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Abstract

In this note, we present some Liouville type theorems about the
nonnegative solutions to some indefinite elliptic equations.

1 Introduction

In the study of some indefinite elliptic problems, in order to get a priori esti-
mate one may use standard blowup argument. In this procedure, we encounter
the following equations in Rn:

∆u + xnup = 0, u ≥ 0, in Rn (1.1)

where we write x = (x1, x2, ..., xn) ∈ Rn. Throughout this paper, we always
assume n ≥ 3.

Using some test functions on Sn, Berestycki, Capuzzo Dolcetta and Niren-
berg [1] proved the following theorem (we state a weak version in the whole
space).

Theorem A. Let u(x) ∈ C2(Rn) be a solution to (1.1). If p < n+2
n−1

, then
u(x) = 0.

One observes that n+2
n−1

is less than the critical Sobolev exponent n+2
n−2

. In
the study of prescribing scalar curvature problems, we do need to consider
those equations with critical exponents. The main purpose of this paper is to
study (1.1) for p = n+2

n−2
.

We here consider a slightly general equation:

∆u + xk
nup = 0, u ≥ 0, in Rn (1.2)

where and throughout this paper we assume that k is an odd positive integer.
Our first result can be stated as the following.
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Theorem 1.1 Let u(x) ∈ C2(Rn) be a solution to (1.2). If p = (n + 2 +
2k)/(n− 2), then u = 0.

Remark 1.1 It is obvious to see that Theorem 1.1 still holds if we change xn

to xi for i = 1, ..., n− 1 in equation (1.2).

For the critical exponent, we have the following.

Theorem 1.2 Let u(x) ∈ C2(Rn) be a solution to (1.2). If p = (n+2)/(n−2)
and the dimension n is an even number, then u = 0.

Remark 1.2 For k ≥ 3, Theorem 1.2 was included in Theorem 2.2 of [1].

We also consider a related problem in the half space with Neumann bound-
ary condition: {

∆u = 0, u ≥ 0, in Rn
+

∂u
∂xn

= xk
i u

q, on ∂Rn
+,

(1.3)

where and through this paper we write Rn
+ = {(x′, xn) = (x1, ..., xn−1, xn) | x′ ∈

Rn−1, xn > 0}, i ≤ n−1. This equation can be viewed as the limit equation
when we “blow up” some equations with indefinite boundary nonlinearities.

We have the following result.

Theorem 1.3 Let u ∈ C2(Rn
+) be a solution to (1.3). If q = (n+2k)/(n− 2),

then u(x) just depends on xn and xi.

Similarly, for the critical exponent, we have the following.

Theorem 1.4 Let u ∈ C2(Rn
+) be a solution to (1.3). If q = n/(n− 2), then

u(x) just depends on xn and xi.

An interesting consequence of Theorem 1.4 is the following corollary.

Corollary 1.1 Let u ∈ C2(Rn
+) be a solution to (1.3). If q = n/(n − 2) and

u(x) → 0 as |x| → ∞, then u(x) = 0.

Remark 1.3 We tend to believe that Corollary 1.1 holds without the decay
assumption at infinity on u(x). We hope to clarify this point in our future
study.
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The proofs of Theorem 1.1 and 1.3 follow from the standard moving plane
method, see for instance, [2], [3], [5] in the whole Rn and [7]-[11] in the upper
half space. Here we first observe that the equations with those exponents in
Theorem 1.1 and 1.3 are invariant under the Kelvin transformation, thus after
we perform the Kelvin transformation on these equations, the coefficients are
still monotone in any direction perpendicular to xn-axis. We then apply the
moving plane method as usual in these directions. The main difficulty will
come from the analysis of the possible singular point. By adding dimensions,
we can prove Theorem 1.2 and 1.4 as in the work of [9]. As an application,
we state an existence result concerning the same equations as in [1] in the last
section.

2 Proofs of Theorem 1.1 and 1.2

We first derive Theorem 1.2 from Theorem 1.1 by using the method of adding
dimensions, which was introduced by us in [9].

