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Abstract

In this paper, we establish some general forms of sharp Sobolev inequalities
on the upper half space or any compact Riemannian manifold with smooth
boundary. These forms extend some previous results due to Escobar [11], Li
and Zhu [18].

0 Introduction

In the past several decades, the study of sharp Sobolev inequalities has attracted
the attention of many mathematicians. Not only do those sharp type Sobolev in-
equalities play essential roles in the study of some problems arising from geometry
and physics, but also those inequalities themselves indicate some rich and signifi-
cant phenomena ( for example, under which circumstance the extremal functions
for those inequalities exist).

The sharp Sobolev inequalities for functions vanishing on the boundary are well
understood for manifolds with dimension greater than or equal to 3, see Aubin [3],
Talenti [21], Brezis-Nirenberg [6], Lieb [19], Hebey and Vaugon [14]-[15], Hebey [13],
and the references therein. However, it seems that those sharp Sobolev inequalities
for functions which do not vanish on the boundary still need to be further studied,
even though there are already some interesting results, see Lions [20], Brezis-Lieb [5],
Escobar [11]-[12], Beckner [4], Adimurthi and Yadava [2], Carlen and Loss [8]-[9], Li
and Zhu [17]-[18], and the references therein. One of the most interesting problems
is to study the relations between the L? norm of the gradient, the boundary L4



norm and the interior LP norm. Here and throughout this paper we always set
q=2(n—1)/(n—2), p=2n/(n—2), where n > 3 is the dimension of the manifold.

In this paper, we continue our previous work [17], [18] and give some sharp
relations between the three terms we just mentioned. It turns out that some previous
results are special cases, see Remark 0.2-0.3 and 0.5 below.

Denote R, = {(2/,x,) : o' = (21, 29,...,2n—1), T, > 0} as the upper half space,
and D'?(R%) = {u Jan |Vu|*> < oo, Jon lulP < oo}. Let 1/ = (n —2)/2-
(272 /(T'(n/2)))"/™=1) be the sharp constant corresponding to the trace inequality,
Zy = (n—2)CY =1 where C,, = fRn_l(ﬁ)”’ld:p = 7(=V20((n—1)/2)/T(n—1).
One can check that

Zo = (0.1)

1
S
For any € > 0 and d € R, we define

€ n—2

R 2
€2+|I/|2+|$n—6d|2> 2 (O )

Uea() = (

Considering three typical manifolds, we have corresponding theorems as follows.
On the upper half space, we have

Theorem 0.1 For any Z € (—1/5, Zy), let

dy = ———, (0.3)

and S1(Z) be given by

2
q

1 B fRi |VUe,dz |2 + Z(fanwr ug,dz)
5.(2) (T

(0.4)

Then

y

and equality holds if and only if u(x) = Cucgq, for somee >0, C € R.
For Z = Zy, let 1/S; = mn(n — 2)(I'(n/2)/T(n))*™ be the sharp constant of
Sobolev inequality in R™. Then

p% 2 q% 1,2 (mpn
(/Ri|u|) <51(/M|vuy F ([ IDT), Vue DREL). (06)

+

ufP)? < SI(Z)(/M Vul? + Z(/am \umi), Vu e DYA(RY), (0.5)

n
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Remark 0.1 One can check that S1(Z) — oo as Z — —1/S. An easy consequence
of Theorem 0.1 is that S1(Z) strictly decreases from oo to 1/Sy as Z goes from —1/S
to Zy = 1/S. The strictness of inequality (0.6) is due to the nonexistence of the
extremal function.

Remark 0.2 For Z < 0, this theorem was proved by Escobar in [11]. It seems to
us that his method can not be applied to prove (0.5) for Z > 0.

Let Q C R” (n > 3) be a bounded domain, we have

Theorem 0.2 For any Z € (—1/S,Zy), let d., S1(Z) be given as in Theorem 0.1.
Then there ezists a constant C(Z,Q) such that

(/Q ufP)? < Sl(Z)</Q|Vu|2+Z(/m |u|q)§)+C(Z, Q) /39“2’ Vu e H'(Q). (0.7)

Remark 0.3 For Z =0, (0.7) was proved by Y.Y.Li and M.Zhu in [18] and was
partially proved by Adimurthi and S. L. Yadava in [2]. In this case, one can see that
S1(0) = 1/(2¥"S)).

Remark 0.4 [t is interesting to give some upper bound estimates about the constant
C(Z,Q). For a general domain (except a ball), it is hard to say whether the extremal
function for (0.7) exists or not.

Let (M, g) be any compact Riemannian manifold with smooth boundary and
dimension n > 3, we have

Theorem 0.3 For any Z € (—1/S,Zy), let d., S1(Z) be given as in Theorem 0.1.
Then there exists a constant D(Z, M) such that Vu € H'(M)

(i lupdug)» 2
< S12) (s [VguPdvy + Z(lpy lulvdsg)? ) + D(Z M) Sy udsy + fyy P, ).
(0.8)

Remark 0.5 When Z =0, (0.8) was proved by Y.Y.Li and M.Zhu in [18].

Remark 0.6 We do not know whether (0.7) and (0.8) still hold for Z = Zy or not.
We tend to believe that it is true, and give the following conjecture.



Conjecture Let Q2 C R™ be a bounded smooth domain. There exists some constant
C(2) > 0 such that

([ 1ep) < si( [ 19ul+ 20 [ ful)?) 0@ [ w2, vae m'@). 09

Let (M, g) be a compact Riemannian manifold with smooth boundary and dimen-
sion > 3. There exists some constant D(M) such that Yu € H'(M)

(Jos Loy
< 81y [V guPduy + Zol(ong [ultdsy)?) -+ DOD)( fyng s, + fy ooy ).
(0.10)

Since the upper half space is conformally equivalent to a ball, we know from
Theorem 0.1 that (0.9) holds for some constant C'(€2) when €2 is a ball in R™.

Remark 0.7 [t can be easily seen that if (0.10) held for some large constant D(M),
Hebey and Vaugon’s inequality (see [14]) would be its corollary.

Remark 0.8 In [5], Brezis and Lieb proved that for any bounded domain € C R",
there exists a constant C', such that

lullp.o < Si2|IVullzg + Cllullgon, Yu e H'(Q).
They asked whether there exists a constant Cy, such that
lullp o < SillVullsq + Cillull; pe, Yu € HY(Q). (0.11)

It is easy to see that (0.11) follows directly from (0.9). Hence the answer to their
question is affirmative when the domain is a ball.

The proof of Theorem 0.1 heavily depends on the conformal invariant property
of the corresponding energy functionals between the upper half space and the unit
ball. The key ingredient is to show that the infimum of the corresponding functional
is attained under the assumption of small energy (see Proposition 1.1 below for
precise statement). We use a new approach which combines some old ideas (blow-
up argument) with some new inequalities initiated by the work of Brezis and Lieb
[5](see corollary 1.2 below). The proofs of Theorem 0.2 and 0.3 also involve this
difficulty; we overcome it by using the same method. Some ingredients in the proofs
of Theorem 0.2 and Theorem 0.3 have already appeared in our previous work [17],
[18] and [22].



This paper is organized as follows. In Section 1 we give the proof of Theorem
0.1. In Section 2 we prove Theorem 0.2 through an argument by contradiction . In
Section 3 we sketch the proof of Theorem 0.3. In Section 4 we give some discussions
concerning the conjecture and point out the obstacle of proving this conjecture by
the current method. When I was working on this problem, I was informed by Y.Y.Li
about the recent results of Carlen and Loss [9]. It turns out that Theorem 0.1 can
also be derived from their results. This derivation is included in the appendix. It
seems to me that their method can not be applied to general domains.

Throughout this paper, we use Cy, C, C,Cs, ..., to represent some various pos-
itive constants, €, €, €1,...,09, 0, 01,..., t0 represent some various small positive
constants. Without specific mention, we always pass to a limit up to some subse-
quence of € or a.
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H.Brezis and Y.Y.Li for their interests in this work and their constant encourage-
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[8]. This work was completed when I was a Postdoctoral Fellow in the University
of British Columbia. I would like to thank R. Froese, N. Ghoussoub and C. Gui for
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1 The upper half space and unit ball

For any Z € (—1/S, Zy], we define

f]R’_f_ ]Vu|2 + Z(f8R1 |u|q)2/q
PAPDEE

z(u) = , Yu€ DV(RY)\ {0}

and

oy VUl + Z (g, [0l 4 52 fyp,
(s, T2/

Due to the conformal invariance, we know

I15(u) , Yu € H'(By)\ {0}.

inf I7(u) = inf II7(u) :=&4. 1.1
weDL2(RR )\ {0} 2(W) = i T2 =tz (L)

The key step in our proof of Theorem 0.1 is to establish the following proposition.

