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Abstract

In this paper, we establish some general forms of sharp Sobolev inequalities
on the upper half space or any compact Riemannian manifold with smooth
boundary. These forms extend some previous results due to Escobar [11], Li
and Zhu [18].

0 Introduction

In the past several decades, the study of sharp Sobolev inequalities has attracted
the attention of many mathematicians. Not only do those sharp type Sobolev in-
equalities play essential roles in the study of some problems arising from geometry
and physics, but also those inequalities themselves indicate some rich and signifi-
cant phenomena ( for example, under which circumstance the extremal functions
for those inequalities exist).

The sharp Sobolev inequalities for functions vanishing on the boundary are well
understood for manifolds with dimension greater than or equal to 3, see Aubin [3],
Talenti [21], Brezis-Nirenberg [6], Lieb [19], Hebey and Vaugon [14]-[15], Hebey [13],
and the references therein. However, it seems that those sharp Sobolev inequalities
for functions which do not vanish on the boundary still need to be further studied,
even though there are already some interesting results, see Lions [20], Brezis-Lieb [5],
Escobar [11]-[12], Beckner [4], Adimurthi and Yadava [2], Carlen and Loss [8]-[9], Li
and Zhu [17]-[18], and the references therein. One of the most interesting problems
is to study the relations between the L2 norm of the gradient, the boundary Lq
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norm and the interior Lp norm. Here and throughout this paper we always set
q = 2(n− 1)/(n− 2), p = 2n/(n− 2), where n ≥ 3 is the dimension of the manifold.

In this paper, we continue our previous work [17], [18] and give some sharp
relations between the three terms we just mentioned. It turns out that some previous
results are special cases, see Remark 0.2-0.3 and 0.5 below.

Denote Rn
+ = {(x′, xn) : x′ = (x1, x2, ..., xn−1), xn > 0} as the upper half space,

and D1,2(Rn
+) = {u :

∫
Rn

+
|∇u|2 < ∞,

∫
Rn

+
|u|p < ∞}. Let 1/S = (n − 2)/2 ·

(2πn/2/(Γ(n/2)))1/(n−1) be the sharp constant corresponding to the trace inequality,
Z0 = (n−2)C1/(n−1)

n , where Cn =
∫
Rn−1( 1

1+|x|2 )
n−1dx = π(n−1)/2Γ((n−1)/2)/Γ(n−1).

One can check that

Z0 =
1

S
(0.1)

For any ε > 0 and d ∈ R, we define

uε,d(x) = (
ε

ε2 + |x′|2 + |xn − εd|2 )
n−2

2 . (0.2)

Considering three typical manifolds, we have corresponding theorems as follows.
On the upper half space, we have

Theorem 0.1 For any Z ∈ (−1/S, Z0), let

dz =
Z√

Z2
0 − Z2

, (0.3)

and S1(Z) be given by

1

S1(Z)
=

∫
Rn

+
|∇uε,dz |2 + Z(

∫
∂Rn

+
uq

ε,dz
)

2
q

(
∫
Rn

+
up

ε,dz
)2/p

. (0.4)

Then

(
∫

Rn
+

|u|p) 2
p ≤ S1(Z)

( ∫

Rn
+

|∇u|2 + Z(
∫

∂Rn
+

|u|q) 2
q

)
, ∀u ∈ D1,2(Rn

+), (0.5)

and equality holds if and only if u(x) = Cuε,dz for some ε > 0, C ∈ R.
For Z = Z0, let 1/S1 = πn(n − 2)(Γ(n/2)/Γ(n))2/n be the sharp constant of

Sobolev inequality in Rn. Then

(
∫

Rn
+

|u|p) 2
p < S1

( ∫

Rn
+

|∇u|2 + Z0(
∫

∂Rn
+

|u|q) 2
q

)
, ∀u ∈ D1,2(Rn

+). (0.6)
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Remark 0.1 One can check that S1(Z) →∞ as Z → −1/S. An easy consequence
of Theorem 0.1 is that S1(Z) strictly decreases from ∞ to 1/S1 as Z goes from −1/S
to Z0 = 1/S. The strictness of inequality (0.6) is due to the nonexistence of the
extremal function.

Remark 0.2 For Z ≤ 0, this theorem was proved by Escobar in [11]. It seems to
us that his method can not be applied to prove (0.5) for Z > 0.

Let Ω ⊂ Rn (n ≥ 3) be a bounded domain, we have

Theorem 0.2 For any Z ∈ (−1/S, Z0), let dz, S1(Z) be given as in Theorem 0.1.
Then there exists a constant C(Z, Ω) such that

(
∫

Ω
|u|p) 2

p ≤ S1(Z)
( ∫

Ω
|∇u|2 +Z(

∫

∂Ω
|u|q) 2

q

)
+C(Z, Ω)

∫

∂Ω
u2, ∀u ∈ H1(Ω). (0.7)

Remark 0.3 For Z = 0, (0.7) was proved by Y.Y.Li and M.Zhu in [18] and was
partially proved by Adimurthi and S. L. Yadava in [2]. In this case, one can see that
S1(0) = 1/(22/nS1).

Remark 0.4 It is interesting to give some upper bound estimates about the constant
C(Z, Ω). For a general domain (except a ball), it is hard to say whether the extremal
function for (0.7) exists or not.

Let (M, g) be any compact Riemannian manifold with smooth boundary and
dimension n ≥ 3, we have

Theorem 0.3 For any Z ∈ (−1/S, Z0), let dz, S1(Z) be given as in Theorem 0.1.
Then there exists a constant D(Z,M) such that ∀u ∈ H1(M)

(
∫
M |u|pdvg)

2
p

≤ S1(Z)
( ∫

M |∇gu|2dvg + Z(
∫
∂M |u|qdsg)

2
q

)
+ D(Z, M)

( ∫
∂M u2dsg +

∫
M u2dvg

)
.

(0.8)

Remark 0.5 When Z = 0, (0.8) was proved by Y.Y.Li and M.Zhu in [18].

Remark 0.6 We do not know whether (0.7) and (0.8) still hold for Z = Z0 or not.
We tend to believe that it is true, and give the following conjecture.
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Conjecture Let Ω ⊂ Rn be a bounded smooth domain. There exists some constant
C(Ω) > 0 such that

(
∫

Ω
|u|p) 2

p ≤ S1

( ∫

Ω
|∇u|2 + Z0(

∫

∂Ω
|u|q) 2

q

)
+ C(Ω)

∫

∂Ω
u2, ∀u ∈ H1(Ω). (0.9)

Let (M, g) be a compact Riemannian manifold with smooth boundary and dimen-
sion ≥ 3. There exists some constant D(M) such that ∀u ∈ H1(M)

(
∫
M |u|pdvg)

2
p

≤ S1

( ∫
M |∇gu|2dvg + Z0(

∫
∂M |u|qdsg)

2
q

)
+ D(M)

( ∫
∂M u2dsg +

∫
M u2dvg

)
.

(0.10)

Since the upper half space is conformally equivalent to a ball, we know from
Theorem 0.1 that (0.9) holds for some constant C(Ω) when Ω is a ball in Rn.

Remark 0.7 It can be easily seen that if (0.10) held for some large constant D(M),
Hebey and Vaugon’s inequality (see [14]) would be its corollary.

Remark 0.8 In [5], Brezis and Lieb proved that for any bounded domain Ω ⊂ Rn,
there exists a constant C, such that

||u||p,Ω ≤ S
1/2
1 ||∇u||2,Ω + C||u||q,∂Ω, ∀u ∈ H1(Ω).

They asked whether there exists a constant C1, such that

||u||2p,Ω ≤ S1||∇u||22,Ω + C1||u||2q,∂Ω, ∀u ∈ H1(Ω). (0.11)

It is easy to see that (0.11) follows directly from (0.9). Hence the answer to their
question is affirmative when the domain is a ball.

The proof of Theorem 0.1 heavily depends on the conformal invariant property
of the corresponding energy functionals between the upper half space and the unit
ball. The key ingredient is to show that the infimum of the corresponding functional
is attained under the assumption of small energy (see Proposition 1.1 below for
precise statement). We use a new approach which combines some old ideas (blow-
up argument) with some new inequalities initiated by the work of Brezis and Lieb
[5](see corollary 1.2 below). The proofs of Theorem 0.2 and 0.3 also involve this
difficulty; we overcome it by using the same method. Some ingredients in the proofs
of Theorem 0.2 and Theorem 0.3 have already appeared in our previous work [17],
[18] and [22].
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This paper is organized as follows. In Section 1 we give the proof of Theorem
0.1. In Section 2 we prove Theorem 0.2 through an argument by contradiction . In
Section 3 we sketch the proof of Theorem 0.3. In Section 4 we give some discussions
concerning the conjecture and point out the obstacle of proving this conjecture by
the current method. When I was working on this problem, I was informed by Y.Y.Li
about the recent results of Carlen and Loss [9]. It turns out that Theorem 0.1 can
also be derived from their results. This derivation is included in the appendix. It
seems to me that their method can not be applied to general domains.

Throughout this paper, we use C0, C, C1, C2, ..., to represent some various pos-
itive constants, ε, ε0, ε1, ..., δ0, δ, δ1, ..., to represent some various small positive
constants. Without specific mention, we always pass to a limit up to some subse-
quence of ε or α.

Acknowledgment. I would like to thank Y.Y.Li for many valuable discussions
and for informing me about the work of Carlen and Loss [9]. I would like to thank
H.Brezis and Y.Y.Li for their interests in this work and their constant encourage-
ments. I would like to thank E. Carlen and M. Loss for informing me of their work
[8]. This work was completed when I was a Postdoctoral Fellow in the University
of British Columbia. I would like to thank R. Froese, N. Ghoussoub and C. Gui for
their supports.

1 The upper half space and unit ball

For any Z ∈ (−1/S, Z0], we define

IZ(u) =

∫
Rn

+
|∇u|2 + Z(

∫
∂Rn

+
|u|q)2/q

(
∫
Rn

+
|u|p)2/p

, ∀u ∈ D1,2(Rn
+) \ {0}

and

IIZ(u) =

∫
B1
|∇u|2 + Z(

∫
∂B1

|u|q)2/q + n−2
2

∫
∂B1

u2

(
∫
B1
|u|p)2/p

, ∀u ∈ H1(B1) \ {0}.

Due to the conformal invariance, we know

inf
u∈D1,2(Rn

+)\{0}
IZ(u) = inf

u∈H1(B1)\{0}
IIZ(u) := ξZ . (1.1)

The key step in our proof of Theorem 0.1 is to establish the following proposition.

Proposition 1.1 If 0 < ξZ < 1/S1, then inf IZ(u) and inf IIZ(u) are achieved.
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Proof. We prove this proposition by contradiction.
Suppose these infimums are not attained. For any 0 < ε < 1 and u 6= 0, we

define

IIε(u) =

∫
B1
|∇u|2 + Z(

∫
∂B1

|u|qε)2/qε + n−2
2

∫
∂B1

u2

(
∫
B1
|u|pε)2/pε

where and throughout this paper, we set pε = p− ε, qε = q − ε/2. Denote

ξε := inf
u∈H1(B1)\{0}

IIε(u).

In order to derive a contradiction, we need several lemmas.

Lemma 1.1 As ε small enough,

0 ≤ ξε ≤ ξZ .

Proof. ∀δ > 0, there exists a ū ∈ C∞(B1), such that

∫
B1
|∇ū|2 + Z(

∫
∂B1

|ū|q)2/q + n−2
2

∫
∂B1

ū2

(
∫
B1
|ū|p)2/p

≤ ξZ + δ.