Let u(x) ≥ 0 be a solution to (1.2). Set ũ(x1, x2, ..., xn, xn+1, ..., xm) =
u(x1, ..., xn), where m is an integer which will be chosen later. Thus ũ solves

∆ũ + xk
nũ

n+2
n−2 = 0, ũ ≥ 0, in Rm.

Choosing m = (n − 2)(2 + k)/2 + 2 (here we use the fact that n is even), we
have (n + 2)/(n − 2) = (m + 2 + 2k)/(m − 2). It follows from Theorem 1.1
that ũ = 0, therefore, u = 0.

We now focus on the proof of Theorem 1.1. Later on we write x = (x′, xn)
and assume that u(x) solves (1.2). From the strong maximum principle, we
know that either u = 0 or u > 0. We prove u = 0 by contradiction. Suppose
u > 0, we aim to derive a contradiction.

Since there is no assumption on the decay rate of u at infinity, as usual,
we set

v(x) =
1

|x|n−2
u(

x

|x|2 ). (2.4)

Then v(x) satisfies

∆v + xk
nv

n+2+2k
n−2 = 0, v > 0, in Rn \ {0}. (2.5)

Our purpose is to obtain some symmetric properties about v(x) on the
x′-hyperplane. We achieve this by using moving planes which are parallel to
xn-axis. Without loss of generality, we move the planes along x1-direction.

Our first lemma will be used to handle the possible singular point of v(x)
at the origin.
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Lemma 2.1 Assume that v satisfies

{
∆v + xk

nv
n+2+2k

n−2 = 0 in B1/2 \ {0}
v > 0, v ∈ C2(B1/2 \ {0}).

If v(x) ≥ ε on ∂B1/2 for some ε ≤ 1, then v(x) ≥ ε/2 in B1/2 \ {0}.

Proof: Let ϕ1(x) = ε
2
− rn−2ε

|x|n−2 + x2
nε
2

in B1/2 \ Br for some small r > 0,

A(x) = v(x)− ϕ1(x), then

∆A(x) = −xk
nv

n+2+2k
n−2 − ε.

Set
S = {x | − xk

nv
n+2+2k

n−2 − ε > 0, x ∈ B1/2 \Br},
Sc = {x | − xk

nv
n+2+2k

n−2 − ε ≤ 0, x ∈ B1/2 \Br}.
In S̄, −xk

nv
n+2+2k

n−2 − ε ≥ 0, thus xn < 0. It follows that (notice that k is odd)

v
n+2+2k

n−2 ≥ ε

−xk
n

≥ ε

(1/2)k
> ϕ1.

Since n+2+2k
n−2

> 1 and 1 > ε > ϕ1 in S̄, we know that v > ϕ1 for x ∈ S̄.

In Sc, we know ∆A ≤ 0. Also we can check that: On {x | −xk
nv

n+2+2k
n−2 −ε =

0}, as in S, v > ϕ1; On ∂B1/2, v − ϕ1 ≥ ε − (ε/2 + ε/8) > 0; On ∂Br,
v − ϕ1 ≥ 0− (ε/2− ε + ε/8) > 0; That is : on ∂Sc, v ≥ ϕ1. By the maximum
principle, we have that v ≥ ϕ1 in Sc.

Therefore, we know v ≥ ϕ1 in B1/2 \ Br. Sending r → 0, we complete the
proof of the lemma.

Now we are ready to move the planes.
For λ < 0 we define

Σλ = {x | x1 > λ}, Tλ = {x | x1 = λ},
Σ̃λ = Σλ \ {0}, xλ is the reflection of x about Tλ,
vλ(x) = v(xλ), wλ(x) = v(x)− vλ(x).

Then wλ(x) satisfies

∆wλ + xk
nc(x)wλ = 0 in Σ̃λ, (2.6)

where c(x) = n+2+2k
n−2

ξ
2k+4
n−2 (x), ξ(x) is a positive function between v(x) an vλ(x).

Proposition 2.1 There exists R > 1 such that, if λ < −R, wλ ≥ 0 in Σ̃λ.
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Proof: As in [8], we choose an auxiliary function g(x) = |x|−α with 0 <
α < n− 2, and consider w̄λ = wλ/g.