Proposition 1.1 If0 < &z < 1/54, then inf Iz(u) and inf I17(u) are achieved.



Proof. We prove this proposition by contradiction.
Suppose these infimums are not attained. For any 0 < € < 1 and u # 0, we

define
S VUl + Z([op, |u 9)2/0e 222 [0 0 u?
(f, [ufPe)?/e
where and throughout this paper, we set p. = p — €, ¢c = ¢ — €¢/2. Denote

I1.(u)

.= inf I (u).
5 u€H1(B1)\{0} ( )

In order to derive a contradiction, we need several lemmas.

Lemma 1.1 As e small enough,

0§£ES£Z

Proof. V6 > 0, there exists a u € C*°(By), such that

I, IVUl* + Z( [, |@|?)/7 + 222 [op, U
(/p, |ulp)?/»

<&z +o.

Also as € — 0,
Jp, IVAP+2Z( [, lulD 04252 [ a
VEREE
Jp, IValP+2([,, i)/ 24232 [ a?
= (fBl |a|pe)2/Pe
Z 56 - 5
Combining above two inequalities together we know & < &5, as e — 0. If Z >0, it

is obvious that £ > 0. If 0 > Z > —1/S, by sharp trace inequality, we know that
for any fixed 0 < §y < Z/2 + 1/(25),

-0

[ I9ul 4 (Z = 60)([ =0, ¥ue D).
R™ OR™
It follows from the conformal invariance of the energy that
n—2
Vul? + (Z -6 / 7)2/a 7/ 2> 0, Vue H'(Q).
IVl Z = a)(f i TS [ w20, vue 1Y@

Notice Z — g < 0. We know from the above and Hélder inequality that as e — 0,
&> 0.



It follows from Lemma 1.1 and the standard variational method that as e suffi-
ciently small, there exists u. > 0 with ||uc||,..5, = 1 such that

I = inf 1] =&
e(ue) e (B )\ (0} () =&

Next lemma is a slight extension of an inequality due to Brezis and Lieb [5].

Lemma 1.2 Let Q be a bounded domain inR", |Q =1, 1 <r <p, s= @, then
there ezists a constant C(§2,r), such that

(L1 <SPV +c@n( [ I v e @, (12)
Further, as r close to 2n/(n — 2), we can choose C(Q, 1) independent of r.

Proof. We only need to show that (1.2) holds for any smooth function f. Let h be
the solution of the following equation:

—Ah=0 in Q
h=f on 0f)
and u = f — h. Then u = 0 on 0. Therefore
ulln < llullno < S Vull2g. (1.3)
One can easily check that
IVullz0 = IV fllz0 = [IVAI50- (1.4)
Also, by Minkowski inequality
ullro = 1| fllre = [IA]lre- (1.5)
Combining (1.3) and (1.4) with (1.5), we have
1£llee = kll0 < SI2UIV B = IV < S12(IV fllan. (16)

We claim:
7] ]r0 < CL )| f]]s.00

with C'(£2,7) independent of r as r close to 2n/(n — 2).
Lemma 1.2 directly follows from the claim and (1.6). Therefore, we are left to
prove the claim.



Let ¢ be the solution of the following equation

Ap=Y in Q
p=0 on 0f)

for some Y € L*(©2). Then

hY = / 1.7
/ o0 8y (1.7)
By elliptic estimates, we have

109l < CilYlle, [IVEllwrie) < Cil[Y]|e,

thus
|| ||,6 o0 < Ci|[Y][1.0 (1.8)

where 1/ = n/((n—l)t)—l/(n—l). Also we can choose a uniform Cy if 2n/(n+2) <
t < 2. It follows from (1.7) and (1.8) that

29
[ 1Y < lbllran - 15 o0 < Cllllson - 1V les (19)

where 1/6+1/8" = 1.
Let 1/r =1—1/t, then 1/8" = n/((n — 1)r), that is 5’ = s. Therefore, by (1.9)

[ 0¥ < Cillfllaon - 1Y o
Claim follows from the above directly.

A quick consequence of the above lemma is the following.

Corollary 1.1 Let Q € R” be a bounded domain with |2 = 1. There exists a
constant C(Q2), such that as e < 1/100,

1 fllpee < SV flloa + CQ fllgo0, Vf € HY(Q). (1.10)
Proof. Let r = p. in Lemma 1.2, then
n—1 n—1
S = *Pe = (4 — c € < (e

n

Corollaryl.1 follows directly from Holder inequality.

Later on, we will use this corollary in the following setting. We state it as another
corollary.



Corollary 1.2 Let €2 € R™ be a bounded domain. Yo > 0, there exists a constant
C(£,6), such that as € small enough,

IS

2 0 < (Si+OVSlEa+COOFIZ g0 Vf € H(Q). (1.11)

Proof. Without loss of generality, we assume {0} € Q and Q2] = A™. Set Qp = Q/\
and fo(z) = \/P=2 f(\x) for x € Qy. Then due to Corollary 1.1, we have, for
e < 1/100,

v < SV follz.oo + Cllfo

[1fo

By rescaling, we have

[ follpess = XV f

where o(1) — 0 as € — 0. Therefore, for any § > 0, as € < ¢ < 1/100 for some
small €;, we have

qe,000

pesre [V follzgy = XONV g, (follaeon, = AO11

qe,00

1

qe, 00

0
petr < (517 4+ DIV llag + Cllf

Squaring both sides of the above and using Cauchy-Schwartz inequality we have our
corollary.

We now continue the proof of Proposition 1.1. Since I (u.) = & and ||u,
1, we know that u, satisfies

pe,B1 —

—Au, = Eub! in B (112)
Que = —Z([op, ude)? el — 22y, on OB;. '
Due to Cherrier [10], we know that u, is smooth up to the boundary. Hence we can
assume u(xc) = ||u||ze(p,) for some z. € B;. Since inf 117 is not attained, we know
that u.(xz.) — 0o as € — 0.
Define

2 (1.13)

pPe—2 — e
He = (U€<I‘€))_ 2, Qe = BlTa
ve(z) = pE Pud(per + z) for z € Q..

Then v, satisfies

— — De—1 1
{ Awv, Er in €, (1.14)

Ove e\2/qe—1,,ge—1 n—2
G = —Z([op, ul) /=1yl 57 eve  on 0.
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Lemma 1.3

lim ule > 0.
e—0 dB;

Proof. We prove this lemma by contradiction. If not, there exists a subsequence of
e (we still denote it as €), s.t.

/ ule —0 as e—0. (1.15)
0B,

From Lemma 1.1 we know: as e small enough, 0 < & < &7 < 1/S1, thus ||u|| g1 (p,) <
C uniformly for some constant C. It follows that there exists a ug € H'(B;) such
that ( after passing to a subsequence of €)

u. — ug weakly in  H'(Bj).

Using Corollary 1.2, we know for some small constant dq satisfying 1/(S1 + dg) > &2
that

56 fBl |VU/€|2 + Z(faBl UZE)Q/(k + n?_Q faBl uz
pe)2/pe 4o (1)

ﬁ(f& U

1
Sira T oc(1)

i1V

where o.(1) — 0 as € — 0. We derive a contradiction when € is small enough.
Lemma 1.3 is established.
et dist(z,, OB
T = Jig 28820081 (1.16)
O e
(Recall the notation at the end of the introduction, we define the above limit by
passing to a subsequence of .)

Lemma 1.4

Proof. If T = oo, we know that v. — v; in C?(Bg(0)) for any R > 1, where v;
satisfies

—Av; =&Pt in R”

n(0) =1, 0<u <1
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and & = lim._q & (recall our notation: we take this limit up to some subsequence
of €). From [7], we know that vy(z) = O(ﬁ) as |z| — oo and vy (z) € DYM?(R™).
Multiplying the above equation by vy, we have

/ |VU1‘2 = fo/ U;f.
R™ R™

Also by the definition of S, we know

1
LIvulz ([ w2
R™ Sl R™
Notice & < 1/5;. We conclude that

/v1f>1.

On the other hand, note ||v.||,,.q. = p2/®P=2D77/P||u ||, q = pln=2e/Pre=2) < 1
and v, — v; in C?*(Bg(0)), we have [, v} < 1. Contradiction. We complete the

proof of Lemma 1.4.