Also as ε → 0, ∫
B1
|∇ū|2+Z(

∫
∂B1

|ū|q)2/q+n−2
2

∫
∂B1

ū2

(
∫

B1
|ū|p)2/p

≥
∫

B1
|∇ū|2+Z(

∫
∂B1

|ū|qε )2/qε+n−2
2

∫
∂B1

ū2

(
∫

B1
|ū|pε )2/pε

− δ

≥ ξε − δ.

Combining above two inequalities together we know ξε ≤ ξZ , as ε → 0. If Z ≥ 0, it
is obvious that ξε ≥ 0. If 0 > Z > −1/S, by sharp trace inequality, we know that
for any fixed 0 < δ0 < Z/2 + 1/(2S),

∫

Rn
+

|∇u|2 + (Z − δ0)(
∫

∂Rn
+

|u|q)2/q ≥ 0, ∀ u ∈ D1,2(Rn
+).

It follows from the conformal invariance of the energy that

∫

B1

|∇u|2 + (Z − δ0)(
∫

∂B1

|u|q)2/q +
n− 2

2

∫

∂B1

u2 ≥ 0, ∀u ∈ H1(Ω).

Notice Z − δ0 < 0. We know from the above and Hölder inequality that as ε → 0,
ξε ≥ 0.
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It follows from Lemma 1.1 and the standard variational method that as ε suffi-
ciently small, there exists uε ≥ 0 with ||uε||pε,B1 = 1 such that

IIε(uε) = inf
u∈H1(B1)\{0}

IIε(u) = ξε.

Next lemma is a slight extension of an inequality due to Brezis and Lieb [5].

Lemma 1.2 Let Ω be a bounded domain in Rn, |Ω| = 1, 1 < r ≤ p, s = (n−1)r
n

, then
there exists a constant C(Ω, r), such that

(
∫

Ω
|f |r)1/r ≤ S

1/2
1 (

∫

Ω
|∇f |2)1/2 + C(Ω, r)(

∫

∂Ω
|f |s)1/s, ∀ f ∈ H1(Ω). (1.2)

Further, as r close to 2n/(n− 2), we can choose C(Ω, r) independent of r.

Proof. We only need to show that (1.2) holds for any smooth function f . Let h be
the solution of the following equation:

{
−∆h = 0 in Ω
h = f on ∂Ω

and u = f − h. Then u = 0 on ∂Ω. Therefore

||u||r,Ω ≤ ||u||p,Ω ≤ S
1/2
1 ||∇u||2,Ω. (1.3)

One can easily check that

||∇u||22,Ω = ||∇f ||22,Ω − ||∇h||22,Ω. (1.4)

Also, by Minkowski inequality

||u||r,Ω ≥ ||f ||r,Ω − ||h||r,Ω. (1.5)

Combining (1.3) and (1.4) with (1.5), we have

||f ||r,Ω − ||h||r,Ω ≤ S
1/2
1 (||∇f ||22,Ω − ||∇h||22,Ω)1/2 ≤ S

1/2
1 ||∇f ||2,Ω. (1.6)

We claim:
||h||r,Ω ≤ C(Ω, r)||f ||s,∂Ω

with C(Ω, r) independent of r as r close to 2n/(n− 2).
Lemma 1.2 directly follows from the claim and (1.6). Therefore, we are left to

prove the claim.
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Let φ be the solution of the following equation
{

∆φ = Y in Ω
φ = 0 on ∂Ω

for some Y ∈ Lt(Ω). Then ∫

Ω
hY =

∫

∂Ω
h
∂φ

∂ν
. (1.7)

By elliptic estimates, we have

||∂ijφ||t,Ω ≤ Ct||Y ||t,Ω, ||∇φ||W 1,t(Ω) ≤ Ct||Y ||t,Ω,

thus

||∂φ

∂ν
||β,∂Ω ≤ Ct||Y ||t,Ω (1.8)

where 1/β = n/((n−1)t)−1/(n−1). Also we can choose a uniform Ct if 2n/(n+2) ≤
t ≤ 2. It follows from (1.7) and (1.8) that

∫

Ω
hY ≤ ||h||β′,∂Ω · ||∂φ

∂ν
||β,∂Ω ≤ Ct||f ||β′,∂Ω · ||Y ||t,Ω (1.9)

where 1/β + 1/β′ = 1.
Let 1/r = 1− 1/t, then 1/β′ = n/((n− 1)r), that is β′ = s. Therefore, by (1.9)

∫

Ω
hY ≤ Ct||f ||s,∂Ω · ||Y ||t,Ω.

Claim follows from the above directly.

A quick consequence of the above lemma is the following.

Corollary 1.1 Let Ω ∈ Rn be a bounded domain with |Ω| = 1. There exists a
constant C(Ω), such that as ε < 1/100,

||f ||pε,Ω ≤ S
1/2
1 ||∇f ||2.Ω + C(Ω)||f ||qε,∂Ω, ∀f ∈ H1(Ω). (1.10)

Proof. Let r = pε in Lemma 1.2, then

s =
n− 1

n
· pε = q − n− 1

n
· ε < qε.

Corollary1.1 follows directly from Hölder inequality.

Later on, we will use this corollary in the following setting. We state it as another
corollary.
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Corollary 1.2 Let Ω ∈ Rn be a bounded domain. ∀δ > 0, there exists a constant
C(Ω, δ), such that as ε small enough,

||f ||2pε,Ω ≤ (S1 + δ)||∇f ||22,Ω + C(Ω, δ)||f ||2qε,∂Ω, ∀f ∈ H1(Ω). (1.11)

Proof. Without loss of generality, we assume {0} ∈ Ω and |Ω| = λn. Set Ω0 = Ω/λ
and f0(x) = λ2/(pε−2)f(λx) for x ∈ Ω0. Then due to Corollary 1.1, we have, for
ε < 1/100,

||f0||pε,Ω0 ≤ S
1/2
1 ||∇f0||2.Ω0 + C||f0||qε,∂Ω0 .

By rescaling, we have

||f0||pε,Ω0 = λo(1)||f ||pε,Ω, ||∇f0||2.Ω0 = λo(1)||∇f ||2.Ω, ||f0||qε,∂Ω0 = λo(1)||f ||qε,∂Ω

where o(1) → 0 as ε → 0. Therefore, for any δ > 0, as ε < ε1 < 1/100 for some
small ε1, we have

||f ||pε,Ω ≤ (S
1/2
1 +

δ

2
)||∇f ||2.Ω + C1||f ||qε,∂Ω.

Squaring both sides of the above and using Cauchy-Schwartz inequality we have our
corollary.

We now continue the proof of Proposition 1.1. Since IIε(uε) = ξε and ||uε||pε,B1 =
1, we know that uε satisfies

{ −∆uε = ξεu
pε−1
ε in B1

∂uε

∂ν
= −Z(

∫
∂B1

uqε
ε )2/qε−1uqε−1

ε − n−2
2

uε on ∂B1.
(1.12)

Due to Cherrier [10], we know that uε is smooth up to the boundary. Hence we can
assume uε(xε) = ||u||L∞(B1) for some xε ∈ B1. Since inf IIZ is not attained, we know
that uε(xε) →∞ as ε → 0.

Define 



µε = (uε(xε))
− pε−2

2 , Ωε = B1−xε

µε
,

vε(x) = µ
2

pε−2
ε uε(µεx + xε) for x ∈ Ωε.

(1.13)

Then vε satisfies
{ −∆vε = ξεv

pε−1
ε in Ωε

∂vε

∂ν
= −Z(

∫
∂B1

uqε
ε )2/qε−1vqε−1

ε − n−2
2

µεvε on ∂Ωε.
(1.14)
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Lemma 1.3
lim
ε→0

∫

∂B1

uqε
ε > 0.

Proof. We prove this lemma by contradiction. If not, there exists a subsequence of
ε (we still denote it as ε), s.t.

∫

∂B1

uqε
ε → 0 as ε → 0. (1.15)

From Lemma 1.1 we know: as ε small enough, 0 ≤ ξε ≤ ξZ < 1/S1, thus ||uε||H1(B1) ≤
C uniformly for some constant C. It follows that there exists a u0 ∈ H1(B1) such
that ( after passing to a subsequence of ε)

uε → u0 weakly in H1(B1).

Using Corollary 1.2, we know for some small constant δ0 satisfying 1/(S1 + δ0) > ξZ

that
ξε =

∫
B1
|∇uε|2 + Z(

∫
∂B1

uqε
ε )2/qε + n−2

2

∫
∂B1

u2
ε

≥ 1
S1+δ0

(
∫
B1
|uε|pε)2/pε + oε(1)

= 1
S1+δ0

+ oε(1)

where oε(1) → 0 as ε → 0. We derive a contradiction when ε is small enough.
Lemma 1.3 is established.

Set

T = lim
ε→∞

dist(xε, ∂B1)

µε

. (1.16)

(Recall the notation at the end of the introduction, we define the above limit by
passing to a subsequence of ε.)

Lemma 1.4
T < ∞.

Proof. If T = ∞, we know that vε → v1 in C2(BR(0)) for any R > 1, where v1

satisfies {
−∆v1 = ξ0v

p−1
1 in Rn

v1(0) = 1, 0 ≤ v1 ≤ 1
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and ξ0 = limε→0 ξε (recall our notation: we take this limit up to some subsequence
of ε). From [7], we know that v1(x) = O( 1

|x|n−2 ) as |x| → ∞ and v1(x) ∈ D1,2(Rn).
Multiplying the above equation by v1, we have

∫

Rn
|∇v1|2 = ξ0

∫

Rn
vp

1.

Also by the definition of S1, we know

∫

Rn
|∇v1|2 ≥ 1

S1

(
∫

Rn
vp

1)
2/p.

Notice ξ0 < 1/S1. We conclude that
∫

Rn
vp

1 > 1.

On the other hand, note ||vε||pε,Ωε = µ2/(pε−2)−n/pε
ε ||uε||pε,Ω = µ(n−2)ε/(pε(pε−2))

ε ≤ 1
and vε → v1 in C2(BR(0)), we have

∫
Rn vp

1 ≤ 1. Contradiction. We complete the
proof of Lemma 1.4.

Due to 0 ≤ ξ0 ≤ C, Lemma 1.3 and the fact that Ωε tends to Rn
T = {x = (x′, xn) :

xn > −T}, we know by the standard elliptic estimates that up to a subsequence,
vε → v in C2(BR ∩ Rn

T ), and v satisfies

{ −∆v = ξ0v
p−1, 0 ≤ v ≤ 1 in Rn

T
∂v
∂ν

= −Zavq−1 on ∂Rn
T ,

(1.17)

where a = limε→0(
∫
∂B1

uqε
ε )2/qε−1. From [16] we know that v(x) = O( 1

|x|n−2 ) as |x| →
∞ and v(x) ∈ D1,2(Rn

T ). Therefore, multiplying (1.17) by v, we have

∫
Rn

T
|∇v|2 + Za

∫
∂Rn

T
vq

∫
Rn

T
vp

= ξ0.