Claim: There exists R > 1 such that, if λ < −R, w̄λ ≥ 0 in Σ̃λ.
Before we prove the claim, we first take care of the possible singular point of

wλ at the origin. Due to the fact that v(x) → 0 as |x| → ∞, we easily see that
there exists a R1 > 0 such that if λ < −R1, vλ(x) ≤ 1

4
min{min∂B1/2(0) v(x), 1}

in B1/2\{0}. Therefore, from Lemma 2.1, we know that wλ(x) ≥ 0 in B1/2\{0}
for λ < −R1, so is w̄λ.

We then prove the claim by contradiction. Assume for any λ < −R1,
infΣ̃λ

w̄λ(x) < 0. From the above argument and the fact that v(x) → 0 as

|x| → ∞, we know that there exists a x̄ ∈ Σ̃λ such that w̄λ(x̄) = infΣ̃λ
w̄λ(x) <

0.
Direct computation shows that w̄λ satisfies

∆w̄λ +
2

g
∇g · ∇w̄λ + (xk

nc(x) +
∆g

g
)w̄λ = 0 in Σλ \ {0}. (2.7)

Since wλ(x̄) < 0, we know vλ(x̄) > v(x̄). From (2.4) we have: there exists
C > 0, such that, as |λ| is sufficiently large

vλ(x̄) = v(x̄λ) ≤ C

|x̄λ|n−2
.

It follows that at point x̄,

|xk
n|c(x̄) ≤ n + 2 + 2k

n− 2
· ( C

|x̄λ|n−2
)

2k+4
n−2 · |x̄|k ≤ C1|x̄|−4−k.

Noticing ∆g
g

(x̄) = −α(n−2−α)
|x̄|2 , we know that there exists R2 > R1 such that,

as λ < −R2, ∆g(x̄)/g(x̄) + xk
nc(x̄) < 0. Therefore, in view of the maximum

principle, we know that w̄λ can not attain an interior negative minimum in a
neighborhood of x̄. Contradiction!

Proposition 2.1 follows from the above claim directly.

Now we define

λ0 = sup{λ < 0 | wµ(x) ≥ 0 in Σ̃µ for all −∞ < µ < λ}. (2.8)

Proposition 2.2 If λ0 < 0, then wλ0 = 0.

Proof: We prove this proposition by contradiction. Suppose not, by the
strong maximum principle we know that wλ0(x) > 0 in Σ̃λ0 \ Tλ0 .

Claim: There exist some small constants: r0 ≤ min(|λ0|/2, 1) and ε < 1,
such that

wλ0(x) ≥ ε

2
in Br0(0) \ {0}.
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Proof of the claim: Let ϕ2(x) = ε
2
− rn−2ε

|x|n−2 + |x|ε
2

in Br0(0) \ Br(0) for
some small r < r0, where ε and r0 will be chosen. Since wλ0 satisfies

∆wλ0 + xk
nc(x)wλ0 = 0, wλ0 > 0 in Br0(0) \ {0},

we know

∆(wλ0 − ϕ2) = −xk
nc(x)wλ0 −

ε

2
· (n− 1)|x|−1 in Br0(0) \Br(0).

Set Br0(0) \Br(0)= S1 ∪Sc
1 such that S1 = {x : wλ0 ≥ 1 > ϕ2}∩Br0(0) \

Br(0). Obviously we only need to show that the claim holds in Sc
1.

In Sc
1 we know wλ0 < 1. Since 0 < 1/C ≤ vλ0(x) ≤ C for x ∈ Br0(0) (here

C is independent of r0 whenever we choose r0 ≤ |λ0|/2), we have v(x) ≤ C +1
in Sc

1. Thus, in Sc
1, there exists a constant C̄ > 0, such that

c(x) ≤ C̄ < +∞.

Now we fix r0 small enough such that

(n− 1)|x|−1 ≥ 2|xk
n|c(x) ∀x ∈ Br0(0) \Br(0), (2.9)

and choose ε ≤ min{min∂Br0 (0) wλ0 , 1}. Set Sc
1 = S1,1 ∪ S1,2 such that

S1,1 = {x : −xk
nc(x)wλ0 ≥

ε

2
(n− 1)|x|−1, x ∈ Sc

1}.

