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Abstract

In this note, we present some Liouville type theorems about the
nonnegative solutions to some indefinite elliptic equations.

1 Introduction

In the study of some indefinite elliptic problems, in order to get a priori esti-
mate one may use standard blowup argument. In this procedure, we encounter
the following equations in R™:

Au+z,u? =0, w>0, in R" (1.1)

where we write © = (21,23, ..., ,) € R". Throughout this paper, we always
assume n > 3.

Using some test functions on S™, Berestycki, Capuzzo Dolcetta and Niren-
berg [1] proved the following theorem (we state a weak version in the whole
space).

Theorem A. Let u(z) € C?(R™) be a solution to (1.1). If p < 22 then
u(z) = 0.

One observes that Z—ﬁ is less than the critical Sobolev exponent Z—fg In
the study of prescribing scalar curvature problems, we do need to consider
those equations with critical exponents. The main purpose of this paper is to
study (1.1) for p = 242

n—2"
We here consider a slightly general equation:

Au+2fu? =0, v >0, in R" (1.2)

where and throughout this paper we assume that & is an odd positive integer.
Our first result can be stated as the following.



Theorem 1.1 Let u(x) € C*(R") be a solution to (1.2). If p = (n+ 2 +
2k)/(n —2), then u = 0.

Remark 1.1 [t is obvious to see that Theorem 1.1 still holds if we change x,
tox; fori=1,...,n—1 in equation (1.2).

For the critical exponent, we have the following.

Theorem 1.2 Let u(z) € C*(R™) be a solution to (1.2). Ifp= (n+2)/(n—2)
and the dimension n is an even number, then u = 0.

Remark 1.2 For k > 3, Theorem 1.2 was included in Theorem 2.2 of [1].

We also consider a related problem in the half space with Neumann bound-
ary condition:
{ Au=0, uv>0, in R?

ou _ ,.k,q n
Jo = T ud, on ORY,

(1.3)

(2

where and through this paper we write R = {(2/, z,) = (21, ..., Zn-1,2) | 2’ €

R" !, x, >0}, i <n—1. This equation can be viewed as the limit equation

when we “blow up” some equations with indefinite boundary nonlinearities.
We have the following result.

Theorem 1.3 Let u € C*(R") be a solution to (1.8). If ¢ = (n+2k)/(n—2),
then u(x) just depends on x,, and x;.

Similarly, for the critical exponent, we have the following.

Theorem 1.4 Let u € C*(R") be a solution to (1.3). If ¢ =n/(n —2), then
u(x) just depends on x,, and z;.

An interesting consequence of Theorem 1.4 is the following corollary.

Corollary 1.1 Let u € C*(R}) be a solution to (1.3). If ¢ = n/(n —2) and
u(z) — 0 as |z| — oo, then u(z) = 0.

Remark 1.3 We tend to believe that Corollary 1.1 holds without the decay
assumption at infinity on u(x). We hope to clarify this point in our future
study.



The proofs of Theorem 1.1 and 1.3 follow from the standard moving plane
method, see for instance, [2], [3], [5] in the whole R™ and [7]-[11] in the upper
half space. Here we first observe that the equations with those exponents in
Theorem 1.1 and 1.3 are invariant under the Kelvin transformation, thus after
we perform the Kelvin transformation on these equations, the coefficients are
still monotone in any direction perpendicular to z,-axis. We then apply the
moving plane method as usual in these directions. The main difficulty will
come from the analysis of the possible singular point. By adding dimensions,
we can prove Theorem 1.2 and 1.4 as in the work of [9]. As an application,
we state an existence result concerning the same equations as in [1] in the last
section.

2 Proofs of Theorem 1.1 and 1.2

We first derive Theorem 1.2 from Theorem 1.1 by using the method of adding
dimensions, which was introduced by us in [9)].

Let u(z) > 0 be a solution to (1.2). Set @(z1, X2, ..., Tpn, Tpi1s oy Tm) =
w(zy, ..., x,), where m is an integer which will be chosen later. Thus @ solves

~ k ~nt2 ~ . m
Au+zyun—2 =0, >0, in R™

Choosing m = (n — 2)(2 + k)/2 + 2 (here we use the fact that n is even), we
have (n +2)/(n —2) = (m + 2 + 2k)/(m — 2). It follows from Theorem 1.1
that w = 0, therefore, u = 0.