Using rescaling, we know

(
∫

∂B1

uqε
ε )2/qε−1 = µ

( 2qε
pε−2

−(n−1))·(1− 2
qε

)
ε (

∫

∂Ωε

vqε
ε )2/qε−1. (1.18)

Since ( 2qε

pε−2
− (n− 1)) · (1− 2

qε
) > 0 and µε → 0, we know

(
∫
∂Rn

T
vq)2/q−1 ≥ limε→0(

∫
∂Ωε

vqε
ε )2/qε−1

≥ a.
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If Z ≤ 0, noticing ||v||p,Rn
T
≤ 1, we have

∫
Rn
T

|∇v|2+Z(
∫

∂Rn
T

vq)2/q

(
∫
Rn
T

vp)2/p ≤
∫
Rn
T

|∇v|2+Z·a·
∫

∂Rn
T

vq

∫
Rn
T

vp

= ξ0 ≤ ξZ .

Set v̄(x′, xn) = v(x′, xn − T ), we know that inf IZ is attained by v̄, contradiction.
Thus we complete the proof of Proposition 1.1 in the case of Z ≤ 0.

Now we consider the case Z > 0. Using rescaling, we have

(
∫
Rn

T
vp)1− 2

p ≤ limε→0(
∫
Ωε

vpε
ε )1− 2

pε

≤ limε→0 µ
(n−2)ε

pε
ε .

(1.19)

Let

a1 = lim
ε→0

µ
( 2qε

pε−2
−(n−1))·(1− 2

qε
)

ε , b = ||v||p−2
p,Rn

T
.

Note as ε small enough

(n− 2)ε

pε

> (
2qε

pε − 2
− (n− 1)) · (1− 2

qε

) > 0, (1.20)

we know b ≤ a1 ≤ 1.
In order to complete the proof of Proposition 1.1, we still need one more lemma.

Lemma 1.5 ∫

∂Ωε

vqε
ε →

∫

∂Rn
T

vq as ε → 0. (1.21)

We relegate the proof of this lemma at the end of this Section and continue our
proof of Proposition 1.1.

It follows from the above lemma and (1.18) that a = a1||v||2−q
q,∂Rn

T
. Therefore

∫
Rn
T

|∇v|2+Z(
∫

∂Rn
T

vq)2/q

(
∫
Rn
T

vp)2/p ≤
∫
Rn
T

|∇v|2
∫
Rn
T

vp +
Z·b·(

∫
∂Rn

T

vq)2/q

∫
Rn
T

vp

≤
∫
Rn
T

|∇v|2+Z·a·
∫

∂Rn
T

vq

∫
Rn
T

vp

= ξ0 ≤ ξZ .

Set v̄(x′, xn) = v(x′, xn − T ), we know that inf IZ is attained by v̄, contradiction.
This completes the proof of Proposition 1.1.
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Now we are ready to give the proof of Theorem 0.1.
Proof of Theorem 0.1. We first claim: if Z < Z0, inf IZ < 1/S1.

For any d > 0, we define

vd(x) = (
1

1 + |x′|2 + (xn − d)2
)

n−2
2 .

Direct calculation shows

(
∫

∂Rn
+

vq
d)

2/q = C
n−2
n−1
n (1+ d2)−

n−2
2 , (

∫

Rn
+

vp
d)

2/p =
(
DnEn−Dn

∫ ∞

d
(1+ t2)−

n+1
2 dt

)2/p

,

and ∫
Rn

+
|∇vd|2 = (n− 2)2CnFn − (n− 2)2Cn

∫∞
d (1 + t2)−

n−1
2 dt

−(n− 2)2DnEn + (n− 2)2Dn

∫∞
d (1 + t2)−

n+1
2 dt,

where

Cn =
∫

Rn−1
(

1

1 + |x′|2 )n−1dx′, Dn =
∫

Rn−1
(

1

1 + |x′|2 )ndx′,

En =
∫ +∞

−∞
(1 + t2)−

n+1
2 dt, Fn =

∫ +∞

−∞
(1 + t2)−

n−1
2 dt

satisfying the relation

(n− 2)2CnFn − (n− 2)2DnEn

(DnEn)2/p
=

1

S1

.

It follows that as d large enough,

IZ(vd) =
1

S1

+
1

(DnEn)2/p
· (ZC

n−2
n−1
n − (n− 2)Cn)d−(n−2) + o(1)d−(n−2), (1.22)

where o(1) → 0 as d → ∞. Note Z < Z0, ZC
n−2
n−1
n − (n − 2)Cn < 0. Choosing d

sufficiently large we establish the claim.
Due to Proposition 1.1, we know that for −1/S < Z < Z0 , inf IZ is attained

by some uz ∈ D1,2(Rn
+). Without loss of generality we can assume that uz satisfies

||uz||p,Rn
+

= 1 and uz ≥ 0. Then one can easily see that uz satisfies the following
equation: { −∆uz = ξZup−1

z in Rn
+

∂uz

∂ν
= −Z(

∫
∂Rn

+
uq

z)
2/q−1uq−1

z on ∂Rn
+.

(1.23)
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Let vz = kzuz with kz = ( ξZ

n(n−2)
)(n−2)/4. Then vz satisfies:

{ −∆vz = n(n− 2)vp−1
1 in Rn

+
∂vz

∂ν
= −Z(

∫
∂Rn

+
vq

z)
2/q−1vq−1

z on ∂Rn
+.

(1.24)

From [16] we know

vz = (
εz

ε2
z + |x′|2 + (t− tz)2

)
n−2

2 ,

where
tz = (n− 2)−1εzZ(

∫

∂Rn
+

vq
z)

2/q−1

for some εz > 0. Direct computation yields

(
∫

∂Rn
+

vq
z)

2/q−1 = C
− 1

n−1
n (1 + (

tz
εz

)2)1/2.

Combining the above two identities together, we have

Z =
(n− 2)C

1
n−1
n

tz
εz

(1 + ( tz
εz

)2)1/2
.

This gives the proof of Theorem 0.1 for −1/S < Z < Z0.
If Z = Z0, we will show that

inf IZ0(u) =
1

S1

and the infimum can not be attained through an argument by contradiction. It is well
known that inf IZ0(u) ≤ 1/S1. If inf IZ0(u) < 1/S1, due to Proposition 1.1, we know
that there exists a u0 ≥ 0 with ||u0||p,Rn

+
= 1 such that IZ0(u0) = inf IZ0(u) := ξZ0 .

It follows that u0 satisfies

{ −∆u0 = ξZ0u
p−1
0 in Rn

+
∂u0

∂ν
= −Z0(

∫
∂Rn

+
uq

0)
2/q−1uq−1

0 on ∂Rn
+.

It can be shown as the above that u0 = (ξZ0/(n(n− 2)))−(n−2)/4vZ0 , where

vZ0 = (
ε0

ε2
0 + |x′|2 + (t− t0)2

)
n−2

2



15

with
t0 = (n− 2)−1ε0Z0(

∫

∂Rn
+

vq
Z0

)2/q−1

for some ε0 > 0. Therefore

Z0 =
(n− 2)C

1
n−1
n

t0
ε0

(1 + ( t0
ε0

)2)1/2
< (n− 2)C

1
n−1
n = Z0.

Contradiction! The nonexistence of the extremal functions also follows from the
same argument. This completes the proof of Theorem 0.1.

We are left to prove Lemma 1.5. In order to prove Lemma 1.5, we need the
following inequality. One can find a proof of such inequality in Adam’s book [1](with
a slight modification).

Lemma 1.6 Let Ω be a bounded domain in Rn. For all γ > 0, ε > 0, there exists a
constant Ĉ(γ, ε) depending on γ and ε such that

(
∫

∂Ω
|u|qεds)

2
qε ≤ γ

∫

Ω
|∇u|2dv + Ĉ(γ, ε)(

∫

Ω
|u|pεdv)

2
pε , ∀ u ∈ H1(Ω). (1.25)

Further, if ε is close to 0, one can choose Ĉ(γ, ε) independent of ε.

Proof of Lemma 1.5. Since ||uε||H1 < C, we know that uε → u0 weakly in
H1(B1) for some u0 ≥ 0. Noticing limε→0(

∫
∂B1

uqε
ε )2/qε−1 = a > 0, we know that u0

satisfies {
−∆u0 = ξ0u

p−1
0 , 0 ≤ u0 ≤ 1, in B1

∂u0

∂ν
= −Zauq−1

0 − n−2
2

u0 on ∂B1.
(1.26)

Set uε,1 = uε − u0, then uε,1 → 0 weakly in H1(B1). Since inf IIZ is not attained,
||uε,1||∞ →∞. Let xε,1 be the maximal point of uε,1, µε,1 = uε,1(xε,1)

(pε−2)/2 and

vε,1(x) = µ
2

pε−2

ε,1 uε,1(µε,1x + xε,1) for x ∈ Ωε,1 =
B1 − xε,1

µε,1

.

As before, we know, that up to a subsequence, vε,1 → v1 in C2(BR ∩ Rn
T1

), and
v1 satisfies

{ −∆v1 = ξ0v1
p−1, 0 ≤ v1 ≤ 1, v1(0) = 1, in Rn

T1
∂v1

∂ν
= −Zav1

q−1 on ∂Rn
T1

,
(1.27)
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where

T1 = lim
ε→∞

dist(xε,1, ∂B1)

µε,1

.

For any R >> 1, define

u(1)
ε = µ

− 2
pε−2

ε,1 v1(µ
−1
ε,1(x− xε,1)) · η(µ−1

ε,1(x− xε,1)), x ∈ B1,

where η(x) is a cutoff function with η(x) = 1 for x ∈ BR(0) and η(x) = 0 in Bc
2R(0).

Due to (1.18) and (1.19), we only need to show that u0 = 0 (therefore uε,1 = uε,
xε,1 = xε and T1 = T ) and

||uε,1 − u(1)
ε ||pε,B1 , ||uε,1 − u(1)

ε ||qε,∂B1 = oε(1) + oR(1) (1.28)

where oε(1) → 0 as ε → 0 and oR(1) → 0 as R →∞.
It is easy to see that ||uε,1||pε,B1 ≥ C0 > 0 as ε small enough. Suppose that there

exists some δ0 > 0, such that

||uε,1 − u(1)
ε ||pε,B1 > δ0. (1.29)

Then we define uε,2 = uε − u0 − u(1)
ε . Easy to see that uε,2 → 0 weakly in H1(B1).

Since ||uε,2||pε,B1 ≥ δ0, we know ||uε,2||∞ →∞. Let xε,2 be the maximal point of uε,2,
µε,2 = uε,2(xε,2)

(pε−2)/2 and

vε,2(x) = µ
2

pε−2

ε,2 uε,2(µε,2x + xε,2) for x ∈ Ωε,2 =
B1 − xε,2

µε,2

.

One observes that dist(xε,1, xε,2) > 100Rµε,1 for any fixed R as ε → 0. Also µε,1 ≤
µε,2. Therefore, we know as before that, up to a subsequence, vε,2 → v2 in C2(BR ∩
Rn

T2
), and v2 satisfies

{ −∆v2 = ξ0v2
p−1, 0 ≤ v2 ≤ 1, v2(0) = 1, in Rn

T2
∂v2

∂ν
= −Zav2

q−1 on ∂Rn
T2

,
(1.30)

where

T2 = lim
ε→∞

dist(xε,2, ∂B1)

µε,2

.

Define

u(2)
ε = µ

− 2
pε−2

ε,2 v2(µ
−1
ε,2(x− xε,2))η(µ−1

ε,2(x− xε,2)), x ∈ B1,

where η(x) is the cutoff function as the above ( η(x) = 1 for x ∈ BR(0) and η(x) = 0
in Bc

2R(0)).
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Without loss of generality, we can assume that for any 0 < δ << 1, as ε → 0

||uε,2 − u(2)
ε ||pε,B1 ≤ δ. (1.31)

Otherwise we just keep this process going. Since ||uε||pε, B1 = 1, we know this process
must stop after several steps (depends on δ).