In S1,1, from (2.9), we know that wλ0 ≥ ε ≥ ϕ2.
In S1,2, we have ∆(wλ0 − ϕ2) ≤ 0. Also one can check that: On {x :

−xk
nc(x)wλ0 = n−1

2
|x|−1ε, x ∈ Sc}, as in S1,1 we know wλ0 ≥ ϕ2; On ∂Br0(0),

wλ0 −ϕ2 ≥ ε− (ε/2+ ε/2) = 0; On ∂Br(0), wλ0 −ϕ2 ≥ 0− (ε/2− ε+ ε/2) = 0.
That is on ∂S1,2, wλ0 ≥ ϕ2. Thus from the maximum principle, we know that
wλ0 ≥ ϕ2 in S1,2.

It follows that wλ0 ≥ ϕ2 in Sc
1. Let r → 0, we have the claim.

Now we continue the proof of Proposition 2.2. By the definition of λ0, there
is a sequence λl → λ0 with λl > λ0 such that infΣ̃λl

wλl
< 0. As before, we

consider w̄λl
= wλl

/g with g(x) = |x|−α. It follows from the above claim and
w̄λl

(x) → 0 as |x| → ∞ that there is Pl such that w̄λl
(Pl) = minΣ̃λl

w̄λl
(x) < 0.

Similar discussion to the proof of Proposition 2.1, we also know that Pl ∈
BR(0) for some uniform constant R. Thus, as l → ∞, Pl → x̄ ∈ Tλ0 . Since
|∇w̄λl

(Pl)| = 0, we know ∂w̄λ0/∂x1(x̄) = 0. On the other hand, since w̄λ0

satisfies (2.7) and w̄λ0 > 0 in Σ̃λ0 \Tλ0 , by Hopf Lemma we know
∂w̄λ0

∂x1
(x̄) > 0.

Contradiction! We complete the proof of Proposition 2.2.

If λ0 < 0, from Proposition 2.2 we derive that limx→0 v(x) exists, that is,
|x|n−2u(x) tends to some constant c0 > 0 as x →∞. If λ0 = 0, we then begin



7

to move the planes from positive x1-axis to the origin and get either case 1:
v(x) is symmetry about origin on the x′-hyperplane (recall we can move the
planes along any direction on x′-hyperplane), or case 2: |x|n−2u(x) tends to
some constant c0 > 0 as x →∞.

In the first case, from the property of the Kelvin transformation one easily
gets that u(x) is radial symmetry about the origin on the x′-hyperplane. Since
we can choose the origin arbitrarily on the x′-hyperplane, we know that u(x)
is independent of x′ and (1.2) becomes the following ODE:

u′′ + xk
nu

n+2+2k
n−2 = 0, u ≥ 0, in R. (2.10)

An elementary phase-plane argument shows that (2.10) has only trivial solu-
tion.

In the second case we know

lim
|x|→∞

|x|n−2u(x) = c0 > 0. (2.11)

To complete the proof of Theorem 1.1, we only need to show that (1.2) have
no positive solution under the condition (2.11), that is we only need to prove
the following proposition.

Proposition 2.3 There exists no positive solution of (1.2) which satisfies
(2.11) if p > 1.

Proof. We again prove this proposition by contradiction. Suppose that
u > 0 solves (1.2) and satisfies (2.11) for some positive constant c0.

Claim: ∂u
∂xn

≥ 0 ∀x ∈ Rn.
Easy to see the claim contradicts to the fact u(0) > 0 and (2.11). Therefore,

we only need to prove the claim under the contrary assumption (that is u > 0
solves (1.2) and satisfies (2.11)).

We use the method of moving planes again. This time we move planes
along the positive xn-direction.

For any λ ∈ R, set

Σλ = {x | xn > λ}, Tλ = {x | xn = λ},
xλ is the reflection of x about Tλ,
uλ(x) = u(xλ), wλ = u(x)− uλ(x).