Due to 0 < ¢, < C, Lemma 1.3 and the fact that €, tends to R}, = {x = (2, x,,) :
x, > =T}, we know by the standard elliptic estimates that up to a subsequence,
ve — v in C%(Bg NRY), and v satisfies

— = &Pt <v< i n
{ Av &P, 0<v <1 in R% (1.17)

% = —Zav?™! on ORY,
where a = lime_o(fyp, uf)*%~'. From [16] we know that v(z) = O(m%) as |z| —
oo and v(x) € D"?(R}). Therefore, multiplying (1.17) by v, we have

f]Rga [Vo|* + Za fa]R% vt

f}R;& op

= Co-
Using rescaling, we know
29 _(n—1))-(1- 2
(/(‘)B ug€>2/q€_1 — /JLEPE,Q ( ))( qe)(\/@ﬂ Uge)g/qe—l‘ (118)
1 €

Since (pquQ —(n—1))-(1- q%) > 0 and . — 0, we know

(famg Uq)2/q—1 > hme—>0(f8Q€ Uge)2/qe—1
> a.
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If Z <0, noticing |[v|[, ez <1, we have

ngﬂ |v”‘2+z(faR; vi)?/a fm;ﬁ, |V”|2+Z'a'faRg vl
(f]Rn Up)Q/p S fR" vr
T T
=& < &z.

Set v(2,x,) = v(a',x, — T), we know that inf I, is attained by v, contradiction.
Thus we complete the proof of Proposition 1.1 in the case of Z < 0.
Now we consider the case Z > 0. Using rescaling, we have

2 2
Jan 0P) TP < limeg(fo, vPe) TR
Usg. ") ( ?L@E) (1.19)
S 1ime—>0 e re

bet (325 —(n—-1))-(1- 2)
_ 20e; —(n—1))-(1- 2 B 5
ay = lim o™ 7, b=vl[pzn-
Note as € small enough
(n_ 2)6 QQe 2
> —(n—=1)-(1——)>0, 1.20
> (- 1)- (1= ) (1.20)

we know b < a; < 1.
In order to complete the proof of Proposition 1.1, we still need one more lemma.

Lemma 1.5
/ v — v? as e — 0. (1.21)
09, OR

We relegate the proof of this lemma at the end of this Section and continue our
proof of Proposition 1.1.
It follows from the above lemma and (1.18) that a = a1||v||275?R%. Therefore

fR% \Vv|2+Z(faRTTL v9)2/4 fw% |Vol? Z-bv(fam% v?)2/4
(f vP)2/p < f P + f P
Rai Rl}, 11?\772
fR? |Vv\2+Z~a~f6R% v
o fm” vr

=& < fz-T

Set v(2,z,) = v(a',x, — T), we know that inf I, is attained by v, contradiction.
This completes the proof of Proposition 1.1.
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Now we are ready to give the proof of Theorem 0.1.
Proof of Theorem 0.1. We first claim: if Z < Zj, inf I; < 1/5;.
For any d > 0, we define

1 )n—2
2
Lt 22 + (0 — d)?

va(w) = (

Direct calculation shows

n

n=2 n—2 o0 n+1 2/P
([ o =Ci ey, ([ o= (DuEu—Da [T+ at)
R d

i +
and
Jeg IVl = (n = 2200y — (n = 2)°C, [¥(14 #2)7"7"ds
(0= 2PDuBy + (= 22Dy [P+ 12)
where

1 1
On=/ gy Dn:/ —)"dd,
o T p) o T ) @

+oo a1 +oo n_
En:/ (1+82)~"T dt, Fn:/ (1+t3) "z dt

—00
satisfying the relation

(n—2)°CpF, — (n—2)°D,E, 1

(DnEn)z/p Sl.

It follows that as d large enough,

1 1

-t . (Z fl— —2)C,)d" "2 1)d- =2 1.22

[Z(Ud) =

n—2
where 0(1) — 0 as d — oo. Note Z < Zy, ZCi~' — (n — 2)C,, < 0. Choosing d
sufficiently large we establish the claim.

Due to Proposition 1.1, we know that for —1/5 < Z < Z; , inf I is attained
by some u, € D"(R}). Without loss of generality we can assume that u, satisfies
||uz|lpen = 1 and u, > 0. Then one can easily see that u, satisfies the following
equation:

—Au = Ezul™ in R?
{ % = _Z<I8Ri ug)2/4*1u3*1 on 8R1 (123)
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Let v, = k,u, with k, = (=545)("=2/4 Then v, satisfies:

n(n—2)
“Av.=n(n-4" in m
{ %UI/Z = _Z(IBRi U‘Z])Q/q’lvg* on aRi (124)
From [16] we know
€, no
v = ( ) 2,

€2+ |22 + (t —t.)?

where

t,=(n— 2)_1(—:22(/ vg)z/q_l

ORT
for some €, > 0. Direct computation yields
ls

€2

a\2/q—1 _ n_ﬁl 2)1/2.
(o 2P = GO+

Combining the above two identities together, we have

1

(n—2)Cn 'k

_ €z

T e

This gives the proof of Theorem 0.1 for —1/S < Z < Zj.
If Z = Zy, we will show that

1

inf Iz, (u) = T
1

and the infimum can not be attained through an argument by contradiction. It is well
known that inf Iz (u) < 1/5y. If inf I, (u) < 1/57, due to Proposition 1.1, we know
that there exists a ug > 0 with |[ug[|,rr = 1 such that Iz,(uo) = inf Iz, (u) := &z,
It follows that wug satisfies

—Auy = Ezul in R}
Qup __ 9\2/q—1, 4—1 n
SR = _ZO(faRi ul) ¥ ud on ORY.

It can be shown as the above that ug = (£, /(n(n — 2)))~"=2/4, , where

60 n—2

2
TP+

UZ():(
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with
to=(n— 2)716020(/ vg,) e
oR™
for some ¢g > 0. Therefore
_1
(n—2)Cp 't i
Zy = 2 < (n=2)Cq ™t = 2.

0 10)2)1/2
(1+(2)2)Y
Contradiction! The nonexistence of the extremal functions also follows from the
same argument. This completes the proof of Theorem 0.1.

We are left to prove Lemma 1.5. In order to prove Lemma 1.5, we need the
following inequality. One can find a proof of such inequality in Adam’s book [1](with
a slight modification).

Lemma 1.6 Let Q be a bounded domain in R™. For all v > 0,e > 0, there exists a
constant C(7y, €) depending on v and € such that

([ lu

Further, if € is close to 0, one can choose CA’(% €) independent of €.

Pedu)ee, Yue HY(Q).  (1.25)

wdsyic < [ [Vuldv+Cr.o([ u

Proof of Lemma 1.5. Since [|uc||g < C, we know that u, — ug weakly in
H'(B,) for some uy > 0. Noticing lim._o(fyp, ud)?/%~1 = a > 0, we know that ug
satisfies

{ —AUO :fo'u,gil, 0 S Uo S 1, in Bl (126)

Oug __ —
e —ZCLUO — TUO on 881

Set ue1 = ue — ug, then u.; — 0 weakly in H'(B;). Since inf I77 is not attained,
||t 1 || — 00. Let x. 1 be the maximal point of u,y, pe1 = 7,LE,1(31:€71)(1De—2)/2 and

2 By —xc;y

Ve (x) = pl " Ueq (e + xey) for € Qe = .
€,1

As before, we know, that up to a subsequence, v.; — v; in C?(Bg N R7, ), and
vy satisfies

{ —Avp =&, 0<u <1, v(0)=1, in R} (1.27)

o _ _ q—1 n
G = —Zav on ORY,,
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where
T — Hdzst(a:6 1, 831)

€E—00 /’[/E 1

For any R >> 1, define

ul) = pe o (pt (@ = wer)) - n(pci (@ — 2c1)), @ € By,

where n(z) is a cutoff function with n(z) = 1 for x € Bg(0) and n(z) = 0 in BS,(0).
Due to (1.18) and (1.19), we only need to show that uy = 0 (therefore u.; = u.,

zen =z and 77 =T') and

(1)

pe,B1) ||Ue,1 — U

[[tes — ul! ge,0B; = 0c(1) + op(1) (1.28)

where o.(1) — 0 as ¢ — 0 and og(1) — 0 as R — oc.
It is easy to see that ||ue1||p., 5, = Co > 0 as € small enough. Suppose that there
exists some &g > 0, such that

[Jues — ut)|

pe.B1 > 00. (1.29)

Then we define u. o = u, — ug — uY). Easy to see that u.o — 0 weakly in H(B).
Since ||ue2||p..B, = 00, Wwe know ||ue 2|l — 00. Let .2 be the maximal point of u o,
/J/E,2 - ue,2<xe,2)(pe_2)/2 and

2 B —=x

€ Pe—2 1 6,2
Ve (T) = 19 Ue2(fte2T + T 2) for o€ Qcp = 7# )
€,2

One observes that dist(ze,zc2) > 100Ru. ;1 for any fixed R as € — 0. Also .1 <
pe2. Therefore, we know as before that, up to a subsequence, v,y — vy in C*(Bg N
RY, ), and vy satisfies

—Avy =&uPTl, 0< w0 <1, v(0)=1, in RY
{ Q2 = —Zavy®! on OR%,, (1.30)
where
T, = T ———dist(xea, 831)
€—00 ME,Z
Define

2
u® = e3P va(pog (@ — xeo))n(ugs (@ — x2)), @ € By,

where 7(x) is the cutoff function as the above ( n(z) = 1 for x € Bg(0) and n(z) =0
in B3x(0)).
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Without loss of generality, we can assume that for any 0 < << 1, as e — 0

ez — ugz) pe,By < 0. (1.31)
Otherwise we just keep this process going. Since ||uc||,., B, = 1, we know this process
must stop after several steps (depends on ¢).