It is easy to check that

||u0 + u(1)
ε + u(2)

ε ||qε

qε,∂B1
= ||u0||qε

qε,∂B1
+ ||u(1)

ε ||qε

qε,∂B1
+ ||u(2)

ε ||qε

qε,∂B1
+ oε(1) + oR(1),

and

||u0 + u(1)
ε + u(2)

ε ||pε

pε,B1
= ||u0||pε

pε,B1
+ ||u(1)

ε ||pε

pε,B1
+ ||u(2)

ε ||pε

pε,B1
+ oε(1) + oR(1).

Combining with (1.31) and using Lemma 1.6, we have

1− δ − oε(1)− oR(1) ≤ ||u0||pε

pε,B1
+ ||u(1)

ε ||pε

pε,B1
+ ||u(2)

ε ||pε

pε,B1
≤ 1 + δ + oε(1) + oR(1)

and

a
q

2−q−c(δ)−oε(1)−oR(1) ≤ ||u0||qε

qε,∂B1
+||u(1)

ε ||qε

qε,∂B1
+||u(2)

ε ||qε

qε,∂B1
≤ a

q
2−q +c(δ)+oε(1)+oR(1)

where c(δ) → 0 as δ → 0.
Define

α0 = ||u0||pε
pε

, β0 = ||u0||qε
qε
/||uε||qε

qε
,

and
αi = ||u(i)

ε ||pε
pε

, βi = ||u(i)
ε ||qε

qε
/||uε||qε

qε
for i = 1, 2.

Therefore

1− δ − oε(1)− oR(1) ≤ α0 + α1 + α2 ≤ 1 + δ + oε(1) + oR(1) (1.32)

1− c′(δ)− oε(1)− oR(1) ≤ β0 + β1 + β2 ≤ 1 + c′(δ) + oε(1) + oR(1) (1.33)

where c′(δ) → 0 as δ → 0.
It follows from (1.26), (1.27) and (1.30) that

||∇u0||22,B1
+ Za||u0||qq,∂B1

= ξ0||u0||pp,B1
,

||∇vi||22,R+
Ti

+ Za||vi||qq,∂R+
Ti

= ξ0||vi||pp,R+
Ti

for i = 1, 2.
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Using (1.18), (1.19), (1.20) and the above, we have

||∇u0||22,B1
+ Zβ

1− 2
q

0 ||u0||2q,∂B1
= ξ0α

1− 2
p

0 ||u0||2p,B1
+ oε(1),

||∇vi||22,R+
Ti

+ Zβ
1− 2

q

i ||vi||2q,∂R+
Ti

≤ ξ0α
1− 2

p

i ||vi||2p,R+
Ti

+ oε(1) + oR(1) for i = 1, 2.

Since inf IZ ≥ ξ0 and αi ≤ 1, we know that as ε → 0 and R →∞,

β
1− 2

q

i ≤ α
1− 2

p

i for i = 0, 1, 2. (1.34)

Noticing q < p and α1, α2 are larger than some fixed number, we derive a contradic-
tion due to (1.32), (1.33) and (1.34) when we choose δ suitable small and R suitable
large. Thus (1.29) is false, that is: as ε → 0,

||uε,1 − u(1)
ε ||pε,B1 → 0.

Using Lemma 1.6, we know that (1.28) holds. Similarly, we can show that u0 = 0.
Lemma 1.5 is established.

2 Domain case

In this section, we assume that Ω is a smooth bounded domain in Rn and give the
proof of Theorem 0.2.

First we present a rough inequality with a slight larger constant than the sharp
one S1(Z) in Theorem 0.2. However, the case Z = Z0 is included.

Proposition 2.1 Let Z ∈ (−1/S, Z0]. For any δ > 0, there exists C(δ) > 0 such
that

(
∫

Ω
|u|p) 2

p ≤ (S1(Z)+δ)
( ∫

Ω
|∇u|2+Z(

∫

∂Ω
|u|q) 2

q

)
+C(δ)

∫

∂Ω
u2, ∀u ∈ H1(Ω). (2.1)

When Z > 0, due to the positive Lq term in the right hand side of (2.1), we
can not prove this inequality directly from Theorem 0.1 via the partition of unit,
neither can we prove it by a similar argument used in [17] and [18]. Here, we again
use blowup argument to prove this proposition.



19

Proof. We prove it by contradiction. Assume (2.1) is not true, that is, there exists
δ1 > 0 such that ∀α > 1,

inf
u∈H1(Ω)

IZ,α(u) := inf
u∈H1(Ω)

∫
Ω |∇u|2 + Z(

∫
∂Ω |u|q)2/q + α

∫
∂Ω u2

(
∫
Ω |u|p)2/p

:= ξZ,α <
1

S1(Z) + δ1

.

(2.2)
Let ᾱ be some positive constant such that

1

S
||u||2q,∂Ω ≤ ||∇u||22,Ω + ᾱ||u||22,∂Ω, ∀u ∈ H1(Ω). (2.3)

The existence of such ᾱ was shown in [17].

Lemma 2.1 If Z ≥ 0, under condition (2.2), inf IZ,α is achieved; If −1/S < Z < 0,
for any fixed α > ᾱ, under condition (2.2), inf IZ,α is achieved.

Proof. This can be proved in a similar way as that of Proposition 1.1. We sketch
the proof here for readers’ convenience. For u 6= 0, define

Iε(u) =

∫
Ω |∇u|2 + Z(

∫
∂Ω |u|qε)2/qε + α

∫
∂Ω u2

(
∫
Ω |u|pε)2/pε

.

If Z ≥ 0, or −1/S < Z < 0 and α > ᾱ, as before, we know Iε(u) ≥ 0. The standard
variational method shows that ∃ uε ≥ 0 with ||uε||pε = 1 such that

Iε(uε) = inf Iε(u) := ξε.

We want to show that ||uε||∞ ≤ C. Lemma 2.1 follows from this fact easily.
Suppose ||uε||∞ →∞ up to a subsequence. Easy to see that uε satisfies

{ −∆uε = ξεu
pε−1
ε in Ω

∂uε

∂ν
= −Z(

∫
∂Ω uqε

ε )2/qε−1uqε−1
ε − αuε on ∂Ω.

(2.4)

By [10], we know that there exists a xε ∈ Ω such that uε(xε) = ||uε||∞ →∞. Define





µε = (vε(xε))
− pε−2

2 , Ωε = Ω−xε

µε
,

vε(x) = µ
2

pε−2
ε uε(µεx + xε) for x ∈ Ωε.

Then vε satisfies
{ −∆vε = ξεv

pε−1
ε , 0 ≤ vε ≤ 1, v(0) = 1, in Ωε

∂vε

∂ν
= −Z(

∫
∂Ω uqε

ε )2/qε−1vqε−1
ε − αµεvε on ∂Ωε.

(2.5)
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As in the proof of Proposition 1.1 (also we need to use (2.3) when Z < 0), we can
show that when Z ≥ 0, or −1/S < Z < 0 and α > ᾱ,

0 ≤ lim
ε→0

ξε := ξ0 ≤ ξZ,α <
1

S1(Z) + δ1

(2.6)

and ∫

∂Ω
uqε

ε ≥ C, T := lim
ε→∞

dist(xε, ∂Ω)

µε

< ∞. (2.7)

It is easy to see α||uε||2,∂Ω ≤ C. Combining this with (2.7) and the definition of µε,
we have

αµα ≤ αµα

C

∫

∂Ω
uqε

ε ≤ α

C

∫

∂Ω
u2

ε ≤ C. (2.8)

Set C1 = limε→0 αµε. By standard elliptic estimates, from (2.5), (2.7) and (2.8), we
know that vε → v in C2(BR ∩ Rn

T ), and v satisfies

{ −∆v = ξ0v
p−1, 0 ≤ v ≤ 1, v(0) = 1, in Rn

T
∂v
∂ν

= −Zavq−1 − C1v on ∂Rn
T .

(2.9)

where a = limε→0(
∫
∂Ω uqε

ε )2/qε−1. If Z ≤ 0, notice that ||v||p,Rn
T
≤ 1 and (

∫
∂Rn

T
vq)2/q−1 ≥

a (see (1.18) for details), we have
∫
Rn
T

|∇v|2+Z(
∫

∂Rn
T

vq)2/q

(
∫
Rn
T

vp)2/p

≤
∫
Rn
T

|∇v|2+Za
∫

∂Rn
T

vq

∫
Rn
T

vp ≤ ξ0 < 1
S1(Z)

.

This contradicts to Theorem 0.1.
If Z > 0, slightly modifying the proof of Lemma 1.5 (we need to use Theorem

0.1 here), we can show that as ε → 0
∫

∂Ωε

vqε
ε →

∫

∂Rn
T

vq.

Then following the proof of Proposition 1.1 closely, we can get

∫
Rn

T
|∇v|2 + Z(

∫
∂Rn

T
vq)2/q

(
∫
Rn

T
vp)2/p

≤ ξ0 <
1

S1(Z)
.

This again contradicts to Theorem 0.1. We thereby complete the proof of Lemma
2.1.
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As α > ᾱ, without loss of generality, we can assume that inf IZ,α(u) = IZ,α(uα)
with uα ≥ 0 and ||uα||p,Ω = 1. It is easy to see that uα satisfies

{ −∆uα = ξZ,αup−1
α in Ω

∂uα

∂ν
= −Z(

∫
∂Ω uq

α)2/q−1uq−1
α − αuα on ∂Ω,

(2.10)

and
α||uα||2,∂Ω ≤ C. (2.11)

As in the proof of Lemma 1.3, due to ξZ,α < 1/(S1 + δ1), we know that there exists
a constant C > 0, such that ∫

∂Ω
uq

α ≥ C. (2.12)

Due to Cherrier, we know that uα is smooth up to the boundary. Let uα(xα) =
||uα||∞ for some xα ∈ Ω, and define





µα = (uα(xα))−
p−2
2 , Ωα = (Ω− xα)/µα,

vα(x) = µ
2

p−2
α uα(µαx + xα), x ∈ Ωα.

(2.13)

Then vα satisfies
{ −∆vα = ξZ,αvp−1

α , 0 ≤ vα ≤ 1, v(0) = 1, in Ωα
∂vα

∂ν
= −Z(

∫
∂Ωα

vq
α)2/q−1vq−1

α − αµαvα on ∂Ωα.
(2.14)

From (2.11), (2.12) and the definition of µα, we know that

αµα ≤ αµα

C

∫

∂Ω
uq

α =
α

C

∫

∂Ω
u2

α ≤ C.