The claim can be proved through the following standard three steps. Here
we outline the proof for completeness.

Step 1. There exists some constant K > 0 such that, if λ < −K, wλ ≥ 0
in Σλ.

The proof of this step is similar to that of Proposition 2.1. Here there is
no singular point to worry about.
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Then we can define

λ0 = sup{λ | wµ(x) ≥ 0 in Σµ for all −∞ < µ < λ}.
Step 2. If λ0 6= +∞, then wλ0 = 0.
This can be proved as in Proposition 2.2. Again, there is no singular point

to worry about.
Step 3. λ0 = +∞.
Proof. Assume λ0 < ∞, from step 2 we know wλ0 = 0. Therefore

∆u + xk
nup = 0 in Rn

∆u + (2λ0 − xn)kup = 0 in Rn.

It follows that xn = 2λ0 − xn for all xn ∈ R. Contradiction! We complete the
proof of the claim.

3 Proofs of Theorem 1.3 and 1.4

Theorem 1.4 can be derived from Theorem 1.3 as the proof of Theorem 1.2,
so we only give the proof of Theorem 1.3 in this section. Without loss of
generality, we only consider xi = xn−1 in (1.3). We argue by contradiction.

Suppose u 6= 0. Then, in view of the maximum principle and Hopf lemma,
we know that u > 0 in Rn

+. Set

v(x) =
1

|x|n−2
u(

x

|x|2 ),

then v(x) satisfies

{
∆v = 0, v > 0, in Rn

+,
∂v

∂xn
= xk

n−1v
n+2k
n−2 on ∂Rn

+ \ {0}.
(3.12)

Again, we will move the planes which parallel to xn-axis along x1-direction.
In order to start to move planes, we still need the following lemma to

take care of the possible singular point at the origin. We denote B+
r (0) :=

Br(0) ∩ Rn
+.

Lemma 3.1 Assume that v(x) satisfies





∆v(x) = 0 in B+
1/2

∂v
∂xn

= xk
n−1v

n+2k
n−2 on ∂B+

1/2 ∩ ∂Rn
+ \ {0}

v > 0, v ∈ C2(B+
1/2 \ {0}).

If v(x) ≥ ε on ∂B1/2 ∩ Rn
+ for some ε ≤ 1, then v(x) ≥ ε/2 in B+

1/2 \ {0}.
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Proof. Let ϕ3(x) = ε
2
− rn−2ε

|x|n−2 + xnε
2

in B+
1/2 \Br for some small r. Easy to

see that v − ϕ3 satisfies




∆(v − ϕ3) = 0 in B+
1/2,

∂(v−ϕ3)
∂xn

= xk
n−1v

n+2k
n−2 − ε

2
on ∂B+

1/2 ∩ ∂Rn
+ \ {0},

v > 0, v ∈ C2(B+
1/2 \ {0}).

Notice v − ϕ3 > 0 on ∂B1/2 ∩ Rn
+ and ∂Br ∩ Rn

+. If there exists a point P0

such that v(P0)−ϕ3(P0) = min
B+

1/2
\B+

r
(v(x)−ϕ3(x)) < 0, by the virtue of the

maximum principle, we know that P0 ∈ ∂Rn
+, and thus ∂(v − ϕ3)/∂xn(P0) ≥ 0.

It follows that v
n+2k
n−2 (P0) ≥ ε, thus v(P0) > ϕ3(P0), contradiction! So v−ϕ3 > 0

in B+
1/2 \B+

r for some small r. Sending r → 0, we complete the proof.

Now, we can start to move the planes.
For λ < 0 we define as in section 2 the following:

Σλ = {x ∈ Rn
+ | x1 > λ}, Tλ = {x ∈ Rn

+ | x1 = λ},
Σ̃λ = Σλ \ {0}, xλ is the reflection of x about Tλ,
vλ(x) = v(xλ), wλ = v(x)− vλ(x).

Then wλ(x) satisfies

{
∆wλ(x) = 0 in Σλ,
∂wλ

∂xn
= xk

n−1c1(x)wλ on Σ̃λ ∩ ∂Rn
+

(3.13)

where c1(x) = n+2k
n−2

ξ
2k+2
n−2

1 (x), ξ1(x) is a positive function between v and vλ.