It is easy to check that

qe

qe,aBl = Huo (2)

luo + ul + u®

€

gz,aBl + ||U q6 831 + Hu q6 331 + 05(1) + OR(]‘>7

and

l|ug + u) + ul? |2

+||u

pE,Bl - ||u0 pe,Bl pE,Bl + ||U’ pE,Bl + 05(1) + OR(]‘>

Combining with (1.31) and using Lemma 1.6, we have

1 =0 —0c(1) — or(1) < [Juoll; + [ [u®

be g, <1+0+o0.(1)40r(1)

+HU/ pe,B1

pE’Bl P5731

and

a7 —c(8)~0.(1)~0p(1) < |Jul o, < a7 +c(8)kou(1)+or(1)

qe,aBl +’ ‘u(l qe,aBl +| |U’£2)

where ¢(d) — 0 as § — 0.

Define
Qo = gz» 60 = gza
and '
= [|ul||? by Bi= D)% /] e g fori=1,2.
Therefore
1—=0—01)—or(l) <ap+ar+as<1+0d+o0/(1)+ogr(l) (1.32)

1= (0) —o0e(1) —or(1) < Bo+ f1+ Po < 14 () + 0c(1) + ogr(1) (1.33)

where ¢/(9) — 0 as § — 0.
It follows from (1.26), (1.27) and (1.30) that

Vo[, 5, + Zalluo

aom = Sollwolly 5,5

IIWIIQR+ + Zallvil[]

on, fo”%“?R; for ©=1,2.
3
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Using (1.18), (1.19), (1.20) and the above, we have
2 -2 2 1-2 2
IVuollz,p, + 200 *[luollgom, = oo "[[uolly 5, + 0c(1),

1—2 1—-2 .
||VU1‘||;,RJTZ_ + 25 qHUz'Hz,aR;i < ooy p||Uz‘||12,7R£ +0c(1) +og(1) for =12
Since inf I; > &, and o; < 1, we know that as e — 0 and R — o0,

1—-2
B *
Noticing ¢ < p and «a;, as are larger than some fixed number, we derive a contradic-

tion due to (1.32), (1.33) and (1.34) when we choose ¢ suitable small and R suitable
large. Thus (1.29) is false, that is: as € — 0,

RSAIN

<ap 7 for i=0,1,2. (1.34)

— 0.

Hue,l - Ugl) pe,B1

Using Lemma 1.6, we know that (1.28) holds. Similarly, we can show that uy = 0.
Lemma 1.5 is established.

2 Domain case

In this section, we assume that €2 is a smooth bounded domain in R™ and give the
proof of Theorem 0.2.

First we present a rough inequality with a slight larger constant than the sharp
one S1(Z) in Theorem 0.2. However, the case Z = Z; is included.

Proposition 2.1 Let Z € (—1/S, Zy]. For any 6 > 0, there exists C(6) > 0 such
that

(/Q ) < (51<Z)+5)(/vau12+2(/89 |uyq)3)+0(5)/mu2, vu e HY(Q). (2.1)

When Z > 0, due to the positive L? term in the right hand side of (2.1), we
can not prove this inequality directly from Theorem 0.1 via the partition of unit,
neither can we prove it by a similar argument used in [17] and [18]. Here, we again
use blowup argument to prove this proposition.
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Proof. We prove it by contradiction. Assume (2.1) is not true, that is, there exists
01 > 0 such that Vo > 1,

Jo IVUul? + Z(foq [l + a [y u?

inf Iy,(u):= inf =g < ————.
welqy T2ale) = nfo, (Jo lulp)>/P 2 51(Z) + 0y
(2.2)
Let & be some positive constant such that
1 _
Sllullzen < IVulloq + allullzo0, Vu € H'(Q). (2.3)

The existence of such & was shown in [17].

Lemma 2.1 IfZ > 0, under condition (2.2), inf I, is achieved; If =1/S < Z < 0,
for any fired oo > &, under condition (2.2), inf I, is achieved.

Proof. This can be proved in a similar way as that of Proposition 1.1. We sketch
the proof here for readers’ convenience. For u # 0, define

_ Jo IVul? + Z([o0 |ul®)?% + o [oq u?
IRER ‘

If Z>0,or—1/S < Z < 0and a > @, as before, we know I.(u) > 0. The standard
variational method shows that 3 u. > 0 with ||u.||,, = 1 such that

Ie(u)

I(ue) = inf I (u) :=&..

We want to show that ||u|| < C. Lemma 2.1 follows from this fact easily.
Suppose ||ue||o — 00 up to a subsequence. Easy to see that u. satisfies

—Au, = EuP! in Q (2.4)
% = —Z([yqude)?/ %" yde=l —qu,  on 0N '
By [10], we know that there exists a x, € Q such that u.(z.) = ||ue||ooc — 00. Define
=2 e
He = (Ue(xe)>_p2 , Qo= Q“E )
2
ve(r) = p& *u(pexr +x.) for x € ..
Then v, satisfies
_Ave = €6U€€_17 0 S Ve S 17 U(O) = 17 in QE (2 5)
Qe = —Z([yqude)? %08 —ap,  on 0. '
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As in the proof of Proposition 1.1 (also we need to use (2.3) when Z < 0), we can
show that when Z >0, or —1/S < Z <0 and a > a,

0<lmé, =& < €pp < ——— 2.6
- el—r%f 50 - €Z7 < Sl(Z) -+ (51 ( )
and — dist(x.,00
/ we >0, T = i Lt 00) (2.7)
90 €—00 e

It is easy to see a|ucl||2.90 < C. Combining this with (2.7) and the definition of .,
we have

o [ e < & [ 2 < 2.8
C ague_CaQue_‘ (2:8)

Set Cy = lim._,o au.. By standard elliptic estimates, from (2.5), (2.7) and (2.8), we
know that v. — v in C?(Bg NR%), and v satisfies

Ut <

— = &Pt <v< = i n
{ Av =&, 0<v <1, v0)=1 in R} (2.9)

ov __ q—1 n
o = —Zavi™ — Cyv on OR}.

where a = lim,_o([5o u%)?%1. If Z < 0, notice that |[0]|pzn < 1and (faR; p1)?/a=t >
a (see (1.18) for details), we have

2 2
fR,TL |Vl +Z(faRTTL )2/
(Jon v9)?/P

T
fRn |Vv\2+ZafaRn v?
T T 1
S fR” P S 60 < S51(2)"
T

This contradicts to Theorem 0.1.
If Z > 0, slightly modifying the proof of Lemma 1.5 (we need to use Theorem
0.1 here), we can show that as € — 0

/ vl — ve.
A9 OR?.

Then following the proof of Proposition 1.1 closely, we can get

fRE’; |VU|2+Z(f8R% v)?/ <& < 1
(Jfay vP)?/7 ~ sy

This again contradicts to Theorem 0.1. We thereby complete the proof of Lemma
2.1.

n
T
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As a > @, without loss of generality, we can assume that inf I, (u) = Iz, (uq)
with u, > 0 and ||ua||p,0 = 1. It is easy to see that u, satisfies

—Au, =&z ub! in Q
{ Qe = 7 (Jqut) /g — oy on 09, (210)
and
o |ua 2,00 < C. (2.11)

As in the proof of Lemma 1.3, due to £z, < 1/(S1 + d1), we know that there exists
a constant C' > 0, such that

/ ul > C. (2.12)
o0

Due to Cherrier, we know that u, is smooth up to the boundary. Let u,(z,) =
||t ||oo for some z,, € €2, and define

0 = (ua(2)"F, Q= (= 22)/ e,
T
Then v, satisfies
—Av, =&z, 0<0v, <1, v(0)=1, in Q,
{ N T L N on 0. (2.14)

From (2.11), (2.12) and the definition of p,, we know that
C oo T C Jog =T
Set Cy = limy ooty > 0. Thus ||ug||ec — 00. Also as in the proof of Proposition
1.1, due to £z, < 1/(S1 + 61), we know
dist(xq, OS2
i 45t 0 (2.15)

a—00 ,L[/a

Qg <

By standard elliptic estimates, we know that v, — v in C?(Bgr NR%), and v # 0
satisfies
—Av =& 0<v<1, v(0)=1, in R%

v __ -1 n
5 = —Zaw?’ " — Cy on OR%.

where { = limg oo {70 < 1/(S1(Z) + 01), a1 = limg_oo(fyq, va)2/lTf 7 <0,
one can easily see as before that
fRTTL [Vol? + Z(faRTTL V) < ng [Vol? + Z(fem’; v0)*/% + O faRTTL v? 1

(Ja 0727 = e 07 TS 5(2)

(2.16)
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If Z > 0, similarly, using Theorem 0.1, we can prove as in the proof of Lemma 1.5

that
li q\2/q—1 _ / q 2/q—17
Jim ( 0% va) ( OR?: o)
thus we also have
fR% |Vol? + Z(famg vq)2/q _ ng |Vv)? + Z(faR% vq)Q/q + (Y faR; v? e < 1
(Jip, vP)2/P B Joen VP S1(Z)

Both of the above two inequalities contradict to Theorem 0.1. Thus the proof of
Proposition 2.1 is completed.