We now focus on the proof of Theorem 1.1. Later on we write x = (2, x,,)
and assume that u(x) solves (1.2). From the strong maximum principle, we
know that either u = 0 or © > 0. We prove u = 0 by contradiction. Suppose
u > 0, we aim to derive a contradiction.

Since there is no assumption on the decay rate of u at infinity, as usual,
we set

By (2.4)

Then v(z) satisfies

k n+2+4+2k

Av+z,v 2 =0, v>0, in R"\{0}. (2.5)
Our purpose is to obtain some symmetric properties about v(z) on the
x’-hyperplane. We achieve this by using moving planes which are parallel to
xrp-axis. Without loss of generality, we move the planes along x;-direction.
Our first lemma will be used to handle the possible singular point of v(x)
at the origin.



Lemma 2.1 Assume that v satisfies

n4+242k

Av+aFv™2 =0 in B\ {0}
v>0, wve&C*Bp\{0}).

If v(x) > € on 0By )y for some € < 1, then v(z) > €/2 in By \ {0}.

Proof: Let pi(x) = £ — Ll % in By, \ B, for some small 7 > 0,

2z

A(z) = v(z) — p1(z), then

AA(x) = —xiv n2 —e.

Set

S={z] — :cflvn:i% —€>0, € Byp\ B},
n+2+4+2k

Se={z| —akv =2 —e<0, z€Byp\B}

k n+24+2k

In S, —xkv =2 — € >0, thus x,, < 0. It follows that (notice that k is odd)

n+2+22k > € > € >
v n- = = 1.
—xz — (1/2)F

Since 2225 > 1 and 1 > € > ¢; in S, we know that v > ¢, for z € S.
4242k

In S¢, we know AA < 0. Also we can check that: On {z | —zfv "2 —e=
0}, as in S, v > ¢1; On 0Byj2, v — @1 > € — (¢/2 +€¢/8) > 0; On 0B,
v—p1 >0—(e/2—€+¢€/8) >0; That is : on 95, v > ;. By the maximum
principle, we have that v > ¢; in S°¢.

Therefore, we know v > ¢y in Byjs \ B,. Sending » — 0, we complete the
proof of the lemma.

Now we are ready to move the planes.
For A < 0 we define

Si={z]| z1 >} Th={z| z1 =27},
Yy =32\ {0}, z* is the reflection of z about T},
ur(z) = v(?), wy(z) = v(x) —VA(T).

Then w) (x) satisfies

Awy + zfe(z)wy =0 in X, (2.6)

where ¢(z) = %5?—? (x), &(x) is a positive function between v(z) an vy (x).

Proposition 2.1 There exists R > 1 such that, if A < —R, wy > 0 in Sy



Proof: As in [8], we choose an auxiliary function g(z) = |z|~® with 0 <
a < n —2, and consider wy = w,/g.

Claim: There exists R > 1 such that, if A\ < —R, wy > 0 in f],\.

Before we prove the claim, we first take care of the possible singular point of
wy at the origin. Due to the fact that v(x) — 0 as |x| — 00, we easily see that
there exists a Ry > 0 such that if \ < =Ry, vy(z) < % m1n{m1n331/2 v(x), 1}
in By/2\{0}. Therefore, from Lemma 2.1, we know that wx(z) > 01in Bl/g\{O}
for A < —Rq, so is wy.

We then prove the claim by contradiction. Assume for any A < —Ry,
infg, wy(r) < 0. From the above argument and the fact that v(z) — 0 as
|z| — o0, we know that there exists a Z € ¥, such that @ (Z) = infg wy(r) <
0.

Direct computation shows that w, satisfies

2 _ Ag .
AwA—Fng-VwA—i-(x c(x )—l—?)wA =0 in X,\ {0} (2.7)

Since wy(Z) < 0, we know vy (Z) > v(z). From (2.4) we have: there exists

C > 0, such that, as |\| is sufficiently large

C
. -
un(Z) = v(z") < =

It follows that at point Z,
n+ 2+ 2k C 2kt

fealel®) < =5 () -l < Glal ™
Noticing g(—) = —%, we know that there exists Ry > R; such that,

as A < —Ry, Ag(z)/g(Z) + 2¥c(x) < 0. Therefore, in view of the maximum
principle, we know that w, can not attain an interior negative minimum in a
neighborhood of z. Contradiction!

Proposition 2.1 follows from the above claim directly.

Now we define
Ao =sup{A < 0] w,(z) >0 in¥, for all —oo<pu< A} (2.8)
Proposition 2.2 If \y <0, then wy, = 0.