Proposition 3.1 There exists L > 1 such that, if λ < −L, wλ ≥ 0 in Σ̃λ.

Proof: As in [8], we choose an auxiliary function g1(x) = |z|−α, where
0 < α < n − 2, z = x + (0, 0, ..., 1) and define w̄λ = wλ/g1. We only need to
show w̄λ ≥ 0 in Σ̃λ for λ negative enough.

Similar to the proof of Proposition 2.1, by using Lemma 3.1, we know that
there exists a L1 > 0 such that if λ < −L1, w̄λ ≥ 0 in B+

1/2 \ {0}.
If for any λ < −L1, infΣ̃λ

w̄λ < 0, as in the proof of Proposition 2.1, we

know that there exists a x̄ ∈ Σ̃λ such that w̄λ(x̄) = infΣ̃λ
w̄λ < 0. Direct

computation shows that w̄λ satisfies
{

∆w̄λ + 2
g1
∇g1 · ∇w̄λ + ∆g1

g1
w̄λ = 0 in Σλ

∂w̄λ

∂xn
= (xk

n−1c1(x)− 1
g1
· ∂g1

∂xn
)w̄λ on Σ̃λ ∩ ∂Rn

+.
(3.14)

Since ∆g1/g1 = −α(n − 2 − α)/|z|2 < 0, we know that x̄ ∈ ∂Rn
+. Hence

∂w̄λ/∂xn(x̄) ≥ 0. From wλ(x̄) < 0, using a similar argument to the proof of
Proposition 2.1, we have |xk

n−1|c1(x̄) ≤ C|x̄|−2−k. Also we know − 1
g1
· ∂g1

∂xn
=

α/|z|2. It follows that if λ < −L for some large L > L1, ∂w̄λ/∂xn(x̄) < 0. We
derive a contradiction.
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Proposition 3.2 If λ0 < 0, then wλ0 = 0.

Proof: We prove this proposition by contradiction. Suppose not, by the
virtue of the maximum principle and Hopf lemma, we know wλ0(x) > 0 in
Σ̃λ0 \ Tλ0 .

Claim: There exist some small constants: r0 ≤ min(|λ0|/2, 1) and ε < 1,
such that

wλ0(x) ≥ ε

2
in B+

r0
(0) \ {0}.

Proof of the claim: Let ϕ4 = ε
2
− rn−2ε

|x|n−2 + εxn

2
in B+

r0
\B+

r for some small
r < r0, where ε and r0 will be chosen. Since wλ0 satisfies

{
∆wλ0 = 0 wλ0 ≥ 0 in B+

r0
(0)

∂wλ0

∂xn
= xk

n−1c1(x)wλ0 on ∂B+
r0
∩ ∂Rn

+ \ {0},

we know
{

∆(wλ0 − ϕ4) = 0 in B+
r0

(0)
∂(wλ0

−ϕ4)

∂xn
= xk

n−1c1(x)wλ0 − ε
2

on ∂B+
r0
∩ ∂Rn

+ \ {0}.
(3.15)

We want to show that for a suitable small r0 and ε < min{min∂Br0
wλ0(x), 1},

wλ0(x) ≥ ϕ4(x) ∀x ∈ B+
r0
\B+

r . (3.16)

If not, due to (3.15) and the fact that wλ0−ϕ4 ≥ 0 on (∂Br0∪∂Br)∩Rn
+, we

know that there exists a P0 ∈ ∂Rn
+ such that wλ0(P0)−ϕ4(P0) = infΣ̃λ0

(wλ0 −
ϕ4) < 0 and

∂(wλ0 − ϕ4)

∂xn

(P0) ≥ 0.

Notice wλ0(P0) ≤ ϕ4(P0) < ε, as in the proof of Proposition 2.2, it yields that
c1(P0) ≤ C (C is independent of r0 whenever we choose r0 ≤ |λ0|/2). Now we
choose r0 small enough, such that

r0C <
1

2
.