From now on, we begin to prove Theorem 0.2 through an argument by contra-
diction. Note that we assume Z < Zj, thus 1/51(Z) < 1/5.
Suppose Theorem 0.2 is false, then for any a > @,

2 q)2/q 2
inf I(u)= inf Jo [Vl +Z(fan\U|2) +afyu
HY(Q) Hi(Q) (fo |ulp)?/P

=, < (2.17)

Si1(Z)

From the proof of Proposition 2.1, we know that under assumption (2.17),
inf I, (u) is attained. Without loss of generality, we assume inf I, (u) = I,(uq)
with u, > 0 and ||ua||p0 = 1. It is easy to see that u, satisfies

~Ata =&ty ! in Q
{ %L; = _Z(fag ug)Q/q*1u3*1 — Qg on 9. (2.18)
Lemma 2.2 As a — oo,
1
2
A Ugq, — (), " — 919
||uall3,00 3 A (2.19)

Proof. From (2.17), Proposition 2.1 and ||ua||p0 = 1, we know that for any ¢ > 0,
there exists a constant C'(d) such that

I+ 505 = (S1(2) +6)&
1(2)
= (S1(Z) + 0)([IVuall3.0 + Zluall; oo + alluall3 o0)
> 1+ ((S1(Z) + 0) = C(5)[uall5 p0-

A > (51(2) + 6)limsup &, > 1+ (S1(Z) + 6) limsup of|uq |3 50,
1 a—00 a—00
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1+ S?Z) > (S1(Z) +6)liminf &, > 14 (S1(Z) + §) liminf aluall3 o0
1 a— 00 a—00 )

Sending § — 0, we have our lemma.

Since 1/51(Z) < 1/54, as in the proof of Lemma 1.3, we have the following.

Lemma 2.3 There exists a constant C > 0 such that

/ ul > O, (2.20)
(oY)

Remark 2.1 Condition Z < Zy (thus 1/51(Z) < 1/51) is essential in the proof of
(2.20). Actually, if Z = Zy, we can show that [y ul — 0 as o — oo. More details
will be discussed in Section 4.

Since u, satisfies (2.18), due to Cherrier, we know that u, is smooth up to the
boundary. Let u,(z,) = ||ul|s for some z, € Q, and define

p—2
a alTa)) 2, Qa = (2 - « as
o = (ugf02) (O~ 2/ o)
Vo) = p& ua (o + o) for z € Q,.
Then v, satisfies
—Av, =& 0<v <1, v(0)=1 in Q, (2.29)
Wa = —Z( [y, v I — apave on 09,. '
Combining (2.19) with (2.20), as being shown in (2.8), we have

Qfly — 0. (2.23)

Also if we set lim, _oodist(Ta, Q) /1o = T, due to 1/S1(Z) < 1/S;, as before, we
know T < oo.

By standard elliptic estimates we know that v, — v in C3(Q, N Br(0)) for all
R > 1. And again, using the argument in the proof of Lemma 1.5 (also we need to
use Theorem 0.1 here), we know

lim | |vea—oP = lim [ |Vo, — Vo|* = lim [vg — 0|7 = 0. (2.24)
a— 00 Qa a—00 Qa a— 00 8Qa
It follows that
lim (f o)t = (o

a0 JoQa IR
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and v satisfies

—Av =gl 0<u(@) <1, v(0)=1, in R}, 2.95)
o = —Z(fomn V)2 tyt! on OR}.
If Z >0, it follows from [16] that
1 n—
v = ( )T (2.26)

Lt c(n) (| + |2n]?)

where ¢(n) = 1/(51(Z)(n — 2)n).
If Z <0, due to 1/5,(Z) < 1/(2¥"S,), one can check as in the proof of Lemma
1.4 that 7= 0. Due to (2.24), we know |[v[|,gn = 1. It follows from the proof of
€, n—2

Theorem 0.1 that
= 2 2.2
v (62 + |.T/|2 + (xn - ezdz)Q) ( 7)

where d, satisfies (0.3), €, = (22 — Z%)/Z3.

We are ready to give a L estimate on v, through the Moser iteration method
as we did in [17] and [18]. First, Let’s recall that the conformal Laplacian operator
L, and the conformal boundary operator B, corresponding to metric g are given by

{ Lgd} = %g¢ — a(n)RgQ/J, (228)
Byp = %2 + b(n) Hy),
where a(n) = 4(’:17__21), b(n) = "2, R, is the scalar curvature of 2, and H, is the

mean curvature of 92 with respect to the inner normal of 92 (e.g., the unit ball in
R" has positive mean curvature).

We write g as the standard Euclidean metric. Let v(x) be given by (2.26) or
(2.27), and g = 0¥y, ie. gijdrida? = v Ddzidr’. Then for all p € C=(Q,)

Ly(¢p/v) = v~ F2/=D () in Q,,
—n/(n—2) (229)
B;(v/v) = v By, () on 0€),.
Let ¢ = v, in (2.29) and write w, = v, /v, we have
Ay = v/ =D (A, — a(n) Ryw,) in Q,,
OggVa n/(n—2) Ogwe (230)
o+ b(n)Hyyug = v (%5,* +b(n)Hyw,)  on 08,
Let ¢ = v in (2.29), we get
— p(t2)/(n=2) —
{ a(n)R{]qu;n—2 Ogqv Agov (231)
b(n)Hzv = 2 +b(n)Hgyv
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Combining (2.30), (2.31) with (2.22), we have

—Agwe = Eawh "+ Agyv /o)y, in Q.
8%113& = —Z(Joq i) T it — (gt 0¥ D + %/v"/("_Q))wa on 0f),.
(2.32)

By a similar calculation to the proof of Lemma 2.3.1 in [22] ( see also [18]), we have,
as « large enough, that

9]
vt Jv¥ ) 4 a—v/vn/("’m >0, x€d,.
v

Thus w,, satisfies

—Ajwy < Eub! in Q,
o o g ’ 2.33
{ %l < —Z(foqu) it on 9. (2.33)

Note Z may be a negative number here.
Define ©, = {y : y = z/|z|*, v € Q},y = z/|z|*, Wa(y) = wa(z) and g(y) =
g(x). Then we have

L2

If we write §(y) = §i;(y)dy'dy’, due to G(y) = g(z) = v¥/™ gy, we know §;; =
|z[*0¥ (=25, Thus, there exists a C' > 0, such that 1/C < §;;(y) < C for y €
O, N B1(0).

Using these notations, we rewrite (2.24) in the following setting.

SJ?

(2.34)

| |

W, < &We! in O,
< —Z( [0 vq)Q/q Wwae=t on 00,.

Lemma 2.4
lim |W — 1Pdv; = Jim. Wy — 1]%dsz = 0. (2.35)
004

a—00

Now we focus on proving the following proposition.

Proposition 2.2 There exists a constant C > 0 such that, Vo > @,
v < Cv  for x €, (2.36)

where v is given by (2.26) or (2.27), depending on the value of Z.
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Proof. We only need to show that (2.36) holds for « large, thus, without loss of
generality, we can assume w, = v, /v satisfies (2.33). Due to the fact that v, — v
in C3(Q, N Bg(0)) for all R > 1, we only need to show that (2.36) holds for |z|
large, that is to show W, < C for |y| small.