Set C2 = limα→∞αµα ≥ 0. Thus ||uα||∞ → ∞. Also as in the proof of Proposition
1.1, due to ξZ,α < 1/(S1 + δ1), we know

lim
α→∞

dist(xα, ∂Ω)

µα

= T < ∞. (2.15)

By standard elliptic estimates, we know that vε → v in C2(BR ∩ Rn
T ), and v 6= 0

satisfies { −∆v = ξ∞vp−1, 0 ≤ v ≤ 1, v(0) = 1, in Rn
T

∂v
∂ν

= −Za1v
q−1 − C2v on ∂Rn

T

(2.16)

where ξ∞ = limα→∞ ξZ,α ≤ 1/(S1(Z) + δ1), a1 = limα→∞(
∫
∂Ωα

vq
α)2/q−1. If Z ≤ 0,

one can easily see as before that
∫
Rn

T
|∇v|2 + Z(

∫
∂Rn

T
vq)2/q

(
∫
Rn

T
vp)2/p

≤
∫
Rn

T
|∇v|2 + Z(

∫
∂Rn

T
vq)2/q + C2

∫
∂Rn

T
v2

∫
Rn

T
vp

= ξ∞ <
1

S1(Z)
.
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If Z > 0, similarly, using Theorem 0.1, we can prove as in the proof of Lemma 1.5
that

lim
α→∞(

∫

∂Ωα

vq
α)2/q−1 = (

∫

∂Rn
T

vq)2/q−1,

thus we also have
∫
Rn

T
|∇v|2 + Z(

∫
∂Rn

T
vq)2/q

(
∫
Rn

T
vp)2/p

≤
∫
Rn

T
|∇v|2 + Z(

∫
∂Rn

T
vq)2/q + C2

∫
∂Rn

T
v2

∫
Rn

T
vp

= ξ∞ <
1

S1(Z)
.

Both of the above two inequalities contradict to Theorem 0.1. Thus the proof of
Proposition 2.1 is completed.

From now on, we begin to prove Theorem 0.2 through an argument by contra-
diction. Note that we assume Z < Z0, thus 1/S1(Z) < 1/S1.

Suppose Theorem 0.2 is false, then for any α > ᾱ,

inf
H1(Ω)

Iα(u) = inf
H1(Ω)

∫
Ω |∇u|2 + Z(

∫
∂Ω |u|q)2/q + α

∫
∂Ω u2

(
∫
Ω |u|p)2/p

:= ξα <
1

S1(Z)
. (2.17)

From the proof of Proposition 2.1, we know that under assumption (2.17),
inf Iα(u) is attained. Without loss of generality, we assume inf Iα(u) = Iα(uα)
with uα ≥ 0 and ||uα||p,Ω = 1. It is easy to see that uα satisfies

{ −∆uα = ξαup−1
α in Ω

∂uα

∂ν
= −Z(

∫
∂Ω uq

α)2/q−1uq−1
α − αuα on ∂Ω.

(2.18)

Lemma 2.2 As α →∞,

α||uα||22,∂Ω → 0, ξα → 1

S1(Z)
. (2.19)

Proof. From (2.17), Proposition 2.1 and ||uα||p,Ω = 1, we know that for any δ > 0,
there exists a constant C(δ) such that

1 + δ
S1(Z)

≥ (S1(Z) + δ)ξα

= (S1(Z) + δ)(||∇uα||22,Ω + Z||uα||2q,∂Ω + α||uα||22,∂Ω)
≥ 1 + (α(S1(Z) + δ)− C(δ))||uα||22,∂Ω.

Thus

1 +
δ

S1(Z)
≥ (S1(Z) + δ) lim sup

α→∞
ξα ≥ 1 + (S1(Z) + δ) lim sup

α→∞
α‖uα‖2

2,∂Ω,
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1 +
δ

S1(Z)
≥ (S1(Z) + δ) lim inf

α→∞ ξα ≥ 1 + (S1(Z) + δ) lim inf
α→∞ α‖uα‖2

2,∂Ω.

Sending δ → 0, we have our lemma.

Since 1/S1(Z) < 1/S1, as in the proof of Lemma 1.3, we have the following.

Lemma 2.3 There exists a constant C > 0 such that
∫

∂Ω
uq

α ≥ C. (2.20)

Remark 2.1 Condition Z < Z0 (thus 1/S1(Z) < 1/S1) is essential in the proof of
(2.20). Actually, if Z = Z0, we can show that

∫
∂Ω uq

α → 0 as α →∞. More details
will be discussed in Section 4.

Since uα satisfies (2.18), due to Cherrier, we know that uα is smooth up to the
boundary. Let uα(xα) = ||u||∞ for some xα ∈ Ω, and define





µα = (uα(xα))−
p−2
2 , Ωα = (Ω− xα)/µα,

vα(x) = µ
2

p−2
α uα(µαx + xα) for x ∈ Ωα.

(2.21)

Then vα satisfies
{ −∆vα = ξαvp−1

α , 0 ≤ v ≤ 1, v(0) = 1 in Ωα
∂vα

∂ν
= −Z(

∫
∂Ωα

vq
α)2/q−1vq−1

α − αµαvα on ∂Ωα.
(2.22)

Combining (2.19) with (2.20), as being shown in (2.8), we have

αµα → 0. (2.23)

Also if we set limα→∞dist(xα, ∂Ω)/µα = T , due to 1/S1(Z) < 1/S1, as before, we
know T < ∞.

By standard elliptic estimates we know that vα → v in C3(Ωα ∩ BR(0)) for all
R > 1. And again, using the argument in the proof of Lemma 1.5 (also we need to
use Theorem 0.1 here), we know

lim
α→∞

∫

Ωα

|vα − v|p = lim
α→∞

∫

Ωα

|∇vα −∇v|2 = lim
α→∞

∫

∂Ωα

|vα − v|q = 0. (2.24)

It follows that
lim

α→∞(
∫

∂Ωα

vq
α)2/q−1 = (

∫

∂Rn
T

vq)2/q−1,
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and v satisfies
{ −∆v = 1

S1(Z)
vp−1, 0 ≤ v(x) ≤ 1, v(0) = 1, in Rn

T ,
∂v
∂ν

= −Z(
∫
∂Rn

T
vq)2/q−1vq−1 on ∂Rn

T .
(2.25)

If Z ≥ 0, it follows from [16] that

v = (
1

1 + c(n)(|x′|2 + |xn|2))
n−2

2 (2.26)

where c(n) = 1/(S1(Z)(n− 2)n).
If Z < 0, due to 1/S1(Z) < 1/(22/nS1), one can check as in the proof of Lemma

1.4 that T = 0. Due to (2.24), we know ||v||p,Rn
+

= 1. It follows from the proof of
Theorem 0.1 that

v = (
εz

ε2
z + |x′|2 + (xn − εzdz)2

)
n−2

2 (2.27)

where dz satisfies (0.3), εz = (Z2
0 − Z2)/Z2

0 .
We are ready to give a L∞ estimate on vα through the Moser iteration method

as we did in [17] and [18]. First, Let’s recall that the conformal Laplacian operator
Lg and the conformal boundary operator Bg corresponding to metric g are given by

{
Lgψ = ∆gψ − a(n)Rgψ,

Bgψ = ∂gψ
∂ν

+ b(n)Hgψ,
(2.28)

where a(n) = n−2
4(n−1)

, b(n) = n−2
2

, Rg is the scalar curvature of Ω, and Hg is the

mean curvature of ∂Ω with respect to the inner normal of ∂Ω (e.g., the unit ball in
Rn has positive mean curvature).

We write g0 as the standard Euclidean metric. Let v(x) be given by (2.26) or
(2.27), and ĝ = v4/(n−2)g0, i.e. ĝijdxidxj = v4/(n−2)dxidxi. Then for all ψ ∈ C∞(Ωα)

{
Lĝ(ψ/v) = v−(n+2)/(n−2)Lg0(ψ) in Ωα,
Bĝ(ψ/v) = v−n/(n−2)Bg0(ψ) on ∂Ωα.

(2.29)

Let ψ = vα in (2.29) and write wα = vα/v, we have
{

∆g0vα = v(n+2)/(n−2)(∆ĝwα − a(n)Rĝwα) in Ωα,
∂g0vα

∂ν
+ b(n)Hg0uα = vn/(n−2)(

∂ĝwα

∂ν
+ b(n)Hĝwα) on ∂Ωα.

(2.30)

Let ψ = v in (2.29), we get
{ −a(n)Rĝv

(n+2)/(n−2) = ∆g0v

b(n)Hĝv
n/n−2 =

∂g0v

∂ν
+ b(n)Hg0v.

(2.31)
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Combining (2.30), (2.31) with (2.22), we have

{ −∆ĝwα = ξαwp−1
α + ∆g0v/v(n+2)/(n−2) · wα in Ωα,

∂ĝwα

∂ν
= −Z(

∫
∂Ω vq

α)2/q−1wq−1
α − (αµα/v2/(n−2) + ∂v

∂ν
/vn/(n−2))wα on ∂Ωα.

(2.32)
By a similar calculation to the proof of Lemma 2.3.1 in [22] ( see also [18]), we have,
as α large enough, that

αµα/v2/(n−2) +
∂v

∂ν
/vn/(n−2) ≥ 0, x ∈ ∂Ωα.

Thus wα satisfies

{ −∆ĝwα ≤ ξαwp−1
α in Ωα,

∂ĝwα

∂ν
≤ −Z(

∫
∂Ω vq

α)2/q−1wq−1
α on ∂Ωα.

(2.33)

Note Z may be a negative number here.
Define Θα = {y : y = x/|x|2, x ∈ Ωα}, y = x/|x|2,Wα(y) = wα(x) and g̃(y) =

ĝ(x). Then we have

{ −∆g̃Wα ≤ ξαW p−1
α in Θα,

∂g̃Wα

∂ν
≤ −Z(

∫
∂Ω vq

α)2/q−1W q−1
α on ∂Θα.

(2.34)

If we write g̃(y) = g̃ij(y)dyidyj, due to g̃(y) = ĝ(x) = v4/(n−2)g0, we know g̃ij =
|x|4v4/(n−2)δij. Thus, there exists a C > 0, such that 1/C ≤ g̃ij(y) ≤ C for y ∈
Θα ∩B1(0).

Using these notations, we rewrite (2.24) in the following setting.

Lemma 2.4

lim
α→∞

∫

Θα

|Wα − 1|pdvg̃ = lim
α→∞

∫

∂Θα

|Wα − 1|qdsg̃ = 0. (2.35)

Now we focus on proving the following proposition.

Proposition 2.2 There exists a constant C > 0 such that, ∀α > ᾱ,

vα ≤ Cv for x ∈ Ω̄α, (2.36)

where v is given by (2.26) or (2.27), depending on the value of Z.
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Proof. We only need to show that (2.36) holds for α large, thus, without loss of
generality, we can assume wα = vα/v satisfies (2.33). Due to the fact that vα → v
in C3(Ωα ∩ BR(0)) for all R > 1 , we only need to show that (2.36) holds for |x|
large, that is to show Wα ≤ C for |y| small.

Let η be some smooth cutoff function with compact support in B1(0). Mul-
tiplying (2.34) by W k

αη2 for k > 1 and integrating by parts, we obtain (since
ξα, Z(

∫
∂Ωα

vq
α)2/q−1 ≤ C)

∫
Θα
∇g̃Wα · ∇g̃(W

k
αη2)dvg̃

≤ ξα

∫
Θα

W p−1+k
α η2dvg̃ − Z(

∫
∂Ωα

vq
α)2/q−1 · ∫∂Θα

W q−1+k
α η2dsĝ

≤ C
∫
Θα

W p−1+k
α η2dvg̃ + C

∫
∂Θα

W q−1+k
α η2dsĝ.

Direct computation yields:

∫
Θα
∇g̃Wα · ∇g̃(W

k
αη2)dvg̃

= 4k
(k+1)2

∫
Θα
|∇g̃(W

k+1/2
α η)|2dvg̃ + k−1

(k+1)2

∫
Θα

W k+1
α ∆g̃η

2dvg̃

− 4k
(k+1)2

∫
Θα

W k+1
α |∇g̃η|2dvg̃ − k−1

(k+1)2

∫
∂Θα

W k+1
α ∇g̃η

2 · νdsg̃.