Then, we have
∂(wλ0 − ϕ4)

∂xn

(P0) < 0.

Contradiction! Thus, we have shown that (3.16) holds for some suitable chosen
r0 and ε. Sending r → 0, we complete the proof of the claim.

Now we continue the proof of Proposition 3.2. By the definition of λ0, there
exists a sequence λl → λ0 with λl > λ0 such that infΣ̃λl

wλl
< 0. As before,

we consider w̄λl
= wλl

/g1 with g1(x) defined in the proof of Proposition 3.1.
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It follows from the above claim, w̄λl
(x) → 0 as |x| → ∞ and ∆g1/g1 < 0 in

(3.14) that there exists Pl ∈ ∂Rn
+ such that w̄λl

(Pl) = infΣ̃λl
w̄λl

. Therefore

∂w̄λl
/∂x1(Pl) = 0. Similar discussion to the proof of Proposition 3.1 we can

conclude that Pl ∈ BR(0) for some large constant R uniformly. Thus as l →∞,
Pl → x̄ = Tλ0 ∩ ∂Rn

+, and ∂w̄λ0/∂x1(x̄) = 0.
In order to derive a contradiction, we still need the following technical

lemma to take care of the corner point x̄. Without loss of generality, we
assume λ0 = −1 and x̄ = (−1, 0, ..., 0). The proof is almost the same as that
of Lemma 2.4 in [8], we include it here for completeness.

Lemma 3.2 Assume that wλ0 satisfies (3.13), wλ0 > 0 in Σ̃λ0 for some λ0 < 0
and x̄ ∈ Tλ0 ∩ ∂Rn

+, then
∂wλ0

∂x1

(x̄) > 0. (3.17)

Proof. Set Ω = {x : x ∈ B+
1 \ B̄+

1/2, xn < 1/4} and for some α >
max{n/2, n− 3},

h(x) = β(|x′|−α − 1)(xn + µ), ϕ5(x) = h(x)− 1

|x|n−2
h(

x

|x|2 ), x ∈ Ω,

where 0 < β, µ < 1 will be chosen later. A direct computation yields

∆ϕ5 ≥ 0.

Consider B(x) = wλ0 − ϕ5; it follows that

{
∆B ≤ 0, in Ω,
∂B
∂xn

= xk
n−1c1wλ0 − ∂ϕ5

∂xn
on ∂Ω ∩ ∂Rn

+.
(3.18)

For some suitable chosen β and µ, we want to show

B(x) ≥ 0, ∀x ∈ Ω. (3.19)

Using wλ0 > 0 in Σλ0 \ {0}, we can choose β0 > 0 such that for all 0 < β < β0,
B(x) ≥ 0 on ∂Ω ∩ {∂B1/2 ∪ {xn = 1/4}}. Also, one can see that B(x) ≥ 0 on
∂Ω ∩ ∂B1. Suppose the contrary of (3.19), there exists some x̃ = (x̃′, d) ∈ Ω̄
such that

B(x̃) = min
Ω̄

B(x) < 0.

It follows that d = 0,

wλ0(x̃) < βµ((|x̃′|−α − 1)(|x̃′|−n+α+2 + 1) (3.20)
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and
∂B

∂xn

(x̃) ≥ 0.

A Simple calculation yields

∂ϕ5

∂xn

(x̃) = β(|x̃′|−α − 1)(|x̃′|−n+α + 1).

Combining the above two inequalities we have

x̃k
n−1c1(x̃)wλ0(x̃)− β(|x̃′|−α − 1)(|x̃′|−n+α + 1) ≥ 0. (3.21)

It follows from (3.20) and (3.21) that

x̃k
n−1c1(x̃)µ > 1.

If we choose 0 < µ < min1/2≤|x|≤1(x̃
k
n−1c1(x) + 1)−1 from the beginning, we

reach a contradiction, thus (3.19) holds.
Notice B(x̄) = 0, we have

∂B

∂x1

(x̄) ≥ 0.

It follows that

∂wλ0

∂x1

(x̄) =
∂B

∂x1

(x̄) +
∂ϕ5

∂x1

(x̄) ≥ ∂ϕ5

∂x1

(x̄) = 2αβµ > 0.