Proof: We prove this proposition by contradiction. Suppose not, by the
strong maximum principle we know that wy,(x) > 0 in Xy, \ T),.
Claim: There exist some small constants: ry < min(|A\g|/2,1) and € < 1,

such that
W (ZL’) > n BTO(O) \ {0}

DO ™



n—2

Proof of the claim: Let ¢y(z) = § — B % in B,,(0) \ B,(0) for

some small r < ry, where € and ry will be chosen. Since w,, satisfies

Awy, + mﬁc(x)w)\o =0, wy, >0 in B,(0)\{0},
we know

A(wx, — ¢2) = —Tpe(@)ws, — % S(n=1)a|™ in By, (0)\ B, (0).
Set By, (0)\ B,(0)= 51 US§ such that Sy = {z : wy, > 1> pa} N B,,(0)\
B,.(0). Obviously we only need to show that the claim holds in S¥.
In S§ we know wy, < 1. Since 0 < 1/C < vy, (z) < C for x € B,,(0) (here
C'is independent of ry whenever we choose 19 < |Ag|/2), we have v(z) < C+1
in S¢. Thus, in S¢, there exists a constant C' > 0, such that

c(xr) < C < +oo.
Now we fix rg small enough such that
(n—Dz|™" = 2Jagle(z) Vo € By, (0)\ B,(0), (2.9)

and choose € < min{minaBTO(o) Wy, 1}. Set S§ = 511 U Sy 2 such that
Sip=A{z : —zFe(z)wy, > %(n —D)z|™t, z €S}

In S 1, from (2.9), we know that wy, > € > .

In Sy 2, we have A(wy, — ¢2) < 0. Also one can check that: On {x
—zke(z)wy, = "z le, x € S°}, as in Si; we know wy, > p9; On 0B, (0),
Wy, — 2 > €—(€/2+¢€/2) =0; On 0B,(0), wy, —p2 > 0—(¢/2—€+¢/2) = 0.
That is on 0512, wy, > 2. Thus from the maximum principle, we know that
Wy, > P2 In S .

It follows that wy, > ¢y in S7. Let r — 0, we have the claim.

Now we continue the proof of Proposition 2.2. By the definition of \g, there

is a sequence \; — Xy with \; > A\g such that infikl wy, < 0. As before, we
consider wy, = wy,/g with g(z) = |z|~*. It follows from the above claim and
wy,(x) — 0 as |z| — oo that there is P, such that w,,(F)) = ming, ), (x) < 0.
Similar discussion to the proof of Proposition 2.1, we also know that P, €
Bgr(0) for some uniform constant R. Thus, as [ — oo, P, — & € T),. Since
|V, (P)| = 0, we know 0w,,/0z1(z) = 0. On the other hand, since w,,
satisfies (2.7) and @y, > 0 in Xy, \ Th,, by Hopf Lemma we know 8{;?10 (z) > 0.
Contradiction! We complete the proof of Proposition 2.2.

If \g < 0, from Proposition 2.2 we derive that lim, o v(z) exists, that is,
|z|"2u(z) tends to some constant ¢y > 0 as x — oo. If Ay = 0, we then begin



to move the planes from positive xj-axis to the origin and get either case 1:
v(x) is symmetry about origin on the z’-hyperplane (recall we can move the
planes along any direction on z’-hyperplane), or case 2: |z|"?u(z) tends to
some constant ¢y > 0 as x — oo.

In the first case, from the property of the Kelvin transformation one easily
gets that u(x) is radial symmetry about the origin on the z’-hyperplane. Since
we can choose the origin arbitrarily on the z’-hyperplane, we know that u(z)
is independent of 2’ and (1.2) becomes the following ODE:

g n2t2k

u'+aiu 2 =0, uw>0, in R. (2.10)

An elementary phase-plane argument shows that (2.10) has only trivial solu-
tion.
In the second case we know
|llim |z|"?u(x) = ¢ > 0. (2.11)
To complete the proof of Theorem 1.1, we only need to show that (1.2) have

no positive solution under the condition (2.11), that is we only need to prove
the following proposition.

Proposition 2.3 There exists no positive solution of (1.2) which satisfies
(2.11) if p > 1.

Proof. We again prove this proposition by contradiction. Suppose that
u > 0 solves (1.2) and satisfies (2.11) for some positive constant c.