We derive from the last two inequalities that

∫
Θα
|∇g̃(W

k+1/2
α η)|2dvg̃

≤ ∫
Θα

W k+1
α (|∆g̃η

2|+ |∇g̃η|2)dvg̃ + k−1
4k

∫
∂Θα

W k+1
α ∇g̃η

2 · νdsg̃

+C(k+1)2

4k

∫
Θα

W p−1+k
α η2dvg̃ + C(k+1)2

4k

∫
∂Θα

W q−1+k
α η2dsg̃.

(2.37)

Set, for 0 < δ < 1/2 (δ will be chosen later),

Ri = (1 +
1

2i−1
)δ, i = 1, 2, 3, · · · . (2.38)

we can choose some smooth cutoff function ηi satisfying
{

ηi(y) = 1, |y| < Ri+1; ηi(y) = 0, |y| > Ri;
|∇g̃ηi| ≤ C2i, |∇2

g̃ηi| ≤ C4i.

Taking η = ηi in (2.37) and using Sobolev embedding theorem (see Appendix A in
[17]) we reach

{ ∫
Θα∩BRi

(W (k+1)/2
α ηi)

pdvg̃

}2/p

+
{ ∫

∂Θα∩BRi
(W (k+1)/2

α ηi)
qdsg̃

}2/q

≤ 4iC
∫
Θα∩BRi

W k+1
α dvg̃ + 2iC

∫
∂Θα∩BRi

W k+1
α dsg̃

+C(k+1)2

k

∫
Θα∩BRi

W p−1+k
α dvg̃ + C(k+1)2

k

∫
∂Θα∩BRi

W q−1+k
α dsg̃.

(2.39)
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It follows from Lemma 2.4 that for any ε0 > 0, there exists a δ0 > 0 such that for
any δ < δ0, ∫

Θα∩Bδ(0)
W p

αdvg̃ +
∫

∂Θα∩Bδ(0)
W q

αdsg̃ < ε0.

By the standard Moser iteration, we know for any s̄ > p, there exists δ1 > 0, such
that for any p ≤ s < s̄, δ < δ1,

∫

Θα∩Bδ(0)
W s

αdvg̃ +
∫

∂Θα∩Bδ(0)
W s

αdsg̃ < C(s̄). (2.40)

Choose s0 ∈ (p, s̄) and s0 close to p. Let r0 = s0/(p − 2), β = p(r0 − 1)/(2r0) and
t0

t0−1
= q

2β
. We can check β > 1. Also as s0 is close to p, β is close to 1. Therefore,

we can make 2β < q and (q−2)t0 < s̄ after we choose a suitable s0. Choose 2δ̄ < δ1.
By Hölder inequality, we know

∫

Θα∩BRi

W p−1+k
α dvg̃ ≤ (

∫

Θα∩BRi

W (k+1)r0/(r0−1)
α dvg̃)

(r0−1)/r0(
∫

Θα∩BRi

W s0
α )

1
r0

and
∫

∂Θα∩BRi

W q−1+k
α dsg̃ ≤ (

∫

∂Θα∩BRi

W (k+1)t0/(t0−1)
α dsg̃)

(t0−1)/t0(
∫

∂Θα∩BRi

W (q−2)t0
α )

1
t0 .

Combining the above two inequalities with (2.40) we have

∫

Θα∩BRi

W p−1+k
α dvg̃ ≤ C(

∫

Θα∩BRi

W (k+1)r0/(r0−1)
α dvg̃)

(r0−1)/r0 (2.41)

and
∫

∂Θα∩BRi

W q−1+k
α dsg̃ ≤ C(

∫

∂Θα∩BRi

W (k+1)t0/(t0−1)
α dsg̃)

(t0−1)/t0 . (2.42)

Also, from Hölder inequality,
∫

∂Θα∩BRi

W 1+k
α dsg̃ ≤ C(

∫

∂Θα∩BRi

W (k+1)t0/(t0−1)
α dsg̃)

(t0−1)/t0 . (2.43)

Set p0 = 2r0/(r0 − 1) < p, pi = βpi−1 = βi−1p, qi = pi(r0 − 1)/r0 = 2βi, for i ≥ 1.
Taking k = qi − 1 ( for i ≥ 1 ) in (2.39), and using (2.41), (2.42) and (2.43), we
obtain

‖Wα‖qi
pi+1,Θα∩BRi+1

+ ‖Wα‖qi
q̄i+1,∂Θα∩BRi+1

≤ (4iC +
q2
i C

(qi−1)
)(‖Wα‖qi

pi,Θα∩BRi
+ ‖Wα‖qi

q̄i,∂Θα∩BRi
),
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where q̄i = qi · t0
t0−1

for i ≥ 1. Since β > 1, we have (aβ + bβ)2/β ≤ a + b. It follows
that

(‖Wα‖qi+1

pi+1,Θα∩BRi+1
+ ‖Wα‖qi+1

q̄i+1,∂Θα∩BRi+1
)1/qi+1

≤ (4iC +
q2
i C

qi−1
)1/qi(‖Wα‖qi

pi,Θα∩BRi
+ ‖Wα‖qi

q̄i,∂Θα∩BRi
)1/qi .

(2.44)

As in [17], one can easily check that

∞∏

i=1

(4iC +
q2
i C

qi − 1
)1/qi ≤ C < ∞,

thus
‖Wα‖pi+1,Θα∩BRi+1

≤ C(‖Wα‖2β
p1,Θα∩BR1

+ ‖Wα‖2β
q1,∂Θα∩BR1

)1/(2β)

= C(‖Wα‖2β
p,Θα∩BR1

+ ‖Wα‖2β
q,∂Θα∩BR1

)1/(2β)

≤ C1.

Sending i to ∞, we have
‖Wα‖L∞(Θα∩B

δ
) ≤ C(δ). (2.45)

Therefore we complete the proof of Proposition 2.2.

Let Qα ∈ ∂Ω be the closest point to xα. By choosing an appropriate coordinate
system centered at Qα, we can assume without loss of generality that Qα = 0,
gij(0) = δij, B+

1 (0) ⊂ Ω, {(x′, 0) : |x′| < 1} ⊂ ∂Ω .
Let Rα = 1/(αµα), hα = gij(µαx)dxidxj in B+

10Rα
(0), and

v̄α(x) = µ(n−2)/2
α uα(µαx + xα), for x ∈ B+

10Rα
(0).

It follows from (2.23) and (2.22) that Rα →∞ as α →∞, and v̄α satisfies





−∆hα v̄α = ξαv̄p−1
α in B+

10Rα
(0)

∂hα v̄α

∂ν
= −Z(

∫
∂Ω uq

α)2/q−1v̄q−1
α − αµαv̄α on {(x′, 0) : |x′| < 10Rα}

0 < v̄α ≤ µ(n−2)/2
α uα(0).

(2.46)

Clearly,

|hij
α (x)− δij| ≤ C|µαx|, |Γk

ij(x)| ≤ Cµα in B+
10Rα

(0), (2.47)

where Γk
ij is the Christoffel symbol of hα.

As being explained before,

lim
α→∞ ‖v̄α − vT‖C2(B+

R(0))
= 0, ∀R > 1, (2.48)
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where vT = v(x′, xn−T ), v is given in (2.26) or (2.27). It is not difficult to see from
Proposition 2.2 that as α > ᾱ,

v̄α(x) ≤ C

1 + |x|n−2
for x ∈ B+

10Rα
(0). (2.49)

Note Z(
∫
∂Ω uq

α)2/q−1 ≤ C, we can show, exactly in the same way as in [17], the
following estimates on the first and second derivative of v̄α.

Proposition 2.3 For all α ≥ ᾱ, x ∈ B+
Rα

(0), we have

|∇v̄α(x)| ≤ C

1 + |x|n−1
, |∇2v̄α(x)| ≤ C

1 + |x|n ,

where |∇2v̄α| = ∑n
i,j=1 |∂2v̄α/∂xi∂xj|, and C is some constant independent of α and

x.

For n = 3, we need to obtain an appropriate lower bound of v̄α.

Proposition 2.4 For n = 3, as α large enough,

v̄α(x) ≥ 1

C(1 + |x|) , ∀ x ∈ B+

R
1/4
α

(0),

where C > 0 is some constant independent of α.

Proof. If Z ≤ 0, Proposition 2.4 can be provn exactly in the same way as that in
[17], therefore we will focus on the case of Z > 0 here. The proof is slight different
from that in [17]. Due to Z > 0, we know T > 0. Without loss of generality, we
can assume T ≥ 1. In this case, we need to use more accurate boundary condition
in (2.46). In the following, α is always assumed to be suitable large.

Let x̄ = (0, ..., 0, 1) and

Gα(x) =
1

|x− x̄| −
1

R
1/2
α |x− x̄|1/2

in B
R

1/3
α

(x̄) \B2(x̄).

It is easy to see that

1

2|x− x̄| ≤ Gα(x) ≤ 1

|x− x̄| in B
R

1/3
α

(x̄) \B2(x̄).

As in [17], by using (2.47), one can check that ∆hαGα ≥ 0 for x ∈ B
R

1/3
α

(x̄)\B2T (x̄).
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Also, from (2.47), we know that for all x = (x′, 0), 1 < |x′| < R1/3
α , there exists

a constant C1 > 0 such that

∂hα

∂ν
(Gα) ≤ − 1

C1

· 1

|x− x̄|3 ≤ − 1

C1

·G3
α.

We will use the maximum principle and Hopf lemma on A = {x ∈ Rn
+ : 2T <

|x − x̄| < R1/3
α }. Let Σ1 = ∂A ∩ {xn = 0}, Σ2 = ∂A ∩ {|x − x̄| = 2T}, and

Σ3 = ∂A ∩ {|x− x̄| = R1/3
α }. Choose 0 < τ1 < 1 small enough such that τ1Gα ≤ v̄α

on Σ2. Note Z(
∫
∂Ω uq

α)2/q−1 ≤ C (in the remains of the proof of Proposition 2.4, we
always take C as the same positive constant), we choose τ2 < τ1 small enough such
that 1/(C1τ

2
2 ) ≥ C. Let Hα = τ2Gα − maxΣ3(τ2Gα). One can check that v̄α − Hα

satisfies 



∆hα(v̄α −Hα) ≤ 0 in A,
v̄α −Hα ≥ 0 on Σ2 ∪ Σ3,
∂hα (v̄α−Hα)

∂ν
> C(H3

α − v̄3
α) on Σ1.

It follows from the maximum principle and Hopf lemma that

v̄α ≥ Hα in A.

Consequently, for all x ∈ B+

R
1/4
α

(0) \B+
2T (x̄),

v̄α(x) ≥ Hα(x) ≥ τ2

2|x− x̄| −
τ2

R
1/3
α

≥ τ2

4|x− x̄| .

For |x− x̄| ≤ 2T , Proposition 2.4 follows from (2.48).

Let B+
Rα

= BRα(0) ∩ Rn
+, Γ1 = ∂B+

Rα
∩ ∂Rn

+, Γ2 = ∂B+
Rα
∩ Rn

+. We always use
dV for the volume element of the standard Euclidean metric, dS for the surface
element of the standard Euclidean metric, ν for the unit outer normal vector of the
corresponding surface with respect to the specified metrics, and “·” for the inner
product under the standard Euclidean metric. As in [17], we have the following
identity.