We complete the proof of Lemma 3.2, therefore complete the proof of Propo-
sition 3.2.

Now, as in Section 2, we have two case. Case 1: λ0 < 0, we know

lim
|x|→∞

|x|n−2u(x) = c0 > 0. (3.22)

Case 2: v(x) is radial symmetry about the origin on the x′′-hyperplane (we
write x = (x′′, xn−1, xn)). Due to the property of Kelvin transformation, we
know that u(x) is radial symmetry about the origin on the x′′-hyperplane.
Since we can choose the origin arbitrarily on the x′′-hyperplane, we conclude
that u(x) just depends on xn and xn−1 in this case.

Proposition 3.3 There exists no positive solution of (1.3) which satisfies
(3.22) if p > 1.

This proposition yields that case 1 will not happen. Therefore we complete
the proof of Theorem 1.3 by completing the proof of the above proposition.
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Proof of Proposition 3.3. The proof is the same as that of Proposition
2.3. Assume u > 0, due to (3.22), we can apply moving planes directly along
the xn−1-direction, and get

∂u

∂xn−1

≥ 0.

Then the contradiction comes from the above, u(0) > c > 0 and (3.22). We
leave these details to readers.

Remark. Our method heavily depends on the invariance of the equation
under the Kelvin transformation, therefore, we can only classify some equa-
tions with discrete exponents and can not prove our Theorems for all p less
than or equal to the critical exponents. The natural question is: Does Theorem
1.1 still hold for any 1 < p ≤ (n + 2)/(n− 2) ?

Also it might be interesting to seek that Theorem 1.3 holds for some con-
tinuous range of q.

4 Application

The Liouville theorems we derived here are mainly applied to get some a priori
estimates in the study of certain elliptic boundary value problems. As a conse-
quence, one can obtain some existence results via blowup argument and degree
theory, see for instance [6] or [1]. Let Ω ⊂ Rn(n ≥ 3) be a bounded smooth
domain, we here present an existence result concerning the same equations
which was discussed in [1]:

{
Lu + a(x)g(u) = 0, u > 0, in Ω
Bu = 0 on ∂Ω

(4.23)

where, L is an uniformly elliptic linear operator:

L = aij(x)
∂2

∂xi∂xj

+ bi(x)
∂

∂xi

+ c(x),

with aij(x) ∈ C2(Ω), bi(x) ∈ C1(Ω), c(x) ∈ L∞ and

c0|ξ|2 ≤ aij(x)ξiξj ≤ C0|ξ|2, ∀ξ ∈ Rn, ∀x ∈ Ω,

for some c0, C0 > 0. The boundary operator B is one of the following

Bu := u (4.24)

Bu := νjajkuxk
+ α(x)u, (4.25)

where ν = (ν1, ..., νn) denotes the exterior unit normal on ∂Ω, α is a given
continuous nonnegative function on ∂Ω.



14

We assume that g is a C1 function on R+ with

g(0) = g′(0) = 0 and lim
s→∞ g(s)/s

n+2
n−2 = l > 0. (4.26)

The function a(x) which we are considering here is C2 and changes sign,
that is, both

Ω+ := {x ∈ Ω : a(x) > 0} and Ω− := {x ∈ Ω : a(x) < 0}

are nonempty. We assume that

Γ := Ω+ ∩ Ω− ⊂ Ω and ∇a(x) 6= 0 ∀x ∈ Γ. (4.27)

Let λ1(−L) be the principle eigenvalue of the operator −L in Ω under the
boundary condition Bu = 0. Then the existence result can be stated as:

Theorem 4.1 Assume (4.26), (4.27), λ1(−L) > 0 and the dimension n ≥ 3
is an even number. Then problem (4.23) has one solution.

With the aid of Theorem 1.2, we can prove the above theorem exactly in
the same way as in [1]. We omit details here.

Remark 4.1 Chen and Li also obtained some existence results concerning the
prescribing scalar curvature problem in [4]. However, their method can not be
applied to general equation (4.23).
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