Let 1 be some smooth cutoff function with compact support in B;(0). Mul-
tiplying (2.34) by W¥n? for k > 1 and integrating by parts, we obtain (since
Ear Z(Joq, vi)?171 < O)

Jo. ViWa - Vg (Wkn?)dov,
< &a f we~ ok n°dvg — Z(Joq vd)at Joon W Hrpds,
< Cf o Wp 1+k de + CIBGQ Waqfl+kn2dsg‘

Direct computation yields:
f@ V Wo, - V(WEn?)dvg

(k+1 Tz Jeu !V (Whtt/2y )IQd“g + (k+1)2 Jo, WET Agn?dug

(k+1 2 Jo., WV n|dvg — k+1 Tz Joe. WERIN 0 - vds;.

We derive from the last two inequalities that
Jo IV g(Wat2n) *dv;

< fea ”§+1(|A§772| + | C977| )dvg v faea ”f“ C§U2 - vdsg (2.37)
2
0(11:1) f@a ”571%77265% k+1) fa ”gflJrandSé-

Set, for 0 < 0 < 1/2 (4 will be chosen later),

1
2i—1

Ri=(14+-—)85 i=123 . (2.38)

we can choose some smooth cutoff function n; satisfying

ni(y) =1, [yl < Risi; miy) =0, [y| > R
|V§77,~| < 021, |V§’I]Z| < 4.

Taking n = n; in (2.37) and using Sobolev embedding theorem (see Appendix A in
[17]) we reach

(b H1)/2 o (k+1)/2 2/
{fGaﬂBR (W -)pdvg} + { fa@amBR (W ﬁi)qug}
< AC o, W v+ 2C o, Wi 1dsy (2.30)

+C(k+1 f@ ﬂBR Wp 1+kdv + C(k+1 fa@ ﬂBR Wq 1+kd$g.

o
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It follows from Lemma 2.4 that for any ¢y > 0, there exists a dp > 0 such that for
any 0 < o,

WPduv; +/ Wids; < €.
/@amB(;(O) 9T Joounmsoy @ 9T

By the standard Moser iteration, we know for any s > p, there exists ; > 0, such
that for any p < s < 5, § < 4y,

Waduvs; + Wsds. < C(5). 2.40
/@M@ vy [ Wadsy < C(3) (2.40)

Choose s¢ € (p,5) and sg close to p. Let rog = so/(p — 2), 5 = p(ro — 1)/(2r¢) and
totﬂl = %. We can check 3 > 1. Also as sq is close to p, 3 is close to 1. Therefore,
we can make 23 < ¢ and (¢—2)t, < 5 after we choose a suitable so. Choose 20 < d;.

By Holder inequality, we know

/ nglJrkdvg < (/ Wo(ék+1)ro/(7"ofl)dvg)(7”0—1)/7‘0 (/ Wé‘o)%
@aﬁBRi @aﬁBRi

©aMBg,
and
/ Wtk s, < (/ W(k+1)to/(to—1)ds~)(to—l)/to(/ W(q72)to)%'
00.NBr, 7= " Joeannr, @ g 00.NBr,
Combining the above two inequalities with (2.40) we have
/ WEHE gy, < O / Wkt Do/ (ro=1) g,y (ro=1)/ro (2.41)
@aﬂBRi @ v = @aﬂBRi * 9
and
Wit thds; < C / Py Rt/ (=) gg ) (to= D/t 2.42
/c’?@amBRi ° 7= O 00aNBr, ) (242)
Also, from Holder inequality,
[ Wit <o( [ wieleigg) @b (0.3
00.nBr, ¢ = " Joe.nBn, I

Set po = 2r0/(ro — 1) < p, pi = Bpi1 = B7'p, ¢ = pi(ro — 1)/ro = 25, for i > 1.
Taking k = ¢; — 1 (for i« > 1) in (2.39), and using (2.41), (2.42) and (2.43), we
obtain

HWQ gi+1,@aﬂBRi+1 + HWCY g_z+1,8@aﬁBRi+1
3 2c i 4
S (410 + (qq;_l))(HWa”;])i,@aﬂBRi + HWOC g’i,(?@aﬁBRi)>
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(a® + %)% < a +b. It follows

where ¢; = ¢; -

that e
(HW ;I)Z:ll ©.NBR, i1 + || 3211 00,NBR. +1) i (2 44)
i :C i 1/q; ’
< (O + )] 0urn, + IWallt 00,05,
As in [17], one can easily check that
[J(4°C+ L= )e < € < oo,
i=1 g —1
thus 1/(26)
||W01 pi+1,eo¢ﬂBRH_1 (HW le @aﬂBRl + HW Hq1 004 ﬂBRl)
1/(2
C(IWa ||p ©anBr, T [We ||q a@amBRl) /25)
< C’l.
Sending i to oo, we have B
||Wa||Loo(@amBg) S C(5> (245)

Therefore we complete the proof of Proposition 2.2.

Let Q, € 0f) be the closest point to x,. By choosing an appropriate coordinate
system centered at (),, we can assume without loss of generality that @, = 0,
9i;(0) = &5, BF(0) c Q, {(2/,0) : |2/| <1} C 90 .

Let Ry = 1/(afta), ha = gij(pa)dz’dz? in By, (0), and

Ua(z) = M&H_Q)/Qua(ﬂaiU + 14), for x€ BlOR (0).
It follows from (2.23) and (2.22) that R, — oo as @ — oo, and 0, satisfies

_Aha@a = §a@£_1 n BI)ROL (0)
Iate — _ Z([pqul)? 100 — apat,  on {(2/,0) : |2'| < 10R.}  (2.46)
0 < g < pl"=2/2y,(0).

Clearly,
[hel () = 69| < Cluaz|,  TH(2)] < Cua in Bigg, (0), (2.47)

where Ffj is the Christoffel symbol of A,
As being explained before,

=0, VR>1, (2.48)

(}Lm “va UT”CQ(B;(O))
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where vy = v(2’, x, —T), v is given in (2.26) or (2.27). It is not difficult to see from
Proposition 2.2 that as a > &,

Ua(x) <

~ W for z € B;E)Ra (0) (249)

Note Z( [ ul)?/97t < C, we can show, exactly in the same way as in [17], the
following estimates on the first and second derivative of v,,.

Proposition 2.3 For all a > &, « € B}, (0), we have

C

_ C
| < Wa |V2va(x)| <

|V, (x) < W;

where V20| = 3752, [0%00/02'027|, and C'is some constant independent of a and
x.

For n = 3, we need to obtain an appropriate lower bound of 7,,.

Proposition 2.4 Forn = 3, as « large enough,

1 .
Vo) > 70(1+|I|)’ ‘v’xGBR}#(O),

where C' > 0 is some constant independent of a.

Proof. If Z < 0, Proposition 2.4 can be provn exactly in the same way as that in
[17], therefore we will focus on the case of Z > 0 here. The proof is slight different
from that in [17]. Due to Z > 0, we know 7" > 0. Without loss of generality, we
can assume 7' > 1. In this case, we need to use more accurate boundary condition
in (2.46). In the following, « is always assumed to be suitable large.

Let z = (0,...,0,1) and

1 1
w2 RPle—

Ga<£L‘> n BR;/?’ (.f') \ Bg({i’)

It is easy to see that

L < Gulx) < !

2]z — x| —

Tz P Brp@\ Ba(2).

As in [17], by using (2.47), one can check that A, Gy > 0 for x € Bps(Z) \ Bar(T).
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Also, from (2.47), we know that for all z = (2/,0), 1 < |2/| < RY/3, there exists
a constant C; > 0 such that

8ha 1 1 1

< . < 3
(Ga) - Ol ‘.I' — f‘g o Cl G

We will use the maximum principle and Hopf lemma on A = {z € R} : 2T <
lz —z| < RY?}. Let ¥y = 0AN{x, = 0}, ¥y = 0AN{|zr — 2| = 2T}, and

= 0AN{|xr — x| = RY*}. Choose 0 < 71 < 1 small enough such that 7G,, < v,
on Yy. Note Z([5qud)?7~! < C (in the remains of the proof of Proposition 2.4, we
always take C' as the same positive constant), we choose 15 < 73 small enough such
that 1/(C173) > C. Let H, = 15G, — maxy,(12G,). One can check that v, — H,
satisfies

Aha (T)a — Ha) S 0 in A,
/l_)a_HO(ZO on ZQUZg,
o (a—Ha) (ﬁgnya) >C(H2—93) on Y.

It follows from the maximum principle and Hopf lemma that
Uq > H, in A.
Consequently, for all z € B;l ,4(0)\ B (),

T2 T2 > T2
“2z—z| RYB T 4lz—z|

Ua(7) 2 Ho(2) 2

For |z — z| < 2T, Proposition 2.4 follows from (2.48).