∫

B+
Rα

∆v̄α(∇v̄α · x)dV +
n− 2

2

∫

B+
Rα

v̄α∆v̄αdV = J(Rα, v̄α) + I(Rα, v̄α), (2.50)

where

J(Rα, v̄α) =
1

2

∫

Γ2

{|∂v̄α

∂ν
|2|x| − |∂tanv̄α|2|x|+ (n− 2)

∂v̄α

∂ν
v̄α}dS, (2.51)
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I(Rα, v̄α) =
1

2

∫

Γ1

{2(
n−1∑

i=1

xi
∂v̄α

∂xi

)
∂v̄α

∂ν
+ (n− 2)

∂v̄α

∂ν
v̄α}dS. (2.52)

Replacing ∆v̄α in (2.50) by

∆v̄α = ∆hα v̄α − (hij
α − δij)∂ij v̄α + hij

α Γk
ij∂kv̄α,

we have

− ∫
B+

Rα
(xi∂iv̄α)∆hα v̄αdV − n−2

2

∫
B+

Rα
v̄α∆hα v̄αdV

+
∫
B+

Rα
(xk∂kv̄α)(hij

α − δij)∂ij v̄αdV − ∫
B+

Rα
(xl∂lv̄α)(hij

α Γk
ij∂kv̄α)dV

+n−2
2

∫
B+

Rα
v̄α(hij

α − δij)∂ij v̄αdV − n−2
2

∫
B+

Rα
v̄α(hij

α Γk
ij)∂kv̄αdV

= −J(Rα, v̄α)− I(Rα, v̄α).

Using equation (2.46), we get

A(hα, v̄α) = −J(Rα, v̄α)− I(Rα, v̄α), (2.53)

where

A(hα, v̄α) = ξα

p

∫
Γ2

v̄p
α|x|dS

+
∫
B+

Rα
(xk∂kv̄α)(hij

α − δij)∂ij v̄αdV − ∫
B+

Rα
(xl∂lv̄α)(hij

α Γk
ij∂kv̄α)dV

+n−2
2

∫
B+

Rα
v̄α(hij

α − δij)∂ij v̄αdV − n−2
2

∫
B+

Rα
v̄α(hij

α Γk
ij)∂kv̄αdV.

By (2.47), we know

A(hα, v̄α) = O(
∫
Γ2

v̄p
α|x|dS)

+O(
∫
B+

Rα
µα|x|2|∇v̄α| |∇2v̄α|dV ) + O(

∫
B+

Rα
µα|x||∇v̄α|2dV )

+O(
∫
B+

Rα
µα|x|v̄α|∇2v̄α|dV ) + O(

∫
B+

Rα
µαv̄α|∇v̄α|dV )

(2.54)

We simplify I(Rα, v̄α) by using equation (2.46). It is easy to see from (2.47) that

∂hα v̄α

∂ν
=

∂v̄α

∂ν
+ O(µα|x′| |∇v̄α|), on Γ1.

It follows that

2I(Rα, v̄α) =
∫
Γ1
{2(

∑n−1
i=1 xi

∂v̄α

∂xi
)∂hα v̄α

∂ν
+ (n− 2)∂hα v̄α

∂ν
v̄α}dS

+O(
∫
Γ1

[µα|x′|2 |∇v̄α|2 + µα|x′|v̄α|∇v̄α|]dS).
(2.55)
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Using the boundary condition in (2.46), we have

∫
Γ1
{2(

∑n−1
i=1 xi

∂v̄α

∂xi
)

∂hα v̄α

∂ν
+ (n− 2)

∂hα v̄α

∂ν
v̄α}dS

=
∫
Γ1
{−2(

∑n−1
i=1 xi

∂v̄α

∂xi
)(αµαv̄α + Z(

∫
∂Ω uq

α)2/q−1v̄q−1
α )

−(n− 2)αµαv̄2
α − (n− 2)Z(

∫
∂Ω uq

α)2/q−1v̄q
α}dS

= αµα

∫
Γ1

v̄2
αdS − ∫

∂Γ1
αµαv̄2

α|x|dS − 2Z
q
· (∫∂Ω uq

α)2/q−1
∫
∂Γ1

v̄q
α|x|dS.

Thus
I(Rα, v̄α) = αµα

2

∫
Γ1

v̄2
αdS + O(

∫
∂Γ1

(αµαv̄2
α|x|+ v̄q

α|x|)dS)
+O(

∫
Γ1

[µα|x′|2|∇v̄α|2 + µα|x′|v̄α |∇v̄α|]dS).
(2.56)

Clearly,

J(Rα, v̄α) = O(
∫

Γ2

(|x||∇v̄α|2 + v̄α |∇v̄α|)dS). (2.57)

We can rewrite (2.53) as the following Pohozaev type identity:

αµα

∫
Γ1

v̄2
αdS = O(

∫
Γ2

v̄p
α|x|dS)

+O(
∫
B+

Rα
µα|x|2|∇v̄α| |∇2v̄α|dV ) + O(

∫
B+

Rα
µα|x||∇v̄α|2dV )

+O(
∫
B+

Rα
µα|x|v̄α|∇2v̄α|dV ) + O(

∫
B+

Rα
µαv̄α|∇v̄α|dV )

+O(
∫
Γ2

(|x||∇v̄α|2 + v̄α |∇v̄α|)dS)
+O(

∫
∂Γ1

(αµαv̄2
α|x|+ v̄q

α|x|)dS)
+O(

∫
Γ1

[µα|x′|2|∇v̄α|2 + µα|x′|v̄α |∇v̄α|]dS).
(2.58)

We will derive a contradiction from (2.58) by showing that the left hand side is much
larger than the right hand side as α tends to infinity.

Similarly as in [17], by using (2.48) and Proposition 2.4, we have

Lemma 2.5 For n ≥ 3, there exists some constant C > 0 independent of α, such
that

∫
Γ1

v̄2
αdS > 1/C for all α ≥ 1. Moreover for n = 3,

∫
Γ1

v̄2
αdS ≥ (log Rα)/C for

all α ≥ 1.

Also, by using (2.49), Proposition 2.3 and some elementary calculations, we have

Lemma 2.6 The following estimates hold.

∫

∂Γ1

(αµαv̄2
α|x|+ v̄q

α|x|)dS ≤ αµαR3−n
α ,

∫

Γ1

(µα|x′|2|∇v̄α|2 + µα|x′|v̄α |∇v̄α|)dS ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4,
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∫

Γ2

(|x||∇v̄α|2 + v̄α |∇v̄α|)dS ≤ C(αµα)n−2,

∫

Γ2

v̄p
α|x|dS ≤ C(αµα)n,

∫

B+
Rα

(µα|x|2|∇v̄α| |∇2v̄α|+ µα|x||∇v̄α|2)dV ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4,

∫

B+
Rα

(µα|x|v̄α|∇2v̄α|+ µαv̄α|∇v̄α|)dV ≤
{

Cµα log Rα, n = 3,
Cµα, n ≥ 4.

Proof of Theorem 0.2. From Lemma 2.5 and Lemma 2.6 we know that the
left hand side is clearly much larger than the right hand side in (2.58) as α tends to
infinity. Therefore we derive a contradiction basing on the assumption (2.17).

3 Compact manifold with boundary

Let (M, g) be a compact Riemannian manifold with smooth boundary ∂M and
dimension n ≥ 3. In this section we sketch the proof of Theorem 0.3.

First we show a rough inequality as in Section 2.

Proposition 3.1 Let Z ∈ (−1/S, Z0]. For any δ > 0, there exists D(δ) > 0 such
that ∀u ∈ H1(M),

(
∫
M |u|pdvg)

2
p

≤ (S1(Z) + δ)
( ∫

M |∇u|2dvg + Z(
∫
∂M |u|qdsg)

2
q

)
+ D(δ)

( ∫
∂M u2dsg +

∫
M u2dvg

)
.

(3.1)

Proof. We prove this proposition by contradiction. The proof is quite similar to
that of Proposition 2.1, we sketch it below.

Assume that (3.1) is not true, that is, there exists some δ2 > 0 such that ∀α > 1,

inf
u∈H1(M)\{0}

IZ,α(u) := inf
u∈H1(M)\{0}

∫
M |∇gu|2 + Z(

∫
∂M |u|q)2/q + α

∫
∂M u2 + α

∫
M u2

(
∫
M |u|p)2/p

:= ξZ,α < 1
S1(Z)+δ2

.

(3.2)
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Lemma 3.1 ∀δ > 0, there exists a constant C(M, δ), such that ∀f ∈ H1(M), as ε
small enough,

||f ||2pε,M ≤ (S1 + δ)||∇f ||22,M + C(M, δ)
(
||f ||22,M + ||f ||2qε,∂M

)
. (3.3)

Proof. This can be provn from Corollary 1.2 through the partition of unit. We omit
the details here.

Lemma 3.2 As α large enough, if inf IZ,α satisfies condition (3.2), inf IZ,α is at-
tained.

Proof. Due to [17], we know that there exists α1 < ∞ such that

||u||2q,∂M ≤ S||∇gu||22,M + α1||u||22,∂M , ∀u ∈ H1(M). (3.4)

For u 6= 0, we define

Iε(u) =

∫
M |∇gu|2 + Z(

∫
∂M |u|qε)2/qε + α

∫
∂M u2 + α

∫
M u2

(
∫
M |u|pε)2/pε

.

If α > α1, we know as before that Iε(u) ≥ 0. The standard variational method
shows that ∃ uε ≥ 0 with ||uε||pε = 1 such that

Iε(uε) = inf Iε(u) := ξε.

Easy to see that uε satisfies

{ −∆guε = ξεu
pε−1
ε − αuε in M

∂guε

∂ν
= −Z(

∫
∂M uqε

ε )2/qε−1uqε−1
ε − αuε on ∂M.

(3.5)

Due to [14], we know that there exists α2 < ∞ such that

||u||2p,M ≤ S1||∇gu||22,M + α2||u||22,M , ∀u ∈ H1
0 (M). (3.6)

Set α0 = max{α1, α2}. We only need to show that as α > α0, ||uε||∞ ≤ C.
Suppose ||uε||∞ → ∞ up to a subsequence, by [10], we know that there exists a

xε ∈ M such that uε(xε) = ||u||∞ →∞. Set µε = (uε(xε))
− pε−2

2 .
Let (y1, · · · , yn−1, yn) denote some geodesic normal coordinates given by the ex-

ponential map expxε
. In this coordinate system, the metric g is given by gij(y)dyidyj.
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For suitably small δ3 > 0 (independent of ε), we define vε in a neighborhood of z = 0
by

vε(z) = u−1
ε (xε)uε(expxε(µεz)), z ∈ Oε ⊂ Rn,

where
Oε = {z ∈ Rn : |z| < δ3/µε, expxε(µεz) ∈ M}. (3.7)

We write ∂Oε = Γ1
ε ∪ Γ2

ε , where

Γ1
ε = {z ∈ ∂Oε : expxε(µεz) ∈ ∂M}, Γ2

ε = {z ∈ ∂Oε : expxε(µεz) ∈ M}.

