma.

Lemma 4.3. For n > 3, there exists some constant C' > 0 independent of «, such
that [p, 02dS > 1/C for all @ > 1. Moreover for n = 3, [ 72dS > (log R,)/C for
all o > 1.

Also, by (4.12), Lemma 4.2 and some elementary calculations, we have

Lemma 4.4. The following estimates hold.

| anardlelds < apaRS
ory

1
mw/ 22]aldS < ~(apa)"?,

Cp“om n =3,
ap? /B+ v2dV < Cap?logR,, n=4,
Cayi?, n > b,

Clialog Ry, n =3,

12 — |2 ars T <
/Fl(ualxl Val* + a2’ |0a IWaDdS—{ Clta, n >4,

[ (al1Veaf? + 5 [V2])dS < Clapta) ™

[ wlelds < Clapa)",
I'>
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[ (alalPI90a] [V200] + prafal Ve )V <

Rq

Cpolog Ry, n =3,
C:U’OH n Z 47

/B+ (tta|2]Ta| V?0a] + f1aTal Via|)dV <

Rq

Clalog Ry, n =3,
C/,La, n Z 47

Proof of Theorem 0.2. By Lemma 4.3 and Lemma 4.4, we easily derive a contra-
diction from (4.14) as « tends to infinity.
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