Claim: a% >0 VzeR™

Easy to see the claim contradicts to the fact u(0) > 0 and (2.11). Therefore,
we only need to prove the claim under the contrary assumption (that is u > 0
solves (1.2) and satisfies (2.11)).

We use the method of moving planes again. This time we move planes
along the positive x,-direction.

For any A € R, set

Sax=A{z]| x, >}, Th={z | x, =)},
2 is the reflection of z about T},
uy(z) = u(z?), wy = u(z) — ux(x).

The claim can be proved through the following standard three steps. Here
we outline the proof for completeness.

Step 1. There exists some constant K > 0 such that, if A < —K, wy >0
in X -

The proof of this step is similar to that of Proposition 2.1. Here there is
no singular point to worry about.



Then we can define
Ao =sup{A | w,(z) >0 in ¥, for all —oo<p <A}

Step 2. If \g # +o0, then w), = 0.

This can be proved as in Proposition 2.2. Again, there is no singular point
to worry about.

Step 3. Ao = 4o00.

Proof. Assume )\ < oo, from step 2 we know w), = 0. Therefore

Au+zkuP =0 in R"
Au+ (20 — x,)fu? =0 in R™

It follows that x, = 2\q — x,, for all x,, € R. Contradiction! We complete the
proof of the claim.

3 Proofs of Theorem 1.3 and 1.4

Theorem 1.4 can be derived from Theorem 1.3 as the proof of Theorem 1.2,
so we only give the proof of Theorem 1.3 in this section. Without loss of
generality, we only consider x; = x,_; in (1.3). We argue by contradiction.

Suppose u # 0. Then, in view of the maximum principle and Hopf lemma,
we know that u > 0 in R. Set

1 x
’U(Q?) |3§"n72 (’xP)?
then v(x) satisfies
Av=0, v>0, in R7,
{ 2ok o on or1\ {0) (812

Again, we will move the planes which parallel to x,-axis along x;-direction.

In order to start to move planes, we still need the following lemma to
take care of the possible singular point at the origin. We denote B, (0) :=
B,(0) NRY.

Lemma 3.1 Assume that v(x) satisfies

Av(z) =0 in BfL/z

n+2k
8(11; =k v e on anL/Q NORY \ {0}
v >0, v e C*(B), \ {0}).

If v(x) > € on OBys NRY for some e <1, then v(x) > €/2 in Bf/z \ {0}.



Proof. Let ps(z) = § — 2 4 Z2¢ in B}y \ B, for some small 7. Easy to

2 ‘x|n 2
see that v — 3 satisfies
A(v — 3) =0 B in B,
_ n+
76(2%‘?3) =ak_ v — £ on 88;72 Nor: \ {0},

v >0, NS (]2(Bfr/2 \ {0}).
Notice v — @3 > 0 on 9B, NRY} and 9B, NRY. If there exists a point F
such that v(Py) — p3(Fp) = minﬂ\ﬁ(v(x) —p3(x)) < 0, by the virtue of the
maximum principle, we know that P, € OR;, and thus d(v — ¢3)/0z,(Fy) > 0.

It follows that v%(Po) > ¢, thus v(Py) > ¢3(F), contradiction! Sov—p3 > 0
in Bf/2 \ B for some small r. Sending r — 0, we complete the proof.

Now, we can start to move the planes.

For A < 0 we define as in section 2 the following:
Ex={zeR} | z1 > A} Di={zeR} | z1 = A},
Yy =32\ {0}, z* is the reflection of z about T},
va(z) = v(at), wy = v(z) — vA(z).

Then w) (x) satisfies

AU))\( ) 0 n Z/\’
{ Qs — gk jep(z)wy on TN ORY (3.13)

2k+2
where ¢;(z) = 226" (), & () is a positive function between v and vy.

Proposition 3.1 There exists L > 1 such that, if A\ < —L, wy >0 in .

Proof: As in [8], we choose an auxiliary function g;(z) = |z|~*, where
0<a<n—2 z=x+4(0,0,...,1) and define wy = wy/g;. We only need to
show @y > 0 in X, for A negative enough.

Similar to the proof of Proposition 2.1, by using Lemma 3.1, we know that
there exists a Ly > 0 such that if A < —L;, wx > 0 in By, \ {0}.