Then vε satisfies





−∆gεvε = ξεv
p−1
ε − αµ2

εvε, in Oε,
∂gεvε

∂ν
= −Z(

∫
∂M uqε

ε )2/qε−1vqε−1
ε − αµεvε, on Γ1

ε ,
vε(0) = 1, 0 ≤ vε ≤ 1,

(3.8)

where gε denotes the metric on Oε given by gε = gij(µεz)dzidzj. As in the proof of
Lemma 1.1 (here we need to use (3.4)), we can show that as α > α0,

0 ≤ lim
ε→0

ξε := ξ0 ≤ ξZ,α <
1

S1(Z) + δ2

. (3.9)

We claim: ∫

∂M
uqε

ε ≥ C > 0. (3.10)

If
∫
∂M uqε

ε → 0 up to a subsequence, using Lemma 3.1, as in the proof of Lemma 1.3,
we know ||uε − u0||pε,M → 0 for some u0 ∈ H1

0 (M). It follows that

∫
M |∇gu0|2dvg + α

∫
M u2

0dvg

(
∫
M |u0|pdvg)2/p

<
1

S1

,

this contradicts (3.6) as α > α2.
Also as in the proof of Lemma 1.4, we can show that

T := lim
ε→∞

dist(xε, ∂M)

µε

< ∞. (3.11)

Then we follow the proof of Lemma 2.1 closely and can derive a contradiction
to Theorem 0.1. We thereby establish Lemma 3.2.

Due to Lemma 3.2, without loss of generality, we can assume that as α > α0,
inf IZ,α(u) = IZ,α(uα) with uα ≥ 0 and ||uα||p,M = 1. Then, we follow the proof
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of Proposition 2.1 closely and can complete the proof of Proposition 3.1. The only
difference is to show

∫
∂M uq

α ≥ C > 0. But this can be handled similarly to (3.10).
We leave these details to interesting readers.

From now on, we begin to prove Theorem 0.3 through an argument by contra-
diction. Note that we assume Z < Z0, thus 1/S1(Z) < 1/S1.

Suppose that Theorem 0.3 is false, then ∀α > 1,

infH1(M)\{0} Iα(u) = infH1(M)\{0}

∫
M
|∇gu|2+Z(

∫
∂M

|u|q)2/q+α
∫

∂M
u2+α

∫
M

u2

(
∫

M
|u|p)2/p

:= ξα < 1
S1(Z)

.
(3.12)

From the proof of Lemma 3.2, we know that as α > α0, under (3.12), inf Iα(u) is
attained. Without loss of generality, we can always assume α suitable large and
inf Iα(u) = Iα(uα) with uα ≥ 0 and ||uα||p,M = 1. It is easy to see that uα satisfies

{ −∆guα = ξαup−1
α − αuα in M

∂guα

∂ν
= −Z(

∫
∂M uq

α)2/q−1uq−1
α − αuα, on ∂M.

(3.13)

Using Proposition 3.1, we have

Lemma 3.3 As α →∞,

α||uα||22,∂M → 0, ξα → 1

S1(Z)
. (3.14)

Because of 1/S1(Z) < 1/S1, as in the proof of (3.10), we have the following.

Lemma 3.4 There exists a constant C > 0 such that
∫

∂M
uq

α ≥ C. (3.15)

Since uα satisfies (3.13), due to Cherrier, we know that uα is smooth up to

boundary. Let uα(xα) = ||u||∞ for some xα ∈ M . Set µα = (uα(xα))−
p−2
2 . As

before, from (3.14) and (3.15) we can show that

αµα → 0, as α →∞. (3.16)

Let (y1, · · · , yn−1, yn) denote some geodesic normal coordinates given by the ex-
ponential map expxα

. In this coordinate system, the metric g is given by gij(y)dyidyj.
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For a suitable small δ4 > 0 (independent of α), we define vα in a neighborhood of
z = 0 by

vα(z) = u−1
α (xα)uα(expxα(µαz)), z ∈ Oα ⊂ Rn,

where
Oα = {z ∈ Rn : |z| < δ4/µα, expxα(µαz) ∈ M}. (3.17)

We write ∂Oα = Γ1
α ∪ Γ2

α, where

Γ1
α = {z ∈ ∂Oα : expxα(µαz) ∈ ∂M}, Γ2

α = {z ∈ ∂Oα : expxα(µαz) ∈ M}.

Then vα satisfies





−∆gαvα = ξαvp−1
α − αµ2

αvα, in Oα,
∂gαvα

∂ν
= −Z(

∫
∂M uqα

α )2/qα−1vqα−1
α − αµαvα, on Γ1

α,
vα(0) = 1, 0 ≤ vα ≤ 1,

(3.18)

where gα denotes the metric on Oα given by gα = gij(µαz)dzidzj.
Also let limα→∞dist(xα, ∂M)/µα = T , due to 1/S1(Z) < 1/S1, as in Section 1,

we know T < ∞.
By standard elliptic estimates, we know vα → v in C3(BR(0) ∩ Oα), where v(x)

is given by (2.26) or (2.27) (depending on T > 0 or T = 0). Consequently, as before,
we have the following lemma.

Lemma 3.5

lim
α→∞

∫

Oα

|vα − v|p = lim
α→∞

∫

Oα

|∇gαvα −∇gαv|2 = lim
α→∞

∫

∂Oα

|vα − v|q = 0. (3.19)

As in [18], by using Lemma 3.5, we have

Proposition 3.2 There exists a constant C > 0 such that, ∀α > 1

vα ≤ Cv, x ∈ M̄α. (3.20)

Then following the proof of Theorem 0.2 closely, by using Pohozaev identity, we
derive a contradiction, thus complete the proof of Theorem 0.3. We refer [18] and
[17] to interesting readers for more details.
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4 Some further remarks

In this section, we give some details concerning Remark 2.1 and point out the
obstacle by using the current method to prove the conjecture which we present in
our introduction.

Assume Z = Z0. Under condition (2.17), we know that inf Iα(u) = Iα(uα) for
some uα ≥ 0, ||uα||p,Ω = 1 and uα satisfies (2.18). In contrast to the case of Z < Z0,
here, we claim: ∫

∂Ω
uq

α → 0 as α →∞. (4.1)

We show (4.1) by contradiction. If not, as α →∞,

∫

∂Ω
uq

α ≥ C > 0. (4.2)

Define µα, Ωα, and vα as in (2.21), then vα satisfies (2.22). As before, from (2.19)
and (4.2), we know αµα → 0. Let limα→∞dist(xα, ∂Ω)/µα = T . If T < ∞, then
vα → v0 in C3(Ωα ∩BR(0)) for all R > 1, where v0 satisfies





−∆v0 = 1
S1

vp−1
0 in Rn

T ,
∂v0

∂ν
= −Z0(

∫
∂Rn

T
vq

0)
2/q−1vq−1

0 on ∂Rn
T ,

v0(0) = 1, 0 ≤ v0(x) ≤ 1.

(4.3)

However, a similar discussion as in the proof of Theorem 0.1 shows that (4.3) has
no solution. Therefore T = ∞, and vα → v1 in C3(Ωα ∩BR(0)) for all R > 1, where
v1 satisfies { −∆v1 = 1

S1
vp−1

1 in Rn,

v1(0) = 1, 0 ≤ v1(x) ≤ 1.
(4.4)

It follows that ||v1||p,Rn = 1, therefore ||vα − v1||p,Ωα → 0.
Note ||∇vα−∇v1||2,Ωα < C. Using Lemma 1.6 and property of v1, we know that∫

∂Ωα
vq

α → 0. This contradicts to (4.2).

This discussion shows that we do need some new ideas to handle the extremal
case Z = Z0 in the proof of Theorem 0.2 and 0.3.

5 Appendix

In this appendix, we present another proof of Theorem 0.1 based on a new result
due to Carlen and Loss [9].
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Proposition 5.1 (Carlen and Loss’s Theorem) For λ > 0

S(λ) = inf
D1,2(Rn

+)\{0}

{ ||∇f ||2,Rn
+

||f ||p,Rn
+

:
||f ||q,∂Rn

+

||f ||p,Rn
+

= λ
}

(5.1)

is attained.

Denote S(0) = 1/S
1/2
1 . It is not difficult to see from [9] that S(λ) is a continuous

function on [0,∞).
Let IIZ(u) be given as in Section 1 and ξZ be given by (1.1). In order to prove

Theorem 0.1, we only need to establish the following proposition, the other details
can be carried out as in Section 1.

Proposition 5.2 For any Z ∈ (−1/S, Z0), inf IIZ is attained.

Proof. For Z ≤ 0, this proposition was already proved in [9]. Consequently, a
new proof of Escobar’s inequality was given by E. Carlen and M. Loss there. Here,
we focus on the case of 0 < Z < Z0.

It is well known that ξZ ≥ 1/(22/nS1) for Z ≥ 0. The existence of minimizer of
IIZ is equivalent to the existence of a extremal function for the following inequality

||∇u||22,Rn
+

+ Z||u||2q,∂Rn
+
≥ ξZ ||u||2p,Rn

+
, ∀u ∈ D1,2(Rn

+) \ {0},
i.e.

||u||2p,Rn
+
− Z

ξZ

||u||2q,∂Rn
+
≤ 1

ξZ

||∇u||22,Rn
+
, ∀u ∈ D1,2(Rn

+) \ {0}. (5.2)

Therefore, we only need to show

sup
D1,2(Rn

+)\{0}

||u||2p,Rn
+
− Z · ξ−1

Z ||u||2q,∂Rn
+

||∇u||22,Rn
+

=
1

ξZ

and the supremum is attained.
From the definition of ξZ , it is not difficult to see that the supremum is less than

or equals to 1/ξZ . Suppose

sup
D1,2(Rn

+)\{0}

||u||2p,Rn
+
− Z · ξ−1

Z ||u||2q,∂Rn
+

||∇u||22,Rn
+

=
1

τξZ

for some τ > 1. Then

||u||2p,Rn
+
≤ 1

τξZ

||∇u||22,Rn
+

+
Z

ξZ

||u||2q,∂Rn
+
, ∀u ∈ D1,2(Rn

+) \ {0}. (5.3)
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From the definition of ξZ , we know that for all i ≥ 1, there exists ui, such that

||ui||2p,Rn
+
≥ 1

ξZ + 1
i

(||∇ui||22,Rn
+

+ Z||ui||2q,∂Rn
+
) (5.4)

and ||∇ui||22,Rn
+

= 1. Due to trace inequality, we know ||ui||q,∂Rn
+
≤ C.

Combining (5.3) with (5.4), we have

(
1

ξZ + 1
i

− 1

τξZ

)||∇ui||22,Rn
+
≤ (

Z

ξZ

− Z

ξZ + 1
i

)||ui||2q,∂Rn
+
.

Sending i to infinity, we have ||∇ui||22,Rn
+
→ 0. Contradiction! Therefore τ = 1.

To see the supremum is attained, one observes that

sup
D1,2(Rn

+)\{0}

||u||2p,Rn
+
− Z · ξ−1

Z ||u||2q,∂Rn
+

||∇u||22,Rn
+

= supλ≥0{(1− ξ−1
Z · Zλ2)/S(λ)2

= sup(ξ−1
Z ·Z)−1/2≥λ≥0{(1− ξ−1

Z · Zλ2)/S(λ)2.

From our early calculation (see (1.22)), we can easily see that ξZ < 1/S1, therefore
the supremum can not be attained at λ = 0, that is

sup
D1,2(Rn

+)\{0}

||u||2p,Rn
+
− Z · ξ−1

Z ||u||2q,∂Rn
+

||∇u||22,Rn
+

= sup
(ξ−1

Z ·Z)−1/2≥λ>γ

(1− ξ−1
Z · Zλ2)

S(λ)2

for some small γ > 0. The existence of a maximum follows from the continuity of
S(λ) and Proposition 5.1.
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