Let By, = Bg,(0)NRY, I't = 9B} NORY, T'y = 0B;;, NRY. We always use
dV for the volume element of the standard Euclidean metric, dS for the surface
element of the standard Euclidean metric, v for the unit outer normal vector of the
corresponding surface with respect to the specified metrics, and “” for the inner
product under the standard Euclidean metric. As in [17], we have the following
identity.

A, (V, - x)dV + n-2 . UaAUdV = J(Rqa, o) + I(Ra,va),  (2.50)

:
B, 2 Bf

where

~ 1 004 |5 8%_
J(Rasta) = 5 /F2{|ay| 2] = Oranal? || + (n — 2) 55, }dS, (2.51)
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n-l 8% 8va 07,

I(Rq, 0) = {2 Zx, _ +(n—2)—== 5 Uy }dS. (2.52)
Replacing Av, in (2.50) by

Ao = A, Ta — (hg — 0Y)0;Ta + hiT;0:Ta,

g

we have
- fB; (xiaiﬁa)Aha@adv - n?ﬂ fBg EaAhal_)adV
+ /b (%00 ) (R — 677)8;50,dV — st (2'0,00) (hE T} 000 )V
+152 [t Ta(hl = 69)0;0adV — "32 [+ Da(WITF)O4TadV
= _J(ROC? 2706) - I(Raa @a)

Using equation (2.46), we get
A(ha, Vo) = —=J(Ra, Ua) — I(Ra, Ua), (2.53)

where

Alhe,Ta) = %2 [, T2]|dS
+fB+ (k014 ) (WY — (5”)8wvadV fB+ (x lalva)(h”Fk OxUq)dV
+ 2= 2fB+ Vo (RY — 69)0;;0,dV — ™5 2fB+ Vo (hWITE) 00, dV.

atij
By (2.47), we know

A(ha, ) = O([p, 05|2|dS)
+O( g fha |z VT, | |V2Uo<|dV)+0(fB+ Halz|[VU. 2 V) (2.54)
—I—O(fB+ ua|x|va|v2va|dV)—|—O(fB+ ,uava|Vva|dV)

We simplify I(R,, 0,) by using equation (2.46). It is easy to see from (2.47) that

8haz7a N 6’0a
S0 4 Olpala'| [VTal),  on T

It follows that

2I(Ra,0a) = Jp {2(505 @0 ) Lele 4 (n — 2)%ateg, }dS
+O0(Jr, [;zala:’l2 [V5al? + pa]a’|7a| Va[)dS).

(2.55)
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Using the boundary condition in (2.46), we have

e 205 @ ‘31&)8'15? + (n—2)%ar=0, }dS
= Jr.{— 2030 %Za)(aﬂa% + Z(Jyqud)* 1ol t)
(0= Do — (1~ 22y )0t 1S

= Qg frl %dS farl gV !wIdS— =2 (faqud) 2/a= lfar vd|x|dS.
Thus
H(Rasta) = 4 [y, 6205 + O fr, (apiatZlal + otla)dS) o
+0( frl[ua|x/|2|vva|2 + HalT'|Va [VT|]dS).
Clearly,
T(Ra,00) = c)(/F2(|x||wa|2 4 T [VTa])dS). (2.57)

We can rewrite (2.53) as the following Pohozaev type identity:

o Jr, 03dS = O(Jp, 0} |z|dS)
+0( I Halz*[V0a] [V*0aldV) + O([g; palz]|VOal*dV)
(fB+ | T| 06| V20 |dV) + O(fB+ uava|Vva|dV)
O( Jr, (I%IIV%I2 + Ua |[Va|)dS)
O( Jor, (a3 || + DE]2|)dS)
O i, ol IV + ptale’[0a V0 11d5).
(2.58)
We will derive a contradiction from (2.58) by showing that the left hand side is much
larger than the right hand side as a tends to infinity.
Similarly as in [17], by using (2.48) and Proposition 2.4, we have

Lemma 2.5 For n > 3, there exists some constant C' > 0 independent of «, such
that [, 02dS > 1/C for all a > 1. Moreover for n =3, [ 92dS > (log R,)/C for
allaa > 1.

Also, by using (2.49), Proposition 2.3 and some elementary calculations, we have

Lemma 2.6 The following estimates hold.

| (auat2lal + w8le])dS < apaRE™,
ory

Cuqlog Ry, n =3,

12 = 12 AP 7
J b PV + e, (Vauas < { e 2
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[ al195a + a [VTa|)dS < Clapa)"2,
1)

[ wlalas < Clapa)",
1)

[ (el PIV 0] V28] + a2 Vo)V <

Ro

Clalog Ry, n =3,
Clia, n >4,

/B+ (tta| 2|70 Ve + f1aTal Via|)dV <

Ro

C”a log Ry, n =3,
Clio, n>4.

Proof of Theorem 0.2. From Lemma 2.5 and Lemma 2.6 we know that the
left hand side is clearly much larger than the right hand side in (2.58) as a tends to
infinity. Therefore we derive a contradiction basing on the assumption (2.17).

3 Compact manifold with boundary

Let (M,g) be a compact Riemannian manifold with smooth boundary oM and
dimension n > 3. In this section we sketch the proof of Theorem 0.3.
First we show a rough inequality as in Section 2.

Proposition 3.1 Let Z € (—=1/S,Zy]. For any ¢ > 0, there exists D(§) > 0 such
that Yu € H' (M),

(fyy [ufPdvg)? 2
< (S1(2) + &) [Vuldvy + Z (o lultds)? ) + D) ( Song udsy + iy udey )
(3.1)

Proof. We prove this proposition by contradiction. The proof is quite similar to
that of Proposition 2.1, we sketch it below.
Assume that (3.1) is not true, that is, there exists some dy > 0 such that Vo > 1,

inf  Iy.(u) :=  inf Jar [V gul® + Z(Jonr [0l + @ Jopr 0 + @ fyr 0

weH (MM (0} ueH D\ (0 (Jag lulp)/»
= gZ,a < 51(Z)+6z2

(3.2)
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Lemma 3.1 Vd > 0, there exists a constant C(M,0), such that Vf € H'(M), as €
small enough,

IR as < (51 + NIV 0+ COLO(IF e + I ons ). (33)

Proof. This can be provn from Corollary 1.2 through the partition of unit. We omit
the details here.

Lemma 3.2 As « large enough, if inf I, satisfies condition (3.2), inf 15, is at-
tained.

Proof. Due to [17], we know that there exists ay < oo such that
lullgons < SIVgullsar + enllull3 o0, Yu € H'(M). (3.4)
For u # 0, we define

_ S Vgl + Z(fonr [ul®)? 9 + o fops 0¥ + @ o 0
(far [ulpe)?/ve '

If @« > a1, we know as before that [.(u) > 0. The standard variational method
shows that 3 u. > 0 with ||uc||,, = 1 such that

I(u)

I (uc) = inf I (u) := &..

Easy to see that u,. satisfies

—Ague = Eul! — au, in M (3.5)
% = —Z([opy ude)?/ 018t — qu,  on OM. '
Due to [14], we know that there exists ay < oo such that
lullp.ar < SillVullzar + ccllullzar, Yu € Hy(M). (3.6)

Set ap = max{aj,az}. We only need to show that as a > ap, ||ue|loc < C.
Suppose ||uc||lc — 00 up to a subsequence, by [10], we know that there exists a
z. € M such that u.(z.) = ||ul|oo — 00. Set pte = (ue(x)) " .

Let (y!,--+,y" !, y") denote some geodesic normal coordinates given by the ex-

ponential map exp,_. In this coordinate system, the metric g is given by g;; (y)dy'dy’.
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For suitably small 43 > 0 (independent of €), we define v, in a neighborhood of z = 0
by

ve(2) = u N (w)uc(expy, (pez)), z € O, CR",
where

O.={z €R" : |z| < 3/phe, expy (pez) € M}. (3.7)

We write 0O, = I'' UT?, where
I'={2€ 00, : exp, (pez) € OM}, T?={z2€00. : exp, (uz)€ M}.
Then v, satisfies

—Ag v = Pt — apdu, in O,
Oaee = — 7 (g ud) 00 — apier, on T, (3.9)
v(0)=1, 0<v <1,

where g, denotes the metric on O, given by g. = ¢;;(1c2)dz'dz?. As in the proof of
Lemma 1.1 (here we need to use (3.4)), we can show that as a > «y,

0< @fe = 50 < gZ,a < (39)

SU(Z)+ 6y
We claim:
/ ule > C > 0. (3.10)
oM

If [55 ule — 0 up to a subsequence, using Lemma 3.1, as in the proof of Lemma 1.3,
we know ||ue — ug||p. s — 0 for some ug € Hg(M). It follows that

Jar IV guoPdv, + [y, uddo, 1

(Jar luolPdug)?/P St

this contradicts (3.6) as o > .
Also as in the proof of Lemma 1.4, we can show that
———dist(x.,OM
T T stz OM) (3.11)
TR e

Then we follow the proof of Lemma 2.1 closely and can derive a contradiction
to Theorem 0.1. We thereby establish Lemma 3.2.