If for any A < —Ly, infy wy < 0, as in the proof of Proposition 2.1, we

know that there exists a 7 € X, such that wy(z) = infg, wy < 0. Direct
computation shows that w, satisfies

Awy + g%Vgh -V, + Agglu_J =0 in X, (3.14)
G = (zhoa(@) = o g,;ﬂ’i)wx on ¥, N IR~ ‘
Since Agi/g1 = —a(n — 2 — «)/|z|* < 0, we know that z € OR". Hence

0wy /0x,(Z) > 0. From wy(Z) < 0, using a similar argument to the proof of
1 991

Proposition 2.1, we have |zF_|c;(Z) < C|z|727%. Also we know —L. o —

a/|z|%. Tt follows that if A < —L for some large L > Ly, 0wy /dz,(Z) < 0. We
derive a contradiction.
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Proposition 3.2 If \; <0, then wy, = 0.

Proof: We prove this proposition by contradiction. Suppose not, by the
virtue of the maximum principle and Hopf lemma, we know wy, () > 0 in
Zxo \ To-

Claim: There exist some small constants: ry < min(|A\g|/2,1) and € < 1,
such that

Wy, (T) > in B} (0)\ {0}.

DO ™

Proof of the claim: Let o4 = § — ";;% + <= in B \ B, for some small

r < ro, where € and 7y will be chosen. Since w), satisfies

Gor = ah_ei(a)wy,  on OB NARY\ {0},

{ A’LU)\O =0 Wy > 0 in B;‘B(O)

we know
Awy, = 1) =0 in B}(0) 5.15)
(w?)of?%) =af_e(x)wy, — 5  on 9B NoRY \ {0}. '

We want to show that for a suitable small 7y and € < min{mingp, wx,(z),1},
wy,(2) > pa(x) Vo e B\ B (3.16)

If not, due to (3.15) and the fact that wy, —y4 > 0 on (0B,,UJdB, )R}, we
know that there exists a Py € OR", such that wy,(Fy) — ¢4(Fp) = infiho (wy, —
©4) < 0 and

8(21))\0 — 904)
o,
Notice wy,(Py) < @4(Py) < €, as in the proof of Proposition 2.2, it yields that
c1(Py) < C (C is independent of 9 whenever we choose ry < [Ao|/2). Now we
choose ry small enough, such that

1
TQC < 5
Then, we have
a<w>\0 - 904>
ox,,
Contradiction! Thus, we have shown that (3.16) holds for some suitable chosen
ro and e. Sending r — 0, we complete the proof of the claim.
Now we continue the proof of Proposition 3.2. By the definition of \g, there
exists a sequence \; — Ao with \; > Ay such that infiA wy, < 0. As before,
l

(Ry) < 0.

we consider wy, = w,,/g1 with g;(z) defined in the proof of Proposition 3.1.
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It follows from the above claim, wy, (z) — 0 as |z| — oo and Ag;/g1 < 0 in
(3.14) that there exists P, € OR’ such that wy,(F) = infixl wy,. Therefore

0wy, /0z1(P) = 0. Similar discussion to the proof of Proposition 3.1 we can
conclude that P, € Bg(0) for some large constant R uniformly. Thus as ! — oo,
P, — & =T, NORY, and 0wy, /0x1(z) = 0.

In order to derive a contradiction, we still need the following technical
lemma to take care of the corner point z. Without loss of generality, we
assume \g = —1 and z = (—1,0,...,0). The proof is almost the same as that
of Lemma 2.4 in [8], we include it here for completeness.

Lemma 3.2 Assume that wy, satisfies (3.13), wy, > 0 in Xy, for some g < 0
and z € T\, N ORY, then
8w,\0

5, (2) > 0. (3.17)

Proof. Set Q = {z : z € B\ BT/Q, x, < 1/4} and for some o >
max{n/2,n — 3},

1 T

h(w) = B(12"|™ = D(wn +p), @5(x) = h(z) - Wh(W>’ z €,

where 0 < (3, u < 1 will be chosen later. A direct computation yields

Aps > 0.

Consider B(z) = wy, — ps; it follows that

AB <0, in Q
{ 373 = $ﬁ_101wxo — gfi on 0N ORY. (3.18)
For some suitable chosen (8 and u, we want to show
B(x) >0, V€. (3.19)

Using wy, > 01in X, \ {0}, we can choose 3y > 0 such that for all 0 < 5 < Gy,
B(xz) > 0o0on 0QN {082 U{x, =1/4}}. Also, one can see that B(z) > 0 on
0Q N 0B;. Suppose the contrary of (3.19), there exists some & = (i, d) € Q
such that

B(z) = m{%n B(z) < 0.
It follows that d = 0,

wio (7)< Bp((|7]7* = D)(J'] " + 1) (3.20)
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and

A Simple calculation yields

0
S () = B = (|7 4 1),

Combining the above two inequalities we have
Tn_gc(B)w, (7) = B[ = ('] + 1) = 0, (3.21)

It follows from (3.20) and (3.21) that

Tpoci(T)p > 1.

If we choose 0 < p < min1/2§|x‘§1(i’ﬁ_lcl(x) + 1)~ from the beginning, we
reach a contradiction, thus (3.19) holds.
Notice B(z) = 0, we have

0B

—(z) > 0.

3:61 (1') -
It follows that

aw}‘“ :f) — aiB
8I1 N 8x1

dps dps
)+ — () > — () =2 > 0.
@)+ 52(3) 2 522(@) = 20
We complete the proof of Lemma 3.2, therefore complete the proof of Propo-
sition 3.2.
Now, as in Section 2, we have two case. Case 1: \g < 0, we know

lim |z 2u(x) = ¢y > 0. (3.22)
|z|—o00
Case 2: v(z) is radial symmetry about the origin on the z”-hyperplane (we
write x = (2", 2,_1,%,)). Due to the property of Kelvin transformation, we
know that u(z) is radial symmetry about the origin on the z”-hyperplane.
Since we can choose the origin arbitrarily on the x”-hyperplane, we conclude
that u(z) just depends on z,, and x,_; in this case.

Proposition 3.3 There exists no positive solution of (1.3) which satisfies
(3.22) if p > 1.

This proposition yields that case 1 will not happen. Therefore we complete
the proof of Theorem 1.3 by completing the proof of the above proposition.



13

Proof of Proposition 3.3. The proof is the same as that of Proposition
2.3. Assume u > 0, due to (3.22), we can apply moving planes directly along
the x,_;-direction, and get

ou
a3371—1

Then the contradiction comes from the above, u(0) > ¢ > 0 and (3.22). We
leave these details to readers.

Remark. Our method heavily depends on the invariance of the equation
under the Kelvin transformation, therefore, we can only classify some equa-
tions with discrete exponents and can not prove our Theorems for all p less
than or equal to the critical exponents. The natural question is: Does Theorem
1.1 still hold for any 1 <p < (n+2)/(n—2) 7

Also it might be interesting to seek that Theorem 1.3 holds for some con-
tinuous range of q.

> 0.

4 Application

The Liouville theorems we derived here are mainly applied to get some a prior:
estimates in the study of certain elliptic boundary value problems. As a conse-
quence, one can obtain some existence results via blowup argument and degree
theory, see for instance [6] or [1]. Let @ C R"(n > 3) be a bounded smooth
domain, we here present an existence result concerning the same equations
which was discussed in [1]:

e I
where, £ is an uniformly elliptic linear operator:
2 0
L= aij(w)m + bz(:p)a—xl + c(x),
with a;;(z) € C*(Q), bi(z) € C1(Q), ¢(z) € L™ and
colé® < ay(2)&:&; < Colél?, VEeR™, Vxeq,
for some ¢y, Cy > 0. The boundary operator B is one of the following
Bu:=u (4.24)
Bu = vja;iu,, + o(x)u, (4.25)

where v = (4, ...,1,) denotes the exterior unit normal on 052, « is a given
continuous nonnegative function on 0f).
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We assume that ¢ is a C' function on R* with
9(0)=g(0)=0 and lim g(s)/s72 =1 > 0. (4.26)

The function a(x) which we are considering here is C? and changes sign,
that is, both

Ot={reQ : a(x)>0} and Q ={reQ : a(x) <0}
are nonempty. We assume that
r:=0tNQ-cQ and Va(z)#0 Vzel. (4.27)

Let A1(—L) be the principle eigenvalue of the operator —L£ in 2 under the
boundary condition Bu = 0. Then the existence result can be stated as:

Theorem 4.1 Assume (4.26), (4.27), \(—L) > 0 and the dimension n > 3
is an even number. Then problem (4.23) has one solution.

With the aid of Theorem 1.2, we can prove the above theorem exactly in
the same way as in [1]. We omit details here.

Remark 4.1 Chen and Li also obtained some existence results concerning the
prescribing scalar curvature problem in [4]. However, their method can not be
applied to general equation (4.23).
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