Due to Lemma 3.2, without loss of generality, we can assume that as a > «q,
inf I ,(u) = Iz0(uq) with u, > 0 and ||ug||pr = 1. Then, we follow the proof
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of Proposition 2.1 closely and can complete the proof of Proposition 3.1. The only
difference is to show [, 44 > C > 0. But this can be handled similarly to (3.10).
We leave these details to interesting readers.

From now on, we begin to prove Theorem 0.3 through an argument by contra-
diction. Note that we assume Z < Z,, thus 1/51(Z) < 1/5;.

Suppose that Theorem 0.3 is false, then Vo > 1,

. . f v u|2+Z(f \u\q)2/q+o¢f u2+o¢f u?
infpr oy La(w) = 0f g ary oy = D —— (3.12)

R 1
=&, < 5@

From the proof of Lemma 3.2, we know that as a > «y, under (3.12), inf I, (u) is
attained. Without loss of generality, we can always assume « suitable large and
inf I, (u) = I, (us) with u, > 0 and ||ua||par = 1. It is easy to see that u, satisfies

—Aguy = Eubk™ — au, in M (3.13)
Bgl’;a = —Z(fopul)¥ it —au,, on OM. '
Using Proposition 3.1, we have
Lemma 3.3 As a — oo,
ollual Bors = 0, €= < (3.14)
«Q - 9 [e% - .
2,0M Sl (Z)
Because of 1/51(Z) < 1/5), as in the proof of (3.10), we have the following.
Lemma 3.4 There exists a constant C' > 0 such that
/ ul > C. (3.15)
oM

Since u, satisfies (3.13), due to Cherrier, we know that u, is smooth up to
—2

boundary. Let us (o) = ||u||so for some z, € M. Set pro = (ua(z4))""Z . As
before, from (3.14) and (3.15) we can show that

ape, — 0, as a — oo. (3.16)

Let (y!,--+,y" !, y") denote some geodesic normal coordinates given by the ex-
ponential map exp, . In this coordinate system, the metric g is given by g,; (y)dy'dy’.
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For a suitable small d, > 0 (independent of «), we define v, in a neighborhood of
z =0 by
Vo (2) = uy (20)ta(exps, (e ?)), z € O, CR",

where
Of ={z €R" : |2| < 4/lha, €xps, (1az) € M}. (3.17)

We write 00, = '} UT?2, where
I ={2c€ 00, : exp,, (paz) €OM}, T2={2€00, : exp,, (ftaz) € M}.

Then v, satisfies

~1 2 .
—Ag Vo = EU0T — Qi Va, in O,
L aVo __ e 2 Q*l a*l 1
o = —Z(Jonr u) /a2~ 1yde =t — g, onl', (3.18)

UQ(O) = ]., 0 S Ve, S 17

where g, denotes the metric on O, given by g, = ¢i;(1a2)dz'd2".

Also let lim, _oodist(zq,0M)/pe = T, due to 1/5,(Z) < 1/5, as in Section 1,
we know T' < o0.

By standard elliptic estimates, we know v, — v in C3(Bg(0) N O,), where v(z)
is given by (2.26) or (2.27) (depending on 7' > 0 or 7" = 0). Consequently, as before,
we have the following lemma.

Lemma 3.5

lim Ve — V[P = lim / IV yota — Vg, u)* = lim v —v[T=0. (3.19)
0 Jo,

a—00 Oa a— a—00 80(1

As in [18], by using Lemma 3.5, we have

Proposition 3.2 There exists a constant C > 0 such that, Vo > 1

U < Cv, x € M,. (3.20)

Then following the proof of Theorem 0.2 closely, by using Pohozaev identity, we
derive a contradiction, thus complete the proof of Theorem 0.3. We refer [18] and
[17] to interesting readers for more details.
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4 Some further remarks

In this section, we give some details concerning Remark 2.1 and point out the
obstacle by using the current method to prove the conjecture which we present in
our introduction.

Assume Z = Zy. Under condition (2.17), we know that inf I, (u) = I,(u,) for
some U, > 0, ||tuallp0 = 1 and u, satisfies (2.18). In contrast to the case of Z < Z,
here, we claim:

/ ul -0 as a— oo. (4.1)
G
We show (4.1) by contradiction. If not, as v — o0,
/ ul > C > 0. (4.2)
)
Define (i, Q4, and v, as in (2.21), then v, satisfies (2.22). As before, from (2.19)

and (4.2), we know ap, — 0. Let lim, oodist(xy, 0Q) /1t = T. If T < oo, then
Ve — vg in C3(Q, N Br(0)) for all R > 1, where vy satisfies

—Avy = S%Ugfl in RY,
o= —Zo(Joes, v li™ on ORE, (4.3)
Uo(O) = 1, 0 S Uo(]]) S 1.

However, a similar discussion as in the proof of Theorem 0.1 shows that (4.3) has
no solution. Therefore T' = oo, and v, — v; in C3(Q, N Br(0)) for all R > 1, where
vy satisfies

{ —Avl = SLl’UZl)_l n Rn, (4 4)

v1(0) =1, 0<w(x) <L
It follows that ||vy||p e = 1, therefore ||v, — vi]|pa, — 0.

Note ||Vvy — Vi |20, < C. Using Lemma 1.6 and property of vy, we know that
Joq, v& — 0. This contradicts to (4.2).

This discussion shows that we do need some new ideas to handle the extremal
case Z = Zj in the proof of Theorem 0.2 and 0.3.
5 Appendix

In this appendix, we present another proof of Theorem 0.1 based on a new result
due to Carlen and Loss [9].
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Proposition 5.1 (Carlen and Loss’s Theorem) For A > 0

IVl s _

0 ey
(V) = DL2RE M\ (0} [ fllper [ fllprn

(5.1)

18 attained.

Denote S(0) = 1/5)/%. It is not difficult to see from [9] that S(A) is a continuous
function on [0, 00).

Let IIz(u) be given as in Section 1 and &z be given by (1.1). In order to prove
Theorem 0.1, we only need to establish the following proposition, the other details
can be carried out as in Section 1.

Proposition 5.2 For any Z € (—1/S, Zy), inf 11 is attained.

Proof. For Z < 0, this proposition was already proved in [9]. Consequently, a
new proof of Escobar’s inequality was given by E. Carlen and M. Loss there. Here,
we focus on the case of 0 < Z < Zj.

It is well known that £, > 1/(22/7S,) for Z > 0. The existence of minimizer of
11, is equivalent to the existence of a extremal function for the following inequality

IVull3en + Zl|ullg opn > Ezllullpen, Yu€ DV (RY)\ {0},

1.e.

1
[l [pzn — H ullgomn < ?HVUIIS,RT vu e DV*(RY) \ {0}. (5.2)
z
Therefore, we only need to show
R 4 ElHuWﬂR" 1
e — 2 € .
sup 5 =
D12(R)\ {0} V][5 20 €z

and the supremum is attained.
From the definition of £z, it is not difficult to see that the supremum is less than
or equals to 1/£5. Suppose

lullbzn = Z- &2 Ul orn 1
sup -
DL2(R)\{0} IV ul[3 20 ¢z

for some 7 > 1. Then

fuuqu vue DRED\{0).  (5.3)

[l e <
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From the definition of £, we know that for all ¢ > 1, there exists u;, such that

1 (IVull3 e + Zluallf oe) (5-4)

Il > 2y
and HVWHE,M = 1. Due to trace inequality, we know |[u;||gorn < C-
Combining (5.3) with (5.4), we have

1 1 A Z
Er+1 @)HVWH%,M < (o = il ome -

£z Ez+1

Sending 7 to infinity, we have HVuZ-H%M — 0. Contradiction! Therefore 7 = 1.
To see the supremum is attained, one observes that

(

[l [2n — 2+ €7 ul[2
sup PR 1 supyao{(1— &5t 2X2)/S(N)?

DL2(r7)\{0} ||VU||2,R1
= SUP(ggl.z)—mz,\zo{(l - 521 - ZXN?) /S (M)

From our early calculation (see (1.22)), we can easily see that {7 < 1/5;, therefore
the supremum can not be attained at A = 0, that is

lul[ppn = Z - &2 ull? oz (1 =& ZX2)
sup = sup 5
DL2(RT)\{0} HVU’HQ,R1 (€51-2)~ /222> S()\)

for some small v > 0. The existence of a maximum follows from the continuity of
S(A) and Proposition 5.1.
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